| ------------------------------------------------------------------------------ |
| -- -- |
| -- GNAT COMPILER COMPONENTS -- |
| -- -- |
| -- E X P _ F I X D -- |
| -- -- |
| -- B o d y -- |
| -- -- |
| -- Copyright (C) 1992-2022, Free Software Foundation, Inc. -- |
| -- -- |
| -- GNAT is free software; you can redistribute it and/or modify it under -- |
| -- terms of the GNU General Public License as published by the Free Soft- -- |
| -- ware Foundation; either version 3, or (at your option) any later ver- -- |
| -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- |
| -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- |
| -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- |
| -- for more details. You should have received a copy of the GNU General -- |
| -- Public License distributed with GNAT; see file COPYING3. If not, go to -- |
| -- http://www.gnu.org/licenses for a complete copy of the license. -- |
| -- -- |
| -- GNAT was originally developed by the GNAT team at New York University. -- |
| -- Extensive contributions were provided by Ada Core Technologies Inc. -- |
| -- -- |
| ------------------------------------------------------------------------------ |
| |
| with Atree; use Atree; |
| with Checks; use Checks; |
| with Einfo; use Einfo; |
| with Einfo.Entities; use Einfo.Entities; |
| with Einfo.Utils; use Einfo.Utils; |
| with Exp_Util; use Exp_Util; |
| with Nlists; use Nlists; |
| with Nmake; use Nmake; |
| with Restrict; use Restrict; |
| with Rident; use Rident; |
| with Rtsfind; use Rtsfind; |
| with Sem; use Sem; |
| with Sem_Eval; use Sem_Eval; |
| with Sem_Res; use Sem_Res; |
| with Sem_Util; use Sem_Util; |
| with Sinfo; use Sinfo; |
| with Sinfo.Nodes; use Sinfo.Nodes; |
| with Stand; use Stand; |
| with Tbuild; use Tbuild; |
| with Ttypes; use Ttypes; |
| with Uintp; use Uintp; |
| with Urealp; use Urealp; |
| |
| package body Exp_Fixd is |
| |
| ----------------------- |
| -- Local Subprograms -- |
| ----------------------- |
| |
| -- General note; in this unit, a number of routines are driven by the |
| -- types (Etype) of their operands. Since we are dealing with unanalyzed |
| -- expressions as they are constructed, the Etypes would not normally be |
| -- set, but the construction routines that we use in this unit do in fact |
| -- set the Etype values correctly. In addition, setting the Etype ensures |
| -- that the analyzer does not try to redetermine the type when the node |
| -- is analyzed (which would be wrong, since in the case where we set the |
| -- Conversion_OK flag, it would think it was still dealing with a normal |
| -- fixed-point operation and mess it up). |
| |
| function Build_Conversion |
| (N : Node_Id; |
| Typ : Entity_Id; |
| Expr : Node_Id; |
| Rchk : Boolean := False; |
| Trunc : Boolean := False) return Node_Id; |
| -- Build an expression that converts the expression Expr to type Typ, |
| -- taking the source location from Sloc (N). If the conversions involve |
| -- fixed-point types, then the Conversion_OK flag will be set so that the |
| -- resulting conversions do not get re-expanded. On return, the resulting |
| -- node has its Etype set. If Rchk is set, then Do_Range_Check is set |
| -- in the resulting conversion node. If Trunc is set, then the |
| -- Float_Truncate flag is set on the conversion, which must be from |
| -- a floating-point type to an integer type. |
| |
| function Build_Divide (N : Node_Id; L, R : Node_Id) return Node_Id; |
| -- Builds an N_Op_Divide node from the given left and right operand |
| -- expressions, using the source location from Sloc (N). The operands are |
| -- either both Universal_Real, in which case Build_Divide differs from |
| -- Make_Op_Divide only in that the Etype of the resulting node is set (to |
| -- Universal_Real), or they can be integer or fixed-point types. In this |
| -- case the types need not be the same, and Build_Divide chooses a type |
| -- long enough to hold both operands (i.e. the size of the longer of the |
| -- two operand types), and both operands are converted to this type. The |
| -- Etype of the result is also set to this value. The Rounded_Result flag |
| -- of the result in this case is set from the Rounded_Result flag of node |
| -- N. On return, the resulting node has its Etype set. |
| |
| function Build_Double_Divide |
| (N : Node_Id; |
| X, Y, Z : Node_Id) return Node_Id; |
| -- Returns a node corresponding to the value X/(Y*Z) using the source |
| -- location from Sloc (N). The division is rounded if the Rounded_Result |
| -- flag of N is set. The integer types of X, Y, Z may be different. On |
| -- return, the resulting node has its Etype set. |
| |
| procedure Build_Double_Divide_Code |
| (N : Node_Id; |
| X, Y, Z : Node_Id; |
| Qnn, Rnn : out Entity_Id; |
| Code : out List_Id); |
| -- Generates a sequence of code for determining the quotient and remainder |
| -- of the division X/(Y*Z), using the source location from Sloc (N). |
| -- Entities of appropriate types are allocated for the quotient and |
| -- remainder and returned in Qnn and Rnn. The result is rounded if the |
| -- Rounded_Result flag of N is set. The Etype fields of Qnn and Rnn are |
| -- appropriately set on return. |
| |
| function Build_Multiply (N : Node_Id; L, R : Node_Id) return Node_Id; |
| -- Builds an N_Op_Multiply node from the given left and right operand |
| -- expressions, using the source location from Sloc (N). The operands are |
| -- either both Universal_Real, in which case Build_Multiply differs from |
| -- Make_Op_Multiply only in that the Etype of the resulting node is set (to |
| -- Universal_Real), or they can be integer or fixed-point types. In this |
| -- case the types need not be the same, and Build_Multiply chooses a type |
| -- long enough to hold the product and both operands are converted to this |
| -- type. The type of the result is also set to this value. On return, the |
| -- resulting node has its Etype set. |
| |
| function Build_Rem (N : Node_Id; L, R : Node_Id) return Node_Id; |
| -- Builds an N_Op_Rem node from the given left and right operand |
| -- expressions, using the source location from Sloc (N). The operands are |
| -- both integer types, which need not be the same. Build_Rem converts the |
| -- operand with the smaller sized type to match the type of the other |
| -- operand and sets this as the result type. The result is never rounded |
