blob: dc2fb90b9b2e5cb69b10838cf621d5cdb27a42b1 [file] [log] [blame]
// Simd fixed_size ABI specific implementations -*- C++ -*-
// Copyright (C) 2020-2021 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/*
* The fixed_size ABI gives the following guarantees:
* - simd objects are passed via the stack
* - memory layout of `simd<_Tp, _Np>` is equivalent to `array<_Tp, _Np>`
* - alignment of `simd<_Tp, _Np>` is `_Np * sizeof(_Tp)` if _Np is __a
* power-of-2 value, otherwise `std::__bit_ceil(_Np * sizeof(_Tp))` (Note:
* if the alignment were to exceed the system/compiler maximum, it is bounded
* to that maximum)
* - simd_mask objects are passed like bitset<_Np>
* - memory layout of `simd_mask<_Tp, _Np>` is equivalent to `bitset<_Np>`
* - alignment of `simd_mask<_Tp, _Np>` is equal to the alignment of
* `bitset<_Np>`
*/
#ifndef _GLIBCXX_EXPERIMENTAL_SIMD_FIXED_SIZE_H_
#define _GLIBCXX_EXPERIMENTAL_SIMD_FIXED_SIZE_H_
#if __cplusplus >= 201703L
#include <array>
_GLIBCXX_SIMD_BEGIN_NAMESPACE
// __simd_tuple_element {{{
template <size_t _I, typename _Tp>
struct __simd_tuple_element;
template <typename _Tp, typename _A0, typename... _As>
struct __simd_tuple_element<0, _SimdTuple<_Tp, _A0, _As...>>
{ using type = simd<_Tp, _A0>; };
template <size_t _I, typename _Tp, typename _A0, typename... _As>
struct __simd_tuple_element<_I, _SimdTuple<_Tp, _A0, _As...>>
{
using type =
typename __simd_tuple_element<_I - 1, _SimdTuple<_Tp, _As...>>::type;
};
template <size_t _I, typename _Tp>
using __simd_tuple_element_t = typename __simd_tuple_element<_I, _Tp>::type;
// }}}
// __simd_tuple_concat {{{
template <typename _Tp, typename... _A0s, typename... _A1s>
_GLIBCXX_SIMD_INTRINSIC constexpr _SimdTuple<_Tp, _A0s..., _A1s...>
__simd_tuple_concat(const _SimdTuple<_Tp, _A0s...>& __left,
const _SimdTuple<_Tp, _A1s...>& __right)
{
if constexpr (sizeof...(_A0s) == 0)
return __right;
else if constexpr (sizeof...(_A1s) == 0)
return __left;
else
return {__left.first, __simd_tuple_concat(__left.second, __right)};
}
template <typename _Tp, typename _A10, typename... _A1s>
_GLIBCXX_SIMD_INTRINSIC constexpr _SimdTuple<_Tp, simd_abi::scalar, _A10,
_A1s...>
__simd_tuple_concat(const _Tp& __left,
const _SimdTuple<_Tp, _A10, _A1s...>& __right)
{ return {__left, __right}; }
// }}}
// __simd_tuple_pop_front {{{
// Returns the next _SimdTuple in __x that has _Np elements less.
// Precondition: _Np must match the number of elements in __first (recursively)
template <size_t _Np, typename _Tp>
_GLIBCXX_SIMD_INTRINSIC constexpr decltype(auto)
__simd_tuple_pop_front(_Tp&& __x)
{
if constexpr (_Np == 0)
return static_cast<_Tp&&>(__x);
else
{
using _Up = __remove_cvref_t<_Tp>;
static_assert(_Np >= _Up::_S_first_size);
return __simd_tuple_pop_front<_Np - _Up::_S_first_size>(__x.second);
}
}
// }}}
// __get_simd_at<_Np> {{{1
struct __as_simd {};
struct __as_simd_tuple {};
template <typename _Tp, typename _A0, typename... _Abis>
_GLIBCXX_SIMD_INTRINSIC constexpr simd<_Tp, _A0>
__simd_tuple_get_impl(__as_simd, const _SimdTuple<_Tp, _A0, _Abis...>& __t,
_SizeConstant<0>)
{ return {__private_init, __t.first}; }
template <typename _Tp, typename _A0, typename... _Abis>
_GLIBCXX_SIMD_INTRINSIC constexpr const auto&
__simd_tuple_get_impl(__as_simd_tuple,
const _SimdTuple<_Tp, _A0, _Abis...>& __t,
_SizeConstant<0>)
{ return __t.first; }
template <typename _Tp, typename _A0, typename... _Abis>
_GLIBCXX_SIMD_INTRINSIC constexpr auto&
__simd_tuple_get_impl(__as_simd_tuple, _SimdTuple<_Tp, _A0, _Abis...>& __t,
_SizeConstant<0>)
{ return __t.first; }
template <typename _R, size_t _Np, typename _Tp, typename... _Abis>
_GLIBCXX_SIMD_INTRINSIC constexpr auto
__simd_tuple_get_impl(_R, const _SimdTuple<_Tp, _Abis...>& __t,
_SizeConstant<_Np>)
{ return __simd_tuple_get_impl(_R(), __t.second, _SizeConstant<_Np - 1>()); }
template <size_t _Np, typename _Tp, typename... _Abis>
_GLIBCXX_SIMD_INTRINSIC constexpr auto&
__simd_tuple_get_impl(__as_simd_tuple, _SimdTuple<_Tp, _Abis...>& __t,
_SizeConstant<_Np>)
{
return __simd_tuple_get_impl(__as_simd_tuple(), __t.second,
_SizeConstant<_Np - 1>());
}
template <size_t _Np, typename _Tp, typename... _Abis>
_GLIBCXX_SIMD_INTRINSIC constexpr auto
__get_simd_at(const _SimdTuple<_Tp, _Abis...>& __t)
{ return __simd_tuple_get_impl(__as_simd(), __t, _SizeConstant<_Np>()); }
// }}}
// __get_tuple_at<_Np> {{{
template <size_t _Np, typename _Tp, typename... _Abis>
_GLIBCXX_SIMD_INTRINSIC constexpr auto
__get_tuple_at(const _SimdTuple<_Tp, _Abis...>& __t)
{
return __simd_tuple_get_impl(__as_simd_tuple(), __t, _SizeConstant<_Np>());
}
template <size_t _Np, typename _Tp, typename... _Abis>
_GLIBCXX_SIMD_INTRINSIC constexpr auto&
__get_tuple_at(_SimdTuple<_Tp, _Abis...>& __t)
{
return __simd_tuple_get_impl(__as_simd_tuple(), __t, _SizeConstant<_Np>());
}
// __tuple_element_meta {{{1
template <typename _Tp, typename _Abi, size_t _Offset>
struct __tuple_element_meta : public _Abi::_SimdImpl
{
static_assert(is_same_v<typename _Abi::_SimdImpl::abi_type,
_Abi>); // this fails e.g. when _SimdImpl is an
// alias for _SimdImplBuiltin<_DifferentAbi>
using value_type = _Tp;
using abi_type = _Abi;
using _Traits = _SimdTraits<_Tp, _Abi>;
using _MaskImpl = typename _Abi::_MaskImpl;
using _MaskMember = typename _Traits::_MaskMember;
using simd_type = simd<_Tp, _Abi>;
static constexpr size_t _S_offset = _Offset;
static constexpr size_t _S_size() { return simd_size<_Tp, _Abi>::value; }
static constexpr _MaskImpl _S_mask_impl = {};
template <size_t _Np, bool _Sanitized>
_GLIBCXX_SIMD_INTRINSIC static auto
_S_submask(_BitMask<_Np, _Sanitized> __bits)
{ return __bits.template _M_extract<_Offset, _S_size()>(); }
template <size_t _Np, bool _Sanitized>
_GLIBCXX_SIMD_INTRINSIC static _MaskMember
_S_make_mask(_BitMask<_Np, _Sanitized> __bits)
{
return _MaskImpl::template _S_convert<_Tp>(
__bits.template _M_extract<_Offset, _S_size()>()._M_sanitized());
}
_GLIBCXX_SIMD_INTRINSIC static _ULLong
_S_mask_to_shifted_ullong(_MaskMember __k)
{ return _MaskImpl::_S_to_bits(__k).to_ullong() << _Offset; }
};
template <size_t _Offset, typename _Tp, typename _Abi, typename... _As>
__tuple_element_meta<_Tp, _Abi, _Offset>
__make_meta(const _SimdTuple<_Tp, _Abi, _As...>&)
{ return {}; }
// }}}1
// _WithOffset wrapper class {{{
template <size_t _Offset, typename _Base>
struct _WithOffset : public _Base
{
static inline constexpr size_t _S_offset = _Offset;
_GLIBCXX_SIMD_INTRINSIC char* _M_as_charptr()
{
return reinterpret_cast<char*>(this)
+ _S_offset * sizeof(typename _Base::value_type);
}
_GLIBCXX_SIMD_INTRINSIC const char* _M_as_charptr() const
{
return reinterpret_cast<const char*>(this)
+ _S_offset * sizeof(typename _Base::value_type);
}
};
// make _WithOffset<_WithOffset> ill-formed to use:
template <size_t _O0, size_t _O1, typename _Base>
struct _WithOffset<_O0, _WithOffset<_O1, _Base>> {};
template <size_t _Offset, typename _Tp>
decltype(auto)
__add_offset(_Tp& __base)
{ return static_cast<_WithOffset<_Offset, __remove_cvref_t<_Tp>>&>(__base); }
template <size_t _Offset, typename _Tp>
decltype(auto)
__add_offset(const _Tp& __base)
{
return static_cast<const _WithOffset<_Offset, __remove_cvref_t<_Tp>>&>(
__base);
}
template <size_t _Offset, size_t _ExistingOffset, typename _Tp>
