blob: 48229390bfd73335711c64236761c84c23cd3e0b [file] [log] [blame]
/* PR 71831 - __builtin_object_size poor results with no optimization
Verify that even without optimization __builtin_object_size returns
a meaningful result for a subset of simple expressins. In cases
where the result could not easily be made to match the one obtained
with optimization the built-in was made to fail instead. */
/* { dg-do run } */
/* { dg-options "-O0" } */
static int nfails;
#define TEST_FAILURE(line, obj, type, expect, result) \
__builtin_printf ("FAIL: line %i: __builtin_object_size(" \
#obj ", %i) == %zu, got %zu\n", \
line, type, expect, result), ++nfails
#define bos(obj, type) __builtin_object_size (obj, type)
#define size(obj, n) ((size_t)n == X ? sizeof *obj : (size_t)n)
#define test(expect, type, obj) \
do { \
if (bos (obj, type) != size (obj, expect)) \
TEST_FAILURE (__LINE__, obj, type, size (obj, expect), bos (obj, type)); \
} while (0)
#define T(r0, r1, r2, r3, obj) \
do { \
test (r0, 0, obj); \
test (r1, 1, obj); \
test (r2, 2, obj); \
test (r3, 3, obj); \
} while (0)
/* For convenience. Substitute for 'sizeof object' in test cases where
the size can vary from target to target. */
#define X (size_t)0xdeadbeef
/* __builtin_object_size checking results are inconsistent for equivalent
expressions (see bug 71831). To avoid having duplicate the inconsistency
at -O0 the built-in simply fails. The results hardcoded in this test
are those obtained with optimization (for easy comparison) but without
optimization the macros below turn them into expected failures . */
#if __OPTIMIZE__
# define F0(n) n
# define F1(n) n
# define F2(n) n
# define F3(n) n
#else
# define F0(n) -1
# define F1(n) -1
# define F2(n) 0
# define F3(n) 0
#endif
typedef __SIZE_TYPE__ size_t;
extern char ax[];
char ax2[]; /* { dg-warning "assumed to have one element" } */
extern char a0[0];
static char a1[1];
static char a2[2];
static char a9[9];
#if __SIZEOF_SHORT__ == 4
extern short ia0[0];
static short ia1[1];
static short ia9[9];
#elif __SIZEOF_INT__ == 4
extern int ia0[0];
static int ia1[1];
static int ia9[9];
#elif __SIZEOF_LONG__ == 4
extern long ia0[0];
static long ia1[1];
static long ia9[9];
#endif
static char a2x2[2][2];
static char a3x5[3][5];
struct Sx { char n, a[]; } sx;
struct S0 { char n, a[0]; } s0;
struct S1 { char n, a[1]; } s1;
struct S2 { char n, a[2]; } s2;
struct S9 { char n, a[9]; } s9;
struct S2x2 { char n, a[2][2]; } s2x2;
struct S3x5 { char n, a[3][5]; } s3x5;
static __attribute__ ((noclone, noinline)) void
test_arrays ()
{
T ( -1, -1, 0, 0, ax);
T ( 0, 0, 0, 0, a0);
T ( 1, 1, 1, 1, ax2);
T ( 1, 1, 1, 1, a1);
T ( 2, 2, 2, 2, a2);
T ( 9, 9, 9, 9, a9);
T ( 0, 0, 0, 0, a0);
T ( 1, 1, 1, 1, ax2);
T ( 0, 0, 0, 0, ia0);
T ( 4, 4, 4, 4, ia1);
T ( 36, 36, 36, 36, ia9);
/* Not all results for multidimensional arrays make sense (see
bug 77293). The expected results below simply reflect those
obtained at -O2 (modulo the known limitations at -O1). */
T ( 4, 4, 4, 4, a2x2);
T ( 4, 4, 4, 4, &a2x2[0]);
T ( 4, 2, 4, 2, &a2x2[0][0]);
T ( 0, F1 (0), 0, 0, &a2x2 + 1);
T ( 2, F1 ( 2), 2, F3 ( 2), &a2x2[0] + 1);
T ( 3, F1 ( 1), 3, F3 ( 3), &a2x2[0][0] + 1);
T ( 15, 15, 15, 15, a3x5);
T ( 15, 5, 15, 5, &a3x5[0][0] + 0);
T ( 14, F1 ( 4), 14, F3 (14), &a3x5[0][0] + 1);
T ( 1, 1, 1, 1, a1 + 0);
T ( 0, F1 (0), 0, 0, a1 + 1);
T ( 0, F1 ( 0), 0, 0, &a1 + 1);
/* In the following the offset is out of bounds which makes
the expression undefined. Still, verify that the returned
size is zero (and not some large number). */
T ( 0, F1 (0), 0, 0, a1 + 2);
T ( 2, 2, 2, 2, a2 + 0);
T ( 1, F1 ( 1), 1, F3 ( 1), a2 + 1);
T ( 0, F1 ( 0), 0, 0, a2 + 2);
}
static __attribute__ ((noclone, noinline)) void
test_structs (struct Sx *psx, struct S0 *ps0, struct S1 *ps1, struct S9 *ps9)
{
/* The expected size of a declared object with a flexible array member
is sizeof sx in all __builtin_object_size types. */
T ( X, X, X, X, &sx);
/* The expected size of an unknown object with a flexible array member
is unknown in all __builtin_object_size types. */
T ( -1, -1, 0, 0, psx);
/* The expected size of a flexible array member of a declared object
is zero. */
T ( 0, 0, 0, 0, sx.a);
/* The expected size of a flexible array member of an unknown object
is unknown. */
T ( -1, -1, 0, 0, psx->a);
/* The expected size of a declared object with a zero-length array member
is sizeof sx in all __builtin_object_size types. */
T ( X, X, X, X, &s0);
/* The expected size of an unknown object with a zero-length array member
is unknown in all __builtin_object_size types. */
T ( -1, -1, 0, 0, ps0);
/* The expected size of a zero-length array member of a declared object
is zero. */
T ( 0, 0, 0, 0, s0.a);
/* The expected size of a zero-length array member of an unknown object
is unknown. */
T ( -1, -1, 0, 0, ps0->a);
T ( X, X, X, X, &s1);
T ( 1, 1, 1, 1, s1.a);
T ( 0, F1 (0), 0, 0, s1.a + 1);
/* GCC treats arrays of all sizes that are the last member of a struct
as flexible array members. */
T ( -1, -1, 0, 0, ps1);
T ( -1, -1, 0, 0, ps1->a);
T ( -1, -1, 0, 0, ps1->a + 1);
T ( X, X, X, X, &s9);
T ( 9, 9, 9, 9, s9.a);
T ( 9, 9, 9, 9, s9.a + 0);
T ( 8, F1 ( 8), 8, F3 ( 8), s9.a + 1);
T ( 7, F1 ( 7), 7, F3 ( 7), s9.a + 2);
T ( 0, F1 ( 0), 0, F3 ( 0), s9.a + 9);
/* The following make little sense but see bug 77301. */
T ( -1, -1, 0, 0, ps9);
T ( -1, -1, 0, 0, ps9->a);
T ( -1, -1, 0, 0, ps9->a + 1);
}
int
main()
{
test_arrays ();
test_structs (&sx, &s0, &s1, &s9);
if (nfails)
__builtin_abort ();
return 0;
}