blob: c1e1669759a41c0f888f306b6350085580b19983 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- E X P _ F I X D --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2022, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Checks; use Checks;
with Einfo; use Einfo;
with Einfo.Entities; use Einfo.Entities;
with Einfo.Utils; use Einfo.Utils;
with Exp_Util; use Exp_Util;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Restrict; use Restrict;
with Rident; use Rident;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Eval; use Sem_Eval;
with Sem_Res; use Sem_Res;
with Sem_Util; use Sem_Util;
with Sinfo; use Sinfo;
with Sinfo.Nodes; use Sinfo.Nodes;
with Stand; use Stand;
with Tbuild; use Tbuild;
with Ttypes; use Ttypes;
with Uintp; use Uintp;
with Urealp; use Urealp;
package body Exp_Fixd is
-----------------------
-- Local Subprograms --
-----------------------
-- General note; in this unit, a number of routines are driven by the
-- types (Etype) of their operands. Since we are dealing with unanalyzed
-- expressions as they are constructed, the Etypes would not normally be
-- set, but the construction routines that we use in this unit do in fact
-- set the Etype values correctly. In addition, setting the Etype ensures
-- that the analyzer does not try to redetermine the type when the node
-- is analyzed (which would be wrong, since in the case where we set the
-- Conversion_OK flag, it would think it was still dealing with a normal
-- fixed-point operation and mess it up).
function Build_Conversion
(N : Node_Id;
Typ : Entity_Id;
Expr : Node_Id;
Rchk : Boolean := False;
Trunc : Boolean := False) return Node_Id;
-- Build an expression that converts the expression Expr to type Typ,
-- taking the source location from Sloc (N). If the conversions involve
-- fixed-point types, then the Conversion_OK flag will be set so that the
-- resulting conversions do not get re-expanded. On return, the resulting
-- node has its Etype set. If Rchk is set, then Do_Range_Check is set
-- in the resulting conversion node. If Trunc is set, then the
-- Float_Truncate flag is set on the conversion, which must be from
-- a floating-point type to an integer type.
function Build_Divide (N : Node_Id; L, R : Node_Id) return Node_Id;
-- Builds an N_Op_Divide node from the given left and right operand
-- expressions, using the source location from Sloc (N). The operands are
-- either both Universal_Real, in which case Build_Divide differs from
-- Make_Op_Divide only in that the Etype of the resulting node is set (to
-- Universal_Real), or they can be integer or fixed-point types. In this
-- case the types need not be the same, and Build_Divide chooses a type
-- long enough to hold both operands (i.e. the size of the longer of the
-- two operand types), and both operands are converted to this type. The
-- Etype of the result is also set to this value. The Rounded_Result flag
-- of the result in this case is set from the Rounded_Result flag of node
-- N. On return, the resulting node has its Etype set.
function Build_Double_Divide
(N : Node_Id;
X, Y, Z : Node_Id) return Node_Id;
-- Returns a node corresponding to the value X/(Y*Z) using the source
-- location from Sloc (N). The division is rounded if the Rounded_Result
-- flag of N is set. The integer types of X, Y, Z may be different. On
-- return, the resulting node has its Etype set.
procedure Build_Double_Divide_Code
(N : Node_Id;
X, Y, Z : Node_Id;
Qnn, Rnn : out Entity_Id;
Code : out List_Id);
-- Generates a sequence of code for determining the quotient and remainder
-- of the division X/(Y*Z), using the source location from Sloc (N).
-- Entities of appropriate types are allocated for the quotient and
-- remainder and returned in Qnn and Rnn. The result is rounded if the
-- Rounded_Result flag of N is set. The Etype fields of Qnn and Rnn are
-- appropriately set on return.
function Build_Multiply (N : Node_Id; L, R : Node_Id) return Node_Id;
-- Builds an N_Op_Multiply node from the given left and right operand
-- expressions, using the source location from Sloc (N). The operands are
-- either both Universal_Real, in which case Build_Multiply differs from
-- Make_Op_Multiply only in that the Etype of the resulting node is set (to
-- Universal_Real), or they can be integer or fixed-point types. In this
-- case the types need not be the same, and Build_Multiply chooses a type
-- long enough to hold the product and both operands are converted to this
-- type. The type of the result is also set to this value. On return, the
-- resulting node has its Etype set.
function Build_Rem (N : Node_Id; L, R : Node_Id) return Node_Id;
-- Builds an N_Op_Rem node from the given left and right operand
-- expressions, using the source location from Sloc (N). The operands are
-- both integer types, which need not be the same. Build_Rem converts the
-- operand with the smaller sized type to match the type of the other
-- operand and sets this as the result type. The result is never rounded
-- (rem operations cannot be rounded in any case). On return, the resulting
-- node has its Etype set.
function Build_Scaled_Divide
(N : Node_Id;
X, Y, Z : Node_Id) return Node_Id;
-- Returns a node corresponding to the value X*Y/Z using the source
-- location from Sloc (N). The division is rounded if the Rounded_Result
-- flag of N is set. The integer types of X, Y, Z may be different. On
-- return the resulting node has its Etype set.
procedure Build_Scaled_Divide_Code
(N : Node_Id;
X, Y, Z : Node_Id;
Qnn, Rnn : out Entity_Id;
Code : out List_Id);
-- Generates a sequence of code for determining the quotient and remainder
-- of the division X*Y/Z, using the source location from Sloc (N). Entities
-- of appropriate types are allocated for the quotient and remainder and
-- returned in Qnn and Rrr. The integer types for X, Y, Z may be different.
-- The division is rounded if the Rounded_Result flag of N is set. The
-- Etype fields of Qnn and Rnn are appropriately set on return.
procedure Do_Divide_Fixed_Fixed (N : Node_Id);
-- Handles expansion of divide for case of two fixed-point operands
-- (neither of them universal), with an integer or fixed-point result.
-- N is the N_Op_Divide node to be expanded.
procedure Do_Divide_Fixed_Universal (N : Node_Id);
-- Handles expansion of divide for case of a fixed-point operand divided
-- by a universal real operand, with an integer or fixed-point result. N
-- is the N_Op_Divide node to be expanded.
procedure Do_Divide_Universal_Fixed (N : Node_Id);
-- Handles expansion of divide for case of a universal real operand
-- divided by a fixed-point operand, with an integer or fixed-point
-- result. N is the N_Op_Divide node to be expanded.
procedure Do_Multiply_Fixed_Fixed (N : Node_Id);
-- Handles expansion of multiply for case of two fixed-point operands
-- (neither of them universal), with an integer or fixed-point result.
-- N is the N_Op_Multiply node to be expanded.
procedure Do_Multiply_Fixed_Universal (N : Node_Id; Left, Right : Node_Id);
-- Handles expansion of multiply for case of a fixed-point operand
-- multiplied by a universal real operand, with an integer or fixed-
-- point result. N is the N_Op_Multiply node to be expanded, and
-- Left, Right are the operands (which may have been switched).
procedure Expand_Convert_Fixed_Static (N : Node_Id);
-- This routine is called where the node N is a conversion of a literal
-- or other static expression of a fixed-point type to some other type.
-- In such cases, we simply rewrite the operand as a real literal and
-- reanalyze. This avoids problems which would otherwise result from
-- attempting to build and fold expressions involving constants.
function Fpt_Value (N : Node_Id) return Node_Id;
-- Given an operand of fixed-point operation, return an expression that
-- represents the corresponding Universal_Real value. The expression
-- can be of integer type, floating-point type, or fixed-point type.
-- The expression returned is neither analyzed nor resolved. The Etype
-- of the result is properly set (to Universal_Real).
function Get_Size_For_Value (V : Uint) return Pos;
-- Given a non-negative universal integer value, return the size of a small
-- signed integer type covering -V .. V, or Pos'Max if no such type exists.
function Get_Type_For_Size (Siz : Pos; Force : Boolean) return Entity_Id;
-- Return the smallest signed integer type containing at least Siz bits.
-- If no such type exists, return Empty if Force is False or the largest
-- signed integer type if Force is True.
function Integer_Literal
(N : Node_Id;
V : Uint;
Negative : Boolean := False) return Node_Id;
-- Given a non-negative universal integer value, build a typed integer
-- literal node, using the smallest applicable standard integer type.
-- If Negative is true, then a negative literal is built. If V exceeds
-- 2**(System_Max_Integer_Size - 1) - 1, the largest value allowed for
-- perfect result set scaling factors (see RM G.2.3(22)), then Empty is
-- returned. The node N provides the Sloc value for the constructed
-- literal. The Etype of the resulting literal is correctly set, and it
-- is marked as analyzed.
function Real_Literal (N : Node_Id; V : Ureal) return Node_Id;
-- Build a real literal node from the given value, the Etype of the
-- returned node is set to Universal_Real, since all floating-point
-- arithmetic operations that we construct use Universal_Real
function Rounded_Result_Set (N : Node_Id) return Boolean;
-- Returns True if N is a node that contains the Rounded_Result flag
-- and if the flag is true or the target type is an integer type.
procedure Set_Result
(N : Node_Id;
Expr : Node_Id;
Rchk : Boolean := False;
Trunc : Boolean := False);
-- N is the node for the current conversion, division or multiplication
-- operation, and Expr is an expression representing the result. Expr may
-- be of floating-point or integer type. If the operation result is fixed-
-- point, then the value of Expr is in units of small of the result type
-- (i.e. small's have already been dealt with). The result of the call is
-- to replace N by an appropriate conversion to the result type, dealing
-- with rounding for the decimal types case. The node is then analyzed and
-- resolved using the result type. If Rchk or Trunc are True, then
-- respectively Do_Range_Check and Float_Truncate are set in the
-- resulting conversion.