| -- (rem operations cannot be rounded in any case). On return, the resulting |
| -- node has its Etype set. |
| |
| function Build_Scaled_Divide |
| (N : Node_Id; |
| X, Y, Z : Node_Id) return Node_Id; |
| -- Returns a node corresponding to the value X*Y/Z using the source |
| -- location from Sloc (N). The division is rounded if the Rounded_Result |
| -- flag of N is set. The integer types of X, Y, Z may be different. On |
| -- return the resulting node has its Etype set. |
| |
| procedure Build_Scaled_Divide_Code |
| (N : Node_Id; |
| X, Y, Z : Node_Id; |
| Qnn, Rnn : out Entity_Id; |
| Code : out List_Id); |
| -- Generates a sequence of code for determining the quotient and remainder |
| -- of the division X*Y/Z, using the source location from Sloc (N). Entities |
| -- of appropriate types are allocated for the quotient and remainder and |
| -- returned in Qnn and Rrr. The integer types for X, Y, Z may be different. |
| -- The division is rounded if the Rounded_Result flag of N is set. The |
| -- Etype fields of Qnn and Rnn are appropriately set on return. |
| |
| procedure Do_Divide_Fixed_Fixed (N : Node_Id); |
| -- Handles expansion of divide for case of two fixed-point operands |
| -- (neither of them universal), with an integer or fixed-point result. |
| -- N is the N_Op_Divide node to be expanded. |
| |
| procedure Do_Divide_Fixed_Universal (N : Node_Id); |
| -- Handles expansion of divide for case of a fixed-point operand divided |
| -- by a universal real operand, with an integer or fixed-point result. N |
| -- is the N_Op_Divide node to be expanded. |
| |
| procedure Do_Divide_Universal_Fixed (N : Node_Id); |
| -- Handles expansion of divide for case of a universal real operand |
| -- divided by a fixed-point operand, with an integer or fixed-point |
| -- result. N is the N_Op_Divide node to be expanded. |
| |
| procedure Do_Multiply_Fixed_Fixed (N : Node_Id); |
| -- Handles expansion of multiply for case of two fixed-point operands |
| -- (neither of them universal), with an integer or fixed-point result. |
| -- N is the N_Op_Multiply node to be expanded. |
| |
| procedure Do_Multiply_Fixed_Universal (N : Node_Id; Left, Right : Node_Id); |
| -- Handles expansion of multiply for case of a fixed-point operand |
| -- multiplied by a universal real operand, with an integer or fixed- |
| -- point result. N is the N_Op_Multiply node to be expanded, and |
| -- Left, Right are the operands (which may have been switched). |
| |
| procedure Expand_Convert_Fixed_Static (N : Node_Id); |
| -- This routine is called where the node N is a conversion of a literal |
| -- or other static expression of a fixed-point type to some other type. |
| -- In such cases, we simply rewrite the operand as a real literal and |
| -- reanalyze. This avoids problems which would otherwise result from |
| -- attempting to build and fold expressions involving constants. |
| |
| function Fpt_Value (N : Node_Id) return Node_Id; |
| -- Given an operand of fixed-point operation, return an expression that |
| -- represents the corresponding Universal_Real value. The expression |
| -- can be of integer type, floating-point type, or fixed-point type. |
| -- The expression returned is neither analyzed nor resolved. The Etype |
| -- of the result is properly set (to Universal_Real). |
| |
| function Get_Size_For_Value (V : Uint) return Pos; |
| -- Given a non-negative universal integer value, return the size of a small |
| -- signed integer type covering -V .. V, or Pos'Max if no such type exists. |
| |
| function Get_Type_For_Size (Siz : Pos; Force : Boolean) return Entity_Id; |
| -- Return the smallest signed integer type containing at least Siz bits. |
| -- If no such type exists, return Empty if Force is False or the largest |
| -- signed integer type if Force is True. |
| |
| function Integer_Literal |
| (N : Node_Id; |
| V : Uint; |
| Negative : Boolean := False) return Node_Id; |
| -- Given a non-negative universal integer value, build a typed integer |
| -- literal node, using the smallest applicable standard integer type. |
| -- If Negative is true, then a negative literal is built. If V exceeds |
| -- 2**(System_Max_Integer_Size - 1) - 1, the largest value allowed for |
| -- perfect result set scaling factors (see RM G.2.3(22)), then Empty is |
| -- returned. The node N provides the Sloc value for the constructed |
| -- literal. The Etype of the resulting literal is correctly set, and it |
| -- is marked as analyzed. |
| |
| function Real_Literal (N : Node_Id; V : Ureal) return Node_Id; |
| -- Build a real literal node from the given value, the Etype of the |
| -- returned node is set to Universal_Real, since all floating-point |
| -- arithmetic operations that we construct use Universal_Real |
| |
| function Rounded_Result_Set (N : Node_Id) return Boolean; |
| -- Returns True if N is a node that contains the Rounded_Result flag |
| -- and if the flag is true or the target type is an integer type. |
| |
| procedure Set_Result |
| (N : Node_Id; |
| Expr : Node_Id; |
| Rchk : Boolean := False; |
| Trunc : Boolean := False); |
| -- N is the node for the current conversion, division or multiplication |
| -- operation, and Expr is an expression representing the result. Expr may |
| -- be of floating-point or integer type. If the operation result is fixed- |
| -- point, then the value of Expr is in units of small of the result type |
| -- (i.e. small's have already been dealt with). The result of the call is |
| -- to replace N by an appropriate conversion to the result type, dealing |
| -- with rounding for the decimal types case. The node is then analyzed and |
| -- resolved using the result type. If Rchk or Trunc are True, then |
| -- respectively Do_Range_Check and Float_Truncate are set in the |
| -- resulting conversion. |
| |
| ---------------------- |
| -- Build_Conversion -- |
| ---------------------- |
| |
| function Build_Conversion |
| (N : Node_Id; |
| Typ : Entity_Id; |
| Expr : Node_Id; |
| Rchk : Boolean := False; |
| Trunc : Boolean := False) return Node_Id |
| is |
| Loc : constant Source_Ptr := Sloc (N); |
| Result : Node_Id; |
| Rcheck : Boolean := Rchk; |
| |
| begin |
| -- A special case, if the expression is an integer literal and the |
| -- target type is an integer type, then just retype the integer |
| -- literal to the desired target type. Don't do this if we need |