decltype(auto)
__add_offset(_WithOffset<_ExistingOffset, _Tp>& __base)
{
return static_cast<_WithOffset<_Offset + _ExistingOffset, _Tp>&>(
static_cast<_Tp&>(__base));
}
template <size_t _Offset, size_t _ExistingOffset, typename _Tp>
decltype(auto)
__add_offset(const _WithOffset<_ExistingOffset, _Tp>& __base)
{
return static_cast<const _WithOffset<_Offset + _ExistingOffset, _Tp>&>(
static_cast<const _Tp&>(__base));
}
template <typename _Tp>
constexpr inline size_t __offset = 0;
template <size_t _Offset, typename _Tp>
constexpr inline size_t __offset<_WithOffset<_Offset, _Tp>>
= _WithOffset<_Offset, _Tp>::_S_offset;
template <typename _Tp>
constexpr inline size_t __offset<const _Tp> = __offset<_Tp>;
template <typename _Tp>
constexpr inline size_t __offset<_Tp&> = __offset<_Tp>;
template <typename _Tp>
constexpr inline size_t __offset<_Tp&&> = __offset<_Tp>;
// }}}
// _SimdTuple specializations {{{1
// empty {{{2
template <typename _Tp>
struct _SimdTuple<_Tp>
{
using value_type = _Tp;
static constexpr size_t _S_tuple_size = 0;
static constexpr size_t _S_size() { return 0; }
};
// _SimdTupleData {{{2
template <typename _FirstType, typename _SecondType>
struct _SimdTupleData
{
_FirstType first;
_SecondType second;
_GLIBCXX_SIMD_INTRINSIC
constexpr bool _M_is_constprop() const
{
if constexpr (is_class_v<_FirstType>)
return first._M_is_constprop() && second._M_is_constprop();
else
return __builtin_constant_p(first) && second._M_is_constprop();
}
};
template <typename _FirstType, typename _Tp>
struct _SimdTupleData<_FirstType, _SimdTuple<_Tp>>
{
_FirstType first;
static constexpr _SimdTuple<_Tp> second = {};
_GLIBCXX_SIMD_INTRINSIC
constexpr bool _M_is_constprop() const
{
if constexpr (is_class_v<_FirstType>)
return first._M_is_constprop();
else
return __builtin_constant_p(first);
}
};
// 1 or more {{{2
template <typename _Tp, typename _Abi0, typename... _Abis>
struct _SimdTuple<_Tp, _Abi0, _Abis...>
: _SimdTupleData<typename _SimdTraits<_Tp, _Abi0>::_SimdMember,
_SimdTuple<_Tp, _Abis...>>
{
static_assert(!__is_fixed_size_abi_v<_Abi0>);
using value_type = _Tp;
using _FirstType = typename _SimdTraits<_Tp, _Abi0>::_SimdMember;
using _FirstAbi = _Abi0;
using _SecondType = _SimdTuple<_Tp, _Abis...>;
static constexpr size_t _S_tuple_size = sizeof...(_Abis) + 1;
static constexpr size_t _S_size()
{ return simd_size_v<_Tp, _Abi0> + _SecondType::_S_size(); }
static constexpr size_t _S_first_size = simd_size_v<_Tp, _Abi0>;
static constexpr bool _S_is_homogeneous = (is_same_v<_Abi0, _Abis> && ...);
using _Base = _SimdTupleData<typename _SimdTraits<_Tp, _Abi0>::_SimdMember,
_SimdTuple<_Tp, _Abis...>>;
using _Base::first;
using _Base::second;
_GLIBCXX_SIMD_INTRINSIC constexpr _SimdTuple() = default;
_GLIBCXX_SIMD_INTRINSIC constexpr _SimdTuple(const _SimdTuple&) = default;
_GLIBCXX_SIMD_INTRINSIC constexpr _SimdTuple& operator=(const _SimdTuple&)
= default;
template <typename _Up>
_GLIBCXX_SIMD_INTRINSIC constexpr _SimdTuple(_Up&& __x)
: _Base{static_cast<_Up&&>(__x)} {}
template <typename _Up, typename _Up2>
_GLIBCXX_SIMD_INTRINSIC constexpr _SimdTuple(_Up&& __x, _Up2&& __y)
: _Base{static_cast<_Up&&>(__x), static_cast<_Up2&&>(__y)} {}
template <typename _Up>
_GLIBCXX_SIMD_INTRINSIC constexpr _SimdTuple(_Up&& __x, _SimdTuple<_Tp>)
: _Base{static_cast<_Up&&>(__x)} {}
_GLIBCXX_SIMD_INTRINSIC char* _M_as_charptr()
{ return reinterpret_cast<char*>(this); }
_GLIBCXX_SIMD_INTRINSIC const char* _M_as_charptr() const
{ return reinterpret_cast<const char*>(this); }
template <size_t _Np>
_GLIBCXX_SIMD_INTRINSIC constexpr auto& _M_at()
{
if constexpr (_Np == 0)
return first;
else
return second.template _M_at<_Np - 1>();
}
template <size_t _Np>
_GLIBCXX_SIMD_INTRINSIC constexpr const auto& _M_at() const
{
if constexpr (_Np == 0)
return first;
else
return second.template _M_at<_Np - 1>();
}
template <size_t _Np>
_GLIBCXX_SIMD_INTRINSIC constexpr auto _M_simd_at() const
{
if constexpr (_Np == 0)
return simd<_Tp, _Abi0>(__private_init, first);
else
return second.template _M_simd_at<_Np - 1>();
}
template <size_t _Offset = 0, typename _Fp>
_GLIBCXX_SIMD_INTRINSIC static constexpr _SimdTuple
_S_generate(_Fp&& __gen, _SizeConstant<_Offset> = {})
{
auto&& __first = __gen(__tuple_element_meta<_Tp, _Abi0, _Offset>());
if constexpr (_S_tuple_size == 1)
return {__first};
else
return {__first,
_SecondType::_S_generate(
static_cast<_Fp&&>(__gen),
_SizeConstant<_Offset + simd_size_v<_Tp, _Abi0>>())};
}
template <size_t _Offset = 0, typename _Fp, typename... _More>
_GLIBCXX_SIMD_INTRINSIC _SimdTuple
_M_apply_wrapped(_Fp&& __fun, const _More&... __more) const
{
auto&& __first
= __fun(__make_meta<_Offset>(*this), first, __more.first...);
if constexpr (_S_tuple_size == 1)
return {__first};
else
return {
__first,
second.template _M_apply_wrapped<_Offset + simd_size_v<_Tp, _Abi0>>(
static_cast<_Fp&&>(__fun), __more.second...)};
}
template <typename _Tup>
_GLIBCXX_SIMD_INTRINSIC constexpr decltype(auto)
_M_extract_argument(_Tup&& __tup) const
{
using _TupT = typename __remove_cvref_t<_Tup>::value_type;
if constexpr (is_same_v<_SimdTuple, __remove_cvref_t<_Tup>>)
return __tup.first;
else if (__builtin_is_constant_evaluated())
return __fixed_size_storage_t<_TupT, _S_first_size>::_S_generate([&](
auto __meta) constexpr {
return __meta._S_generator(
[&](auto __i) constexpr { return __tup[__i]; },
static_cast<_TupT*>(nullptr));
});
else
return [&]() {
__fixed_size_storage_t<_TupT, _S_first_size> __r;
__builtin_memcpy(__r._M_as_charptr(), __tup._M_as_charptr(),
sizeof(__r));
return __r;
}();
}
template <typename _Tup>
_GLIBCXX_SIMD_INTRINSIC constexpr auto&
_M_skip_argument(_Tup&& __tup) const
{
static_assert(_S_tuple_size > 1);
using _Up = __remove_cvref_t<_Tup>;
constexpr size_t __off = __offset<_Up>;
if constexpr (_S_first_size == _Up::_S_first_size && __off == 0)
return __tup.second;
else if constexpr (_S_first_size > _Up::_S_first_size
&& _S_first_size % _Up::_S_first_size == 0
&& __off == 0)
return __simd_tuple_pop_front<_S_first_size>(__tup);
else if constexpr (_S_first_size + __off < _Up::_S_first_size)
return __add_offset<_S_first_size>(__tup);
else if constexpr (_S_first_size + __off == _Up::_S_first_size)
return __tup.second;
else
__assert_unreachable<_Tup>();
}
template <size_t _Offset, typename... _More>
_GLIBCXX_SIMD_INTRINSIC constexpr void
_M_assign_front(const _SimdTuple<_Tp, _Abi0, _More...>& __x) &
{
static_assert(_Offset == 0);
first = __x.first;
if constexpr (sizeof...(_More) > 0)
{
static_assert(sizeof...(_Abis) >= sizeof...(_More));
second.template _M_assign_front<0>(__x.second);
}
}
template <size_t _Offset>
_GLIBCXX_SIMD_INTRINSIC constexpr void
_M_assign_front(const _FirstType& __x) &
{
static_assert(_Offset == 0);
first = __x;
}
template <size_t _Offset, typename... _As>
_GLIBCXX_SIMD_INTRINSIC constexpr void
_M_assign_front(const _SimdTuple<_Tp, _As...>& __x) &
{
__builtin_memcpy(_M_as_charptr() + _Offset * sizeof(value_type),
__x._M_as_charptr(),
sizeof(_Tp) * _SimdTuple<_Tp, _As...>::_S_size());
}
/*
* Iterate over the first objects in this _SimdTuple and call __fun for each
* of them. If additional arguments are passed via __more, chunk them into
* _SimdTuple or __vector_type_t objects of the same number of values.