----------------------
-- Build_Conversion --
----------------------
function Build_Conversion
(N : Node_Id;
Typ : Entity_Id;
Expr : Node_Id;
Rchk : Boolean := False;
Trunc : Boolean := False) return Node_Id
is
Loc : constant Source_Ptr := Sloc (N);
Result : Node_Id;
Rcheck : Boolean := Rchk;
begin
-- A special case, if the expression is an integer literal and the
-- target type is an integer type, then just retype the integer
-- literal to the desired target type. Don't do this if we need
-- a range check.
if Nkind (Expr) = N_Integer_Literal
and then Is_Integer_Type (Typ)
and then not Rchk
then
Result := Expr;
-- Cases where we end up with a conversion. Note that we do not use the
-- Convert_To abstraction here, since we may be decorating the resulting
-- conversion with Rounded_Result and/or Conversion_OK, so we want the
-- conversion node present, even if it appears to be redundant.
else
-- Remove inner conversion if both inner and outer conversions are
-- to integer types, since the inner one serves no purpose (except
-- perhaps to set rounding, so we preserve the Rounded_Result flag)
-- and also preserve the Conversion_OK and Do_Range_Check flags of
-- the inner conversion.
if Is_Integer_Type (Typ)
and then Is_Integer_Type (Etype (Expr))
and then Nkind (Expr) = N_Type_Conversion
then
Result :=
Make_Type_Conversion (Loc,
Subtype_Mark => New_Occurrence_Of (Typ, Loc),
Expression => Expression (Expr));
Set_Rounded_Result (Result, Rounded_Result_Set (Expr));
Set_Conversion_OK (Result, Conversion_OK (Expr));
Rcheck := Rcheck or Do_Range_Check (Expr);
-- For all other cases, a simple type conversion will work
else
Result :=
Make_Type_Conversion (Loc,
Subtype_Mark => New_Occurrence_Of (Typ, Loc),
Expression => Expr);
Set_Float_Truncate (Result, Trunc);
end if;
-- Set Conversion_OK if either result or expression type is a
-- fixed-point type, since from a semantic point of view, we are
-- treating fixed-point values as integers at this stage.
if Is_Fixed_Point_Type (Typ)
or else Is_Fixed_Point_Type (Etype (Expression (Result)))
then
Set_Conversion_OK (Result);
end if;
-- Set Do_Range_Check if either it was requested by the caller,
-- or if an eliminated inner conversion had a range check.
if Rcheck then
Enable_Range_Check (Result);
else
Set_Do_Range_Check (Result, False);
end if;
end if;
Set_Etype (Result, Typ);
return Result;
end Build_Conversion;
------------------
-- Build_Divide --
------------------
function Build_Divide (N : Node_Id; L, R : Node_Id) return Node_Id is
Loc : constant Source_Ptr := Sloc (N);
Left_Type : constant Entity_Id := Base_Type (Etype (L));
Right_Type : constant Entity_Id := Base_Type (Etype (R));
Left_Size : Int;
Right_Size : Int;
Result_Type : Entity_Id;
Rnode : Node_Id;
begin
-- Deal with floating-point case first
if Is_Floating_Point_Type (Left_Type) then
pragma Assert (Left_Type = Universal_Real);
pragma Assert (Right_Type = Universal_Real);
Rnode := Make_Op_Divide (Loc, L, R);
Result_Type := Universal_Real;
-- Integer and fixed-point cases
else
-- An optimization. If the right operand is the literal 1, then we
-- can just return the left hand operand. Putting the optimization
-- here allows us to omit the check at the call site.
if Nkind (R) = N_Integer_Literal and then Intval (R) = 1 then
return L;
end if;
-- Otherwise we need to figure out the correct result type size
-- First figure out the effective sizes of the operands. Normally
-- the effective size of an operand is the RM_Size of the operand.
-- But a special case arises with operands whose size is known at
-- compile time. In this case, we can use the actual value of the
-- operand to get a size if it would fit in a small signed integer.
Left_Size := UI_To_Int (RM_Size (Left_Type));
if Compile_Time_Known_Value (L) then
declare
Siz : constant Int :=
Get_Size_For_Value (UI_Abs (Expr_Value (L)));
begin
if Siz < Left_Size then
Left_Size := Siz;
end if;
end;
end if;
Right_Size := UI_To_Int (RM_Size (Right_Type));
if Compile_Time_Known_Value (R) then
declare
Siz : constant Int :=
Get_Size_For_Value (UI_Abs (Expr_Value (R)));
begin
if Siz < Right_Size then
Right_Size := Siz;
end if;
end;
end if;
-- Do the operation using the longer of the two sizes
Result_Type :=
Get_Type_For_Size (Int'Max (Left_Size, Right_Size), Force => True);
Rnode :=
Make_Op_Divide (Loc,
Left_Opnd => Build_Conversion (N, Result_Type, L),
Right_Opnd => Build_Conversion (N, Result_Type, R));
end if;
-- We now have a divide node built with Result_Type set. First
-- set Etype of result, as required for all Build_xxx routines
Set_Etype (Rnode, Base_Type (Result_Type));
-- The result is rounded if the target of the operation is decimal
-- and Rounded_Result is set, or if the target of the operation
-- is an integer type, as determined by Rounded_Result_Set.
Set_Rounded_Result (Rnode, Rounded_Result_Set (N));
-- One more check. We did the divide operation using the longer of
-- the two sizes, which is reasonable. However, in the case where the
-- two types have unequal sizes, it is impossible for the result of
-- a divide operation to be larger than the dividend, so we can put
-- a conversion round the result to keep the evolving operation size
-- as small as possible.
if not Is_Floating_Point_Type (Left_Type) then
Rnode := Build_Conversion (N, Left_Type, Rnode);
end if;
return Rnode;
end Build_Divide;
-------------------------
-- Build_Double_Divide --
-------------------------
function Build_Double_Divide
(N : Node_Id;
X, Y, Z : Node_Id) return Node_Id
is
X_Size : constant Nat := UI_To_Int (RM_Size (Etype (X)));
Y_Size : constant Nat := UI_To_Int (RM_Size (Etype (Y)));
Z_Size : constant Nat := UI_To_Int (RM_Size (Etype (Z)));
D_Size : constant Nat := Y_Size + Z_Size;
M_Size : constant Nat := Nat'Max (X_Size, Nat'Max (Y_Size, Z_Size));
Expr : Node_Id;
begin
-- If the denominator fits in Max_Integer_Size bits, we can build the
-- operations directly without causing any intermediate overflow. But
-- for backward compatibility reasons, we use a 128-bit divide only
-- if one of the operands is already larger than 64 bits.
if D_Size <= System_Max_Integer_Size
and then (D_Size <= 64 or else M_Size > 64)
then
return Build_Divide (N, X, Build_Multiply (N, Y, Z));
-- Otherwise we use the runtime routine
-- [Qnn : Interfaces.Integer_{64|128};
-- Rnn : Interfaces.Integer_{64|128};
-- Double_Divide{64|128} (X, Y, Z, Qnn, Rnn, Round);
-- Qnn]
else
declare
Loc : constant Source_Ptr := Sloc (N);
Qnn : Entity_Id;
Rnn : Entity_Id;
Code : List_Id;
pragma Warnings (Off, Rnn);
begin
Build_Double_Divide_Code (N, X, Y, Z, Qnn, Rnn, Code);
Insert_Actions (N, Code);
Expr := New_Occurrence_Of (Qnn, Loc);
-- Set type of result in case used elsewhere (see note at start)
Set_Etype (Expr, Etype (Qnn));
-- Set result as analyzed (see note at start on build routines)
return Expr;
end;
end if;
end Build_Double_Divide;
------------------------------
-- Build_Double_Divide_Code --
------------------------------
-- If the denominator can be computed in Max_Integer_Size bits, we build
-- [Nnn : constant typ := typ (X);
-- Dnn : constant typ := typ (Y) * typ (Z)
-- Qnn : constant typ := Nnn / Dnn;
-- Rnn : constant typ := Nnn rem Dnn;
-- If the denominator cannot be computed in Max_Integer_Size bits, we build
-- [Qnn : Interfaces.Integer_{64|128};
-- Rnn : Interfaces.Integer_{64|128};
-- Double_Divide{64|128} (X, Y, Z, Qnn, Rnn, Round);]
procedure Build_Double_Divide_Code
(N : Node_Id;
X, Y, Z : Node_Id;
Qnn, Rnn : out Entity_Id;
Code : out List_Id)
is
Loc : constant Source_Ptr := Sloc (N);
X_Size : constant Nat := UI_To_Int (RM_Size (Etype (X)));
Y_Size : constant Nat := UI_To_Int (RM_Size (Etype (Y)));
Z_Size : constant Nat := UI_To_Int (RM_Size (Etype (Z)));
M_Size : constant Nat := Nat'Max (X_Size, Nat'Max (Y_Size, Z_Size));
QR_Id : RE_Id;
QR_Siz : Nat;
QR_Typ : Entity_Id;
Nnn : Entity_Id;
Dnn : Entity_Id;
Quo : Node_Id;
Rnd : Entity_Id;
begin
-- Find type that will allow computation of denominator
QR_Siz := Nat'Max (X_Size, Y_Size + Z_Size);
if QR_Siz <= 16 then
QR_Typ := Standard_Integer_16;
QR_Id := RE_Null;
elsif QR_Siz <= 32 then
QR_Typ := Standard_Integer_32;
QR_Id := RE_Null;
elsif QR_Siz <= 64 then
QR_Typ := Standard_Integer_64;
QR_Id := RE_Null;
-- For backward compatibility reasons, we use a 128-bit divide only
-- if one of the operands is already larger than 64 bits.
elsif System_Max_Integer_Size < 128 or else M_Size <= 64 then
QR_Typ := RTE (RE_Integer_64);
QR_Id := RE_Double_Divide64;
elsif QR_Siz <= 128 then
QR_Typ := Standard_Integer_128;
QR_Id := RE_Null;
else
QR_Typ := RTE (RE_Integer_128);
QR_Id := RE_Double_Divide128;
end if;
-- Define quotient and remainder, and set their Etypes, so
-- that they can be picked up by Build_xxx routines.
Qnn := Make_Temporary (Loc, 'S');
Rnn := Make_Temporary (Loc, 'R');
Set_Etype (Qnn, QR_Typ);
Set_Etype (Rnn, QR_Typ);
-- Case where we can compute the denominator in Max_Integer_Size bits
if QR_Id = RE_Null then
-- Create temporaries for numerator and denominator and set Etypes,
-- so that New_Occurrence_Of picks them up for Build_xxx calls.