| -- a range check. |
| |
| if Nkind (Expr) = N_Integer_Literal |
| and then Is_Integer_Type (Typ) |
| and then not Rchk |
| then |
| Result := Expr; |
| |
| -- Cases where we end up with a conversion. Note that we do not use the |
| -- Convert_To abstraction here, since we may be decorating the resulting |
| -- conversion with Rounded_Result and/or Conversion_OK, so we want the |
| -- conversion node present, even if it appears to be redundant. |
| |
| else |
| -- Remove inner conversion if both inner and outer conversions are |
| -- to integer types, since the inner one serves no purpose (except |
| -- perhaps to set rounding, so we preserve the Rounded_Result flag) |
| -- and also preserve the Conversion_OK and Do_Range_Check flags of |
| -- the inner conversion. |
| |
| if Is_Integer_Type (Typ) |
| and then Is_Integer_Type (Etype (Expr)) |
| and then Nkind (Expr) = N_Type_Conversion |
| then |
| Result := |
| Make_Type_Conversion (Loc, |
| Subtype_Mark => New_Occurrence_Of (Typ, Loc), |
| Expression => Expression (Expr)); |
| Set_Rounded_Result (Result, Rounded_Result_Set (Expr)); |
| Set_Conversion_OK (Result, Conversion_OK (Expr)); |
| Rcheck := Rcheck or Do_Range_Check (Expr); |
| |
| -- For all other cases, a simple type conversion will work |
| |
| else |
| Result := |
| Make_Type_Conversion (Loc, |
| Subtype_Mark => New_Occurrence_Of (Typ, Loc), |
| Expression => Expr); |
| |
| Set_Float_Truncate (Result, Trunc); |
| end if; |
| |
| -- Set Conversion_OK if either result or expression type is a |
| -- fixed-point type, since from a semantic point of view, we are |
| -- treating fixed-point values as integers at this stage. |
| |
| if Is_Fixed_Point_Type (Typ) |
| or else Is_Fixed_Point_Type (Etype (Expression (Result))) |
| then |
| Set_Conversion_OK (Result); |
| end if; |
| |
| -- Set Do_Range_Check if either it was requested by the caller, |
| -- or if an eliminated inner conversion had a range check. |
| |
| if Rcheck then |
| Enable_Range_Check (Result); |
| else |
| Set_Do_Range_Check (Result, False); |
| end if; |
| end if; |
| |
| Set_Etype (Result, Typ); |
| return Result; |
| end Build_Conversion; |
| |
| ------------------ |
| -- Build_Divide -- |
| ------------------ |
| |
| function Build_Divide (N : Node_Id; L, R : Node_Id) return Node_Id is |
| Loc : constant Source_Ptr := Sloc (N); |
| Left_Type : constant Entity_Id := Base_Type (Etype (L)); |
| Right_Type : constant Entity_Id := Base_Type (Etype (R)); |
| Left_Size : Int; |
| Right_Size : Int; |
| Result_Type : Entity_Id; |
| Rnode : Node_Id; |
| |
| begin |
| -- Deal with floating-point case first |
| |
| if Is_Floating_Point_Type (Left_Type) then |
| pragma Assert (Left_Type = Universal_Real); |
| pragma Assert (Right_Type = Universal_Real); |
| |
| Rnode := Make_Op_Divide (Loc, L, R); |
| Result_Type := Universal_Real; |
| |
| -- Integer and fixed-point cases |
| |
| else |
| -- An optimization. If the right operand is the literal 1, then we |
| -- can just return the left hand operand. Putting the optimization |
| -- here allows us to omit the check at the call site. |
| |
| if Nkind (R) = N_Integer_Literal and then Intval (R) = 1 then |
| return L; |
| end if; |
| |
| -- Otherwise we need to figure out the correct result type size |
| -- First figure out the effective sizes of the operands. Normally |
| -- the effective size of an operand is the RM_Size of the operand. |
| -- But a special case arises with operands whose size is known at |
| -- compile time. In this case, we can use the actual value of the |
| -- operand to get a size if it would fit in a small signed integer. |
| |
| Left_Size := UI_To_Int (RM_Size (Left_Type)); |
| |
| if Compile_Time_Known_Value (L) then |
| declare |
| Siz : constant Int := |
| Get_Size_For_Value (UI_Abs (Expr_Value (L))); |
| begin |
| if Siz < Left_Size then |
| Left_Size := Siz; |
| end if; |
| end; |
| end if; |
| |
| Right_Size := UI_To_Int (RM_Size (Right_Type)); |
| |
| if Compile_Time_Known_Value (R) then |
| declare |
| Siz : constant Int := |
| Get_Size_For_Value (UI_Abs (Expr_Value (R))); |
| begin |
| if Siz < Right_Size then |
| Right_Size := Siz; |
| end if; |
| end; |
| end if; |
| |
| -- Do the operation using the longer of the two sizes |
| |
| Result_Type := |
| Get_Type_For_Size (Int'Max (Left_Size, Right_Size), Force => True); |
| |
| Rnode := |
| Make_Op_Divide (Loc, |
| Left_Opnd => Build_Conversion (N, Result_Type, L), |
| Right_Opnd => Build_Conversion (N, Result_Type, R)); |
| end if; |
| |
| -- We now have a divide node built with Result_Type set. First |
| -- set Etype of result, as required for all Build_xxx routines |
| |
| Set_Etype (Rnode, Base_Type (Result_Type)); |
| |
| -- The result is rounded if the target of the operation is decimal |
| -- and Rounded_Result is set, or if the target of the operation |
| -- is an integer type, as determined by Rounded_Result_Set. |
| |
| Set_Rounded_Result (Rnode, Rounded_Result_Set (N)); |
| |
| -- One more check. We did the divide operation using the longer of |
| -- the two sizes, which is reasonable. However, in the case where the |
| -- two types have unequal sizes, it is impossible for the result of |
| -- a divide operation to be larger than the dividend, so we can put |
| -- a conversion round the result to keep the evolving operation size |
| -- as small as possible. |
| |
| if not Is_Floating_Point_Type (Left_Type) then |
| Rnode := Build_Conversion (N, Left_Type, Rnode); |
| end if; |
| |
| return Rnode; |
| end Build_Divide; |
| |
| ------------------------- |
| -- Build_Double_Divide -- |
| ------------------------- |
| |
| function Build_Double_Divide |
| (N : Node_Id; |
| X, Y, Z : Node_Id) return Node_Id |
| is |
| X_Size : constant Nat := UI_To_Int (RM_Size (Etype (X))); |
| Y_Size : constant Nat := UI_To_Int (RM_Size (Etype (Y))); |
| Z_Size : constant Nat := UI_To_Int (RM_Size (Etype (Z))); |
| D_Size : constant Nat := Y_Size + Z_Size; |
| M_Size : constant Nat := Nat'Max (X_Size, Nat'Max (Y_Size, Z_Size)); |
| Expr : Node_Id; |
| |
| begin |
| -- If the denominator fits in Max_Integer_Size bits, we can build the |
| -- operations directly without causing any intermediate overflow. But |
| -- for backward compatibility reasons, we use a 128-bit divide only |
| -- if one of the operands is already larger than 64 bits. |
| |