*/
template <typename _Fp, typename... _More>
_GLIBCXX_SIMD_INTRINSIC constexpr _SimdTuple
_M_apply_per_chunk(_Fp&& __fun, _More&&... __more) const
{
if constexpr ((...
|| conjunction_v<
is_lvalue_reference<_More>,
negation<is_const<remove_reference_t<_More>>>>) )
{
// need to write back at least one of __more after calling __fun
auto&& __first = [&](auto... __args) constexpr
{
auto __r = __fun(__tuple_element_meta<_Tp, _Abi0, 0>(), first,
__args...);
[[maybe_unused]] auto&& __ignore_me = {(
[](auto&& __dst, const auto& __src) {
if constexpr (is_assignable_v<decltype(__dst),
decltype(__dst)>)
{
__dst.template _M_assign_front<__offset<decltype(__dst)>>(
__src);
}
}(static_cast<_More&&>(__more), __args),
0)...};
return __r;
}
(_M_extract_argument(__more)...);
if constexpr (_S_tuple_size == 1)
return {__first};
else
return {__first,
second._M_apply_per_chunk(static_cast<_Fp&&>(__fun),
_M_skip_argument(__more)...)};
}
else
{
auto&& __first = __fun(__tuple_element_meta<_Tp, _Abi0, 0>(), first,
_M_extract_argument(__more)...);
if constexpr (_S_tuple_size == 1)
return {__first};
else
return {__first,
second._M_apply_per_chunk(static_cast<_Fp&&>(__fun),
_M_skip_argument(__more)...)};
}
}
template <typename _R = _Tp, typename _Fp, typename... _More>
_GLIBCXX_SIMD_INTRINSIC auto _M_apply_r(_Fp&& __fun,
const _More&... __more) const
{
auto&& __first = __fun(__tuple_element_meta<_Tp, _Abi0, 0>(), first,
__more.first...);
if constexpr (_S_tuple_size == 1)
return __first;
else
return __simd_tuple_concat<_R>(
__first, second.template _M_apply_r<_R>(static_cast<_Fp&&>(__fun),
__more.second...));
}
template <typename _Fp, typename... _More>
_GLIBCXX_SIMD_INTRINSIC constexpr friend _SanitizedBitMask<_S_size()>
_M_test(const _Fp& __fun, const _SimdTuple& __x, const _More&... __more)
{
const _SanitizedBitMask<_S_first_size> __first
= _Abi0::_MaskImpl::_S_to_bits(
__fun(__tuple_element_meta<_Tp, _Abi0, 0>(), __x.first,
__more.first...));
if constexpr (_S_tuple_size == 1)
return __first;
else
return _M_test(__fun, __x.second, __more.second...)
._M_prepend(__first);
}
template <typename _Up, _Up _I>
_GLIBCXX_SIMD_INTRINSIC constexpr _Tp
operator[](integral_constant<_Up, _I>) const noexcept
{
if constexpr (_I < simd_size_v<_Tp, _Abi0>)
return _M_subscript_read(_I);
else
return second[integral_constant<_Up, _I - simd_size_v<_Tp, _Abi0>>()];
}
_Tp operator[](size_t __i) const noexcept
{
if constexpr (_S_tuple_size == 1)
return _M_subscript_read(__i);
else
{
#ifdef _GLIBCXX_SIMD_USE_ALIASING_LOADS
return reinterpret_cast<const __may_alias<_Tp>*>(this)[__i];
#else
if constexpr (__is_scalar_abi<_Abi0>())
{
const _Tp* ptr = &first;
return ptr[__i];
}
else
return __i < simd_size_v<_Tp, _Abi0>
? _M_subscript_read(__i)
: second[__i - simd_size_v<_Tp, _Abi0>];
#endif
}
}
void _M_set(size_t __i, _Tp __val) noexcept
{
if constexpr (_S_tuple_size == 1)
return _M_subscript_write(__i, __val);
else
{
#ifdef _GLIBCXX_SIMD_USE_ALIASING_LOADS
reinterpret_cast<__may_alias<_Tp>*>(this)[__i] = __val;
#else
if (__i < simd_size_v<_Tp, _Abi0>)
_M_subscript_write(__i, __val);
else
second._M_set(__i - simd_size_v<_Tp, _Abi0>, __val);
#endif
}
}
private:
// _M_subscript_read/_write {{{
_Tp _M_subscript_read([[maybe_unused]] size_t __i) const noexcept
{
if constexpr (__is_vectorizable_v<_FirstType>)
return first;
else
return first[__i];
}
void _M_subscript_write([[maybe_unused]] size_t __i, _Tp __y) noexcept
{
if constexpr (__is_vectorizable_v<_FirstType>)
first = __y;
else
first._M_set(__i, __y);
}
// }}}
};
// __make_simd_tuple {{{1
template <typename _Tp, typename _A0>
_GLIBCXX_SIMD_INTRINSIC _SimdTuple<_Tp, _A0>
__make_simd_tuple(simd<_Tp, _A0> __x0)
{ return {__data(__x0)}; }
template <typename _Tp, typename _A0, typename... _As>
_GLIBCXX_SIMD_INTRINSIC _SimdTuple<_Tp, _A0, _As...>
__make_simd_tuple(const simd<_Tp, _A0>& __x0, const simd<_Tp, _As>&... __xs)
{ return {__data(__x0), __make_simd_tuple(__xs...)}; }
template <typename _Tp, typename _A0>
_GLIBCXX_SIMD_INTRINSIC _SimdTuple<_Tp, _A0>
__make_simd_tuple(const typename _SimdTraits<_Tp, _A0>::_SimdMember& __arg0)
{ return {__arg0}; }
template <typename _Tp, typename _A0, typename _A1, typename... _Abis>
_GLIBCXX_SIMD_INTRINSIC _SimdTuple<_Tp, _A0, _A1, _Abis...>
__make_simd_tuple(
const typename _SimdTraits<_Tp, _A0>::_SimdMember& __arg0,
const typename _SimdTraits<_Tp, _A1>::_SimdMember& __arg1,
const typename _SimdTraits<_Tp, _Abis>::_SimdMember&... __args)
{ return {__arg0, __make_simd_tuple<_Tp, _A1, _Abis...>(__arg1, __args...)}; }
// __to_simd_tuple {{{1
template <typename _Tp, size_t _Np, typename _V, size_t _NV, typename... _VX>
_GLIBCXX_SIMD_INTRINSIC constexpr __fixed_size_storage_t<_Tp, _Np>
__to_simd_tuple(const array<_V, _NV>& __from, const _VX... __fromX);
template <typename _Tp, size_t _Np,
size_t _Offset = 0, // skip this many elements in __from0
typename _R = __fixed_size_storage_t<_Tp, _Np>, typename _V0,
typename _V0VT = _VectorTraits<_V0>, typename... _VX>
_GLIBCXX_SIMD_INTRINSIC _R constexpr __to_simd_tuple(const _V0 __from0,
const _VX... __fromX)
{
static_assert(is_same_v<typename _V0VT::value_type, _Tp>);
static_assert(_Offset < _V0VT::_S_full_size);
using _R0 = __vector_type_t<_Tp, _R::_S_first_size>;
if constexpr (_R::_S_tuple_size == 1)
{
if constexpr (_Np == 1)
return _R{__from0[_Offset]};
else if constexpr (_Offset == 0 && _V0VT::_S_full_size >= _Np)
return _R{__intrin_bitcast<_R0>(__from0)};
else if constexpr (_Offset * 2 == _V0VT::_S_full_size
&& _V0VT::_S_full_size / 2 >= _Np)
return _R{__intrin_bitcast<_R0>(__extract_part<1, 2>(__from0))};
else if constexpr (_Offset * 4 == _V0VT::_S_full_size
&& _V0VT::_S_full_size / 4 >= _Np)
return _R{__intrin_bitcast<_R0>(__extract_part<1, 4>(__from0))};
else
__assert_unreachable<_Tp>();
}
else
{
if constexpr (1 == _R::_S_first_size)
{ // extract one scalar and recurse
if constexpr (_Offset + 1 < _V0VT::_S_full_size)
return _R{__from0[_Offset],
__to_simd_tuple<_Tp, _Np - 1, _Offset + 1>(__from0,
__fromX...)};
else
return _R{__from0[_Offset],
__to_simd_tuple<_Tp, _Np - 1, 0>(__fromX...)};
}
// place __from0 into _R::first and recurse for __fromX -> _R::second
else if constexpr (_V0VT::_S_full_size == _R::_S_first_size
&& _Offset == 0)
return _R{__from0,
__to_simd_tuple<_Tp, _Np - _R::_S_first_size>(__fromX...)};
// place lower part of __from0 into _R::first and recurse with _Offset
else if constexpr (_V0VT::_S_full_size > _R::_S_first_size
&& _Offset == 0)
return _R{__intrin_bitcast<_R0>(__from0),
__to_simd_tuple<_Tp, _Np - _R::_S_first_size,
_R::_S_first_size>(__from0, __fromX...)};
// place lower part of second quarter of __from0 into _R::first and
// recurse with _Offset
else if constexpr (_Offset * 4 == _V0VT::_S_full_size
&& _V0VT::_S_full_size >= 4 * _R::_S_first_size)
return _R{__intrin_bitcast<_R0>(__extract_part<2, 4>(__from0)),
__to_simd_tuple<_Tp, _Np - _R::_S_first_size,
_Offset + _R::_S_first_size>(__from0,