Nnn := Make_Temporary (Loc, 'N');
Dnn := Make_Temporary (Loc, 'D');
Set_Etype (Nnn, QR_Typ);
Set_Etype (Dnn, QR_Typ);
Code := New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Nnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
Constant_Present => True,
Expression => Build_Conversion (N, QR_Typ, X)),
Make_Object_Declaration (Loc,
Defining_Identifier => Dnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
Constant_Present => True,
Expression => Build_Multiply (N, Y, Z)));
Quo :=
Build_Divide (N,
New_Occurrence_Of (Nnn, Loc),
New_Occurrence_Of (Dnn, Loc));
Set_Rounded_Result (Quo, Rounded_Result_Set (N));
Append_To (Code,
Make_Object_Declaration (Loc,
Defining_Identifier => Qnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
Constant_Present => True,
Expression => Quo));
Append_To (Code,
Make_Object_Declaration (Loc,
Defining_Identifier => Rnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
Constant_Present => True,
Expression =>
Build_Rem (N,
New_Occurrence_Of (Nnn, Loc),
New_Occurrence_Of (Dnn, Loc))));
-- Case where denominator does not fit in Max_Integer_Size bits, we have
-- to call the runtime routine to compute the quotient and remainder.
else
Rnd := Boolean_Literals (Rounded_Result_Set (N));
Code := New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Qnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc)),
Make_Object_Declaration (Loc,
Defining_Identifier => Rnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc)),
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (RTE (QR_Id), Loc),
Parameter_Associations => New_List (
Build_Conversion (N, QR_Typ, X),
Build_Conversion (N, QR_Typ, Y),
Build_Conversion (N, QR_Typ, Z),
New_Occurrence_Of (Qnn, Loc),
New_Occurrence_Of (Rnn, Loc),
New_Occurrence_Of (Rnd, Loc))));
end if;
end Build_Double_Divide_Code;
--------------------
-- Build_Multiply --
--------------------
function Build_Multiply (N : Node_Id; L, R : Node_Id) return Node_Id is
Loc : constant Source_Ptr := Sloc (N);
Left_Type : constant Entity_Id := Etype (L);
Right_Type : constant Entity_Id := Etype (R);
Left_Size : Int;
Right_Size : Int;
Result_Type : Entity_Id;
Rnode : Node_Id;
begin
-- Deal with floating-point case first
if Is_Floating_Point_Type (Left_Type) then
pragma Assert (Left_Type = Universal_Real);
pragma Assert (Right_Type = Universal_Real);
Result_Type := Universal_Real;
Rnode := Make_Op_Multiply (Loc, L, R);
-- Integer and fixed-point cases
else
-- An optimization. If the right operand is the literal 1, then we
-- can just return the left hand operand. Putting the optimization
-- here allows us to omit the check at the call site. Similarly, if
-- the left operand is the integer 1 we can return the right operand.
if Nkind (R) = N_Integer_Literal and then Intval (R) = 1 then
return L;
elsif Nkind (L) = N_Integer_Literal and then Intval (L) = 1 then
return R;
end if;
-- Otherwise we need to figure out the correct result type size
-- First figure out the effective sizes of the operands. Normally
-- the effective size of an operand is the RM_Size of the operand.
-- But a special case arises with operands whose size is known at
-- compile time. In this case, we can use the actual value of the
-- operand to get a size if it would fit in a small signed integer.
Left_Size := UI_To_Int (RM_Size (Left_Type));
if Compile_Time_Known_Value (L) then
declare
Siz : constant Int :=
Get_Size_For_Value (UI_Abs (Expr_Value (L)));
begin
if Siz < Left_Size then
Left_Size := Siz;
end if;
end;
end if;
Right_Size := UI_To_Int (RM_Size (Right_Type));
if Compile_Time_Known_Value (R) then
declare
Siz : constant Int :=
Get_Size_For_Value (UI_Abs (Expr_Value (R)));
begin
if Siz < Right_Size then
Right_Size := Siz;
end if;
end;
end if;
-- Now the result size must be at least the sum of the two sizes,
-- to accommodate all possible results.
Result_Type :=
Get_Type_For_Size (Left_Size + Right_Size, Force => True);
Rnode :=
Make_Op_Multiply (Loc,
Left_Opnd => Build_Conversion (N, Result_Type, L),
Right_Opnd => Build_Conversion (N, Result_Type, R));
end if;
-- We now have a multiply node built with Result_Type set. First
-- set Etype of result, as required for all Build_xxx routines
Set_Etype (Rnode, Base_Type (Result_Type));
return Rnode;
end Build_Multiply;
---------------
-- Build_Rem --
---------------
function Build_Rem (N : Node_Id; L, R : Node_Id) return Node_Id is
Loc : constant Source_Ptr := Sloc (N);
Left_Type : constant Entity_Id := Etype (L);
Right_Type : constant Entity_Id := Etype (R);
Result_Type : Entity_Id;
Rnode : Node_Id;
begin
if Left_Type = Right_Type then
Result_Type := Left_Type;
Rnode :=
Make_Op_Rem (Loc,
Left_Opnd => L,
Right_Opnd => R);
-- If left size is larger, we do the remainder operation using the
-- size of the left type (i.e. the larger of the two integer types).
elsif Esize (Left_Type) >= Esize (Right_Type) then
Result_Type := Left_Type;
Rnode :=
Make_Op_Rem (Loc,
Left_Opnd => L,
Right_Opnd => Build_Conversion (N, Left_Type, R));
-- Similarly, if the right size is larger, we do the remainder
-- operation using the right type.
else
Result_Type := Right_Type;
Rnode :=
Make_Op_Rem (Loc,
Left_Opnd => Build_Conversion (N, Right_Type, L),
Right_Opnd => R);
end if;
-- We now have an N_Op_Rem node built with Result_Type set. First
-- set Etype of result, as required for all Build_xxx routines
Set_Etype (Rnode, Base_Type (Result_Type));
-- One more check. We did the rem operation using the larger of the
-- two types, which is reasonable. However, in the case where the
-- two types have unequal sizes, it is impossible for the result of
-- a remainder operation to be larger than the smaller of the two
-- types, so we can put a conversion round the result to keep the
-- evolving operation size as small as possible.
if Esize (Left_Type) >= Esize (Right_Type) then
Rnode := Build_Conversion (N, Right_Type, Rnode);
elsif Esize (Right_Type) >= Esize (Left_Type) then
Rnode := Build_Conversion (N, Left_Type, Rnode);
end if;
return Rnode;
end Build_Rem;
-------------------------
-- Build_Scaled_Divide --
-------------------------
function Build_Scaled_Divide
(N : Node_Id;
X, Y, Z : Node_Id) return Node_Id
is
X_Size : constant Nat := UI_To_Int (RM_Size (Etype (X)));
Y_Size : constant Nat := UI_To_Int (RM_Size (Etype (Y)));
Z_Size : constant Nat := UI_To_Int (RM_Size (Etype (Z)));
N_Size : constant Nat := X_Size + Y_Size;
M_Size : constant Nat := Nat'Max (X_Size, Nat'Max (Y_Size, Z_Size));
Expr : Node_Id;
begin
-- If the numerator fits in Max_Integer_Size bits, we can build the
-- operations directly without causing any intermediate overflow. But
-- for backward compatibility reasons, we use a 128-bit divide only
-- if one of the operands is already larger than 64 bits.
if N_Size <= System_Max_Integer_Size
and then (N_Size <= 64 or else M_Size > 64)
then
return Build_Divide (N, Build_Multiply (N, X, Y), Z);
-- Otherwise we use the runtime routine
-- [Qnn : Integer_{64|128},
-- Rnn : Integer_{64|128};
-- Scaled_Divide{64|128} (X, Y, Z, Qnn, Rnn, Round);
-- Qnn]
else
declare
Loc : constant Source_Ptr := Sloc (N);
Qnn : Entity_Id;
Rnn : Entity_Id;
Code : List_Id;
pragma Warnings (Off, Rnn);
begin
Build_Scaled_Divide_Code (N, X, Y, Z, Qnn, Rnn, Code);
Insert_Actions (N, Code);
Expr := New_Occurrence_Of (Qnn, Loc);
-- Set type of result in case used elsewhere (see note at start)
Set_Etype (Expr, Etype (Qnn));
return Expr;
end;
end if;
end Build_Scaled_Divide;
------------------------------
-- Build_Scaled_Divide_Code --
------------------------------
-- If the numerator can be computed in Max_Integer_Size bits, we build
-- [Nnn : constant typ := typ (X) * typ (Y);
-- Dnn : constant typ := typ (Z)
-- Qnn : constant typ := Nnn / Dnn;
-- Rnn : constant typ := Nnn rem Dnn;
-- If the numerator cannot be computed in Max_Integer_Size bits, we build
-- [Qnn : Interfaces.Integer_{64|128};
-- Rnn : Interfaces.Integer_{64|128};
-- Scaled_Divide_{64|128} (X, Y, Z, Qnn, Rnn, Round);]
procedure Build_Scaled_Divide_Code
(N : Node_Id;
X, Y, Z : Node_Id;
Qnn, Rnn : out Entity_Id;
Code : out List_Id)
is
Loc : constant Source_Ptr := Sloc (N);
X_Size : constant Nat := UI_To_Int (RM_Size (Etype (X)));
Y_Size : constant Nat := UI_To_Int (RM_Size (Etype (Y)));
Z_Size : constant Nat := UI_To_Int (RM_Size (Etype (Z)));
M_Size : constant Nat := Nat'Max (X_Size, Nat'Max (Y_Size, Z_Size));
QR_Id : RE_Id;
QR_Siz : Nat;
QR_Typ : Entity_Id;
Nnn : Entity_Id;
Dnn : Entity_Id;
Quo : Node_Id;
Rnd : Entity_Id;
begin
-- Find type that will allow computation of numerator
QR_Siz := Nat'Max (X_Size + Y_Size, Z_Size);
if QR_Siz <= 16 then
QR_Typ := Standard_Integer_16;
QR_Id := RE_Null;
elsif QR_Siz <= 32 then
QR_Typ := Standard_Integer_32;
QR_Id := RE_Null;
elsif QR_Siz <= 64 then
QR_Typ := Standard_Integer_64;
QR_Id := RE_Null;
-- For backward compatibility reasons, we use a 128-bit divide only
-- if one of the operands is already larger than 64 bits.
elsif System_Max_Integer_Size < 128 or else M_Size <= 64 then
QR_Typ := RTE (RE_Integer_64);
QR_Id := RE_Scaled_Divide64;
elsif QR_Siz <= 128 then
QR_Typ := Standard_Integer_128;
QR_Id := RE_Null;
else
QR_Typ := RTE (RE_Integer_128);
QR_Id := RE_Scaled_Divide128;
end if;
-- Define quotient and remainder, and set their Etypes, so
-- that they can be picked up by Build_xxx routines.
