blob: 11999df25e49575799b22797b17f4d521b76ada7 [file] [log] [blame]
// Generic simd conversions -*- C++ -*-
// Copyright (C) 2020-2021 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
#ifndef _GLIBCXX_EXPERIMENTAL_SIMD_CONVERTER_H_
#define _GLIBCXX_EXPERIMENTAL_SIMD_CONVERTER_H_
#if __cplusplus >= 201703L
_GLIBCXX_SIMD_BEGIN_NAMESPACE
// _SimdConverter scalar -> scalar {{{
template <typename _From, typename _To>
struct _SimdConverter<_From, simd_abi::scalar, _To, simd_abi::scalar,
enable_if_t<!is_same_v<_From, _To>>>
{
_GLIBCXX_SIMD_INTRINSIC constexpr _To operator()(_From __a) const noexcept
{ return static_cast<_To>(__a); }
};
// }}}
// _SimdConverter scalar -> "native" {{{
template <typename _From, typename _To, typename _Abi>
struct _SimdConverter<_From, simd_abi::scalar, _To, _Abi,
enable_if_t<!is_same_v<_Abi, simd_abi::scalar>>>
{
using _Ret = typename _Abi::template __traits<_To>::_SimdMember;
template <typename... _More>
_GLIBCXX_SIMD_INTRINSIC constexpr _Ret
operator()(_From __a, _More... __more) const noexcept
{
static_assert(sizeof...(_More) + 1 == _Abi::template _S_size<_To>);
static_assert(conjunction_v<is_same<_From, _More>...>);
return __make_vector<_To>(__a, __more...);
}
};
// }}}
// _SimdConverter "native 1" -> "native 2" {{{
template <typename _From, typename _To, typename _AFrom, typename _ATo>
struct _SimdConverter<
_From, _AFrom, _To, _ATo,
enable_if_t<!disjunction_v<
__is_fixed_size_abi<_AFrom>, __is_fixed_size_abi<_ATo>,
is_same<_AFrom, simd_abi::scalar>, is_same<_ATo, simd_abi::scalar>,
conjunction<is_same<_From, _To>, is_same<_AFrom, _ATo>>>>>
{
using _Arg = typename _AFrom::template __traits<_From>::_SimdMember;
using _Ret = typename _ATo::template __traits<_To>::_SimdMember;
using _V = __vector_type_t<_To, simd_size_v<_To, _ATo>>;
template <typename... _More>
_GLIBCXX_SIMD_INTRINSIC constexpr _Ret
operator()(_Arg __a, _More... __more) const noexcept
{ return __vector_convert<_V>(__a, __more...); }
};
// }}}
// _SimdConverter scalar -> fixed_size<1> {{{1
template <typename _From, typename _To>
struct _SimdConverter<_From, simd_abi::scalar, _To, simd_abi::fixed_size<1>,
void>
{
_GLIBCXX_SIMD_INTRINSIC constexpr _SimdTuple<_To, simd_abi::scalar>
operator()(_From __x) const noexcept
{ return {static_cast<_To>(__x)}; }
};
// _SimdConverter fixed_size<1> -> scalar {{{1
template <typename _From, typename _To>
struct _SimdConverter<_From, simd_abi::fixed_size<1>, _To, simd_abi::scalar,
void>
{
_GLIBCXX_SIMD_INTRINSIC constexpr _To
operator()(_SimdTuple<_From, simd_abi::scalar> __x) const noexcept
{ return {static_cast<_To>(__x.first)}; }
};
// _SimdConverter fixed_size<_Np> -> fixed_size<_Np> {{{1
template <typename _From, typename _To, int _Np>
struct _SimdConverter<_From, simd_abi::fixed_size<_Np>, _To,
simd_abi::fixed_size<_Np>,
enable_if_t<!is_same_v<_From, _To>>>
{
using _Ret = __fixed_size_storage_t<_To, _Np>;
using _Arg = __fixed_size_storage_t<_From, _Np>;
_GLIBCXX_SIMD_INTRINSIC constexpr _Ret
operator()(const _Arg& __x) const noexcept
{
if constexpr (is_same_v<_From, _To>)
return __x;
// special case (optimize) int signedness casts
else if constexpr (sizeof(_From) == sizeof(_To)
&& is_integral_v<_From> && is_integral_v<_To>)
return __bit_cast<_Ret>(__x);
// special case if all ABI tags in _Ret are scalar
else if constexpr (__is_scalar_abi<typename _Ret::_FirstAbi>())
{
return __call_with_subscripts(
__x, make_index_sequence<_Np>(),
[](auto... __values) constexpr->_Ret {
return __make_simd_tuple<_To, decltype((void) __values,