__fromX...)};
// place lower half of high half of __from0 into _R::first and recurse
// with _Offset
else if constexpr (_Offset * 2 == _V0VT::_S_full_size
&& _V0VT::_S_full_size >= 4 * _R::_S_first_size)
return _R{__intrin_bitcast<_R0>(__extract_part<2, 4>(__from0)),
__to_simd_tuple<_Tp, _Np - _R::_S_first_size,
_Offset + _R::_S_first_size>(__from0,
__fromX...)};
// place high half of __from0 into _R::first and recurse with __fromX
else if constexpr (_Offset * 2 == _V0VT::_S_full_size
&& _V0VT::_S_full_size / 2 >= _R::_S_first_size)
return _R{__intrin_bitcast<_R0>(__extract_part<1, 2>(__from0)),
__to_simd_tuple<_Tp, _Np - _R::_S_first_size, 0>(
__fromX...)};
// ill-formed if some unforseen pattern is needed
else
__assert_unreachable<_Tp>();
}
}
template <typename _Tp, size_t _Np, typename _V, size_t _NV, typename... _VX>
_GLIBCXX_SIMD_INTRINSIC constexpr __fixed_size_storage_t<_Tp, _Np>
__to_simd_tuple(const array<_V, _NV>& __from, const _VX... __fromX)
{
if constexpr (is_same_v<_Tp, _V>)
{
static_assert(
sizeof...(_VX) == 0,
"An array of scalars must be the last argument to __to_simd_tuple");
return __call_with_subscripts(
__from,
make_index_sequence<_NV>(), [&](const auto... __args) constexpr {
return __simd_tuple_concat(
_SimdTuple<_Tp, simd_abi::scalar>{__args}..., _SimdTuple<_Tp>());
});
}
else
return __call_with_subscripts(
__from,
make_index_sequence<_NV>(), [&](const auto... __args) constexpr {
return __to_simd_tuple<_Tp, _Np>(__args..., __fromX...);
});
}
template <size_t, typename _Tp>
using __to_tuple_helper = _Tp;
template <typename _Tp, typename _A0, size_t _NOut, size_t _Np,
size_t... _Indexes>
_GLIBCXX_SIMD_INTRINSIC __fixed_size_storage_t<_Tp, _NOut>
__to_simd_tuple_impl(index_sequence<_Indexes...>,
const array<__vector_type_t<_Tp, simd_size_v<_Tp, _A0>>, _Np>& __args)
{
return __make_simd_tuple<_Tp, __to_tuple_helper<_Indexes, _A0>...>(
__args[_Indexes]...);
}
template <typename _Tp, typename _A0, size_t _NOut, size_t _Np,
typename _R = __fixed_size_storage_t<_Tp, _NOut>>
_GLIBCXX_SIMD_INTRINSIC _R
__to_simd_tuple_sized(
const array<__vector_type_t<_Tp, simd_size_v<_Tp, _A0>>, _Np>& __args)
{
static_assert(_Np * simd_size_v<_Tp, _A0> >= _NOut);
return __to_simd_tuple_impl<_Tp, _A0, _NOut>(
make_index_sequence<_R::_S_tuple_size>(), __args);
}
// __optimize_simd_tuple {{{1
template <typename _Tp>
_GLIBCXX_SIMD_INTRINSIC _SimdTuple<_Tp>
__optimize_simd_tuple(const _SimdTuple<_Tp>)
{ return {}; }
template <typename _Tp, typename _Ap>
_GLIBCXX_SIMD_INTRINSIC const _SimdTuple<_Tp, _Ap>&
__optimize_simd_tuple(const _SimdTuple<_Tp, _Ap>& __x)
{ return __x; }
template <typename _Tp, typename _A0, typename _A1, typename... _Abis,
typename _R = __fixed_size_storage_t<
_Tp, _SimdTuple<_Tp, _A0, _A1, _Abis...>::_S_size()>>
_GLIBCXX_SIMD_INTRINSIC _R
__optimize_simd_tuple(const _SimdTuple<_Tp, _A0, _A1, _Abis...>& __x)
{
using _Tup = _SimdTuple<_Tp, _A0, _A1, _Abis...>;
if constexpr (is_same_v<_R, _Tup>)
return __x;
else if constexpr (is_same_v<typename _R::_FirstType,
typename _Tup::_FirstType>)
return {__x.first, __optimize_simd_tuple(__x.second)};
else if constexpr (__is_scalar_abi<_A0>()
|| _A0::template _S_is_partial<_Tp>)
return {__generate_from_n_evaluations<_R::_S_first_size,
typename _R::_FirstType>(
[&](auto __i) { return __x[__i]; }),
__optimize_simd_tuple(
__simd_tuple_pop_front<_R::_S_first_size>(__x))};
else if constexpr (is_same_v<_A0, _A1>
&& _R::_S_first_size == simd_size_v<_Tp, _A0> + simd_size_v<_Tp, _A1>)
return {__concat(__x.template _M_at<0>(), __x.template _M_at<1>()),
__optimize_simd_tuple(__x.second.second)};
else if constexpr (sizeof...(_Abis) >= 2
&& _R::_S_first_size == (4 * simd_size_v<_Tp, _A0>)
&& simd_size_v<_Tp, _A0> == __simd_tuple_element_t<
(sizeof...(_Abis) >= 2 ? 3 : 0), _Tup>::size())
return {
__concat(__concat(__x.template _M_at<0>(), __x.template _M_at<1>()),
__concat(__x.template _M_at<2>(), __x.template _M_at<3>())),
__optimize_simd_tuple(__x.second.second.second.second)};
else
{
static_assert(sizeof(_R) == sizeof(__x));
_R __r;
__builtin_memcpy(__r._M_as_charptr(), __x._M_as_charptr(),
sizeof(_Tp) * _R::_S_size());
return __r;
}
}
// __for_each(const _SimdTuple &, Fun) {{{1
template <size_t _Offset = 0, typename _Tp, typename _A0, typename _Fp>
_GLIBCXX_SIMD_INTRINSIC constexpr void
__for_each(const _SimdTuple<_Tp, _A0>& __t, _Fp&& __fun)
{ static_cast<_Fp&&>(__fun)(__make_meta<_Offset>(__t), __t.first); }
template <size_t _Offset = 0, typename _Tp, typename _A0, typename _A1,
typename... _As, typename _Fp>
_GLIBCXX_SIMD_INTRINSIC constexpr void
__for_each(const _SimdTuple<_Tp, _A0, _A1, _As...>& __t, _Fp&& __fun)
{
__fun(__make_meta<_Offset>(__t), __t.first);
__for_each<_Offset + simd_size<_Tp, _A0>::value>(__t.second,
static_cast<_Fp&&>(__fun));
}
// __for_each(_SimdTuple &, Fun) {{{1
template <size_t _Offset = 0, typename _Tp, typename _A0, typename _Fp>
_GLIBCXX_SIMD_INTRINSIC constexpr void
__for_each(_SimdTuple<_Tp, _A0>& __t, _Fp&& __fun)
{ static_cast<_Fp&&>(__fun)(__make_meta<_Offset>(__t), __t.first); }
template <size_t _Offset = 0, typename _Tp, typename _A0, typename _A1,
typename... _As, typename _Fp>
_GLIBCXX_SIMD_INTRINSIC constexpr void
__for_each(_SimdTuple<_Tp, _A0, _A1, _As...>& __t, _Fp&& __fun)
{
__fun(__make_meta<_Offset>(__t), __t.first);
__for_each<_Offset + simd_size<_Tp, _A0>::value>(__t.second,
static_cast<_Fp&&>(__fun));
}
// __for_each(_SimdTuple &, const _SimdTuple &, Fun) {{{1
template <size_t _Offset = 0, typename _Tp, typename _A0, typename _Fp>
_GLIBCXX_SIMD_INTRINSIC constexpr void
__for_each(_SimdTuple<_Tp, _A0>& __a, const _SimdTuple<_Tp, _A0>& __b,
_Fp&& __fun)
{
static_cast<_Fp&&>(__fun)(__make_meta<_Offset>(__a), __a.first, __b.first);
}
template <size_t _Offset = 0, typename _Tp, typename _A0, typename _A1,
typename... _As, typename _Fp>
_GLIBCXX_SIMD_INTRINSIC constexpr void
__for_each(_SimdTuple<_Tp, _A0, _A1, _As...>& __a,
const _SimdTuple<_Tp, _A0, _A1, _As...>& __b, _Fp&& __fun)
{
__fun(__make_meta<_Offset>(__a), __a.first, __b.first);
__for_each<_Offset + simd_size<_Tp, _A0>::value>(__a.second, __b.second,
static_cast<_Fp&&>(__fun));
}
// __for_each(const _SimdTuple &, const _SimdTuple &, Fun) {{{1
template <size_t _Offset = 0, typename _Tp, typename _A0, typename _Fp>
_GLIBCXX_SIMD_INTRINSIC constexpr void
__for_each(const _SimdTuple<_Tp, _A0>& __a, const _SimdTuple<_Tp, _A0>& __b,
_Fp&& __fun)
{
static_cast<_Fp&&>(__fun)(__make_meta<_Offset>(__a), __a.first, __b.first);
}
template <size_t _Offset = 0, typename _Tp, typename _A0, typename _A1,
typename... _As, typename _Fp>
_GLIBCXX_SIMD_INTRINSIC constexpr void
__for_each(const _SimdTuple<_Tp, _A0, _A1, _As...>& __a,
const _SimdTuple<_Tp, _A0, _A1, _As...>& __b, _Fp&& __fun)
{
__fun(__make_meta<_Offset>(__a), __a.first, __b.first);
__for_each<_Offset + simd_size<_Tp, _A0>::value>(__a.second, __b.second,
static_cast<_Fp&&>(__fun));
}
// }}}1
// __extract_part(_SimdTuple) {{{