Qnn := Make_Temporary (Loc, 'S');
Rnn := Make_Temporary (Loc, 'R');
Set_Etype (Qnn, QR_Typ);
Set_Etype (Rnn, QR_Typ);
-- Case where we can compute the numerator in Max_Integer_Size bits
if QR_Id = RE_Null then
Nnn := Make_Temporary (Loc, 'N');
Dnn := Make_Temporary (Loc, 'D');
-- Set Etypes, so that they can be picked up by New_Occurrence_Of
Set_Etype (Nnn, QR_Typ);
Set_Etype (Dnn, QR_Typ);
Code := New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Nnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
Constant_Present => True,
Expression => Build_Multiply (N, X, Y)),
Make_Object_Declaration (Loc,
Defining_Identifier => Dnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
Constant_Present => True,
Expression => Build_Conversion (N, QR_Typ, Z)));
Quo :=
Build_Divide (N,
New_Occurrence_Of (Nnn, Loc),
New_Occurrence_Of (Dnn, Loc));
Append_To (Code,
Make_Object_Declaration (Loc,
Defining_Identifier => Qnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
Constant_Present => True,
Expression => Quo));
Append_To (Code,
Make_Object_Declaration (Loc,
Defining_Identifier => Rnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
Constant_Present => True,
Expression =>
Build_Rem (N,
New_Occurrence_Of (Nnn, Loc),
New_Occurrence_Of (Dnn, Loc))));
-- Case where numerator does not fit in Max_Integer_Size bits, we have
-- to call the runtime routine to compute the quotient and remainder.
else
Rnd := Boolean_Literals (Rounded_Result_Set (N));
Code := New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Qnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc)),
Make_Object_Declaration (Loc,
Defining_Identifier => Rnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc)),
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (RTE (QR_Id), Loc),
Parameter_Associations => New_List (
Build_Conversion (N, QR_Typ, X),
Build_Conversion (N, QR_Typ, Y),
Build_Conversion (N, QR_Typ, Z),
New_Occurrence_Of (Qnn, Loc),
New_Occurrence_Of (Rnn, Loc),
New_Occurrence_Of (Rnd, Loc))));
end if;
-- Set type of result, for use in caller
Set_Etype (Qnn, QR_Typ);
end Build_Scaled_Divide_Code;
---------------------------
-- Do_Divide_Fixed_Fixed --
---------------------------
-- We have:
-- (Result_Value * Result_Small) =
-- (Left_Value * Left_Small) / (Right_Value * Right_Small)
-- Result_Value = (Left_Value / Right_Value) *
-- (Left_Small / (Right_Small * Result_Small));
-- we can do the operation in integer arithmetic if this fraction is an
-- integer or the reciprocal of an integer, as detailed in (RM G.2.3(21)).
-- Otherwise the result is in the close result set and our approach is to
-- use floating-point to compute this close result.
procedure Do_Divide_Fixed_Fixed (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
Left_Type : constant Entity_Id := Etype (Left);
Right_Type : constant Entity_Id := Etype (Right);
Result_Type : constant Entity_Id := Etype (N);
Right_Small : constant Ureal := Small_Value (Right_Type);
Left_Small : constant Ureal := Small_Value (Left_Type);
Result_Small : Ureal;
Frac : Ureal;
Frac_Num : Uint;
Frac_Den : Uint;
Lit_Int : Node_Id;
begin
-- Rounding is required if the result is integral
if Is_Integer_Type (Result_Type) then
Set_Rounded_Result (N);
end if;
-- Get result small. If the result is an integer, treat it as though
-- it had a small of 1.0, all other processing is identical.
if Is_Integer_Type (Result_Type) then
Result_Small := Ureal_1;
else
Result_Small := Small_Value (Result_Type);
end if;
-- Get small ratio
Frac := Left_Small / (Right_Small * Result_Small);
Frac_Num := Norm_Num (Frac);
Frac_Den := Norm_Den (Frac);
-- If the fraction is an integer, then we get the result by multiplying
-- the left operand by the integer, and then dividing by the right
-- operand (the order is important, if we did the divide first, we
-- would lose precision).
if Frac_Den = 1 then
Lit_Int := Integer_Literal (N, Frac_Num); -- always positive
if Present (Lit_Int) then
Set_Result (N, Build_Scaled_Divide (N, Left, Lit_Int, Right));
return;
end if;
-- If the fraction is the reciprocal of an integer, then we get the
-- result by first multiplying the divisor by the integer, and then
-- doing the division with the adjusted divisor.
-- Note: this is much better than doing two divisions: multiplications
-- are much faster than divisions (and certainly faster than rounded
-- divisions), and we don't get inaccuracies from double rounding.
elsif Frac_Num = 1 then
Lit_Int := Integer_Literal (N, Frac_Den); -- always positive
if Present (Lit_Int) then
Set_Result (N, Build_Double_Divide (N, Left, Right, Lit_Int));
return;
end if;
end if;
-- If we fall through, we use floating-point to compute the result
Set_Result (N,
Build_Multiply (N,
Build_Divide (N, Fpt_Value (Left), Fpt_Value (Right)),
Real_Literal (N, Frac)));
end Do_Divide_Fixed_Fixed;
-------------------------------
-- Do_Divide_Fixed_Universal --
-------------------------------
-- We have:
-- (Result_Value * Result_Small) = (Left_Value * Left_Small) / Lit_Value;
-- Result_Value = Left_Value * Left_Small /(Lit_Value * Result_Small);
-- The result is required to be in the perfect result set if the literal
-- can be factored so that the resulting small ratio is an integer or the
-- reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
-- analysis of these RM requirements:
-- We must factor the literal, finding an integer K:
-- Lit_Value = K * Right_Small
-- Right_Small = Lit_Value / K
-- such that the small ratio:
-- Left_Small
-- ------------------------------
-- (Lit_Value / K) * Result_Small
-- Left_Small
-- = ------------------------ * K
-- Lit_Value * Result_Small
-- is an integer or the reciprocal of an integer, and for
-- implementation efficiency we need the smallest such K.
-- First we reduce the left fraction to lowest terms
-- If numerator = 1, then for K = 1, the small ratio is the reciprocal
-- of an integer, and this is clearly the minimum K case, so set K = 1,
-- Right_Small = Lit_Value.
-- If numerator > 1, then set K to the denominator of the fraction so
-- that the resulting small ratio is an integer (the numerator value).
procedure Do_Divide_Fixed_Universal (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
Left_Type : constant Entity_Id := Etype (Left);
Result_Type : constant Entity_Id := Etype (N);
Left_Small : constant Ureal := Small_Value (Left_Type);
Lit_Value : constant Ureal := Realval (Right);
Result_Small : Ureal;
Frac : Ureal;
Frac_Num : Uint;
Frac_Den : Uint;
Lit_K : Node_Id;
Lit_Int : Node_Id;
begin
-- Get result small. If the result is an integer, treat it as though
-- it had a small of 1.0, all other processing is identical.
if Is_Integer_Type (Result_Type) then
Result_Small := Ureal_1;
else
Result_Small := Small_Value (Result_Type);
end if;
-- Determine if literal can be rewritten successfully
Frac := Left_Small / (Lit_Value * Result_Small);
Frac_Num := Norm_Num (Frac);
Frac_Den := Norm_Den (Frac);
-- Case where fraction is the reciprocal of an integer (K = 1, integer
-- = denominator). If this integer is not too large, this is the case
-- where the result can be obtained by dividing by this integer value.
if Frac_Num = 1 then
Lit_Int := Integer_Literal (N, Frac_Den, UR_Is_Negative (Frac));
if Present (Lit_Int) then
Set_Result (N, Build_Divide (N, Left, Lit_Int));
return;
end if;
-- Case where we choose K to make fraction an integer (K = denominator
-- of fraction, integer = numerator of fraction). If both K and the
-- numerator are small enough, this is the case where the result can
-- be obtained by first multiplying by the integer value and then
-- dividing by K (the order is important, if we divided first, we
-- would lose precision).
else
Lit_Int := Integer_Literal (N, Frac_Num, UR_Is_Negative (Frac));
Lit_K := Integer_Literal (N, Frac_Den, False);
if Present (Lit_Int) and then Present (Lit_K) then
Set_Result (N, Build_Scaled_Divide (N, Left, Lit_Int, Lit_K));
return;
end if;
end if;
-- Fall through if the literal cannot be successfully rewritten, or if
-- the small ratio is out of range of integer arithmetic. In the former
-- case it is fine to use floating-point to get the close result set,
-- and in the latter case, it means that the result is zero or raises
-- constraint error, and we can do that accurately in floating-point.
-- If we end up using floating-point, then we take the right integer
-- to be one, and its small to be the value of the original right real
-- literal. That way, we need only one floating-point multiplication.
