;; ARM 1136J[F]-S Pipeline Description ;; Copyright (C) 2003-2021 Free Software Foundation, Inc. ;; Written by CodeSourcery, LLC. ;; ;; This file is part of GCC. ;; ;; GCC is free software; you can redistribute it and/or modify it ;; under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 3, or (at your option) ;; any later version. ;; ;; GCC is distributed in the hope that it will be useful, but ;; WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;; General Public License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; http://www.gnu.org/licenses/. */

;; These descriptions are based on the information contained in the ;; ARM1136JF-S Technical Reference Manual, Copyright (c) 2003 ARM ;; Limited. ;;

;; This automaton provides a pipeline description for the ARM ;; 1136J-S and 1136JF-S cores. ;; ;; The model given here assumes that the condition for all conditional ;; instructions is “true”, i.e., that all of the instructions are ;; actually executed.

(define_automaton “arm1136jfs”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Pipelines ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; There are three distinct pipelines (page 1-26 and following): ;; ;; - A 4-stage decode pipeline, shared by all three. It has fetch (1), ;; fetch (2), decode, and issue stages. Since this is always involved, ;; we do not model it in the scheduler. ;; ;; - A 4-stage ALU pipeline. It has shifter, ALU (main integer operations), ;; and saturation stages. The fourth stage is writeback; see below. ;; ;; - A 4-stage multiply-accumulate pipeline. It has three stages, called ;; MAC1 through MAC3, and a fourth writeback stage. ;; ;; The 4th-stage writeback is shared between the ALU and MAC pipelines, ;; which operate in lockstep. Results from either pipeline will be ;; moved into the writeback stage. Because the two pipelines operate ;; in lockstep, we schedule them as a single “execute” pipeline. ;; ;; - A 4-stage LSU pipeline. It has address generation, data cache (1), ;; data cache (2), and writeback stages. (Note that this pipeline, ;; including the writeback stage, is independent from the ALU & LSU pipes.)

(define_cpu_unit “e_1,e_2,e_3,e_wb” “arm1136jfs”) ; ALU and MAC ; e_1 = Sh/Mac1, e_2 = ALU/Mac2, e_3 = SAT/Mac3 (define_cpu_unit “l_a,l_dc1,l_dc2,l_wb” “arm1136jfs”) ; Load/Store

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ALU Instructions ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; ALU instructions require eight cycles to execute, and use the ALU ;; pipeline in each of the eight stages. The results are available ;; after the alu stage has finished. ;; ;; If the destination register is the PC, the pipelines are stalled ;; for several cycles. That case is not modelled here.

;; ALU operations with no shifted operand (define_insn_reservation “11_alu_op” 2 (and (eq_attr “tune” “arm1136js,arm1136jfs”) (eq_attr “type” “alu_imm,alus_imm,logic_imm,logics_imm,
alu_sreg,alus_sreg,logic_reg,logics_reg,
adc_imm,adcs_imm,adc_reg,adcs_reg,
adr,bfm,rev,
shift_imm,shift_reg,
mov_imm,mov_reg,mvn_imm,mvn_reg,
multiple”)) “e_1,e_2,e_3,e_wb”)

;; ALU operations with a shift-by-constant operand (define_insn_reservation “11_alu_shift_op” 2 (and (eq_attr “tune” “arm1136js,arm1136jfs”) (eq_attr “type” “alu_shift_imm_lsl_1to4,alu_shift_imm_other,alus_shift_imm,
logic_shift_imm,logics_shift_imm,
extend,mov_shift,mvn_shift”)) “e_1,e_2,e_3,e_wb”)

;; ALU operations with a shift-by-register operand ;; These really stall in the decoder, in order to read ;; the shift value in a second cycle. Pretend we take two cycles in ;; the shift stage. (define_insn_reservation “11_alu_shift_reg_op” 3 (and (eq_attr “tune” “arm1136js,arm1136jfs”) (eq_attr “type” “alu_shift_reg,alus_shift_reg,
logic_shift_reg,logics_shift_reg,
mov_shift_reg,mvn_shift_reg”)) “e_1*2,e_2,e_3,e_wb”)

;; alu_ops can start sooner, if there is no shifter dependency (define_bypass 1 “11_alu_op,11_alu_shift_op” “11_alu_op”) (define_bypass 1 “11_alu_op,11_alu_shift_op” “11_alu_shift_op” “arm_no_early_alu_shift_value_dep”) (define_bypass 1 “11_alu_op,11_alu_shift_op” “11_alu_shift_reg_op” “arm_no_early_alu_shift_dep”) (define_bypass 2 “11_alu_shift_reg_op” “11_alu_op”) (define_bypass 2 “11_alu_shift_reg_op” “11_alu_shift_op” “arm_no_early_alu_shift_value_dep”) (define_bypass 2 “11_alu_shift_reg_op” “11_alu_shift_reg_op” “arm_no_early_alu_shift_dep”)

(define_bypass 1 “11_alu_op,11_alu_shift_op” “11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7” “arm_no_early_mul_dep”) (define_bypass 2 “11_alu_shift_reg_op” “11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7” “arm_no_early_mul_dep”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Multiplication Instructions ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Multiplication instructions loop in the first two execute stages until ;; the instruction has been passed through the multiplier array enough ;; times.