template <int _Index, int _Total, int _Combine, typename _Tp, typename _A0,
typename... _As>
_GLIBCXX_SIMD_INTRINSIC auto // __vector_type_t or _SimdTuple
__extract_part(const _SimdTuple<_Tp, _A0, _As...>& __x)
{
// worst cases:
// (a) 4, 4, 4 => 3, 3, 3, 3 (_Total = 4)
// (b) 2, 2, 2 => 3, 3 (_Total = 2)
// (c) 4, 2 => 2, 2, 2 (_Total = 3)
using _Tuple = _SimdTuple<_Tp, _A0, _As...>;
static_assert(_Index + _Combine <= _Total && _Index >= 0 && _Total >= 1);
constexpr size_t _Np = _Tuple::_S_size();
static_assert(_Np >= _Total && _Np % _Total == 0);
constexpr size_t __values_per_part = _Np / _Total;
[[maybe_unused]] constexpr size_t __values_to_skip
= _Index * __values_per_part;
constexpr size_t __return_size = __values_per_part * _Combine;
using _RetAbi = simd_abi::deduce_t<_Tp, __return_size>;
// handle (optimize) the simple cases
if constexpr (_Index == 0 && _Tuple::_S_first_size == __return_size)
return __x.first._M_data;
else if constexpr (_Index == 0 && _Total == _Combine)
return __x;
else if constexpr (_Index == 0 && _Tuple::_S_first_size >= __return_size)
return __intrin_bitcast<__vector_type_t<_Tp, __return_size>>(
__as_vector(__x.first));
// recurse to skip unused data members at the beginning of _SimdTuple
else if constexpr (__values_to_skip >= _Tuple::_S_first_size)
{ // recurse
if constexpr (_Tuple::_S_first_size % __values_per_part == 0)
{
constexpr int __parts_in_first
= _Tuple::_S_first_size / __values_per_part;
return __extract_part<_Index - __parts_in_first,
_Total - __parts_in_first, _Combine>(
__x.second);
}
else
return __extract_part<__values_to_skip - _Tuple::_S_first_size,
_Np - _Tuple::_S_first_size, __return_size>(
__x.second);
}
// extract from multiple _SimdTuple data members
else if constexpr (__return_size > _Tuple::_S_first_size - __values_to_skip)
{
#ifdef _GLIBCXX_SIMD_USE_ALIASING_LOADS
const __may_alias<_Tp>* const element_ptr
= reinterpret_cast<const __may_alias<_Tp>*>(&__x) + __values_to_skip;
return __as_vector(simd<_Tp, _RetAbi>(element_ptr, element_aligned));
#else
[[maybe_unused]] constexpr size_t __offset = __values_to_skip;
return __as_vector(simd<_Tp, _RetAbi>([&](auto __i) constexpr {
constexpr _SizeConstant<__i + __offset> __k;
return __x[__k];
}));
#endif
}
// all of the return values are in __x.first
else if constexpr (_Tuple::_S_first_size % __values_per_part == 0)
return __extract_part<_Index, _Tuple::_S_first_size / __values_per_part,
_Combine>(__x.first);
else
return __extract_part<__values_to_skip, _Tuple::_S_first_size,
_Combine * __values_per_part>(__x.first);
}
// }}}
// __fixed_size_storage_t<_Tp, _Np>{{{
template <typename _Tp, int _Np, typename _Tuple,
typename _Next = simd<_Tp, _AllNativeAbis::_BestAbi<_Tp, _Np>>,
int _Remain = _Np - int(_Next::size())>
struct __fixed_size_storage_builder;
template <typename _Tp, int _Np>
struct __fixed_size_storage
: public __fixed_size_storage_builder<_Tp, _Np, _SimdTuple<_Tp>> {};
template <typename _Tp, int _Np, typename... _As, typename _Next>
struct __fixed_size_storage_builder<_Tp, _Np, _SimdTuple<_Tp, _As...>, _Next,
0>
{ using type = _SimdTuple<_Tp, _As..., typename _Next::abi_type>; };
template <typename _Tp, int _Np, typename... _As, typename _Next, int _Remain>
struct __fixed_size_storage_builder<_Tp, _Np, _SimdTuple<_Tp, _As...>, _Next,
_Remain>
{
using type = typename __fixed_size_storage_builder<
_Tp, _Remain, _SimdTuple<_Tp, _As..., typename _Next::abi_type>>::type;
};
// }}}
// __autocvt_to_simd {{{
template <typename _Tp, bool = is_arithmetic_v<__remove_cvref_t<_Tp>>>
struct __autocvt_to_simd
{
_Tp _M_data;
using _TT = __remove_cvref_t<_Tp>;
operator _TT()
{ return _M_data; }
operator _TT&()
{
static_assert(is_lvalue_reference<_Tp>::value, "");
static_assert(!is_const<_Tp>::value, "");
return _M_data;
}
operator _TT*()
{
static_assert(is_lvalue_reference<_Tp>::value, "");
static_assert(!is_const<_Tp>::value, "");
return &_M_data;
}
constexpr inline __autocvt_to_simd(_Tp dd) : _M_data(dd) {}
template <typename _Abi>
operator simd<typename _TT::value_type, _Abi>()
{ return {__private_init, _M_data}; }
template <typename _Abi>
operator simd<typename _TT::value_type, _Abi>&()
{
return *reinterpret_cast<simd<typename _TT::value_type, _Abi>*>(
&_M_data);
}
template <typename _Abi>
operator simd<typename _TT::value_type, _Abi>*()
{
return reinterpret_cast<simd<typename _TT::value_type, _Abi>*>(
&_M_data);
}
};
template <typename _Tp>
__autocvt_to_simd(_Tp &&) -> __autocvt_to_simd<_Tp>;
template <typename _Tp>
struct __autocvt_to_simd<_Tp, true>
{
using _TT = __remove_cvref_t<_Tp>;
_Tp _M_data;
fixed_size_simd<_TT, 1> _M_fd;
constexpr inline __autocvt_to_simd(_Tp dd) : _M_data(dd), _M_fd(_M_data) {}
~__autocvt_to_simd()
{ _M_data = __data(_M_fd).first; }
operator fixed_size_simd<_TT, 1>()
{ return _M_fd; }
operator fixed_size_simd<_TT, 1> &()
{
static_assert(is_lvalue_reference<_Tp>::value, "");
static_assert(!is_const<_Tp>::value, "");
return _M_fd;
}
operator fixed_size_simd<_TT, 1> *()
{
static_assert(is_lvalue_reference<_Tp>::value, "");
static_assert(!is_const<_Tp>::value, "");
return &_M_fd;
}
};
// }}}
struct _CommonImplFixedSize;
template <int _Np> struct _SimdImplFixedSize;
template <int _Np> struct _MaskImplFixedSize;
// simd_abi::_Fixed {{{
template <int _Np>
struct simd_abi::_Fixed
{
template <typename _Tp> static constexpr size_t _S_size = _Np;
template <typename _Tp> static constexpr size_t _S_full_size = _Np;
// validity traits {{{
struct _IsValidAbiTag : public __bool_constant<(_Np > 0)> {};
template <typename _Tp>
struct _IsValidSizeFor
: __bool_constant<(_Np <= simd_abi::max_fixed_size<_Tp>)> {};
template <typename _Tp>
struct _IsValid : conjunction<_IsValidAbiTag, __is_vectorizable<_Tp>,
_IsValidSizeFor<_Tp>> {};
template <typename _Tp>
static constexpr bool _S_is_valid_v = _IsValid<_Tp>::value;
// }}}
// _S_masked {{{
_GLIBCXX_SIMD_INTRINSIC static constexpr _SanitizedBitMask<_Np>
_S_masked(_BitMask<_Np> __x)
{ return __x._M_sanitized(); }
_GLIBCXX_SIMD_INTRINSIC static constexpr _SanitizedBitMask<_Np>
_S_masked(_SanitizedBitMask<_Np> __x)
{ return __x; }
// }}}
// _*Impl {{{
using _CommonImpl = _CommonImplFixedSize;
using _SimdImpl = _SimdImplFixedSize<_Np>;
using _MaskImpl = _MaskImplFixedSize<_Np>;
// }}}
// __traits {{{
template <typename _Tp, bool = _S_is_valid_v<_Tp>>
struct __traits : _InvalidTraits {};
template <typename _Tp>
struct __traits<_Tp, true>
{
using _IsValid = true_type;
using _SimdImpl = _SimdImplFixedSize<_Np>;
using _MaskImpl = _MaskImplFixedSize<_Np>;
// simd and simd_mask member types {{{
using _SimdMember = __fixed_size_storage_t<_Tp, _Np>;
using _MaskMember = _SanitizedBitMask<_Np>;
static constexpr size_t _S_simd_align
= std::__bit_ceil(_Np * sizeof(_Tp));
static constexpr size_t _S_mask_align = alignof(_MaskMember);
// }}}
// _SimdBase / base class for simd, providing extra conversions {{{
struct _SimdBase
{
// The following ensures, function arguments are passed via the stack.