Set_Result (N,
Build_Multiply (N, Fpt_Value (Left), Real_Literal (N, Frac)));
end Do_Divide_Fixed_Universal;
-------------------------------
-- Do_Divide_Universal_Fixed --
-------------------------------
-- We have:
-- (Result_Value * Result_Small) =
-- Lit_Value / (Right_Value * Right_Small)
-- Result_Value =
-- (Lit_Value / (Right_Small * Result_Small)) / Right_Value
-- The result is required to be in the perfect result set if the literal
-- can be factored so that the resulting small ratio is an integer or the
-- reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
-- analysis of these RM requirements:
-- We must factor the literal, finding an integer K:
-- Lit_Value = K * Left_Small
-- Left_Small = Lit_Value / K
-- such that the small ratio:
-- (Lit_Value / K)
-- --------------------------
-- Right_Small * Result_Small
-- Lit_Value 1
-- = -------------------------- * -
-- Right_Small * Result_Small K
-- is an integer or the reciprocal of an integer, and for
-- implementation efficiency we need the smallest such K.
-- First we reduce the left fraction to lowest terms
-- If denominator = 1, then for K = 1, the small ratio is an integer
-- (the numerator) and this is clearly the minimum K case, so set K = 1,
-- and Left_Small = Lit_Value.
-- If denominator > 1, then set K to the numerator of the fraction so
-- that the resulting small ratio is the reciprocal of an integer (the
-- numerator value).
procedure Do_Divide_Universal_Fixed (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
Right_Type : constant Entity_Id := Etype (Right);
Result_Type : constant Entity_Id := Etype (N);
Right_Small : constant Ureal := Small_Value (Right_Type);
Lit_Value : constant Ureal := Realval (Left);
Result_Small : Ureal;
Frac : Ureal;
Frac_Num : Uint;
Frac_Den : Uint;
Lit_K : Node_Id;
Lit_Int : Node_Id;
begin
-- Get result small. If the result is an integer, treat it as though
-- it had a small of 1.0, all other processing is identical.
if Is_Integer_Type (Result_Type) then
Result_Small := Ureal_1;
else
Result_Small := Small_Value (Result_Type);
end if;
-- Determine if literal can be rewritten successfully
Frac := Lit_Value / (Right_Small * Result_Small);
Frac_Num := Norm_Num (Frac);
Frac_Den := Norm_Den (Frac);
-- Case where fraction is an integer (K = 1, integer = numerator). If
-- this integer is not too large, this is the case where the result
-- can be obtained by dividing this integer by the right operand.
if Frac_Den = 1 then
Lit_Int := Integer_Literal (N, Frac_Num, UR_Is_Negative (Frac));
if Present (Lit_Int) then
Set_Result (N, Build_Divide (N, Lit_Int, Right));
return;
end if;
-- Case where we choose K to make the fraction the reciprocal of an
-- integer (K = numerator of fraction, integer = numerator of fraction).
-- If both K and the integer are small enough, this is the case where
-- the result can be obtained by multiplying the right operand by K
-- and then dividing by the integer value. The order of the operations
-- is important (if we divided first, we would lose precision).
else
Lit_Int := Integer_Literal (N, Frac_Den, UR_Is_Negative (Frac));
Lit_K := Integer_Literal (N, Frac_Num, False);
if Present (Lit_Int) and then Present (Lit_K) then
Set_Result (N, Build_Double_Divide (N, Lit_K, Right, Lit_Int));
return;
end if;
end if;
-- Fall through if the literal cannot be successfully rewritten, or if
-- the small ratio is out of range of integer arithmetic. In the former
-- case it is fine to use floating-point to get the close result set,
-- and in the latter case, it means that the result is zero or raises
-- constraint error, and we can do that accurately in floating-point.
-- If we end up using floating-point, then we take the right integer
-- to be one, and its small to be the value of the original right real
-- literal. That way, we need only one floating-point division.
Set_Result (N,
Build_Divide (N, Real_Literal (N, Frac), Fpt_Value (Right)));
end Do_Divide_Universal_Fixed;
-----------------------------
-- Do_Multiply_Fixed_Fixed --
-----------------------------
-- We have:
-- (Result_Value * Result_Small) =
-- (Left_Value * Left_Small) * (Right_Value * Right_Small)
-- Result_Value = (Left_Value * Right_Value) *
-- (Left_Small * Right_Small) / Result_Small;
-- we can do the operation in integer arithmetic if this fraction is an
-- integer or the reciprocal of an integer, as detailed in (RM G.2.3(21)).
-- Otherwise the result is in the close result set and our approach is to
-- use floating-point to compute this close result.
procedure Do_Multiply_Fixed_Fixed (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
Left_Type : constant Entity_Id := Etype (Left);
Right_Type : constant Entity_Id := Etype (Right);
Result_Type : constant Entity_Id := Etype (N);
Right_Small : constant Ureal := Small_Value (Right_Type);
Left_Small : constant Ureal := Small_Value (Left_Type);
Result_Small : Ureal;
Frac : Ureal;
Frac_Num : Uint;
Frac_Den : Uint;
Lit_Int : Node_Id;
begin
-- Get result small. If the result is an integer, treat it as though
-- it had a small of 1.0, all other processing is identical.
if Is_Integer_Type (Result_Type) then
Result_Small := Ureal_1;
else
Result_Small := Small_Value (Result_Type);
end if;
-- Get small ratio
Frac := (Left_Small * Right_Small) / Result_Small;
Frac_Num := Norm_Num (Frac);
Frac_Den := Norm_Den (Frac);
-- If the fraction is an integer, then we get the result by multiplying
-- the operands, and then multiplying the result by the integer value.
if Frac_Den = 1 then
Lit_Int := Integer_Literal (N, Frac_Num); -- always positive
if Present (Lit_Int) then
Set_Result (N,
Build_Multiply (N, Build_Multiply (N, Left, Right), Lit_Int));
return;
end if;
-- If the fraction is the reciprocal of an integer, then we get the
-- result by multiplying the operands, and then dividing the result by
-- the integer value. The order of the operations is important, if we
-- divided first, we would lose precision.
elsif Frac_Num = 1 then
Lit_Int := Integer_Literal (N, Frac_Den); -- always positive
if Present (Lit_Int) then
Set_Result (N, Build_Scaled_Divide (N, Left, Right, Lit_Int));
return;
end if;
end if;
-- If we fall through, we use floating-point to compute the result
Set_Result (N,
Build_Multiply (N,
Build_Multiply (N, Fpt_Value (Left), Fpt_Value (Right)),
Real_Literal (N, Frac)));
end Do_Multiply_Fixed_Fixed;
---------------------------------
-- Do_Multiply_Fixed_Universal --
---------------------------------
-- We have:
-- (Result_Value * Result_Small) = (Left_Value * Left_Small) * Lit_Value;
-- Result_Value = Left_Value * (Left_Small * Lit_Value) / Result_Small;
-- The result is required to be in the perfect result set if the literal
-- can be factored so that the resulting small ratio is an integer or the
-- reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
-- analysis of these RM requirements:
-- We must factor the literal, finding an integer K:
-- Lit_Value = K * Right_Small
-- Right_Small = Lit_Value / K
-- such that the small ratio:
-- Left_Small * (Lit_Value / K)
-- ----------------------------
-- Result_Small
-- Left_Small * Lit_Value 1
-- = ---------------------- * -
-- Result_Small K
-- is an integer or the reciprocal of an integer, and for
-- implementation efficiency we need the smallest such K.
-- First we reduce the left fraction to lowest terms
-- If denominator = 1, then for K = 1, the small ratio is an integer, and
-- this is clearly the minimum K case, so set
-- K = 1, Right_Small = Lit_Value
-- If denominator > 1, then set K to the numerator of the fraction, so
-- that the resulting small ratio is the reciprocal of the integer (the
-- denominator value).
procedure Do_Multiply_Fixed_Universal
(N : Node_Id;
Left, Right : Node_Id)
is
Left_Type : constant Entity_Id := Etype (Left);
Result_Type : constant Entity_Id := Etype (N);
Left_Small : constant Ureal := Small_Value (Left_Type);
Lit_Value : constant Ureal := Realval (Right);
Result_Small : Ureal;
Frac : Ureal;
Frac_Num : Uint;
Frac_Den : Uint;
Lit_K : Node_Id;
Lit_Int : Node_Id;
begin
-- Get result small. If the result is an integer, treat it as though
-- it had a small of 1.0, all other processing is identical.
if Is_Integer_Type (Result_Type) then
Result_Small := Ureal_1;
else
Result_Small := Small_Value (Result_Type);
end if;
-- Determine if literal can be rewritten successfully
Frac := (Left_Small * Lit_Value) / Result_Small;
Frac_Num := Norm_Num (Frac);
Frac_Den := Norm_Den (Frac);
-- Case where fraction is an integer (K = 1, integer = numerator). If
-- this integer is not too large, this is the case where the result can
-- be obtained by multiplying by this integer value.
if Frac_Den = 1 then
Lit_Int := Integer_Literal (N, Frac_Num, UR_Is_Negative (Frac));
if Present (Lit_Int) then
Set_Result (N, Build_Multiply (N, Left, Lit_Int));
return;
end if;
-- Case where we choose K to make fraction the reciprocal of an integer
-- (K = numerator of fraction, integer = denominator of fraction). If
-- both K and the denominator are small enough, this is the case where
-- the result can be obtained by first multiplying by K, and then
-- dividing by the integer value.
else
Lit_Int := Integer_Literal (N, Frac_Den, UR_Is_Negative (Frac));
Lit_K := Integer_Literal (N, Frac_Num, False);
if Present (Lit_Int) and then Present (Lit_K) then
Set_Result (N, Build_Scaled_Divide (N, Left, Lit_K, Lit_Int));
return;
end if;
end if;
-- Fall through if the literal cannot be successfully rewritten, or if
-- the small ratio is out of range of integer arithmetic. In the former
-- case it is fine to use floating-point to get the close result set,
-- and in the latter case, it means that the result is zero or raises
-- constraint error, and we can do that accurately in floating-point.
-- If we end up using floating-point, then we take the right integer
-- to be one, and its small to be the value of the original right real
-- literal. That way, we need only one floating-point multiplication.