| if D_Size <= System_Max_Integer_Size |
| and then (D_Size <= 64 or else M_Size > 64) |
| then |
| return Build_Divide (N, X, Build_Multiply (N, Y, Z)); |
| |
| -- Otherwise we use the runtime routine |
| |
| -- [Qnn : Interfaces.Integer_{64|128}; |
| -- Rnn : Interfaces.Integer_{64|128}; |
| -- Double_Divide{64|128} (X, Y, Z, Qnn, Rnn, Round); |
| -- Qnn] |
| |
| else |
| declare |
| Loc : constant Source_Ptr := Sloc (N); |
| Qnn : Entity_Id; |
| Rnn : Entity_Id; |
| Code : List_Id; |
| |
| pragma Warnings (Off, Rnn); |
| |
| begin |
| Build_Double_Divide_Code (N, X, Y, Z, Qnn, Rnn, Code); |
| Insert_Actions (N, Code); |
| Expr := New_Occurrence_Of (Qnn, Loc); |
| |
| -- Set type of result in case used elsewhere (see note at start) |
| |
| Set_Etype (Expr, Etype (Qnn)); |
| |
| -- Set result as analyzed (see note at start on build routines) |
| |
| return Expr; |
| end; |
| end if; |
| end Build_Double_Divide; |
| |
| ------------------------------ |
| -- Build_Double_Divide_Code -- |
| ------------------------------ |
| |
| -- If the denominator can be computed in Max_Integer_Size bits, we build |
| |
| -- [Nnn : constant typ := typ (X); |
| -- Dnn : constant typ := typ (Y) * typ (Z) |
| -- Qnn : constant typ := Nnn / Dnn; |
| -- Rnn : constant typ := Nnn rem Dnn; |
| |
| -- If the denominator cannot be computed in Max_Integer_Size bits, we build |
| |
| -- [Qnn : Interfaces.Integer_{64|128}; |
| -- Rnn : Interfaces.Integer_{64|128}; |
| -- Double_Divide{64|128} (X, Y, Z, Qnn, Rnn, Round);] |
| |
| procedure Build_Double_Divide_Code |
| (N : Node_Id; |
| X, Y, Z : Node_Id; |
| Qnn, Rnn : out Entity_Id; |
| Code : out List_Id) |
| is |
| Loc : constant Source_Ptr := Sloc (N); |
| |
| X_Size : constant Nat := UI_To_Int (RM_Size (Etype (X))); |
| Y_Size : constant Nat := UI_To_Int (RM_Size (Etype (Y))); |
| Z_Size : constant Nat := UI_To_Int (RM_Size (Etype (Z))); |
| M_Size : constant Nat := Nat'Max (X_Size, Nat'Max (Y_Size, Z_Size)); |
| |
| QR_Id : RE_Id; |
| QR_Siz : Nat; |
| QR_Typ : Entity_Id; |
| |
| Nnn : Entity_Id; |
| Dnn : Entity_Id; |
| |
| Quo : Node_Id; |
| Rnd : Entity_Id; |
| |
| begin |
| -- Find type that will allow computation of denominator |
| |
| QR_Siz := Nat'Max (X_Size, Y_Size + Z_Size); |
| |
| if QR_Siz <= 16 then |
| QR_Typ := Standard_Integer_16; |
| QR_Id := RE_Null; |
| |
| elsif QR_Siz <= 32 then |
| QR_Typ := Standard_Integer_32; |
| QR_Id := RE_Null; |
| |
| elsif QR_Siz <= 64 then |
| QR_Typ := Standard_Integer_64; |
| QR_Id := RE_Null; |
| |
| -- For backward compatibility reasons, we use a 128-bit divide only |
| -- if one of the operands is already larger than 64 bits. |
| |
| elsif System_Max_Integer_Size < 128 or else M_Size <= 64 then |
| QR_Typ := RTE (RE_Integer_64); |
| QR_Id := RE_Double_Divide64; |
| |
| elsif QR_Siz <= 128 then |
| QR_Typ := Standard_Integer_128; |
| QR_Id := RE_Null; |
| |
| else |
| QR_Typ := RTE (RE_Integer_128); |
| QR_Id := RE_Double_Divide128; |
| end if; |
| |
| -- Define quotient and remainder, and set their Etypes, so |
| -- that they can be picked up by Build_xxx routines. |
| |
| Qnn := Make_Temporary (Loc, 'S'); |
| Rnn := Make_Temporary (Loc, 'R'); |
| |
| Set_Etype (Qnn, QR_Typ); |
| Set_Etype (Rnn, QR_Typ); |
| |
| -- Case where we can compute the denominator in Max_Integer_Size bits |
| |
| if QR_Id = RE_Null then |
| |
| -- Create temporaries for numerator and denominator and set Etypes, |
| -- so that New_Occurrence_Of picks them up for Build_xxx calls. |
| |
| Nnn := Make_Temporary (Loc, 'N'); |
| Dnn := Make_Temporary (Loc, 'D'); |
| |
| Set_Etype (Nnn, QR_Typ); |
| Set_Etype (Dnn, QR_Typ); |
| |
| Code := New_List ( |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Nnn, |
| Object_Definition => New_Occurrence_Of (QR_Typ, Loc), |
| Constant_Present => True, |
| Expression => Build_Conversion (N, QR_Typ, X)), |
| |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Dnn, |
| Object_Definition => New_Occurrence_Of (QR_Typ, Loc), |
| Constant_Present => True, |
| Expression => Build_Multiply (N, Y, Z))); |
| |
| Quo := |
| Build_Divide (N, |
| New_Occurrence_Of (Nnn, Loc), |
| New_Occurrence_Of (Dnn, Loc)); |
| |
| Set_Rounded_Result (Quo, Rounded_Result_Set (N)); |
| |
| Append_To (Code, |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Qnn, |
| Object_Definition => New_Occurrence_Of (QR_Typ, Loc), |
| Constant_Present => True, |
| Expression => Quo)); |
| |
| Append_To (Code, |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Rnn, |
| Object_Definition => New_Occurrence_Of (QR_Typ, Loc), |
| Constant_Present => True, |
| Expression => |
| Build_Rem (N, |
| New_Occurrence_Of (Nnn, Loc), |
| New_Occurrence_Of (Dnn, Loc)))); |
| |
| -- Case where denominator does not fit in Max_Integer_Size bits, we have |
| -- to call the runtime routine to compute the quotient and remainder. |
| |
| else |
| Rnd := Boolean_Literals (Rounded_Result_Set (N)); |
| |
| Code := New_List ( |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Qnn, |
| Object_Definition => New_Occurrence_Of (QR_Typ, Loc)), |
| |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Rnn, |
| Object_Definition => New_Occurrence_Of (QR_Typ, Loc)), |
| |
| Make_Procedure_Call_Statement (Loc, |
| Name => New_Occurrence_Of (RTE (QR_Id), Loc), |
| Parameter_Associations => New_List ( |
| Build_Conversion (N, QR_Typ, X), |
| Build_Conversion (N, QR_Typ, Y), |
| Build_Conversion (N, QR_Typ, Z), |
| New_Occurrence_Of (Qnn, Loc), |
| New_Occurrence_Of (Rnn, Loc), |
| New_Occurrence_Of (Rnd, Loc)))); |
| end if; |
| end Build_Double_Divide_Code; |
| |
| -------------------- |
| -- Build_Multiply -- |
| -------------------- |
| |
| function Build_Multiply (N : Node_Id; L, R : Node_Id) return Node_Id is |
| Loc : constant Source_Ptr := Sloc (N); |
| Left_Type : constant Entity_Id := Etype (L); |
| Right_Type : constant Entity_Id := Etype (R); |
| Left_Size : Int; |
| Right_Size : Int; |
| Result_Type : Entity_Id; |
| Rnode : Node_Id; |
| |
| begin |
| -- Deal with floating-point case first |
| |
| if Is_Floating_Point_Type (Left_Type) then |
| pragma Assert (Left_Type = Universal_Real); |
| pragma Assert (Right_Type = Universal_Real); |
| |
| Result_Type := Universal_Real; |
| Rnode := Make_Op_Multiply (Loc, L, R); |
| |
| -- Integer and fixed-point cases |
| |
| else |
| -- An optimization. If the right operand is the literal 1, then we |