simd_abi::scalar())...>(
static_cast<_To>(__values)...);
});
}
// from one vector to one vector
else if constexpr (_Arg::_S_first_size == _Ret::_S_first_size)
{
_SimdConverter<_From, typename _Arg::_FirstAbi, _To,
typename _Ret::_FirstAbi>
__native_cvt;
if constexpr (_Arg::_S_tuple_size == 1)
return {__native_cvt(__x.first)};
else
{
constexpr size_t _NRemain = _Np - _Arg::_S_first_size;
_SimdConverter<_From, simd_abi::fixed_size<_NRemain>, _To,
simd_abi::fixed_size<_NRemain>>
__remainder_cvt;
return {__native_cvt(__x.first), __remainder_cvt(__x.second)};
}
}
// from one vector to multiple vectors
else if constexpr (_Arg::_S_first_size > _Ret::_S_first_size)
{
const auto __multiple_return_chunks
= __convert_all<__vector_type_t<_To, _Ret::_S_first_size>>(
__x.first);
constexpr auto __converted = __multiple_return_chunks.size()
* _Ret::_FirstAbi::template _S_size<_To>;
constexpr auto __remaining = _Np - __converted;
if constexpr (_Arg::_S_tuple_size == 1 && __remaining == 0)
return __to_simd_tuple<_To, _Np>(__multiple_return_chunks);
else if constexpr (_Arg::_S_tuple_size == 1)
{ // e.g. <int, 3> -> <double, 2, 1> or <short, 7> -> <double, 4, 2,
// 1>
using _RetRem
= __remove_cvref_t<decltype(__simd_tuple_pop_front<__converted>(
_Ret()))>;
const auto __return_chunks2
= __convert_all<__vector_type_t<_To, _RetRem::_S_first_size>, 0,
__converted>(__x.first);
constexpr auto __converted2
= __converted
+ __return_chunks2.size() * _RetRem::_S_first_size;
if constexpr (__converted2 == _Np)
return __to_simd_tuple<_To, _Np>(__multiple_return_chunks,
__return_chunks2);
else
{
using _RetRem2 = __remove_cvref_t<
decltype(__simd_tuple_pop_front<__return_chunks2.size()
* _RetRem::_S_first_size>(
_RetRem()))>;
const auto __return_chunks3 = __convert_all<
__vector_type_t<_To, _RetRem2::_S_first_size>, 0,
__converted2>(__x.first);
constexpr auto __converted3
= __converted2
+ __return_chunks3.size() * _RetRem2::_S_first_size;
if constexpr (__converted3 == _Np)
return __to_simd_tuple<_To, _Np>(__multiple_return_chunks,
__return_chunks2,
__return_chunks3);
else
{
using _RetRem3
= __remove_cvref_t<decltype(__simd_tuple_pop_front<
__return_chunks3.size()
* _RetRem2::_S_first_size>(
_RetRem2()))>;
const auto __return_chunks4 = __convert_all<
__vector_type_t<_To, _RetRem3::_S_first_size>, 0,
__converted3>(__x.first);
constexpr auto __converted4
= __converted3
+ __return_chunks4.size() * _RetRem3::_S_first_size;
if constexpr (__converted4 == _Np)
return __to_simd_tuple<_To, _Np>(
__multiple_return_chunks, __return_chunks2,
__return_chunks3, __return_chunks4);
else
__assert_unreachable<_To>();
}
}
}
else
{
constexpr size_t _NRemain = _Np - _Arg::_S_first_size;
_SimdConverter<_From, simd_abi::fixed_size<_NRemain>, _To,
simd_abi::fixed_size<_NRemain>>
__remainder_cvt;
return __simd_tuple_concat(
__to_simd_tuple<_To, _Arg::_S_first_size>(
__multiple_return_chunks),
__remainder_cvt(__x.second));
}
}
// from multiple vectors to one vector
// _Arg::_S_first_size < _Ret::_S_first_size
// a) heterogeneous input at the end of the tuple (possible with partial
// native registers in _Ret)
else if constexpr (_Ret::_S_tuple_size == 1
&& _Np % _Arg::_S_first_size != 0)
{
static_assert(_Ret::_FirstAbi::template _S_is_partial<_To>);
return _Ret{__generate_from_n_evaluations<
_Np, typename _VectorTraits<typename _Ret::_FirstType>::type>(
[&](auto __i) { return static_cast<_To>(__x[__i]); })};
}
else
{
static_assert(_Arg::_S_tuple_size > 1);
constexpr auto __n
= __div_roundup(_Ret::_S_first_size, _Arg::_S_first_size);