Set_Result (N,
Build_Multiply (N, Fpt_Value (Left), Real_Literal (N, Frac)));
end Do_Multiply_Fixed_Universal;
---------------------------------
-- Expand_Convert_Fixed_Static --
---------------------------------
procedure Expand_Convert_Fixed_Static (N : Node_Id) is
begin
Rewrite (N,
Convert_To (Etype (N),
Make_Real_Literal (Sloc (N), Expr_Value_R (Expression (N)))));
Analyze_And_Resolve (N);
end Expand_Convert_Fixed_Static;
-----------------------------------
-- Expand_Convert_Fixed_To_Fixed --
-----------------------------------
-- We have:
-- Result_Value * Result_Small = Source_Value * Source_Small
-- Result_Value = Source_Value * (Source_Small / Result_Small)
-- If the small ratio (Source_Small / Result_Small) is a sufficiently small
-- integer, then the perfect result set is obtained by a single integer
-- multiplication.
-- If the small ratio is the reciprocal of a sufficiently small integer,
-- then the perfect result set is obtained by a single integer division.
-- If the numerator and denominator of the small ratio are sufficiently
-- small integers, then the perfect result set is obtained by a scaled
-- divide operation.
-- In other cases, we obtain the close result set by calculating the
-- result in floating-point.
procedure Expand_Convert_Fixed_To_Fixed (N : Node_Id) is
Rng_Check : constant Boolean := Do_Range_Check (N);
Expr : constant Node_Id := Expression (N);
Result_Type : constant Entity_Id := Etype (N);
Source_Type : constant Entity_Id := Etype (Expr);
Small_Ratio : Ureal;
Ratio_Num : Uint;
Ratio_Den : Uint;
Lit_Num : Node_Id;
Lit_Den : Node_Id;
begin
if Is_OK_Static_Expression (Expr) then
Expand_Convert_Fixed_Static (N);
return;
end if;
Small_Ratio := Small_Value (Source_Type) / Small_Value (Result_Type);
Ratio_Num := Norm_Num (Small_Ratio);
Ratio_Den := Norm_Den (Small_Ratio);
if Ratio_Den = 1 then
if Ratio_Num = 1 then
Set_Result (N, Expr);
return;
else
Lit_Num := Integer_Literal (N, Ratio_Num);
if Present (Lit_Num) then
Set_Result (N, Build_Multiply (N, Expr, Lit_Num));
return;
end if;
end if;
elsif Ratio_Num = 1 then
Lit_Den := Integer_Literal (N, Ratio_Den);
if Present (Lit_Den) then
Set_Result (N, Build_Divide (N, Expr, Lit_Den), Rng_Check);
return;
end if;
else
Lit_Num := Integer_Literal (N, Ratio_Num);
Lit_Den := Integer_Literal (N, Ratio_Den);
if Present (Lit_Num) and then Present (Lit_Den) then
Set_Result
(N, Build_Scaled_Divide (N, Expr, Lit_Num, Lit_Den), Rng_Check);
return;
end if;
end if;
-- Fall through to use floating-point for the close result set case,
-- as a result of the numerator or denominator of the small ratio not
-- being a sufficiently small integer.
Set_Result (N,
Build_Multiply (N,
Fpt_Value (Expr),
Real_Literal (N, Small_Ratio)),
Rng_Check);
end Expand_Convert_Fixed_To_Fixed;
-----------------------------------
-- Expand_Convert_Fixed_To_Float --
-----------------------------------
-- If the small of the fixed type is 1.0, then we simply convert the
-- integer value directly to the target floating-point type, otherwise
-- we first have to multiply by the small, in Universal_Real, and then
-- convert the result to the target floating-point type.
procedure Expand_Convert_Fixed_To_Float (N : Node_Id) is
Rng_Check : constant Boolean := Do_Range_Check (N);
Expr : constant Node_Id := Expression (N);
Source_Type : constant Entity_Id := Etype (Expr);
Small : constant Ureal := Small_Value (Source_Type);
begin
if Is_OK_Static_Expression (Expr) then
Expand_Convert_Fixed_Static (N);
return;
end if;
if Small = Ureal_1 then
Set_Result (N, Expr);
else
Set_Result (N,
Build_Multiply (N,
Fpt_Value (Expr),
Real_Literal (N, Small)),
Rng_Check);
end if;
end Expand_Convert_Fixed_To_Float;
-------------------------------------
-- Expand_Convert_Fixed_To_Integer --
-------------------------------------
-- We have:
-- Result_Value = Source_Value * Source_Small
-- If the small value is a sufficiently small integer, then the perfect
-- result set is obtained by a single integer multiplication.
-- If the small value is the reciprocal of a sufficiently small integer,
-- then the perfect result set is obtained by a single integer division.
-- If the numerator and denominator of the small value are sufficiently
-- small integers, then the perfect result set is obtained by a scaled
-- divide operation.
-- In other cases, we obtain the close result set by calculating the
-- result in floating-point.
procedure Expand_Convert_Fixed_To_Integer (N : Node_Id) is
Rng_Check : constant Boolean := Do_Range_Check (N);
Expr : constant Node_Id := Expression (N);
Source_Type : constant Entity_Id := Etype (Expr);
Small : constant Ureal := Small_Value (Source_Type);
Small_Num : constant Uint := Norm_Num (Small);
Small_Den : constant Uint := Norm_Den (Small);
Lit_Num : Node_Id;
Lit_Den : Node_Id;
begin
if Is_OK_Static_Expression (Expr) then
Expand_Convert_Fixed_Static (N);
return;
end if;
if Small_Den = 1 then
Lit_Num := Integer_Literal (N, Small_Num);
if Present (Lit_Num) then
Set_Result (N, Build_Multiply (N, Expr, Lit_Num), Rng_Check);
return;
end if;
elsif Small_Num = 1 then
Lit_Den := Integer_Literal (N, Small_Den);
if Present (Lit_Den) then
Set_Result (N, Build_Divide (N, Expr, Lit_Den), Rng_Check);
return;
end if;
else
Lit_Num := Integer_Literal (N, Small_Num);
Lit_Den := Integer_Literal (N, Small_Den);
if Present (Lit_Num) and then Present (Lit_Den) then
Set_Result
(N, Build_Scaled_Divide (N, Expr, Lit_Num, Lit_Den), Rng_Check);
return;
end if;
end if;
-- Fall through to use floating-point for the close result set case,
-- as a result of the numerator or denominator of the small value not
-- being a sufficiently small integer.
Set_Result (N,
Build_Multiply (N,
Fpt_Value (Expr),
Real_Literal (N, Small)),
Rng_Check);
end Expand_Convert_Fixed_To_Integer;
-----------------------------------
-- Expand_Convert_Float_To_Fixed --
-----------------------------------
-- We have
-- Result_Value * Result_Small = Operand_Value
-- so compute:
-- Result_Value = Operand_Value * (1.0 / Result_Small)
-- We do the small scaling in floating-point, and we do a multiplication
-- rather than a division, since it is accurate enough for the perfect
-- result cases, and faster.
procedure Expand_Convert_Float_To_Fixed (N : Node_Id) is
Expr : constant Node_Id := Expression (N);
Result_Type : constant Entity_Id := Etype (N);
Rng_Check : constant Boolean := Do_Range_Check (N);
Small : constant Ureal := Small_Value (Result_Type);
begin
-- Optimize small = 1, where we can avoid the multiply completely
if Small = Ureal_1 then
Set_Result (N, Expr, Rng_Check, Trunc => True);
-- Normal case where multiply is required. Rounding is truncating
-- for decimal fixed point types only, see RM 4.6(29), except if the
-- conversion comes from an attribute reference 'Round (RM 3.5.10 (14)):
-- The attribute is implemented by means of a conversion that must
-- round.
else
Set_Result
(N => N,
Expr =>
Build_Multiply
(N => N,
L => Fpt_Value (Expr),
R => Real_Literal (N, Ureal_1 / Small)),
Rchk => Rng_Check,
Trunc => Is_Decimal_Fixed_Point_Type (Result_Type)
and not Rounded_Result (N));
end if;
end Expand_Convert_Float_To_Fixed;
-------------------------------------
-- Expand_Convert_Integer_To_Fixed --
-------------------------------------
-- We have
-- Result_Value * Result_Small = Operand_Value
-- Result_Value = Operand_Value / Result_Small
-- If the small value is a sufficiently small integer, then the perfect
-- result set is obtained by a single integer division.
-- If the small value is the reciprocal of a sufficiently small integer,
-- the perfect result set is obtained by a single integer multiplication.
-- If the numerator and denominator of the small value are sufficiently
-- small integers, then the perfect result set is obtained by a scaled
-- divide operation.
-- In other cases, we obtain the close result set by calculating the
-- result in floating-point using a multiplication by the reciprocal
-- of the Result_Small.
procedure Expand_Convert_Integer_To_Fixed (N : Node_Id) is
Rng_Check : constant Boolean := Do_Range_Check (N);
Expr : constant Node_Id := Expression (N);
Result_Type : constant Entity_Id := Etype (N);
Small : constant Ureal := Small_Value (Result_Type);
Small_Num : constant Uint := Norm_Num (Small);
Small_Den : constant Uint := Norm_Den (Small);
Lit_Num : Node_Id;
Lit_Den : Node_Id;
begin
if Small_Den = 1 then
Lit_Num := Integer_Literal (N, Small_Num);
if Present (Lit_Num) then
Set_Result (N, Build_Divide (N, Expr, Lit_Num), Rng_Check);
return;
end if;
elsif Small_Num = 1 then
Lit_Den := Integer_Literal (N, Small_Den);
if Present (Lit_Den) then
Set_Result (N, Build_Multiply (N, Expr, Lit_Den), Rng_Check);
return;
end if;
else
Lit_Num := Integer_Literal (N, Small_Num);
Lit_Den := Integer_Literal (N, Small_Den);
if Present (Lit_Num) and then Present (Lit_Den) then
Set_Result
(N, Build_Scaled_Divide (N, Expr, Lit_Den, Lit_Num), Rng_Check);
return;
end if;
end if;
-- Fall through to use floating-point for the close result set case,
-- as a result of the numerator or denominator of the small value not
-- being a sufficiently small integer.
