blob: 512bcea79afe909e394d1d2dc7588270c3bfcab2 [file] [log] [blame]
module traits_getPointerBitmap;
import std.stdio;
static import std.traits;
// version = RTInfo;
// debug = LOG;
version(RTInfo)
import gc.rtinfo;
else
enum bool RTInfoMark__Monitor = false; // is __monitor GC allocated?
enum bytesPerPtr = (size_t.sizeof);
enum bytesPerBitmapWord = bytesPerPtr * bytesPerPtr * 8;
template allocatedSize(T)
{
static if (is (T == class))
enum allocatedSize = __traits(classInstanceSize, T);
else
enum allocatedSize = T.sizeof;
}
bool testBit(const(size_t)* p, size_t biti)
{
enum BITS_SHIFT = (size_t.sizeof == 8 ? 6 : 5);
enum BITS_MASK = (bytesPerPtr - 1);
return (p[biti >> BITS_SHIFT] & (1 << (biti & BITS_MASK))) != 0;
}
void __testType(T)(size_t[] expected)
{
// check compile time info
enum bits = (T.sizeof + bytesPerPtr - 1) / bytesPerPtr;
enum words = (T.sizeof + bytesPerBitmapWord - 1) / bytesPerBitmapWord;
version(RTInfo)
enum info = RTInfoImpl2!(Unqual!T); // we want the array, not the pointer
else
enum info = __traits(getPointerBitmap,T); // we want the array, not the pointer
debug(LOG) writef("%-20s:", T.stringof);
debug(LOG) writef(" CT:%s", info);
debug(LOG) writef(" EXP:%d %s", allocatedSize!T, expected);
assert(info[0] == allocatedSize!T);
assert(info[1..$] == expected);
assert(words == expected.length);
debug(LOG) writeln();
}
///////////////////////////////////////
struct S(T, aliasTo = void)
{
static if(!is(aliasTo == void))
{
aliasTo a;
alias a this;
}
size_t x;
T t = void;
void* p;
}
template tOff(T)
{
enum tOff = T.t.offsetof / bytesPerPtr;
}
template pOff(T)
{
enum pOff = T.p.offsetof / bytesPerPtr;
}
class C(T, aliasTo = void)
{
static if(!is(aliasTo == void))
{
aliasTo a;
alias a this;
}
size_t x;
T t = void;
void* p;
}
///////////////////////////////////////
void _testType(T)(size_t[] expected)
{
__testType!(T)(expected);
__testType!(const(T))(expected);
__testType!(immutable(T))(expected);
version(RTInfo) {} else // Unqual does not work with shared(T[N])
__testType!(shared(T))(expected);
}
void testType(T)(size_t[] expected)
{
_testType!(T)(expected);
// generate bit pattern for S!T
assert(expected.length == 1);
size_t[] sexp;
sexp ~= (expected[0] << tOff!(S!T)) | (1 << pOff!((S!T)));
_testType!(S!T)(sexp);
// prepend Object
sexp[0] = (expected[0] << tOff!(S!(T, Object))) | (1 << pOff!(S!(T, Object))) | 1;
_testType!(S!(T, Object))(sexp);
// prepend string
sexp[0] = (expected[0] << tOff!(S!(T, string))) | (1 << pOff!(S!(T, string))) | 2; // arr ptr
_testType!(S!(T, string))(sexp);
// generate bit pattern for C!T
C!T ct = null;
size_t mutexBit = (RTInfoMark__Monitor ? 2 : 0);
size_t ctpOff = ct.p.offsetof / bytesPerPtr;
size_t cttOff = ct.t.offsetof / bytesPerPtr;
sexp[0] = (expected[0] << cttOff) | (1 << ctpOff) | mutexBit;
_testType!(C!(T))(sexp);
C!(T, string) cts = null;
size_t ctspOff = cts.p.offsetof / bytesPerPtr;
size_t ctstOff = cts.t.offsetof / bytesPerPtr;
// generate bit pattern for C!T
sexp[0] = (expected[0] << ctstOff) | (1 << ctspOff) | mutexBit | 0b1000; // arr ptr
_testType!(C!(T, string))(sexp);
}
///////////////////////////////////////
alias void[2*size_t.sizeof] void2;
alias size_t[3] int3;
alias size_t*[3] pint3;
alias string[3] sint3;
alias string[3][2] sint3_2;
alias int delegate() dg;
alias int function() fn;
alias typeof(null) NullType;
// span multiple bitmap elements
struct Large
{
size_t[30] data1;
void* p1;
size_t[1] val1;
size_t[28] data2;
void* p2;
size_t[3] val2;
size_t[16] data3;
void* p3;
size_t[15] val3;
}
class N
{
struct Nested
{
// no outer for structs
size_t x;
void* p1;
Large* s;
void foo() {} // need member fnction to not be POD
}
class CNested
{
// implicit vtptr,monitor
size_t x;
void* p1;
size_t y;
// implicit outer
}
class CNestedDerived : CNested
{
size_t[3] z;
void* p;
}
}
union U
{
size_t data[4];
Large*[] arr; // { length, ptr }
struct
{
size_t d1;
size_t d2;
size_t d3;
void* p;
}
}
void testRTInfo()
{
testType!(bool) ([ 0b0 ]);
testType!(ubyte) ([ 0b0 ]);
testType!(short) ([ 0b0 ]);
testType!(int) ([ 0b0 ]);
testType!(long) ([ 0b00 ]);
testType!(double) ([ 0b00 ]);
testType!(ifloat) ([ 0b0 ]);
testType!(cdouble) ([ 0b0000 ]);
testType!(dg) ([ 0b01 ]);
testType!(fn) ([ 0b0 ]);
testType!(S!fn) ([ 0b100 ]);
testType!(NullType) ([ 0b0 ]);
version(D_LP64)
testType!(__vector(float[4])) ([ 0b00 ]);
testType!(Object[int]) ([ 0b1 ]);
testType!(Object[]) ([ 0b10 ]);
testType!(string) ([ 0b10 ]);
testType!(int3) ([ 0b000 ]);
testType!(pint3) ([ 0b111 ]);
testType!(sint3) ([ 0b101010 ]);
testType!(sint3_2) ([ 0b101010101010 ]);
testType!(void2) ([ 0b11 ]);
testType!(U) ([ 0b1010 ]);
version(D_LP64)
_testType!(Large) ([ 0x1000_0000__4000_0000, 0x0001_0000 ]);
else
_testType!(Large) ([ 0x4000_0000, 0x1000_0000, 0x0001_0000 ]);
_testType!(N.CNested) ([ 0b101000 ]);
_testType!(N.CNestedDerived) ([ 0b1000101000 ]);
testType!(N.Nested) ([ 0b110 ]);
struct SFNested
{
size_t[2] d;
void* p1;
fn f;
// implicite outer
void foo() {} // need member fnction to not be POD
}
class CFNested
{
// implicit vtptr,monitor
size_t[2] d;
void* p1;
// implicite outer
}
testType!(SFNested) ([ 0b10100 ]);
_testType!(CFNested) ([ 0b110000 ]);
}
void main()
{
testRTInfo();
}