| -- can just return the left hand operand. Putting the optimization |
| -- here allows us to omit the check at the call site. Similarly, if |
| -- the left operand is the integer 1 we can return the right operand. |
| |
| if Nkind (R) = N_Integer_Literal and then Intval (R) = 1 then |
| return L; |
| elsif Nkind (L) = N_Integer_Literal and then Intval (L) = 1 then |
| return R; |
| end if; |
| |
| -- Otherwise we need to figure out the correct result type size |
| -- First figure out the effective sizes of the operands. Normally |
| -- the effective size of an operand is the RM_Size of the operand. |
| -- But a special case arises with operands whose size is known at |
| -- compile time. In this case, we can use the actual value of the |
| -- operand to get a size if it would fit in a small signed integer. |
| |
| Left_Size := UI_To_Int (RM_Size (Left_Type)); |
| |
| if Compile_Time_Known_Value (L) then |
| declare |
| Siz : constant Int := |
| Get_Size_For_Value (UI_Abs (Expr_Value (L))); |
| begin |
| if Siz < Left_Size then |
| Left_Size := Siz; |
| end if; |
| end; |
| end if; |
| |
| Right_Size := UI_To_Int (RM_Size (Right_Type)); |
| |
| if Compile_Time_Known_Value (R) then |
| declare |
| Siz : constant Int := |
| Get_Size_For_Value (UI_Abs (Expr_Value (R))); |
| begin |
| if Siz < Right_Size then |
| Right_Size := Siz; |
| end if; |
| end; |
| end if; |
| |
| -- Now the result size must be at least the sum of the two sizes, |
| -- to accommodate all possible results. |
| |
| Result_Type := |
| Get_Type_For_Size (Left_Size + Right_Size, Force => True); |
| |
| Rnode := |
| Make_Op_Multiply (Loc, |
| Left_Opnd => Build_Conversion (N, Result_Type, L), |
| Right_Opnd => Build_Conversion (N, Result_Type, R)); |
| end if; |
| |
| -- We now have a multiply node built with Result_Type set. First |
| -- set Etype of result, as required for all Build_xxx routines |
| |
| Set_Etype (Rnode, Base_Type (Result_Type)); |
| |
| return Rnode; |
| end Build_Multiply; |
| |
| --------------- |
| -- Build_Rem -- |
| --------------- |
| |
| function Build_Rem (N : Node_Id; L, R : Node_Id) return Node_Id is |
| Loc : constant Source_Ptr := Sloc (N); |
| Left_Type : constant Entity_Id := Etype (L); |
| Right_Type : constant Entity_Id := Etype (R); |
| Result_Type : Entity_Id; |
| Rnode : Node_Id; |
| |
| begin |
| if Left_Type = Right_Type then |
| Result_Type := Left_Type; |
| Rnode := |
| Make_Op_Rem (Loc, |
| Left_Opnd => L, |
| Right_Opnd => R); |
| |
| -- If left size is larger, we do the remainder operation using the |
| -- size of the left type (i.e. the larger of the two integer types). |
| |
| elsif Esize (Left_Type) >= Esize (Right_Type) then |
| Result_Type := Left_Type; |
| Rnode := |
| Make_Op_Rem (Loc, |
| Left_Opnd => L, |
| Right_Opnd => Build_Conversion (N, Left_Type, R)); |
| |
| -- Similarly, if the right size is larger, we do the remainder |
| -- operation using the right type. |
| |
| else |
| Result_Type := Right_Type; |
| Rnode := |
| Make_Op_Rem (Loc, |
| Left_Opnd => Build_Conversion (N, Right_Type, L), |
| Right_Opnd => R); |
| end if; |
| |
| -- We now have an N_Op_Rem node built with Result_Type set. First |
| -- set Etype of result, as required for all Build_xxx routines |
| |
| Set_Etype (Rnode, Base_Type (Result_Type)); |
| |
| -- One more check. We did the rem operation using the larger of the |
| -- two types, which is reasonable. However, in the case where the |
| -- two types have unequal sizes, it is impossible for the result of |
| -- a remainder operation to be larger than the smaller of the two |
| -- types, so we can put a conversion round the result to keep the |
| -- evolving operation size as small as possible. |
| |
| if Esize (Left_Type) >= Esize (Right_Type) then |
| Rnode := Build_Conversion (N, Right_Type, Rnode); |
| elsif Esize (Right_Type) >= Esize (Left_Type) then |
| Rnode := Build_Conversion (N, Left_Type, Rnode); |
| end if; |
| |
| return Rnode; |
| end Build_Rem; |
| |
| ------------------------- |
| -- Build_Scaled_Divide -- |
| ------------------------- |
| |
| function Build_Scaled_Divide |
| (N : Node_Id; |
| X, Y, Z : Node_Id) return Node_Id |
| is |
| X_Size : constant Nat := UI_To_Int (RM_Size (Etype (X))); |
| Y_Size : constant Nat := UI_To_Int (RM_Size (Etype (Y))); |
| Z_Size : constant Nat := UI_To_Int (RM_Size (Etype (Z))); |
| N_Size : constant Nat := X_Size + Y_Size; |
| M_Size : constant Nat := Nat'Max (X_Size, Nat'Max (Y_Size, Z_Size)); |
| Expr : Node_Id; |
| |
| begin |
| -- If the numerator fits in Max_Integer_Size bits, we can build the |
| -- operations directly without causing any intermediate overflow. But |
| -- for backward compatibility reasons, we use a 128-bit divide only |
| -- if one of the operands is already larger than 64 bits. |
| |
| if N_Size <= System_Max_Integer_Size |
| and then (N_Size <= 64 or else M_Size > 64) |
| then |
| return Build_Divide (N, Build_Multiply (N, X, Y), Z); |
| |
| -- Otherwise we use the runtime routine |
| |
| -- [Qnn : Integer_{64|128}, |
| -- Rnn : Integer_{64|128}; |
| -- Scaled_Divide{64|128} (X, Y, Z, Qnn, Rnn, Round); |
| -- Qnn] |
| |
| else |
| declare |
| Loc : constant Source_Ptr := Sloc (N); |
| Qnn : Entity_Id; |
| Rnn : Entity_Id; |
| Code : List_Id; |
| |
| pragma Warnings (Off, Rnn); |
| |
| begin |
| Build_Scaled_Divide_Code (N, X, Y, Z, Qnn, Rnn, Code); |
| Insert_Actions (N, Code); |
| Expr := New_Occurrence_Of (Qnn, Loc); |
| |
| -- Set type of result in case used elsewhere (see note at start) |
| |
| Set_Etype (Expr, Etype (Qnn)); |
| return Expr; |
| end; |
| end if; |
| end Build_Scaled_Divide; |
| |
| ------------------------------ |
| -- Build_Scaled_Divide_Code -- |
| ------------------------------ |
| |
| -- If the numerator can be computed in Max_Integer_Size bits, we build |
| |
| -- [Nnn : constant typ := typ (X) * typ (Y); |
| -- Dnn : constant typ := typ (Z) |
| -- Qnn : constant typ := Nnn / Dnn; |
| -- Rnn : constant typ := Nnn rem Dnn; |
| |
| -- If the numerator cannot be computed in Max_Integer_Size bits, we build |
| |
| -- [Qnn : Interfaces.Integer_{64|128}; |
| -- Rnn : Interfaces.Integer_{64|128}; |
| -- Scaled_Divide_{64|128} (X, Y, Z, Qnn, Rnn, Round);] |
| |
| procedure Build_Scaled_Divide_Code |
| (N : Node_Id; |
| X, Y, Z : Node_Id; |
| Qnn, Rnn : out Entity_Id; |
| Code : out List_Id) |
| is |