// This is important for ABI compatibility across TU boundaries
_SimdBase(const _SimdBase&) {}
_SimdBase() = default;
explicit operator const _SimdMember &() const
{ return static_cast<const simd<_Tp, _Fixed>*>(this)->_M_data; }
explicit operator array<_Tp, _Np>() const
{
array<_Tp, _Np> __r;
// _SimdMember can be larger because of higher alignment
static_assert(sizeof(__r) <= sizeof(_SimdMember), "");
__builtin_memcpy(__r.data(), &static_cast<const _SimdMember&>(*this),
sizeof(__r));
return __r;
}
};
// }}}
// _MaskBase {{{
// empty. The bitset interface suffices
struct _MaskBase {};
// }}}
// _SimdCastType {{{
struct _SimdCastType
{
_SimdCastType(const array<_Tp, _Np>&);
_SimdCastType(const _SimdMember& dd) : _M_data(dd) {}
explicit operator const _SimdMember &() const { return _M_data; }
private:
const _SimdMember& _M_data;
};
// }}}
// _MaskCastType {{{
class _MaskCastType
{
_MaskCastType() = delete;
};
// }}}
};
// }}}
};
// }}}
// _CommonImplFixedSize {{{
struct _CommonImplFixedSize
{
// _S_store {{{
template <typename _Tp, typename... _As>
_GLIBCXX_SIMD_INTRINSIC static void
_S_store(const _SimdTuple<_Tp, _As...>& __x, void* __addr)
{
constexpr size_t _Np = _SimdTuple<_Tp, _As...>::_S_size();
__builtin_memcpy(__addr, &__x, _Np * sizeof(_Tp));
}
// }}}
};
// }}}
// _SimdImplFixedSize {{{1
// fixed_size should not inherit from _SimdMathFallback in order for
// specializations in the used _SimdTuple Abis to get used
template <int _Np>
struct _SimdImplFixedSize
{
// member types {{{2
using _MaskMember = _SanitizedBitMask<_Np>;
template <typename _Tp>
using _SimdMember = __fixed_size_storage_t<_Tp, _Np>;
template <typename _Tp>
static constexpr size_t _S_tuple_size = _SimdMember<_Tp>::_S_tuple_size;
template <typename _Tp>
using _Simd = simd<_Tp, simd_abi::fixed_size<_Np>>;
template <typename _Tp>
using _TypeTag = _Tp*;
// broadcast {{{2
template <typename _Tp>
static constexpr inline _SimdMember<_Tp> _S_broadcast(_Tp __x) noexcept
{
return _SimdMember<_Tp>::_S_generate([&](auto __meta) constexpr {
return __meta._S_broadcast(__x);
});
}
// _S_generator {{{2
template <typename _Fp, typename _Tp>
static constexpr inline _SimdMember<_Tp> _S_generator(_Fp&& __gen,
_TypeTag<_Tp>)
{
return _SimdMember<_Tp>::_S_generate([&__gen](auto __meta) constexpr {
return __meta._S_generator(
[&](auto __i) constexpr {
return __i < _Np ? __gen(_SizeConstant<__meta._S_offset + __i>())
: 0;
},
_TypeTag<_Tp>());
});
}
// _S_load {{{2
template <typename _Tp, typename _Up>
static inline _SimdMember<_Tp> _S_load(const _Up* __mem,
_TypeTag<_Tp>) noexcept
{
return _SimdMember<_Tp>::_S_generate([&](auto __meta) {
return __meta._S_load(&__mem[__meta._S_offset], _TypeTag<_Tp>());
});
}
// _S_masked_load {{{2
template <typename _Tp, typename... _As, typename _Up>
static inline _SimdTuple<_Tp, _As...>
_S_masked_load(const _SimdTuple<_Tp, _As...>& __old,
const _MaskMember __bits, const _Up* __mem) noexcept
{
auto __merge = __old;
__for_each(__merge, [&](auto __meta, auto& __native) {
if (__meta._S_submask(__bits).any())
#pragma GCC diagnostic push
// __mem + __mem._S_offset could be UB ([expr.add]/4.3, but it punts
// the responsibility for avoiding UB to the caller of the masked load
// via the mask. Consequently, the compiler may assume this branch is
// unreachable, if the pointer arithmetic is UB.
#pragma GCC diagnostic ignored "-Warray-bounds"
__native
= __meta._S_masked_load(__native, __meta._S_make_mask(__bits),
__mem + __meta._S_offset);
#pragma GCC diagnostic pop
});
return __merge;
}
// _S_store {{{2
template <typename _Tp, typename _Up>
static inline void _S_store(const _SimdMember<_Tp>& __v, _Up* __mem,
_TypeTag<_Tp>) noexcept
{
__for_each(__v, [&](auto __meta, auto __native) {
__meta._S_store(__native, &__mem[__meta._S_offset], _TypeTag<_Tp>());
});
}
// _S_masked_store {{{2
template <typename _Tp, typename... _As, typename _Up>
static inline void _S_masked_store(const _SimdTuple<_Tp, _As...>& __v,
_Up* __mem,
const _MaskMember __bits) noexcept
{
__for_each(__v, [&](auto __meta, auto __native) {
if (__meta._S_submask(__bits).any())
#pragma GCC diagnostic push
// __mem + __mem._S_offset could be UB ([expr.add]/4.3, but it punts
// the responsibility for avoiding UB to the caller of the masked
// store via the mask. Consequently, the compiler may assume this
// branch is unreachable, if the pointer arithmetic is UB.
#pragma GCC diagnostic ignored "-Warray-bounds"
__meta._S_masked_store(__native, __mem + __meta._S_offset,
__meta._S_make_mask(__bits));
#pragma GCC diagnostic pop
});
}
// negation {{{2
template <typename _Tp, typename... _As>
static inline _MaskMember
_S_negate(const _SimdTuple<_Tp, _As...>& __x) noexcept
{
_MaskMember __bits = 0;
__for_each(
__x, [&__bits](auto __meta, auto __native) constexpr {
__bits
|= __meta._S_mask_to_shifted_ullong(__meta._S_negate(__native));
});
return __bits;
}
// reductions {{{2
template <typename _Tp, typename _BinaryOperation>
static constexpr inline _Tp _S_reduce(const _Simd<_Tp>& __x,
const _BinaryOperation& __binary_op)
{
using _Tup = _SimdMember<_Tp>;
const _Tup& __tup = __data(__x);
if constexpr (_Tup::_S_tuple_size == 1)
return _Tup::_FirstAbi::_SimdImpl::_S_reduce(
__tup.template _M_simd_at<0>(), __binary_op);
else if constexpr (_Tup::_S_tuple_size == 2 && _Tup::_S_size() > 2
&& _Tup::_SecondType::_S_size() == 1)
{
return __binary_op(simd<_Tp, simd_abi::scalar>(
reduce(__tup.template _M_simd_at<0>(),
__binary_op)),
__tup.template _M_simd_at<1>())[0];
}
else if constexpr (_Tup::_S_tuple_size == 2 && _Tup::_S_size() > 4
&& _Tup::_SecondType::_S_size() == 2)
{
return __binary_op(
simd<_Tp, simd_abi::scalar>(
reduce(__tup.template _M_simd_at<0>(), __binary_op)),
simd<_Tp, simd_abi::scalar>(
reduce(__tup.template _M_simd_at<1>(), __binary_op)))[0];
}
else
{
const auto& __x2 = __call_with_n_evaluations<
__div_roundup(_Tup::_S_tuple_size, 2)>(
[](auto __first_simd, auto... __remaining) {
if constexpr (sizeof...(__remaining) == 0)
return __first_simd;
else
{
using _Tup2
= _SimdTuple<_Tp,
typename decltype(__first_simd)::abi_type,
typename decltype(__remaining)::abi_type...>;
return fixed_size_simd<_Tp, _Tup2::_S_size()>(
__private_init,
__make_simd_tuple(__first_simd, __remaining...));
}
},
[&](auto __i) {
auto __left = __tup.template _M_simd_at<2 * __i>();
if constexpr (2 * __i + 1 == _Tup::_S_tuple_size)
return __left;
else
{
auto __right = __tup.template _M_simd_at<2 * __i + 1>();
using _LT = decltype(__left);
using _RT = decltype(__right);
if constexpr (_LT::size() == _RT::size())
return __binary_op(__left, __right);
else
{
_GLIBCXX_SIMD_USE_CONSTEXPR_API
typename _LT::mask_type __k(
__private_init,
[](auto __j) constexpr { return __j < _RT::size(); });
_LT __ext_right = __left;
where(__k, __ext_right)
= __proposed::resizing_simd_cast<_LT>(__right);
where(__k, __left) = __binary_op(__left, __ext_right);
return __left;
}
}
});
return reduce(__x2, __binary_op);
}
}
// _S_min, _S_max {{{2
template <typename _Tp, typename... _As>
static inline constexpr _SimdTuple<_Tp, _As...>
_S_min(const _SimdTuple<_Tp, _As...>& __a,
const _SimdTuple<_Tp, _As...>& __b)
{
return __a._M_apply_per_chunk(
[](auto __impl, auto __aa, auto __bb) constexpr {
return __impl._S_min(__aa, __bb);
},
__b);
}
template <typename _Tp, typename... _As>
static inline constexpr _SimdTuple<_Tp, _As...>
_S_max(const _SimdTuple<_Tp, _As...>& __a,
const _SimdTuple<_Tp, _As...>& __b)
{
return __a._M_apply_per_chunk(
[](auto __impl, auto __aa, auto __bb) constexpr {
return __impl._S_max(__aa, __bb);
},
__b);
}
// _S_complement {{{2
template <typename _Tp, typename... _As>
static inline constexpr _SimdTuple<_Tp, _As...>
_S_complement(const _SimdTuple<_Tp, _As...>& __x) noexcept
{
return __x._M_apply_per_chunk([](auto __impl, auto __xx) constexpr {
return __impl._S_complement(__xx);
});
}
// _S_unary_minus {{{2
template <typename _Tp, typename... _As>
static inline constexpr _SimdTuple<_Tp, _As...>
_S_unary_minus(const _SimdTuple<_Tp, _As...>& __x) noexcept
{
return __x._M_apply_per_chunk([](auto __impl, auto __xx) constexpr {
return __impl._S_unary_minus(__xx);
});
}
// arithmetic operators {{{2
#define _GLIBCXX_SIMD_FIXED_OP(name_, op_) \
template <typename _Tp, typename... _As> \
static inline constexpr _SimdTuple<_Tp, _As...> name_( \
const _SimdTuple<_Tp, _As...>& __x, const _SimdTuple<_Tp, _As...>& __y)\
{ \
return __x._M_apply_per_chunk( \
[](auto __impl, auto __xx, auto __yy) constexpr { \
return __impl.name_(__xx, __yy); \
}, \
__y); \
}
_GLIBCXX_SIMD_FIXED_OP(_S_plus, +)
_GLIBCXX_SIMD_FIXED_OP(_S_minus, -)
_GLIBCXX_SIMD_FIXED_OP(_S_multiplies, *)
_GLIBCXX_SIMD_FIXED_OP(_S_divides, /)
_GLIBCXX_SIMD_FIXED_OP(_S_modulus, %)
_GLIBCXX_SIMD_FIXED_OP(_S_bit_and, &)
_GLIBCXX_SIMD_FIXED_OP(_S_bit_or, |)
