| /* Compute x * y + z as ternary operation. |
| Copyright (C) 2010-2017 Free Software Foundation, Inc. |
| This file is part of the GNU C Library. |
| Contributed by Jakub Jelinek <jakub@redhat.com>, 2010. |
| |
| The GNU C Library is free software; you can redistribute it and/or |
| modify it under the terms of the GNU Lesser General Public |
| License as published by the Free Software Foundation; either |
| version 2.1 of the License, or (at your option) any later version. |
| |
| The GNU C Library is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public |
| License along with the GNU C Library; if not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "quadmath-imp.h" |
| #include <math.h> |
| #include <float.h> |
| #ifdef HAVE_FENV_H |
| # include <fenv.h> |
| # if defined HAVE_FEHOLDEXCEPT && defined HAVE_FESETROUND \ |
| && defined HAVE_FEUPDATEENV && defined HAVE_FETESTEXCEPT \ |
| && defined FE_TOWARDZERO && defined FE_INEXACT |
| # define USE_FENV_H |
| # endif |
| #endif |
| |
| /* This implementation uses rounding to odd to avoid problems with |
| double rounding. See a paper by Boldo and Melquiond: |
| http://www.lri.fr/~melquion/doc/08-tc.pdf */ |
| |
| __float128 |
| fmaq (__float128 x, __float128 y, __float128 z) |
| { |
| ieee854_float128 u, v, w; |
| int adjust = 0; |
| u.value = x; |
| v.value = y; |
| w.value = z; |
| if (__builtin_expect (u.ieee.exponent + v.ieee.exponent |
| >= 0x7fff + IEEE854_FLOAT128_BIAS |
| - FLT128_MANT_DIG, 0) |
| || __builtin_expect (u.ieee.exponent >= 0x7fff - FLT128_MANT_DIG, 0) |
| || __builtin_expect (v.ieee.exponent >= 0x7fff - FLT128_MANT_DIG, 0) |
| || __builtin_expect (w.ieee.exponent >= 0x7fff - FLT128_MANT_DIG, 0) |
| || __builtin_expect (u.ieee.exponent + v.ieee.exponent |
| <= IEEE854_FLOAT128_BIAS + FLT128_MANT_DIG, 0)) |
| { |
| /* If z is Inf, but x and y are finite, the result should be |
| z rather than NaN. */ |
| if (w.ieee.exponent == 0x7fff |
| && u.ieee.exponent != 0x7fff |
| && v.ieee.exponent != 0x7fff) |
| return (z + x) + y; |
| /* If z is zero and x are y are nonzero, compute the result |
| as x * y to avoid the wrong sign of a zero result if x * y |
| underflows to 0. */ |
| if (z == 0 && x != 0 && y != 0) |
| return x * y; |
| /* If x or y or z is Inf/NaN, or if x * y is zero, compute as |
| x * y + z. */ |
| if (u.ieee.exponent == 0x7fff |
| || v.ieee.exponent == 0x7fff |
| || w.ieee.exponent == 0x7fff |
| || x == 0 |
| || y == 0) |
| return x * y + z; |
| /* If fma will certainly overflow, compute as x * y. */ |
| if (u.ieee.exponent + v.ieee.exponent |
| > 0x7fff + IEEE854_FLOAT128_BIAS) |
| return x * y; |
| /* If x * y is less than 1/4 of FLT128_DENORM_MIN, neither the |
| result nor whether there is underflow depends on its exact |
| value, only on its sign. */ |
| if (u.ieee.exponent + v.ieee.exponent |
| < IEEE854_FLOAT128_BIAS - FLT128_MANT_DIG - 2) |
| { |
| int neg = u.ieee.negative ^ v.ieee.negative; |
| __float128 tiny = neg ? -0x1p-16494Q : 0x1p-16494Q; |
| if (w.ieee.exponent >= 3) |
| return tiny + z; |
| /* Scaling up, adding TINY and scaling down produces the |
| correct result, because in round-to-nearest mode adding |
| TINY has no effect and in other modes double rounding is |
| harmless. But it may not produce required underflow |
| exceptions. */ |
| v.value = z * 0x1p114Q + tiny; |
| if (TININESS_AFTER_ROUNDING |
| ? v.ieee.exponent < 115 |