| Loc : constant Source_Ptr := Sloc (N); |
| |
| X_Size : constant Nat := UI_To_Int (RM_Size (Etype (X))); |
| Y_Size : constant Nat := UI_To_Int (RM_Size (Etype (Y))); |
| Z_Size : constant Nat := UI_To_Int (RM_Size (Etype (Z))); |
| M_Size : constant Nat := Nat'Max (X_Size, Nat'Max (Y_Size, Z_Size)); |
| |
| QR_Id : RE_Id; |
| QR_Siz : Nat; |
| QR_Typ : Entity_Id; |
| |
| Nnn : Entity_Id; |
| Dnn : Entity_Id; |
| |
| Quo : Node_Id; |
| Rnd : Entity_Id; |
| |
| begin |
| -- Find type that will allow computation of numerator |
| |
| QR_Siz := Nat'Max (X_Size + Y_Size, Z_Size); |
| |
| if QR_Siz <= 16 then |
| QR_Typ := Standard_Integer_16; |
| QR_Id := RE_Null; |
| |
| elsif QR_Siz <= 32 then |
| QR_Typ := Standard_Integer_32; |
| QR_Id := RE_Null; |
| |
| elsif QR_Siz <= 64 then |
| QR_Typ := Standard_Integer_64; |
| QR_Id := RE_Null; |
| |
| -- For backward compatibility reasons, we use a 128-bit divide only |
| -- if one of the operands is already larger than 64 bits. |
| |
| elsif System_Max_Integer_Size < 128 or else M_Size <= 64 then |
| QR_Typ := RTE (RE_Integer_64); |
| QR_Id := RE_Scaled_Divide64; |
| |
| elsif QR_Siz <= 128 then |
| QR_Typ := Standard_Integer_128; |
| QR_Id := RE_Null; |
| |
| else |
| QR_Typ := RTE (RE_Integer_128); |
| QR_Id := RE_Scaled_Divide128; |
| end if; |
| |
| -- Define quotient and remainder, and set their Etypes, so |
| -- that they can be picked up by Build_xxx routines. |
| |
| Qnn := Make_Temporary (Loc, 'S'); |
| Rnn := Make_Temporary (Loc, 'R'); |
| |
| Set_Etype (Qnn, QR_Typ); |
| Set_Etype (Rnn, QR_Typ); |
| |
| -- Case where we can compute the numerator in Max_Integer_Size bits |
| |
| if QR_Id = RE_Null then |
| Nnn := Make_Temporary (Loc, 'N'); |
| Dnn := Make_Temporary (Loc, 'D'); |
| |
| -- Set Etypes, so that they can be picked up by New_Occurrence_Of |
| |
| Set_Etype (Nnn, QR_Typ); |
| Set_Etype (Dnn, QR_Typ); |
| |
| Code := New_List ( |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Nnn, |
| Object_Definition => New_Occurrence_Of (QR_Typ, Loc), |
| Constant_Present => True, |
| Expression => Build_Multiply (N, X, Y)), |
| |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Dnn, |
| Object_Definition => New_Occurrence_Of (QR_Typ, Loc), |
| Constant_Present => True, |
| Expression => Build_Conversion (N, QR_Typ, Z))); |
| |
| Quo := |
| Build_Divide (N, |
| New_Occurrence_Of (Nnn, Loc), |
| New_Occurrence_Of (Dnn, Loc)); |
| |
| Append_To (Code, |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Qnn, |
| Object_Definition => New_Occurrence_Of (QR_Typ, Loc), |
| Constant_Present => True, |
| Expression => Quo)); |
| |
| Append_To (Code, |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Rnn, |
| Object_Definition => New_Occurrence_Of (QR_Typ, Loc), |
| Constant_Present => True, |
| Expression => |
| Build_Rem (N, |
| New_Occurrence_Of (Nnn, Loc), |
| New_Occurrence_Of (Dnn, Loc)))); |
| |
| -- Case where numerator does not fit in Max_Integer_Size bits, we have |
| -- to call the runtime routine to compute the quotient and remainder. |
| |
| else |
| Rnd := Boolean_Literals (Rounded_Result_Set (N)); |
| |
| Code := New_List ( |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Qnn, |
| Object_Definition => New_Occurrence_Of (QR_Typ, Loc)), |
| |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Rnn, |
| Object_Definition => New_Occurrence_Of (QR_Typ, Loc)), |
| |
| Make_Procedure_Call_Statement (Loc, |
| Name => New_Occurrence_Of (RTE (QR_Id), Loc), |
| Parameter_Associations => New_List ( |
| Build_Conversion (N, QR_Typ, X), |
| Build_Conversion (N, QR_Typ, Y), |
| Build_Conversion (N, QR_Typ, Z), |
| New_Occurrence_Of (Qnn, Loc), |
| New_Occurrence_Of (Rnn, Loc), |
| New_Occurrence_Of (Rnd, Loc)))); |
| end if; |
| |
| -- Set type of result, for use in caller |
| |
| Set_Etype (Qnn, QR_Typ); |
| end Build_Scaled_Divide_Code; |
| |
| --------------------------- |
| -- Do_Divide_Fixed_Fixed -- |
| --------------------------- |
| |
| -- We have: |
| |
| -- (Result_Value * Result_Small) = |
| -- (Left_Value * Left_Small) / (Right_Value * Right_Small) |
| |
| -- Result_Value = (Left_Value / Right_Value) * |
| -- (Left_Small / (Right_Small * Result_Small)); |
| |
| -- we can do the operation in integer arithmetic if this fraction is an |
| -- integer or the reciprocal of an integer, as detailed in (RM G.2.3(21)). |
| -- Otherwise the result is in the close result set and our approach is to |
| -- use floating-point to compute this close result. |
| |
| procedure Do_Divide_Fixed_Fixed (N : Node_Id) is |
| Left : constant Node_Id := Left_Opnd (N); |
| Right : constant Node_Id := Right_Opnd (N); |
| Left_Type : constant Entity_Id := Etype (Left); |
| Right_Type : constant Entity_Id := Etype (Right); |
| Result_Type : constant Entity_Id := Etype (N); |
| Right_Small : constant Ureal := Small_Value (Right_Type); |
| Left_Small : constant Ureal := Small_Value (Left_Type); |
| |
| Result_Small : Ureal; |
| Frac : Ureal; |
| Frac_Num : Uint; |
| Frac_Den : Uint; |
| Lit_Int : Node_Id; |
| |
| begin |
| -- Rounding is required if the result is integral |
| |
| if Is_Integer_Type (Result_Type) then |
| Set_Rounded_Result (N); |
| end if; |
| |
| -- Get result small. If the result is an integer, treat it as though |
| -- it had a small of 1.0, all other processing is identical. |
| |
| if Is_Integer_Type (Result_Type) then |
| Result_Small := Ureal_1; |
| else |
| Result_Small := Small_Value (Result_Type); |
| end if; |
| |
| -- Get small ratio |
| |
| Frac := Left_Small / (Right_Small * Result_Small); |
| Frac_Num := Norm_Num (Frac); |
| Frac_Den := Norm_Den (Frac); |
| |
| -- If the fraction is an integer, then we get the result by multiplying |
| -- the left operand by the integer, and then dividing by the right |
| -- operand (the order is important, if we did the divide first, we |
| -- would lose precision). |
| |
| if Frac_Den = 1 then |
| Lit_Int := Integer_Literal (N, Frac_Num); -- always positive |
| |
| if Present (Lit_Int) then |
| Set_Result (N, Build_Scaled_Divide (N, Left, Lit_Int, Right)); |
| return; |
| end if; |
| |
| -- If the fraction is the reciprocal of an integer, then we get the |
| -- result by first multiplying the divisor by the integer, and then |
| -- doing the division with the adjusted divisor. |
| |
| -- Note: this is much better than doing two divisions: multiplications |