Set_Result (N,
Build_Multiply (N,
Fpt_Value (Expr),
Real_Literal (N, Ureal_1 / Small)),
Rng_Check);
end Expand_Convert_Integer_To_Fixed;
--------------------------------
-- Expand_Decimal_Divide_Call --
--------------------------------
-- We have four operands
-- Dividend
-- Divisor
-- Quotient
-- Remainder
-- All of which are decimal types, and which thus have associated
-- decimal scales.
-- Computing the quotient is a similar problem to that faced by the
-- normal fixed-point division, except that it is simpler, because
-- we always have compatible smalls.
-- Quotient = (Dividend / Divisor) * 10**q
-- where 10 ** q = Dividend'Small / (Divisor'Small * Quotient'Small)
-- so q = Divisor'Scale + Quotient'Scale - Dividend'Scale
-- For q >= 0, we compute
-- Numerator := Dividend * 10 ** q
-- Denominator := Divisor
-- Quotient := Numerator / Denominator
-- For q < 0, we compute
-- Numerator := Dividend
-- Denominator := Divisor * 10 ** q
-- Quotient := Numerator / Denominator
-- Both these divisions are done in truncated mode, and the remainder
-- from these divisions is used to compute the result Remainder. This
-- remainder has the effective scale of the numerator of the division,
-- For q >= 0, the remainder scale is Dividend'Scale + q
-- For q < 0, the remainder scale is Dividend'Scale
-- The result Remainder is then computed by a normal truncating decimal
-- conversion from this scale to the scale of the remainder, i.e. by a
-- division or multiplication by the appropriate power of 10.
procedure Expand_Decimal_Divide_Call (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Dividend : Node_Id := First_Actual (N);
Divisor : Node_Id := Next_Actual (Dividend);
Quotient : Node_Id := Next_Actual (Divisor);
Remainder : Node_Id := Next_Actual (Quotient);
Dividend_Type : constant Entity_Id := Etype (Dividend);
Divisor_Type : constant Entity_Id := Etype (Divisor);
Quotient_Type : constant Entity_Id := Etype (Quotient);
Remainder_Type : constant Entity_Id := Etype (Remainder);
Dividend_Scale : constant Uint := Scale_Value (Dividend_Type);
Divisor_Scale : constant Uint := Scale_Value (Divisor_Type);
Quotient_Scale : constant Uint := Scale_Value (Quotient_Type);
Remainder_Scale : constant Uint := Scale_Value (Remainder_Type);
Q : Uint;
Numerator_Scale : Uint;
Stmts : List_Id;
Qnn : Entity_Id;
Rnn : Entity_Id;
Computed_Remainder : Node_Id;
Adjusted_Remainder : Node_Id;
Scale_Adjust : Uint;
begin
-- Relocate the operands, since they are now list elements, and we
-- need to reference them separately as operands in the expanded code.
Dividend := Relocate_Node (Dividend);
Divisor := Relocate_Node (Divisor);
Quotient := Relocate_Node (Quotient);
Remainder := Relocate_Node (Remainder);
-- Now compute Q, the adjustment scale
Q := Divisor_Scale + Quotient_Scale - Dividend_Scale;
-- If Q is non-negative then we need a scaled divide
if Q >= 0 then
Build_Scaled_Divide_Code
(N,
Dividend,
Integer_Literal (N, Uint_10 ** Q),
Divisor,
Qnn, Rnn, Stmts);
Numerator_Scale := Dividend_Scale + Q;
-- If Q is negative, then we need a double divide
else
Build_Double_Divide_Code
(N,
Dividend,
Divisor,
Integer_Literal (N, Uint_10 ** (-Q)),
Qnn, Rnn, Stmts);
Numerator_Scale := Dividend_Scale;
end if;
-- Add statement to set quotient value
-- Quotient := quotient-type!(Qnn);
Append_To (Stmts,
Make_Assignment_Statement (Loc,
Name => Quotient,
Expression =>
Unchecked_Convert_To (Quotient_Type,
Build_Conversion (N, Quotient_Type,
New_Occurrence_Of (Qnn, Loc)))));
-- Now we need to deal with computing and setting the remainder. The
-- scale of the remainder is in Numerator_Scale, and the desired
-- scale is the scale of the given Remainder argument. There are
-- three cases:
-- Numerator_Scale > Remainder_Scale
-- in this case, there are extra digits in the computed remainder
-- which must be eliminated by an extra division:
-- computed-remainder := Numerator rem Denominator
-- scale_adjust = Numerator_Scale - Remainder_Scale
-- adjusted-remainder := computed-remainder / 10 ** scale_adjust
-- Numerator_Scale = Remainder_Scale
-- in this case, the we have the remainder we need
-- computed-remainder := Numerator rem Denominator
-- adjusted-remainder := computed-remainder
-- Numerator_Scale < Remainder_Scale
-- in this case, we have insufficient digits in the computed
-- remainder, which must be eliminated by an extra multiply
-- computed-remainder := Numerator rem Denominator
-- scale_adjust = Remainder_Scale - Numerator_Scale
-- adjusted-remainder := computed-remainder * 10 ** scale_adjust
-- Finally we assign the adjusted-remainder to the result Remainder
-- with conversions to get the proper fixed-point type representation.
Computed_Remainder := New_Occurrence_Of (Rnn, Loc);
if Numerator_Scale > Remainder_Scale then
Scale_Adjust := Numerator_Scale - Remainder_Scale;
Adjusted_Remainder :=
Build_Divide
(N, Computed_Remainder, Integer_Literal (N, 10 ** Scale_Adjust));
elsif Numerator_Scale = Remainder_Scale then
Adjusted_Remainder := Computed_Remainder;
else -- Numerator_Scale < Remainder_Scale
Scale_Adjust := Remainder_Scale - Numerator_Scale;
Adjusted_Remainder :=
Build_Multiply
(N, Computed_Remainder, Integer_Literal (N, 10 ** Scale_Adjust));
end if;
-- Assignment of remainder result
Append_To (Stmts,
Make_Assignment_Statement (Loc,
Name => Remainder,
Expression =>
Unchecked_Convert_To (Remainder_Type, Adjusted_Remainder)));
-- Final step is to rewrite the call with a block containing the
-- above sequence of constructed statements for the divide operation.
Rewrite (N,
Make_Block_Statement (Loc,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Stmts)));
Analyze (N);
end Expand_Decimal_Divide_Call;
-----------------------------------------------
-- Expand_Divide_Fixed_By_Fixed_Giving_Fixed --
-----------------------------------------------
procedure Expand_Divide_Fixed_By_Fixed_Giving_Fixed (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
begin
if Etype (Left) = Universal_Real then
Do_Divide_Universal_Fixed (N);
elsif Etype (Right) = Universal_Real then
Do_Divide_Fixed_Universal (N);
else
Do_Divide_Fixed_Fixed (N);
-- A focused optimization: if after constant folding the
-- expression is of the form: T ((Exp * D) / D), where D is
-- a static constant, return T (Exp). This form will show up
-- when D is the denominator of the static expression for the
-- 'small of fixed-point types involved. This transformation
-- removes a division that may be expensive on some targets.
if Nkind (N) = N_Type_Conversion
and then Nkind (Expression (N)) = N_Op_Divide
then
declare
Num : constant Node_Id := Left_Opnd (Expression (N));
Den : constant Node_Id := Right_Opnd (Expression (N));
begin
if Nkind (Den) = N_Integer_Literal
and then Nkind (Num) = N_Op_Multiply
and then Nkind (Right_Opnd (Num)) = N_Integer_Literal
and then Intval (Den) = Intval (Right_Opnd (Num))
then
Rewrite (Expression (N), Left_Opnd (Num));
end if;
end;
end if;
end if;
end Expand_Divide_Fixed_By_Fixed_Giving_Fixed;
-----------------------------------------------
-- Expand_Divide_Fixed_By_Fixed_Giving_Float --
-----------------------------------------------
-- The division is done in Universal_Real, and the result is multiplied
-- by the small ratio, which is Small (Right) / Small (Left). Special
-- treatment is required for universal operands, which represent their
-- own value and do not require conversion.
procedure Expand_Divide_Fixed_By_Fixed_Giving_Float (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
Left_Type : constant Entity_Id := Etype (Left);
Right_Type : constant Entity_Id := Etype (Right);
begin
-- Case of left operand is universal real, the result we want is:
-- Left_Value / (Right_Value * Right_Small)
-- so we compute this as:
-- (Left_Value / Right_Small) / Right_Value
if Left_Type = Universal_Real then
Set_Result (N,
Build_Divide (N,
Real_Literal (N, Realval (Left) / Small_Value (Right_Type)),
Fpt_Value (Right)));
-- Case of right operand is universal real, the result we want is
-- (Left_Value * Left_Small) / Right_Value
-- so we compute this as:
-- Left_Value * (Left_Small / Right_Value)
-- Note we invert to a multiplication since usually floating-point
-- multiplication is much faster than floating-point division.
elsif Right_Type = Universal_Real then
Set_Result (N,
Build_Multiply (N,
Fpt_Value (Left),
Real_Literal (N, Small_Value (Left_Type) / Realval (Right))));
-- Both operands are fixed, so the value we want is
-- (Left_Value * Left_Small) / (Right_Value * Right_Small)
-- which we compute as:
-- (Left_Value / Right_Value) * (Left_Small / Right_Small)
else
Set_Result (N,
Build_Multiply (N,
Build_Divide (N, Fpt_Value (Left), Fpt_Value (Right)),
Real_Literal (N,
Small_Value (Left_Type) / Small_Value (Right_Type))));
end if;
end Expand_Divide_Fixed_By_Fixed_Giving_Float;
-------------------------------------------------
-- Expand_Divide_Fixed_By_Fixed_Giving_Integer --
-------------------------------------------------
procedure Expand_Divide_Fixed_By_Fixed_Giving_Integer (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
begin
if Etype (Left) = Universal_Real then
Do_Divide_Universal_Fixed (N);
elsif Etype (Right) = Universal_Real then
Do_Divide_Fixed_Universal (N);
else
Do_Divide_Fixed_Fixed (N);
end if;
end Expand_Divide_Fixed_By_Fixed_Giving_Integer;
-------------------------------------------------
-- Expand_Divide_Fixed_By_Integer_Giving_Fixed --
-------------------------------------------------
-- Since the operand and result fixed-point type is the same, this is
-- a straight divide by the right operand, the small can be ignored.
procedure Expand_Divide_Fixed_By_Integer_Giving_Fixed (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
begin
Set_Result (N, Build_Divide (N, Left, Right));
end Expand_Divide_Fixed_By_Integer_Giving_Fixed;
-------------------------------------------------
-- Expand_Multiply_Fixed_By_Fixed_Giving_Fixed --
-------------------------------------------------
procedure Expand_Multiply_Fixed_By_Fixed_Giving_Fixed (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
procedure Rewrite_Non_Static_Universal (Opnd : Node_Id);
-- The operand may be a non-static universal value, such an
-- exponentiation with a non-static exponent. In that case, treat
-- as a fixed * fixed multiplication, and convert the argument to
-- the target fixed type.