_GLIBCXX_SIMD_FIXED_OP(_S_bit_xor, ^)
_GLIBCXX_SIMD_FIXED_OP(_S_bit_shift_left, <<)
_GLIBCXX_SIMD_FIXED_OP(_S_bit_shift_right, >>)
#undef _GLIBCXX_SIMD_FIXED_OP
template <typename _Tp, typename... _As>
static inline constexpr _SimdTuple<_Tp, _As...>
_S_bit_shift_left(const _SimdTuple<_Tp, _As...>& __x, int __y)
{
return __x._M_apply_per_chunk([__y](auto __impl, auto __xx) constexpr {
return __impl._S_bit_shift_left(__xx, __y);
});
}
template <typename _Tp, typename... _As>
static inline constexpr _SimdTuple<_Tp, _As...>
_S_bit_shift_right(const _SimdTuple<_Tp, _As...>& __x, int __y)
{
return __x._M_apply_per_chunk([__y](auto __impl, auto __xx) constexpr {
return __impl._S_bit_shift_right(__xx, __y);
});
}
// math {{{2
#define _GLIBCXX_SIMD_APPLY_ON_TUPLE(_RetTp, __name) \
template <typename _Tp, typename... _As, typename... _More> \
static inline __fixed_size_storage_t<_RetTp, _Np> \
_S_##__name(const _SimdTuple<_Tp, _As...>& __x, \
const _More&... __more) \
{ \
if constexpr (sizeof...(_More) == 0) \
{ \
if constexpr (is_same_v<_Tp, _RetTp>) \
return __x._M_apply_per_chunk( \
[](auto __impl, auto __xx) constexpr { \
using _V = typename decltype(__impl)::simd_type; \
return __data(__name(_V(__private_init, __xx))); \
}); \
else \
return __optimize_simd_tuple( \
__x.template _M_apply_r<_RetTp>([](auto __impl, auto __xx) { \
return __impl._S_##__name(__xx); \
})); \
} \
else if constexpr ( \
is_same_v< \
_Tp, \
_RetTp> && (... && is_same_v<_SimdTuple<_Tp, _As...>, _More>) ) \
return __x._M_apply_per_chunk( \
[](auto __impl, auto __xx, auto... __pack) constexpr { \
using _V = typename decltype(__impl)::simd_type; \
return __data(__name(_V(__private_init, __xx), \
_V(__private_init, __pack)...)); \
}, \
__more...); \
else if constexpr (is_same_v<_Tp, _RetTp>) \
return __x._M_apply_per_chunk( \
[](auto __impl, auto __xx, auto... __pack) constexpr { \
using _V = typename decltype(__impl)::simd_type; \
return __data(__name(_V(__private_init, __xx), \
__autocvt_to_simd(__pack)...)); \
}, \
__more...); \
else \
__assert_unreachable<_Tp>(); \
}
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, acos)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, asin)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, atan)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, atan2)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, cos)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, sin)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, tan)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, acosh)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, asinh)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, atanh)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, cosh)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, sinh)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, tanh)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, exp)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, exp2)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, expm1)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(int, ilogb)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, log)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, log10)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, log1p)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, log2)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, logb)
// modf implemented in simd_math.h
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp,
scalbn) // double scalbn(double x, int exp);
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, scalbln)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, cbrt)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, abs)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, fabs)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, pow)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, sqrt)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, erf)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, erfc)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, lgamma)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, tgamma)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, trunc)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, ceil)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, floor)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, nearbyint)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, rint)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(long, lrint)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(long long, llrint)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, round)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(long, lround)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(long long, llround)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, ldexp)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, fmod)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, remainder)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, copysign)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, nextafter)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, fdim)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, fmax)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, fmin)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(_Tp, fma)
_GLIBCXX_SIMD_APPLY_ON_TUPLE(int, fpclassify)
#undef _GLIBCXX_SIMD_APPLY_ON_TUPLE
template <typename _Tp, typename... _Abis>
static _SimdTuple<_Tp, _Abis...> _S_remquo(
const _SimdTuple<_Tp, _Abis...>& __x,
const _SimdTuple<_Tp, _Abis...>& __y,
__fixed_size_storage_t<int, _SimdTuple<_Tp, _Abis...>::_S_size()>* __z)
{
return __x._M_apply_per_chunk(
[](auto __impl, const auto __xx, const auto __yy, auto& __zz) {
return __impl._S_remquo(__xx, __yy, &__zz);
},
__y, *__z);
}
template <typename _Tp, typename... _As>
static inline _SimdTuple<_Tp, _As...>
_S_frexp(const _SimdTuple<_Tp, _As...>& __x,
__fixed_size_storage_t<int, _Np>& __exp) noexcept
{
return __x._M_apply_per_chunk(
[](auto __impl, const auto& __a, auto& __b) {
return __data(
frexp(typename decltype(__impl)::simd_type(__private_init, __a),
__autocvt_to_simd(__b)));
},
__exp);
}
#define _GLIBCXX_SIMD_TEST_ON_TUPLE_(name_) \
template <typename _Tp, typename... _As> \
static inline _MaskMember \
_S_##name_(const _SimdTuple<_Tp, _As...>& __x) noexcept \
{ \
return _M_test([](auto __impl, \
auto __xx) { return __impl._S_##name_(__xx); }, \
__x); \
}
_GLIBCXX_SIMD_TEST_ON_TUPLE_(isinf)
_GLIBCXX_SIMD_TEST_ON_TUPLE_(isfinite)
_GLIBCXX_SIMD_TEST_ON_TUPLE_(isnan)
_GLIBCXX_SIMD_TEST_ON_TUPLE_(isnormal)
_GLIBCXX_SIMD_TEST_ON_TUPLE_(signbit)
#undef _GLIBCXX_SIMD_TEST_ON_TUPLE_
// _S_increment & _S_decrement{{{2
template <typename... _Ts>
_GLIBCXX_SIMD_INTRINSIC static constexpr void
_S_increment(_SimdTuple<_Ts...>& __x)
{
__for_each(
__x, [](auto __meta, auto& native) constexpr {
__meta._S_increment(native);
});
}
template <typename... _Ts>
_GLIBCXX_SIMD_INTRINSIC static constexpr void
_S_decrement(_SimdTuple<_Ts...>& __x)
{
__for_each(
__x, [](auto __meta, auto& native) constexpr {
__meta._S_decrement(native);
});
}
// compares {{{2
#define _GLIBCXX_SIMD_CMP_OPERATIONS(__cmp) \
template <typename _Tp, typename... _As> \
_GLIBCXX_SIMD_INTRINSIC constexpr static _MaskMember \
__cmp(const _SimdTuple<_Tp, _As...>& __x, \
const _SimdTuple<_Tp, _As...>& __y) \
{ \
return _M_test( \
[](auto __impl, auto __xx, auto __yy) constexpr { \
return __impl.__cmp(__xx, __yy); \
}, \
__x, __y); \
}
_GLIBCXX_SIMD_CMP_OPERATIONS(_S_equal_to)
_GLIBCXX_SIMD_CMP_OPERATIONS(_S_not_equal_to)
_GLIBCXX_SIMD_CMP_OPERATIONS(_S_less)
_GLIBCXX_SIMD_CMP_OPERATIONS(_S_less_equal)
_GLIBCXX_SIMD_CMP_OPERATIONS(_S_isless)
_GLIBCXX_SIMD_CMP_OPERATIONS(_S_islessequal)
_GLIBCXX_SIMD_CMP_OPERATIONS(_S_isgreater)
_GLIBCXX_SIMD_CMP_OPERATIONS(_S_isgreaterequal)
_GLIBCXX_SIMD_CMP_OPERATIONS(_S_islessgreater)
_GLIBCXX_SIMD_CMP_OPERATIONS(_S_isunordered)
#undef _GLIBCXX_SIMD_CMP_OPERATIONS
// smart_reference access {{{2
template <typename _Tp, typename... _As, typename _Up>
_GLIBCXX_SIMD_INTRINSIC static void _S_set(_SimdTuple<_Tp, _As...>& __v,
int __i, _Up&& __x) noexcept
{ __v._M_set(__i, static_cast<_Up&&>(__x)); }
// _S_masked_assign {{{2
template <typename _Tp, typename... _As>
_GLIBCXX_SIMD_INTRINSIC static void
_S_masked_assign(const _MaskMember __bits, _SimdTuple<_Tp, _As...>& __lhs,
const __type_identity_t<_SimdTuple<_Tp, _As...>>& __rhs)
{
__for_each(
__lhs, __rhs,
[&](auto __meta, auto& __native_lhs, auto __native_rhs) constexpr {
__meta._S_masked_assign(__meta._S_make_mask(__bits), __native_lhs,
__native_rhs);
});
}
// Optimization for the case where the RHS is a scalar. No need to broadcast
// the scalar to a simd first.