;; Multiply and multiply-accumulate results are available after four stages. (define_insn_reservation “11_mult1” 4 (and (eq_attr “tune” “arm1136js,arm1136jfs”) (eq_attr “type” “mul,mla”)) “e_1*2,e_2,e_3,e_wb”)

;; The S variants set the condition flags, which requires three more cycles. (define_insn_reservation “11_mult2” 4 (and (eq_attr “tune” “arm1136js,arm1136jfs”) (eq_attr “type” “muls,mlas”)) "e_12,e_2,e_3,e_wb")

(define_bypass 3 “11_mult1,11_mult2” “11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7” “arm_no_early_mul_dep”) (define_bypass 3 “11_mult1,11_mult2” “11_alu_op”) (define_bypass 3 “11_mult1,11_mult2” “11_alu_shift_op” “arm_no_early_alu_shift_value_dep”) (define_bypass 3 “11_mult1,11_mult2” “11_alu_shift_reg_op” “arm_no_early_alu_shift_dep”) (define_bypass 3 “11_mult1,11_mult2” “11_store1” “arm_no_early_store_addr_dep”)

;; Signed and unsigned multiply long results are available across two cycles; ;; the less significant word is available one cycle before the more significant ;; word. Here we conservatively wait until both are available, which is ;; after three iterations and the memory cycle. The same is also true of ;; the two multiply-accumulate instructions. (define_insn_reservation “11_mult3” 5 (and (eq_attr “tune” “arm1136js,arm1136jfs”) (eq_attr “type” “smull,umull,smlal,umlal”)) “e_13,e_2,e_3,e_wb2”)

;; The S variants set the condition flags, which requires three more cycles. (define_insn_reservation “11_mult4” 5 (and (eq_attr “tune” “arm1136js,arm1136jfs”) (eq_attr “type” “smulls,umulls,smlals,umlals”)) "e_13,e_2,e_3,e_wb*2")

(define_bypass 4 “11_mult3,11_mult4” “11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7” “arm_no_early_mul_dep”) (define_bypass 4 “11_mult3,11_mult4” “11_alu_op”) (define_bypass 4 “11_mult3,11_mult4” “11_alu_shift_op” “arm_no_early_alu_shift_value_dep”) (define_bypass 4 “11_mult3,11_mult4” “11_alu_shift_reg_op” “arm_no_early_alu_shift_dep”) (define_bypass 4 “11_mult3,11_mult4” “11_store1” “arm_no_early_store_addr_dep”)

;; Various 16x16->32 multiplies and multiply-accumulates, using combinations ;; of high and low halves of the argument registers. They take a single ;; pass through the pipeline and make the result available after three ;; cycles. (define_insn_reservation “11_mult5” 3 (and (eq_attr “tune” “arm1136js,arm1136jfs”) (eq_attr “type” “smulxy,smlaxy,smulwy,smlawy,smuad,smuadx,smlad,smladx,
smusd,smusdx,smlsd,smlsdx”)) “e_1,e_2,e_3,e_wb”)

(define_bypass 2 “11_mult5” “11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7” “arm_no_early_mul_dep”) (define_bypass 2 “11_mult5” “11_alu_op”) (define_bypass 2 “11_mult5” “11_alu_shift_op” “arm_no_early_alu_shift_value_dep”) (define_bypass 2 “11_mult5” “11_alu_shift_reg_op” “arm_no_early_alu_shift_dep”) (define_bypass 2 “11_mult5” “11_store1” “arm_no_early_store_addr_dep”)

;; The same idea, then the 32-bit result is added to a 64-bit quantity. (define_insn_reservation “11_mult6” 4 (and (eq_attr “tune” “arm1136js,arm1136jfs”) (eq_attr “type” “smlalxy”)) “e_12,e_2,e_3,e_wb2”)

;; Signed 32x32 multiply, then the most significant 32 bits are extracted ;; and are available after the memory stage. (define_insn_reservation “11_mult7” 4 (and (eq_attr “tune” “arm1136js,arm1136jfs”) (eq_attr “type” “smmul,smmulr”)) “e_1*2,e_2,e_3,e_wb”)

(define_bypass 3 “11_mult6,11_mult7” “11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7” “arm_no_early_mul_dep”) (define_bypass 3 “11_mult6,11_mult7” “11_alu_op”) (define_bypass 3 “11_mult6,11_mult7” “11_alu_shift_op” “arm_no_early_alu_shift_value_dep”) (define_bypass 3 “11_mult6,11_mult7” “11_alu_shift_reg_op” “arm_no_early_alu_shift_dep”) (define_bypass 3 “11_mult6,11_mult7” “11_store1” “arm_no_early_store_addr_dep”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Branch Instructions ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; These vary greatly depending on their arguments and the results of ;; stat prediction. Cycle count ranges from zero (unconditional branch, ;; folded dynamic prediction) to seven (incorrect predictions, etc). We ;; assume an optimal case for now, because the cost of a cache miss ;; overwhelms the cost of everything else anyhow.