return __call_with_n_evaluations<__n>(
[&__x](auto... __uncvted) {
// assuming _Arg Abi tags for all __i are _Arg::_FirstAbi
_SimdConverter<_From, typename _Arg::_FirstAbi, _To,
typename _Ret::_FirstAbi>
__native_cvt;
if constexpr (_Ret::_S_tuple_size == 1)
return _Ret{__native_cvt(__uncvted...)};
else
return _Ret{
__native_cvt(__uncvted...),
_SimdConverter<
_From, simd_abi::fixed_size<_Np - _Ret::_S_first_size>, _To,
simd_abi::fixed_size<_Np - _Ret::_S_first_size>>()(
__simd_tuple_pop_front<_Ret::_S_first_size>(__x))};
},
[&__x](auto __i) { return __get_tuple_at<__i>(__x); });
}
}
};
// _SimdConverter "native" -> fixed_size<_Np> {{{1
// i.e. 1 register to ? registers
template <typename _From, typename _Ap, typename _To, int _Np>
struct _SimdConverter<_From, _Ap, _To, simd_abi::fixed_size<_Np>,
enable_if_t<!__is_fixed_size_abi_v<_Ap>>>
{
static_assert(
_Np == simd_size_v<_From, _Ap>,
"_SimdConverter to fixed_size only works for equal element counts");
using _Ret = __fixed_size_storage_t<_To, _Np>;
_GLIBCXX_SIMD_INTRINSIC constexpr _Ret
operator()(typename _SimdTraits<_From, _Ap>::_SimdMember __x) const noexcept
{
if constexpr (_Ret::_S_tuple_size == 1)
return {__vector_convert<typename _Ret::_FirstType::_BuiltinType>(__x)};
else
{
using _FixedNp = simd_abi::fixed_size<_Np>;
_SimdConverter<_From, _FixedNp, _To, _FixedNp> __fixed_cvt;
using _FromFixedStorage = __fixed_size_storage_t<_From, _Np>;
if constexpr (_FromFixedStorage::_S_tuple_size == 1)
return __fixed_cvt(_FromFixedStorage{__x});
else if constexpr (_FromFixedStorage::_S_tuple_size == 2)
{
_FromFixedStorage __tmp;
static_assert(sizeof(__tmp) <= sizeof(__x));
__builtin_memcpy(&__tmp.first, &__x, sizeof(__tmp.first));
__builtin_memcpy(&__tmp.second.first,
reinterpret_cast<const char*>(&__x)
+ sizeof(__tmp.first),
sizeof(__tmp.second.first));
return __fixed_cvt(__tmp);
}
else
__assert_unreachable<_From>();
}
}
};
// _SimdConverter fixed_size<_Np> -> "native" {{{1
// i.e. ? register to 1 registers
template <typename _From, int _Np, typename _To, typename _Ap>
struct _SimdConverter<_From, simd_abi::fixed_size<_Np>, _To, _Ap,
enable_if_t<!__is_fixed_size_abi_v<_Ap>>>
{
static_assert(
_Np == simd_size_v<_To, _Ap>,
"_SimdConverter to fixed_size only works for equal element counts");
using _Arg = __fixed_size_storage_t<_From, _Np>;
_GLIBCXX_SIMD_INTRINSIC constexpr
typename _SimdTraits<_To, _Ap>::_SimdMember
operator()(const _Arg& __x) const noexcept
{
if constexpr (_Arg::_S_tuple_size == 1)
return __vector_convert<__vector_type_t<_To, _Np>>(__x.first);
else if constexpr (_Arg::_S_is_homogeneous)
return __call_with_n_evaluations<_Arg::_S_tuple_size>(
[](auto... __members) {
if constexpr ((is_convertible_v<decltype(__members), _To> && ...))
return __vector_type_t<_To, _Np>{static_cast<_To>(__members)...};
else
return __vector_convert<__vector_type_t<_To, _Np>>(__members...);
},
[&](auto __i) { return __get_tuple_at<__i>(__x); });
else if constexpr (__fixed_size_storage_t<_To, _Np>::_S_tuple_size == 1)
{
_SimdConverter<_From, simd_abi::fixed_size<_Np>, _To,
simd_abi::fixed_size<_Np>>
__fixed_cvt;
return __fixed_cvt(__x).first;
}
else
{
const _SimdWrapper<_From, _Np> __xv
= __generate_from_n_evaluations<_Np, __vector_type_t<_From, _Np>>(
[&](auto __i) { return __x[__i]; });
return __vector_convert<__vector_type_t<_To, _Np>>(__xv);
}
}
};
// }}}1
_GLIBCXX_SIMD_END_NAMESPACE
#endif // __cplusplus >= 201703L
#endif // _GLIBCXX_EXPERIMENTAL_SIMD_CONVERTER_H_
// vim: foldmethod=marker sw=2 noet ts=8 sts=2 tw=80