| -- are much faster than divisions (and certainly faster than rounded |
| -- divisions), and we don't get inaccuracies from double rounding. |
| |
| elsif Frac_Num = 1 then |
| Lit_Int := Integer_Literal (N, Frac_Den); -- always positive |
| |
| if Present (Lit_Int) then |
| Set_Result (N, Build_Double_Divide (N, Left, Right, Lit_Int)); |
| return; |
| end if; |
| end if; |
| |
| -- If we fall through, we use floating-point to compute the result |
| |
| Set_Result (N, |
| Build_Multiply (N, |
| Build_Divide (N, Fpt_Value (Left), Fpt_Value (Right)), |
| Real_Literal (N, Frac))); |
| end Do_Divide_Fixed_Fixed; |
| |
| ------------------------------- |
| -- Do_Divide_Fixed_Universal -- |
| ------------------------------- |
| |
| -- We have: |
| |
| -- (Result_Value * Result_Small) = (Left_Value * Left_Small) / Lit_Value; |
| -- Result_Value = Left_Value * Left_Small /(Lit_Value * Result_Small); |
| |
| -- The result is required to be in the perfect result set if the literal |
| -- can be factored so that the resulting small ratio is an integer or the |
| -- reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed |
| -- analysis of these RM requirements: |
| |
| -- We must factor the literal, finding an integer K: |
| |
| -- Lit_Value = K * Right_Small |
| -- Right_Small = Lit_Value / K |
| |
| -- such that the small ratio: |
| |
| -- Left_Small |
| -- ------------------------------ |
| -- (Lit_Value / K) * Result_Small |
| |
| -- Left_Small |
| -- = ------------------------ * K |
| -- Lit_Value * Result_Small |
| |
| -- is an integer or the reciprocal of an integer, and for |
| -- implementation efficiency we need the smallest such K. |
| |
| -- First we reduce the left fraction to lowest terms |
| |
| -- If numerator = 1, then for K = 1, the small ratio is the reciprocal |
| -- of an integer, and this is clearly the minimum K case, so set K = 1, |
| -- Right_Small = Lit_Value. |
| |
| -- If numerator > 1, then set K to the denominator of the fraction so |
| -- that the resulting small ratio is an integer (the numerator value). |
| |
| procedure Do_Divide_Fixed_Universal (N : Node_Id) is |
| Left : constant Node_Id := Left_Opnd (N); |
| Right : constant Node_Id := Right_Opnd (N); |
| Left_Type : constant Entity_Id := Etype (Left); |
| Result_Type : constant Entity_Id := Etype (N); |
| Left_Small : constant Ureal := Small_Value (Left_Type); |
| Lit_Value : constant Ureal := Realval (Right); |
| |
| Result_Small : Ureal; |
| Frac : Ureal; |
| Frac_Num : Uint; |
| Frac_Den : Uint; |
| Lit_K : Node_Id; |
| Lit_Int : Node_Id; |
| |
| begin |
| -- Get result small. If the result is an integer, treat it as though |
| -- it had a small of 1.0, all other processing is identical. |
| |
| if Is_Integer_Type (Result_Type) then |
| Result_Small := Ureal_1; |
| else |
| Result_Small := Small_Value (Result_Type); |
| end if; |
| |
| -- Determine if literal can be rewritten successfully |
| |
| Frac := Left_Small / (Lit_Value * Result_Small); |
| Frac_Num := Norm_Num (Frac); |
| Frac_Den := Norm_Den (Frac); |
| |
| -- Case where fraction is the reciprocal of an integer (K = 1, integer |
| -- = denominator). If this integer is not too large, this is the case |
| -- where the result can be obtained by dividing by this integer value. |
| |
| if Frac_Num = 1 then |
| Lit_Int := Integer_Literal (N, Frac_Den, UR_Is_Negative (Frac)); |
| |
| if Present (Lit_Int) then |
| Set_Result (N, Build_Divide (N, Left, Lit_Int)); |
| return; |
| end if; |
| |
| -- Case where we choose K to make fraction an integer (K = denominator |
| -- of fraction, integer = numerator of fraction). If both K and the |
| -- numerator are small enough, this is the case where the result can |
| -- be obtained by first multiplying by the integer value and then |
| -- dividing by K (the order is important, if we divided first, we |
| -- would lose precision). |
| |
| else |
| Lit_Int := Integer_Literal (N, Frac_Num, UR_Is_Negative (Frac)); |
| Lit_K := Integer_Literal (N, Frac_Den, False); |
| |
| if Present (Lit_Int) and then Present (Lit_K) then |
| Set_Result (N, Build_Scaled_Divide (N, Left, Lit_Int, Lit_K)); |
| return; |
| end if; |
| end if; |
| |
| -- Fall through if the literal cannot be successfully rewritten, or if |
| -- the small ratio is out of range of integer arithmetic. In the former |
| -- case it is fine to use floating-point to get the close result set, |
| -- and in the latter case, it means that the result is zero or raises |
| -- constraint error, and we can do that accurately in floating-point. |
| |
| -- If we end up using floating-point, then we take the right integer |
| -- to be one, and its small to be the value of the original right real |
| -- literal. That way, we need only one floating-point multiplication. |
| |
| Set_Result (N, |
| Build_Multiply (N, Fpt_Value (Left), Real_Literal (N, Frac))); |
| end Do_Divide_Fixed_Universal; |
| |
| ------------------------------- |
| -- Do_Divide_Universal_Fixed -- |
| ------------------------------- |
| |
| -- We have: |
| |
| -- (Result_Value * Result_Small) = |
| -- Lit_Value / (Right_Value * Right_Small) |
| -- Result_Value = |
| -- (Lit_Value / (Right_Small * Result_Small)) / Right_Value |
| |
| -- The result is required to be in the perfect result set if the literal |
| -- can be factored so that the resulting small ratio is an integer or the |
| -- reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed |
| -- analysis of these RM requirements: |
| |
| -- We must factor the literal, finding an integer K: |
| |
| -- Lit_Value = K * Left_Small |
| -- Left_Small = Lit_Value / K |
| |
| -- such that the small ratio: |
| |
| -- (Lit_Value / K) |
| -- -------------------------- |
| -- Right_Small * Result_Small |
| |
| -- Lit_Value 1 |
| -- = -------------------------- * - |
| -- Right_Small * Result_Small K |
| |
| -- is an integer or the reciprocal of an integer, and for |
| -- implementation efficiency we need the smallest such K. |
| |
| -- First we reduce the left fraction to lowest terms |
| |
| -- If denominator = 1, then for K = 1, the small ratio is an integer |
| -- (the numerator) and this is clearly the minimum K case, so set K = 1, |
| -- and Left_Small = Lit_Value. |
| |
| -- If denominator > 1, then set K to the numerator of the fraction so |
| -- that the resulting small ratio is the reciprocal of an integer (the |
| -- numerator value). |