(define_insn_reservation “11_branches” 0 (and (eq_attr “tune” “arm1136js,arm1136jfs”) (eq_attr “type” “branch”)) “nothing”)

;; Call latencies are not predictable. A semi-arbitrary very large ;; number is used as “positive infinity” so that everything should be ;; finished by the time of return. (define_insn_reservation “11_call” 32 (and (eq_attr “tune” “arm1136js,arm1136jfs”) (eq_attr “type” “call”)) “nothing”)

;; Branches are predicted. A correctly predicted branch will be no ;; cost, but we're conservative here, and use the timings a ;; late-register would give us. (define_bypass 1 “11_alu_op,11_alu_shift_op” “11_branches”) (define_bypass 2 “11_alu_shift_reg_op” “11_branches”) (define_bypass 2 “11_load1,11_load2” “11_branches”) (define_bypass 3 “11_load34” “11_branches”)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Load/Store Instructions ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; The models for load/store instructions do not accurately describe ;; the difference between operations with a base register writeback. ;; These models assume that all memory references hit in dcache. Also, ;; if the PC is one of the registers involved, there are additional stalls ;; not modelled here. Addressing modes are also not modelled.

(define_insn_reservation “11_load1” 3 (and (eq_attr “tune” “arm1136js,arm1136jfs”) (eq_attr “type” “load_4”)) “l_a+e_1,l_dc1,l_dc2,l_wb”)

;; Load byte results are not available until the writeback stage, where ;; the correct byte is extracted.

(define_insn_reservation “11_loadb” 4 (and (eq_attr “tune” “arm1136js,arm1136jfs”) (eq_attr “type” “load_byte”)) “l_a+e_1,l_dc1,l_dc2,l_wb”)

(define_insn_reservation “11_store1” 0 (and (eq_attr “tune” “arm1136js,arm1136jfs”) (eq_attr “type” “store_4”)) “l_a+e_1,l_dc1,l_dc2,l_wb”)

;; Load/store double words into adjacent registers. The timing and ;; latencies are different depending on whether the address is 64-bit ;; aligned. This model assumes that it is. (define_insn_reservation “11_load2” 3 (and (eq_attr “tune” “arm1136js,arm1136jfs”) (eq_attr “type” “load_8”)) “l_a+e_1,l_dc1,l_dc2,l_wb”)

(define_insn_reservation “11_store2” 0 (and (eq_attr “tune” “arm1136js,arm1136jfs”) (eq_attr “type” “store_8”)) “l_a+e_1,l_dc1,l_dc2,l_wb”)

;; Load/store multiple registers. Two registers are stored per cycle. ;; Actual timing depends on how many registers are affected, so we ;; optimistically schedule a low latency. (define_insn_reservation “11_load34” 4 (and (eq_attr “tune” “arm1136js,arm1136jfs”) (eq_attr “type” “load_12,load_16”)) “l_a+e_1,l_dc1*2,l_dc2,l_wb”)

(define_insn_reservation “11_store34” 0 (and (eq_attr “tune” “arm1136js,arm1136jfs”) (eq_attr “type” “store_12,store_16”)) “l_a+e_1,l_dc1*2,l_dc2,l_wb”)

;; A store can start immediately after an alu op, if that alu op does ;; not provide part of the address to access. (define_bypass 1 “11_alu_op,11_alu_shift_op” “11_store1” “arm_no_early_store_addr_dep”) (define_bypass 2 “11_alu_shift_reg_op” “11_store1” “arm_no_early_store_addr_dep”)

;; An alu op can start sooner after a load, if that alu op does not ;; have an early register dependency on the load (define_bypass 2 “11_load1” “11_alu_op”) (define_bypass 2 “11_load1” “11_alu_shift_op” “arm_no_early_alu_shift_value_dep”) (define_bypass 2 “11_load1” “11_alu_shift_reg_op” “arm_no_early_alu_shift_dep”)

(define_bypass 3 “11_loadb” “11_alu_op”) (define_bypass 3 “11_loadb” “11_alu_shift_op” “arm_no_early_alu_shift_value_dep”) (define_bypass 3 “11_loadb” “11_alu_shift_reg_op” “arm_no_early_alu_shift_dep”)

;; A mul op can start sooner after a load, if that mul op does not ;; have an early multiply dependency (define_bypass 2 “11_load1” “11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7” “arm_no_early_mul_dep”) (define_bypass 3 “11_load34” “11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7” “arm_no_early_mul_dep”) (define_bypass 3 “11_loadb” “11_mult1,11_mult2,11_mult3,11_mult4,11_mult5,11_mult6,11_mult7” “arm_no_early_mul_dep”)

;; A store can start sooner after a load, if that load does not ;; produce part of the address to access (define_bypass 2 “11_load1” “11_store1” “arm_no_early_store_addr_dep”) (define_bypass 3 “11_loadb” “11_store1” “arm_no_early_store_addr_dep”)