template <typename _Tp, typename... _As>
_GLIBCXX_SIMD_INTRINSIC static void
_S_masked_assign(const _MaskMember __bits, _SimdTuple<_Tp, _As...>& __lhs,
const __type_identity_t<_Tp> __rhs)
{
__for_each(
__lhs, [&](auto __meta, auto& __native_lhs) constexpr {
__meta._S_masked_assign(__meta._S_make_mask(__bits), __native_lhs,
__rhs);
});
}
// _S_masked_cassign {{{2
template <typename _Op, typename _Tp, typename... _As>
static inline void _S_masked_cassign(const _MaskMember __bits,
_SimdTuple<_Tp, _As...>& __lhs,
const _SimdTuple<_Tp, _As...>& __rhs,
_Op __op)
{
__for_each(
__lhs, __rhs,
[&](auto __meta, auto& __native_lhs, auto __native_rhs) constexpr {
__meta.template _S_masked_cassign(__meta._S_make_mask(__bits),
__native_lhs, __native_rhs, __op);
});
}
// Optimization for the case where the RHS is a scalar. No need to broadcast
// the scalar to a simd first.
template <typename _Op, typename _Tp, typename... _As>
static inline void _S_masked_cassign(const _MaskMember __bits,
_SimdTuple<_Tp, _As...>& __lhs,
const _Tp& __rhs, _Op __op)
{
__for_each(
__lhs, [&](auto __meta, auto& __native_lhs) constexpr {
__meta.template _S_masked_cassign(__meta._S_make_mask(__bits),
__native_lhs, __rhs, __op);
});
}
// _S_masked_unary {{{2
template <template <typename> class _Op, typename _Tp, typename... _As>
static inline _SimdTuple<_Tp, _As...>
_S_masked_unary(const _MaskMember __bits, const _SimdTuple<_Tp, _As...>& __v)
{
return __v._M_apply_wrapped([&__bits](auto __meta,
auto __native) constexpr {
return __meta.template _S_masked_unary<_Op>(__meta._S_make_mask(
__bits),
__native);
});
}
// }}}2
};
// _MaskImplFixedSize {{{1
template <int _Np>
struct _MaskImplFixedSize
{
static_assert(
sizeof(_ULLong) * __CHAR_BIT__ >= _Np,
"The fixed_size implementation relies on one _ULLong being able to store "
"all boolean elements."); // required in load & store
// member types {{{
using _Abi = simd_abi::fixed_size<_Np>;
using _MaskMember = _SanitizedBitMask<_Np>;
template <typename _Tp>
using _FirstAbi = typename __fixed_size_storage_t<_Tp, _Np>::_FirstAbi;
template <typename _Tp>
using _TypeTag = _Tp*;
// }}}
// _S_broadcast {{{
template <typename>
_GLIBCXX_SIMD_INTRINSIC static constexpr _MaskMember
_S_broadcast(bool __x)
{ return __x ? ~_MaskMember() : _MaskMember(); }
// }}}
// _S_load {{{
template <typename>
_GLIBCXX_SIMD_INTRINSIC static constexpr _MaskMember
_S_load(const bool* __mem)
{
using _Ip = __int_for_sizeof_t<bool>;
// the following load uses element_aligned and relies on __mem already
// carrying alignment information from when this load function was
// called.
const simd<_Ip, _Abi> __bools(reinterpret_cast<const __may_alias<_Ip>*>(
__mem),
element_aligned);
return __data(__bools != 0);
}
// }}}
// _S_to_bits {{{
template <bool _Sanitized>
_GLIBCXX_SIMD_INTRINSIC static constexpr _SanitizedBitMask<_Np>
_S_to_bits(_BitMask<_Np, _Sanitized> __x)
{
if constexpr (_Sanitized)
return __x;
else
return __x._M_sanitized();
}
// }}}
// _S_convert {{{
template <typename _Tp, typename _Up, typename _UAbi>
_GLIBCXX_SIMD_INTRINSIC static constexpr _MaskMember
_S_convert(simd_mask<_Up, _UAbi> __x)
{
return _UAbi::_MaskImpl::_S_to_bits(__data(__x))
.template _M_extract<0, _Np>();
}
// }}}
// _S_from_bitmask {{{2
template <typename _Tp>
_GLIBCXX_SIMD_INTRINSIC static _MaskMember
_S_from_bitmask(_MaskMember __bits, _TypeTag<_Tp>) noexcept
{ return __bits; }
// _S_load {{{2
static inline _MaskMember _S_load(const bool* __mem) noexcept
{
// TODO: _UChar is not necessarily the best type to use here. For smaller
// _Np _UShort, _UInt, _ULLong, float, and double can be more efficient.
_ULLong __r = 0;
using _Vs = __fixed_size_storage_t<_UChar, _Np>;
__for_each(_Vs{}, [&](auto __meta, auto) {
__r |= __meta._S_mask_to_shifted_ullong(
__meta._S_mask_impl._S_load(&__mem[__meta._S_offset],
_SizeConstant<__meta._S_size()>()));
});
return __r;
}
// _S_masked_load {{{2
static inline _MaskMember _S_masked_load(_MaskMember __merge,
_MaskMember __mask,
const bool* __mem) noexcept
{
_BitOps::_S_bit_iteration(__mask.to_ullong(), [&](auto __i) {
__merge.set(__i, __mem[__i]);
});
return __merge;
}
// _S_store {{{2
static inline void _S_store(const _MaskMember __bitmask,
bool* __mem) noexcept
{
if constexpr (_Np == 1)
__mem[0] = __bitmask[0];
else
_FirstAbi<_UChar>::_CommonImpl::_S_store_bool_array(__bitmask, __mem);
}
// _S_masked_store {{{2
static inline void _S_masked_store(const _MaskMember __v, bool* __mem,
const _MaskMember __k) noexcept
{
_BitOps::_S_bit_iteration(__k, [&](auto __i) { __mem[__i] = __v[__i]; });
}
// logical and bitwise operators {{{2
_GLIBCXX_SIMD_INTRINSIC static _MaskMember
_S_logical_and(const _MaskMember& __x, const _MaskMember& __y) noexcept
{ return __x & __y; }
_GLIBCXX_SIMD_INTRINSIC static _MaskMember
_S_logical_or(const _MaskMember& __x, const _MaskMember& __y) noexcept
{ return __x | __y; }
_GLIBCXX_SIMD_INTRINSIC static constexpr _MaskMember
_S_bit_not(const _MaskMember& __x) noexcept
{ return ~__x; }
_GLIBCXX_SIMD_INTRINSIC static _MaskMember
_S_bit_and(const _MaskMember& __x, const _MaskMember& __y) noexcept
{ return __x & __y; }
_GLIBCXX_SIMD_INTRINSIC static _MaskMember
_S_bit_or(const _MaskMember& __x, const _MaskMember& __y) noexcept
{ return __x | __y; }
_GLIBCXX_SIMD_INTRINSIC static _MaskMember
_S_bit_xor(const _MaskMember& __x, const _MaskMember& __y) noexcept
{ return __x ^ __y; }
// smart_reference access {{{2
_GLIBCXX_SIMD_INTRINSIC static void _S_set(_MaskMember& __k, int __i,
bool __x) noexcept
{ __k.set(__i, __x); }
// _S_masked_assign {{{2
_GLIBCXX_SIMD_INTRINSIC static void
_S_masked_assign(const _MaskMember __k, _MaskMember& __lhs,
const _MaskMember __rhs)
{ __lhs = (__lhs & ~__k) | (__rhs & __k); }
// Optimization for the case where the RHS is a scalar.
_GLIBCXX_SIMD_INTRINSIC static void _S_masked_assign(const _MaskMember __k,
_MaskMember& __lhs,
const bool __rhs)
{
if (__rhs)
__lhs |= __k;
else
__lhs &= ~__k;
}
// }}}2
// _S_all_of {{{
template <typename _Tp>
_GLIBCXX_SIMD_INTRINSIC static bool _S_all_of(simd_mask<_Tp, _Abi> __k)
{ return __data(__k).all(); }
// }}}
// _S_any_of {{{
template <typename _Tp>
_GLIBCXX_SIMD_INTRINSIC static bool _S_any_of(simd_mask<_Tp, _Abi> __k)
{ return __data(__k).any(); }
// }}}
// _S_none_of {{{
template <typename _Tp>
_GLIBCXX_SIMD_INTRINSIC static bool _S_none_of(simd_mask<_Tp, _Abi> __k)
{ return __data(__k).none(); }
// }}}
// _S_some_of {{{
template <typename _Tp>
_GLIBCXX_SIMD_INTRINSIC static bool
_S_some_of([[maybe_unused]] simd_mask<_Tp, _Abi> __k)
{
if constexpr (_Np == 1)
return false;
else
return __data(__k).any() && !__data(__k).all();
}
// }}}
// _S_popcount {{{
template <typename _Tp>
_GLIBCXX_SIMD_INTRINSIC static int _S_popcount(simd_mask<_Tp, _Abi> __k)
{ return __data(__k).count(); }
// }}}
// _S_find_first_set {{{
template <typename _Tp>
_GLIBCXX_SIMD_INTRINSIC static int
_S_find_first_set(simd_mask<_Tp, _Abi> __k)
{ return std::__countr_zero(__data(__k).to_ullong()); }
// }}}
// _S_find_last_set {{{
template <typename _Tp>
_GLIBCXX_SIMD_INTRINSIC static int
_S_find_last_set(simd_mask<_Tp, _Abi> __k)
{ return std::__bit_width(__data(__k).to_ullong()) - 1; }
// }}}
};
// }}}1
_GLIBCXX_SIMD_END_NAMESPACE
#endif // __cplusplus >= 201703L
#endif // _GLIBCXX_EXPERIMENTAL_SIMD_FIXED_SIZE_H_
// vim: foldmethod=marker sw=2 noet ts=8 sts=2 tw=80