blob: 378a5fe642ac415cd20f45e88f06e8d7b9040c98 [file] [log] [blame]
 /* { dg-require-effective-target vect_int } */ /* { dg-add-options bind_pic_locally } */ #include #include "tree-vect.h" #if VECTOR_BITS > 128 #define NSHORTS (VECTOR_BITS / 16) #else #define NSHORTS 8 #endif #define NINTS (NSHORTS / 2) #define N (NSHORTS * 4) short sa[N]; short sb[N] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31}; int ia[N]; int ib[N] = {0,3,6,9,12,15,18,21,24,27,30,33,36,39,42,45, 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}; /* Current peeling-for-alignment scheme will consider the 'sa[i+7]' access for peeling, and therefore will examine the option of using a peeling factor = V-7%V = 1,3 for V=8,4 respectively, which will also align the access to 'ia[i+3]', and the loop could be vectorized on all targets that support unaligned loads. */ __attribute__ ((noinline)) int main1 (int n) { int i; /* Multiple types with different sizes, used in idependent copmutations. Vectorizable. */ for (i = 0; i < n; i++) { sa[i + NSHORTS - 1] = sb[i]; ia[i + NINTS - 1] = ib[i + 1]; } /* check results: */ for (i = 0; i < n; i++) { if (sa[i + NSHORTS - 1] != sb[i] || ia[i + NINTS - 1] != ib[i + 1]) abort (); } return 0; } /* Current peeling-for-alignment scheme will consider the 'ia[i+3]' access for peeling, and therefore will examine the option of using a peeling factor = (V-3)%V = 1 for V=2,4. This will not align the access 'sa[i+3]' (for which we need to peel 5 iterations). However, 'ia[i+3]' also gets aligned if we peel 5 iterations, so the loop is vectorizable on all targets that support unaligned loads. */ __attribute__ ((noinline)) int main2 (int n) { int i; /* Multiple types with different sizes, used in independent copmutations. */ for (i = 0; i < n; i++) { ia[i + NINTS - 1] = ib[i]; sa[i + NINTS - 1] = sb[i + 1]; } /* check results: */ for (i = 0; i < n; i++) { if (sa[i + NINTS - 1] != sb[i + 1] || ia[i + NINTS - 1] != ib[i]) abort (); } return 0; } int main (void) { check_vect (); main1 (N - NSHORTS + 1); main2 (N - NINTS + 1); return 0; } /* { dg-final { scan-tree-dump-times "vectorized 1 loops" 2 "vect" { xfail { vect_no_align && { ! vect_hw_misalign } } } } } */ /* { dg-final { scan-tree-dump-times "Alignment of access forced using peeling" 2 "vect" { xfail { { ! vect_unaligned_possible } || vect_sizes_32B_16B } } } } */ /* { dg-final { scan-tree-dump-times "Vectorizing an unaligned access" 4 "vect" { target { vect_no_align && { { ! vect_hw_misalign } && vect_sizes_32B_16B } } }} } */