| : (w.ieee.exponent == 0 |
| || (w.ieee.exponent == 1 |
| && w.ieee.negative != neg |
| && w.ieee.mant_low == 0 |
| && w.ieee.mant_high == 0))) |
| { |
| __float128 force_underflow = x * y; |
| math_force_eval (force_underflow); |
| } |
| return v.value * 0x1p-114Q; |
| } |
| if (u.ieee.exponent + v.ieee.exponent |
| >= 0x7fff + IEEE854_FLOAT128_BIAS - FLT128_MANT_DIG) |
| { |
| /* Compute 1p-113 times smaller result and multiply |
| at the end. */ |
| if (u.ieee.exponent > v.ieee.exponent) |
| u.ieee.exponent -= FLT128_MANT_DIG; |
| else |
| v.ieee.exponent -= FLT128_MANT_DIG; |
| /* If x + y exponent is very large and z exponent is very small, |
| it doesn't matter if we don't adjust it. */ |
| if (w.ieee.exponent > FLT128_MANT_DIG) |
| w.ieee.exponent -= FLT128_MANT_DIG; |
| adjust = 1; |
| } |
| else if (w.ieee.exponent >= 0x7fff - FLT128_MANT_DIG) |
| { |
| /* Similarly. |
| If z exponent is very large and x and y exponents are |
| very small, adjust them up to avoid spurious underflows, |
| rather than down. */ |
| if (u.ieee.exponent + v.ieee.exponent |
| <= IEEE854_FLOAT128_BIAS + FLT128_MANT_DIG) |
| { |
| if (u.ieee.exponent > v.ieee.exponent) |
| u.ieee.exponent += 2 * FLT128_MANT_DIG + 2; |
| else |
| v.ieee.exponent += 2 * FLT128_MANT_DIG + 2; |
| } |
| else if (u.ieee.exponent > v.ieee.exponent) |
| { |
| if (u.ieee.exponent > FLT128_MANT_DIG) |
| u.ieee.exponent -= FLT128_MANT_DIG; |
| } |
| else if (v.ieee.exponent > FLT128_MANT_DIG) |
| v.ieee.exponent -= FLT128_MANT_DIG; |
| w.ieee.exponent -= FLT128_MANT_DIG; |
| adjust = 1; |
| } |
| else if (u.ieee.exponent >= 0x7fff - FLT128_MANT_DIG) |
| { |
| u.ieee.exponent -= FLT128_MANT_DIG; |
| if (v.ieee.exponent) |
| v.ieee.exponent += FLT128_MANT_DIG; |
| else |
| v.value *= 0x1p113Q; |
| } |
| else if (v.ieee.exponent >= 0x7fff - FLT128_MANT_DIG) |
| { |
| v.ieee.exponent -= FLT128_MANT_DIG; |
| if (u.ieee.exponent) |
| u.ieee.exponent += FLT128_MANT_DIG; |
| else |
| u.value *= 0x1p113Q; |
| } |
| else /* if (u.ieee.exponent + v.ieee.exponent |
| <= IEEE854_FLOAT128_BIAS + FLT128_MANT_DIG) */ |
| { |
| if (u.ieee.exponent > v.ieee.exponent) |
| u.ieee.exponent += 2 * FLT128_MANT_DIG + 2; |
| else |
| v.ieee.exponent += 2 * FLT128_MANT_DIG + 2; |
| if (w.ieee.exponent <= 4 * FLT128_MANT_DIG + 6) |
| { |
| if (w.ieee.exponent) |
| w.ieee.exponent += 2 * FLT128_MANT_DIG + 2; |
| else |
| w.value *= 0x1p228Q; |
| adjust = -1; |
| } |
| /* Otherwise x * y should just affect inexact |
| and nothing else. */ |
| } |
| x = u.value; |
| y = v.value; |
| z = w.value; |
| } |
| |
| /* Ensure correct sign of exact 0 + 0. */ |
| if (__builtin_expect ((x == 0 || y == 0) && z == 0, 0)) |
| { |
| x = math_opt_barrier (x); |
| return x * y + z; |
| } |
| |
| #ifdef USE_FENV_H |
| fenv_t env; |
| feholdexcept (&env); |
| fesetround (FE_TONEAREST); |
| #endif |
| |
| /* Multiplication m1 + m2 = x * y using Dekker's algorithm. */ |
| #define C ((1LL << (FLT128_MANT_DIG + 1) / 2) + 1) |
| __float128 x1 = x * C; |
| __float128 y1 = y * C; |
| __float128 m1 = x * y; |
| x1 = (x - x1) + x1; |
| y1 = (y - y1) + y1; |
| __float128 x2 = x - x1; |
| __float128 y2 = y - y1; |
| __float128 m2 = (((x1 * y1 - m1) + x1 * y2) + x2 * y1) + x2 * y2; |
| |
| /* Addition a1 + a2 = z + m1 using Knuth's algorithm. */ |
| __float128 a1 = z + m1; |
| __float128 t1 = a1 - z; |
| __float128 t2 = a1 - t1; |
| t1 = m1 - t1; |
| t2 = z - t2; |