----------------------------------
-- Rewrite_Non_Static_Universal --
----------------------------------
procedure Rewrite_Non_Static_Universal (Opnd : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
begin
Rewrite (Opnd,
Make_Type_Conversion (Loc,
Subtype_Mark => New_Occurrence_Of (Etype (N), Loc),
Expression => Expression (Opnd)));
Analyze_And_Resolve (Opnd, Etype (N));
end Rewrite_Non_Static_Universal;
-- Start of processing for Expand_Multiply_Fixed_By_Fixed_Giving_Fixed
begin
if Etype (Left) = Universal_Real then
if Nkind (Left) = N_Real_Literal then
Do_Multiply_Fixed_Universal (N, Left => Right, Right => Left);
elsif Nkind (Left) = N_Type_Conversion then
Rewrite_Non_Static_Universal (Left);
Do_Multiply_Fixed_Fixed (N);
end if;
elsif Etype (Right) = Universal_Real then
if Nkind (Right) = N_Real_Literal then
Do_Multiply_Fixed_Universal (N, Left, Right);
elsif Nkind (Right) = N_Type_Conversion then
Rewrite_Non_Static_Universal (Right);
Do_Multiply_Fixed_Fixed (N);
end if;
else
Do_Multiply_Fixed_Fixed (N);
end if;
end Expand_Multiply_Fixed_By_Fixed_Giving_Fixed;
-------------------------------------------------
-- Expand_Multiply_Fixed_By_Fixed_Giving_Float --
-------------------------------------------------
-- The multiply is done in Universal_Real, and the result is multiplied
-- by the adjustment for the smalls which is Small (Right) * Small (Left).
-- Special treatment is required for universal operands.
procedure Expand_Multiply_Fixed_By_Fixed_Giving_Float (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
Left_Type : constant Entity_Id := Etype (Left);
Right_Type : constant Entity_Id := Etype (Right);
begin
-- Case of left operand is universal real, the result we want is
-- Left_Value * (Right_Value * Right_Small)
-- so we compute this as:
-- (Left_Value * Right_Small) * Right_Value;
if Left_Type = Universal_Real then
Set_Result (N,
Build_Multiply (N,
Real_Literal (N, Realval (Left) * Small_Value (Right_Type)),
Fpt_Value (Right)));
-- Case of right operand is universal real, the result we want is
-- (Left_Value * Left_Small) * Right_Value
-- so we compute this as:
-- Left_Value * (Left_Small * Right_Value)
elsif Right_Type = Universal_Real then
Set_Result (N,
Build_Multiply (N,
Fpt_Value (Left),
Real_Literal (N, Small_Value (Left_Type) * Realval (Right))));
-- Both operands are fixed, so the value we want is
-- (Left_Value * Left_Small) * (Right_Value * Right_Small)
-- which we compute as:
-- (Left_Value * Right_Value) * (Right_Small * Left_Small)
else
Set_Result (N,
Build_Multiply (N,
Build_Multiply (N, Fpt_Value (Left), Fpt_Value (Right)),
Real_Literal (N,
Small_Value (Right_Type) * Small_Value (Left_Type))));
end if;
end Expand_Multiply_Fixed_By_Fixed_Giving_Float;
---------------------------------------------------
-- Expand_Multiply_Fixed_By_Fixed_Giving_Integer --
---------------------------------------------------
procedure Expand_Multiply_Fixed_By_Fixed_Giving_Integer (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
begin
if Etype (Left) = Universal_Real then
Do_Multiply_Fixed_Universal (N, Left => Right, Right => Left);
elsif Etype (Right) = Universal_Real then
Do_Multiply_Fixed_Universal (N, Left, Right);
-- If both types are equal and we need to avoid floating point
-- instructions, it's worth introducing a temporary with the
-- common type, because it may be evaluated more simply without
-- the need for run-time use of floating point.
elsif Etype (Right) = Etype (Left)
and then Restriction_Active (No_Floating_Point)
then
declare
Temp : constant Entity_Id := Make_Temporary (Loc, 'F');
Mult : constant Node_Id := Make_Op_Multiply (Loc, Left, Right);
Decl : constant Node_Id :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition => New_Occurrence_Of (Etype (Right), Loc),
Expression => Mult);
begin
Insert_Action (N, Decl);
Rewrite (N,
OK_Convert_To (Etype (N), New_Occurrence_Of (Temp, Loc)));
Analyze_And_Resolve (N, Standard_Integer);
end;
else
Do_Multiply_Fixed_Fixed (N);
end if;
end Expand_Multiply_Fixed_By_Fixed_Giving_Integer;
---------------------------------------------------
-- Expand_Multiply_Fixed_By_Integer_Giving_Fixed --
---------------------------------------------------
-- Since the operand and result fixed-point type is the same, this is
-- a straight multiply by the right operand, the small can be ignored.
procedure Expand_Multiply_Fixed_By_Integer_Giving_Fixed (N : Node_Id) is
begin
Set_Result (N,
Build_Multiply (N, Left_Opnd (N), Right_Opnd (N)));
end Expand_Multiply_Fixed_By_Integer_Giving_Fixed;
---------------------------------------------------
-- Expand_Multiply_Integer_By_Fixed_Giving_Fixed --
---------------------------------------------------
-- Since the operand and result fixed-point type is the same, this is
-- a straight multiply by the right operand, the small can be ignored.
procedure Expand_Multiply_Integer_By_Fixed_Giving_Fixed (N : Node_Id) is
begin
Set_Result (N,
Build_Multiply (N, Left_Opnd (N), Right_Opnd (N)));
end Expand_Multiply_Integer_By_Fixed_Giving_Fixed;
---------------
-- Fpt_Value --
---------------
function Fpt_Value (N : Node_Id) return Node_Id is
begin
return Build_Conversion (N, Universal_Real, N);
end Fpt_Value;
------------------------
-- Get_Size_For_Value --
------------------------
function Get_Size_For_Value (V : Uint) return Pos is
begin
pragma Assert (V >= Uint_0);
if V < Uint_2 ** 7 then
return 8;
elsif V < Uint_2 ** 15 then
return 16;
elsif V < Uint_2 ** 31 then
return 32;
elsif V < Uint_2 ** 63 then
return 64;
elsif V < Uint_2 ** 127 then
return 128;
else
return Pos'Last;
end if;
end Get_Size_For_Value;
-----------------------
-- Get_Type_For_Size --
-----------------------
function Get_Type_For_Size (Siz : Pos; Force : Boolean) return Entity_Id is
begin
if Siz <= 8 then
return Standard_Integer_8;
elsif Siz <= 16 then
return Standard_Integer_16;
elsif Siz <= 32 then
return Standard_Integer_32;
elsif Siz <= 64
or else (Force and then System_Max_Integer_Size < 128)
then
return Standard_Integer_64;
elsif (Siz <= 128 and then System_Max_Integer_Size = 128)
or else Force
then
return Standard_Integer_128;
else
return Empty;
end if;
end Get_Type_For_Size;
---------------------
-- Integer_Literal --
---------------------
function Integer_Literal
(N : Node_Id;
V : Uint;
Negative : Boolean := False) return Node_Id
is
T : Entity_Id;
L : Node_Id;
begin
T := Get_Type_For_Size (Get_Size_For_Value (V), Force => False);
if No (T) then
return Empty;
end if;
if Negative then
L := Make_Integer_Literal (Sloc (N), UI_Negate (V));
else
L := Make_Integer_Literal (Sloc (N), V);
end if;
-- Set type of result in case used elsewhere (see note at start)
Set_Etype (L, T);
Set_Is_Static_Expression (L);
-- We really need to set Analyzed here because we may be creating a
-- very strange beast, namely an integer literal typed as fixed-point
-- and the analyzer won't like that.
Set_Analyzed (L);
return L;
end Integer_Literal;
------------------
-- Real_Literal --
------------------
function Real_Literal (N : Node_Id; V : Ureal) return Node_Id is
L : Node_Id;
begin
L := Make_Real_Literal (Sloc (N), V);
-- Set type of result in case used elsewhere (see note at start)
Set_Etype (L, Universal_Real);
return L;
end Real_Literal;
------------------------
-- Rounded_Result_Set --
------------------------
function Rounded_Result_Set (N : Node_Id) return Boolean is
K : constant Node_Kind := Nkind (N);
begin
if (K = N_Type_Conversion or else
K = N_Op_Divide or else
K = N_Op_Multiply)
and then
(Rounded_Result (N) or else Is_Integer_Type (Etype (N)))
then
return True;
else
return False;
end if;
end Rounded_Result_Set;
----------------
-- Set_Result --
----------------
procedure Set_Result
(N : Node_Id;
Expr : Node_Id;
Rchk : Boolean := False;
Trunc : Boolean := False)
is
Cnode : Node_Id;
Expr_Type : constant Entity_Id := Etype (Expr);
Result_Type : constant Entity_Id := Etype (N);
begin
-- No conversion required if types match and no range check or truncate
if Result_Type = Expr_Type and then not (Rchk or Trunc) then
Cnode := Expr;
-- Else perform required conversion
else
Cnode := Build_Conversion (N, Result_Type, Expr, Rchk, Trunc);
end if;
Rewrite (N, Cnode);
Analyze_And_Resolve (N, Result_Type);
end Set_Result;
end Exp_Fixd;