blob: 847069966e327e772f5e7fbe6b450b17aa55fa91 [file] [log] [blame]
/* Check that optimizations like (x * 1) to x, or (x * -1) to -x,
do not apply to decimal float computations where trailing zeroes
are significant. */
#include "dfp-dbg.h"
#define COMPARE32(A,B) \
A.i == B.i
#define COMPARE64(A,B) \
A.i[0] == B.i[0] && A.i[1] == B.i[1]
#define COMPARE128(A,B) \
A.i[0] == B.i[0] && A.i[1] == B.i[1] && A.i[2] == B.i[2] && A.i[3] == B.i[3]
typedef union {
_Decimal32 d;
unsigned int i;
} u32;
typedef union {
_Decimal64 d;
unsigned int i[2];
} u64;
typedef union {
_Decimal128 d;
unsigned int i[4];
} u128;
volatile u32 p32_1;
volatile u32 p32_1_0;
volatile u32 p32_2_0;
volatile u32 m32_1;
volatile u32 m32_1_0;
volatile u32 m32_2_0;
volatile u32 a32;
volatile u64 p64_1;
volatile u64 p64_1_0;
volatile u64 p64_2_0;
volatile u64 m64_1;
volatile u64 m64_1_0;
volatile u64 m64_2_0;
volatile u64 a64;
volatile u128 p128_1;
volatile u128 p128_1_0;
volatile u128 p128_2_0;
volatile u128 m128_1;
volatile u128 m128_1_0;
volatile u128 m128_2_0;
volatile u128 a128;
void
init32 (void)
{
p32_1.d = 1.DF;
p32_1_0.d = 1.0DF;
p32_2_0.d = 2.0DF;
m32_1.d = -1.DF;
m32_1_0.d = -1.0DF;
m32_2_0.d = -2.0DF;
}
void
init64 (void)
{
p64_1.d = 1.DD;
p64_1_0.d = 1.0DD;
p64_2_0.d = 2.0DD;
m64_1.d = -1.DD;
m64_1_0.d = -1.0DD;
m64_2_0.d = -2.0DD;
}
void
init128 (void)
{
p128_1.d = 1.DL;
p128_1_0.d = 1.0DL;
p128_2_0.d = 2.0DL;
m128_1.d = -1.DL;
m128_1_0.d = -1.0DL;
m128_2_0.d = -2.0DL;
}
void
doit32 (void)
{
/* Multiplying by a value with no trailing zero should not change the
quantum exponent. */
a32.d = p32_2_0.d * p32_1.d;
if (! (COMPARE32 (a32, p32_2_0)))
FAILURE
a32.d = p32_2_0.d * 1.DF;
if (! (COMPARE32 (a32, p32_2_0)))
FAILURE
a32.d = p32_2_0.d * m32_1.d;
if (! (COMPARE32 (a32, m32_2_0)))
FAILURE
a32.d = p32_2_0.d * -1.DF;
if (! (COMPARE32 (a32, m32_2_0)))
FAILURE
/* Multiplying by a value with a trailing zero should change the
quantum exponent. */
a32.d = p32_2_0.d * p32_1_0.d;
if (COMPARE32 (a32, p32_2_0))
FAILURE
a32.d = p32_2_0.d * 1.0DF;
if (COMPARE32 (a32, p32_2_0))
FAILURE
a32.d = p32_2_0.d * m32_1_0.d;
if (COMPARE32 (a32, m32_2_0))
FAILURE
a32.d = p32_2_0.d * -1.0DF;
if (COMPARE32 (a32, m32_2_0))
FAILURE
}
void
doit64 (void)
{
/* Multiplying by a value with no trailing zero should not change the
quantum exponent. */
a64.d = p64_2_0.d * p64_1.d;
if (! (COMPARE64 (a64, p64_2_0)))
FAILURE
a64.d = p64_2_0.d * 1.DD;
if (! (COMPARE64 (a64, p64_2_0)))
FAILURE
a64.d = p64_2_0.d * m64_1.d;
if (! (COMPARE64 (a64, m64_2_0)))
FAILURE
a64.d = p64_2_0.d * -1.DD;
if (! (COMPARE64 (a64, m64_2_0)))
FAILURE
/* Multiplying by a value with a trailing zero should change the
quantum exponent. */
a64.d = p64_2_0.d * p64_1_0.d;
if (COMPARE64 (a64, p64_2_0))
FAILURE
a64.d = p64_2_0.d * 1.0DD;
if (COMPARE64 (a64, p64_2_0))
FAILURE
a64.d = p64_2_0.d * m64_1_0.d;
if (COMPARE64 (a64, m64_2_0))
FAILURE
a64.d = p64_2_0.d * -1.0DD;
if (COMPARE64 (a64, m64_2_0))
FAILURE
}
void
doit128 (void)
{
/* Multiplying by a value with no trailing zero should not change the
quantum exponent. */
a128.d = p128_2_0.d * p128_1_0.d;
if (COMPARE128 (a128, p128_2_0))
FAILURE
a128.d = p128_2_0.d * 1.0DL;
if (COMPARE128 (a128, p128_2_0))
FAILURE
a128.d = p128_2_0.d * m128_1_0.d;
if (COMPARE128 (a128, m128_2_0))
FAILURE
a128.d = p128_2_0.d * -1.0DL;
if (COMPARE128 (a128, m128_2_0))
FAILURE
/* Multiplying by a value with a trailing zero should change the
quantum exponent. */
a128.d = p128_2_0.d * p128_1.d;
if (! (COMPARE128 (a128, p128_2_0)))
FAILURE
a128.d = p128_2_0.d * 1.DL;
if (! (COMPARE128 (a128, p128_2_0)))
FAILURE
a128.d = p128_2_0.d * m128_1.d;
if (! (COMPARE128 (a128, m128_2_0)))
FAILURE
a128.d = p128_2_0.d * -1.DL;
if (! (COMPARE128 (a128, m128_2_0)))
FAILURE
}
int
main (void)
{
init32 ();
init64 ();
init128 ();
doit32 ();
doit64 ();
doit128 ();
FINISH
}