| __float128 a2 = t1 + t2; |
| /* Ensure the arithmetic is not scheduled after feclearexcept call. */ |
| math_force_eval (m2); |
| math_force_eval (a2); |
| #ifdef USE_FENV_H |
| feclearexcept (FE_INEXACT); |
| #endif |
| |
| /* If the result is an exact zero, ensure it has the correct sign. */ |
| if (a1 == 0 && m2 == 0) |
| { |
| #ifdef USE_FENV_H |
| feupdateenv (&env); |
| #endif |
| /* Ensure that round-to-nearest value of z + m1 is not reused. */ |
| z = math_opt_barrier (z); |
| return z + m1; |
| } |
| |
| #ifdef USE_FENV_H |
| fesetround (FE_TOWARDZERO); |
| #endif |
| /* Perform m2 + a2 addition with round to odd. */ |
| u.value = a2 + m2; |
| |
| if (__builtin_expect (adjust == 0, 1)) |
| { |
| #ifdef USE_FENV_H |
| if ((u.ieee.mant_low & 1) == 0 && u.ieee.exponent != 0x7fff) |
| u.ieee.mant_low |= fetestexcept (FE_INEXACT) != 0; |
| feupdateenv (&env); |
| #endif |
| /* Result is a1 + u.value. */ |
| return a1 + u.value; |
| } |
| else if (__builtin_expect (adjust > 0, 1)) |
| { |
| #ifdef USE_FENV_H |
| if ((u.ieee.mant_low & 1) == 0 && u.ieee.exponent != 0x7fff) |
| u.ieee.mant_low |= fetestexcept (FE_INEXACT) != 0; |
| feupdateenv (&env); |
| #endif |
| /* Result is a1 + u.value, scaled up. */ |
| return (a1 + u.value) * 0x1p113Q; |
| } |
| else |
| { |
| #ifdef USE_FENV_H |
| if ((u.ieee.mant_low & 1) == 0) |
| u.ieee.mant_low |= fetestexcept (FE_INEXACT) != 0; |
| #endif |
| v.value = a1 + u.value; |
| /* Ensure the addition is not scheduled after fetestexcept call. */ |
| asm volatile ("" : : "m" (v.value)); |
| #ifdef USE_FENV_H |
| int j = fetestexcept (FE_INEXACT) != 0; |
| feupdateenv (&env); |
| #else |
| int j = 0; |
| #endif |
| /* Ensure the following computations are performed in default rounding |
| mode instead of just reusing the round to zero computation. */ |
| asm volatile ("" : "=m" (u) : "m" (u)); |
| /* If a1 + u.value is exact, the only rounding happens during |
| scaling down. */ |
| if (j == 0) |
| return v.value * 0x1p-228Q; |
| /* If result rounded to zero is not subnormal, no double |
| rounding will occur. */ |
| if (v.ieee.exponent > 228) |
| return (a1 + u.value) * 0x1p-228Q; |
| /* If v.value * 0x1p-228Q with round to zero is a subnormal above |
| or equal to FLT128_MIN / 2, then v.value * 0x1p-228Q shifts mantissa |
| down just by 1 bit, which means v.ieee.mant_low |= j would |
| change the round bit, not sticky or guard bit. |
| v.value * 0x1p-228Q never normalizes by shifting up, |
| so round bit plus sticky bit should be already enough |
| for proper rounding. */ |
| if (v.ieee.exponent == 228) |
| { |
| /* If the exponent would be in the normal range when |
| rounding to normal precision with unbounded exponent |
| range, the exact result is known and spurious underflows |
| must be avoided on systems detecting tininess after |
| rounding. */ |
| if (TININESS_AFTER_ROUNDING) |
| { |
| w.value = a1 + u.value; |
| if (w.ieee.exponent == 229) |
| return w.value * 0x1p-228Q; |
| } |
| /* v.ieee.mant_low & 2 is LSB bit of the result before rounding, |
| v.ieee.mant_low & 1 is the round bit and j is our sticky |
| bit. */ |
| w.value = 0.0Q; |
| w.ieee.mant_low = ((v.ieee.mant_low & 3) << 1) | j; |
| w.ieee.negative = v.ieee.negative; |
| v.ieee.mant_low &= ~3U; |
| v.value *= 0x1p-228Q; |
| w.value *= 0x1p-2Q; |
| return v.value + w.value; |
| } |
| v.ieee.mant_low |= j; |
| return v.value * 0x1p-228Q; |
| } |
| } |