| |
| procedure Do_Divide_Universal_Fixed (N : Node_Id) is |
| Left : constant Node_Id := Left_Opnd (N); |
| Right : constant Node_Id := Right_Opnd (N); |
| Right_Type : constant Entity_Id := Etype (Right); |
| Result_Type : constant Entity_Id := Etype (N); |
| Right_Small : constant Ureal := Small_Value (Right_Type); |
| Lit_Value : constant Ureal := Realval (Left); |
| |
| Result_Small : Ureal; |
| Frac : Ureal; |
| Frac_Num : Uint; |
| Frac_Den : Uint; |
| Lit_K : Node_Id; |
| Lit_Int : Node_Id; |
| |
| begin |
| -- Get result small. If the result is an integer, treat it as though |
| -- it had a small of 1.0, all other processing is identical. |
| |
| if Is_Integer_Type (Result_Type) then |
| Result_Small := Ureal_1; |
| else |
| Result_Small := Small_Value (Result_Type); |
| end if; |
| |
| -- Determine if literal can be rewritten successfully |
| |
| Frac := Lit_Value / (Right_Small * Result_Small); |
| Frac_Num := Norm_Num (Frac); |
| Frac_Den := Norm_Den (Frac); |
| |
| -- Case where fraction is an integer (K = 1, integer = numerator). If |
| -- this integer is not too large, this is the case where the result |
| -- can be obtained by dividing this integer by the right operand. |
| |
| if Frac_Den = 1 then |
| Lit_Int := Integer_Literal (N, Frac_Num, UR_Is_Negative (Frac)); |
| |
| if Present (Lit_Int) then |
| Set_Result (N, Build_Divide (N, Lit_Int, Right)); |
| return; |
| end if; |
| |
| -- Case where we choose K to make the fraction the reciprocal of an |
| -- integer (K = numerator of fraction, integer = numerator of fraction). |
| -- If both K and the integer are small enough, this is the case where |
| -- the result can be obtained by multiplying the right operand by K |
| -- and then dividing by the integer value. The order of the operations |
| -- is important (if we divided first, we would lose precision). |
| |
| else |
| Lit_Int := Integer_Literal (N, Frac_Den, UR_Is_Negative (Frac)); |
| Lit_K := Integer_Literal (N, Frac_Num, False); |
| |
| if Present (Lit_Int) and then Present (Lit_K) then |
| Set_Result (N, Build_Double_Divide (N, Lit_K, Right, Lit_Int)); |
| return; |
| end if; |
| end if; |
| |
| -- Fall through if the literal cannot be successfully rewritten, or if |
| -- the small ratio is out of range of integer arithmetic. In the former |
| -- case it is fine to use floating-point to get the close result set, |
| -- and in the latter case, it means that the result is zero or raises |
| -- constraint error, and we can do that accurately in floating-point. |
| |
| -- If we end up using floating-point, then we take the right integer |
| -- to be one, and its small to be the value of the original right real |
| -- literal. That way, we need only one floating-point division. |
| |
| Set_Result (N, |
| Build_Divide (N, Real_Literal (N, Frac), Fpt_Value (Right))); |
| end Do_Divide_Universal_Fixed; |
| |
| ----------------------------- |
| -- Do_Multiply_Fixed_Fixed -- |
| ----------------------------- |
| |
| -- We have: |
| |
| -- (Result_Value * Result_Small) = |
| -- (Left_Value * Left_Small) * (Right_Value * Right_Small) |
| |
| -- Result_Value = (Left_Value * Right_Value) * |
| -- (Left_Small * Right_Small) / Result_Small; |
| |
| -- we can do the operation in integer arithmetic if this fraction is an |
| -- integer or the reciprocal of an integer, as detailed in (RM G.2.3(21)). |
| -- Otherwise the result is in the close result set and our approach is to |
| -- use floating-point to compute this close result. |
| |
| procedure Do_Multiply_Fixed_Fixed (N : Node_Id) is |
| Left : constant Node_Id := Left_Opnd (N); |
| Right : constant Node_Id := Right_Opnd (N); |
| |
| Left_Type : constant Entity_Id := Etype (Left); |
| Right_Type : constant Entity_Id := Etype (Right); |
| Result_Type : constant Entity_Id := Etype (N); |
| Right_Small : constant Ureal := Small_Value (Right_Type); |
| Left_Small : constant Ureal := Small_Value (Left_Type); |
| |
| Result_Small : Ureal; |
| Frac : Ureal; |
| Frac_Num : Uint; |
| Frac_Den : Uint; |
| Lit_Int : Node_Id; |
| |
| begin |
| -- Get result small. If the result is an integer, treat it as though |
| -- it had a small of 1.0, all other processing is identical. |
| |
| if Is_Integer_Type (Result_Type) then |
| Result_Small := Ureal_1; |
| else |
| Result_Small := Small_Value (Result_Type); |
| end if; |
| |
| -- Get small ratio |
| |
| Frac := (Left_Small * Right_Small) / Result_Small; |
| Frac_Num := Norm_Num (Frac); |
| Frac_Den := Norm_Den (Frac); |
| |
| -- If the fraction is an integer, then we get the result by multiplying |
| -- the operands, and then multiplying the result by the integer value. |
| |
| if Frac_Den = 1 then |
| Lit_Int := Integer_Literal (N, Frac_Num); -- always positive |
| |
| if Present (Lit_Int) then |
| Set_Result (N, |
| Build_Multiply (N, Build_Multiply (N, Left, Right), Lit_Int)); |
| return; |
| end if; |
| |
| -- If the fraction is the reciprocal of an integer, then we get the |
| -- result by multiplying the operands, and then dividing the result by |
| -- the integer value. The order of the operations is important, if we |
| -- divided first, we would lose precision. |
| |
| elsif Frac_Num = 1 then |
| Lit_Int := Integer_Literal (N, Frac_Den); -- always positive |
| |
| if Present (Lit_Int) then |
| Set_Result (N, Build_Scaled_Divide (N, Left, Right, Lit_Int)); |
| return; |
| end if; |
| end if; |
| |
| -- If we fall through, we use floating-point to compute the result |
| |
| Set_Result (N, |
| Build_Multiply (N, |
| Build_Multiply (N, Fpt_Value (Left), Fpt_Value (Right)), |
| Real_Literal (N, Frac))); |
| end Do_Multiply_Fixed_Fixed; |
| |
| --------------------------------- |
| -- Do_Multiply_Fixed_Universal -- |
| --------------------------------- |
| |
| -- We have: |
| |
| -- (Result_Value * Result_Small) = (Left_Value * Left_Small) * Lit_Value; |
| -- Result_Value = Left_Value * (Left_Small * Lit_Value) / Result_Small; |
| |
| -- The result is required to be in the perfect result set if the literal |
| -- can be factored so that the resulting small ratio is an integer or the |
| -- reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed |
| -- analysis of these RM requirements: |
| |
| -- We must factor the literal, finding an integer K: |
| |
| -- Lit_Value = K * Right_Small |
| -- Right_Small = Lit_Value / K |
| |
| -- such that the small ratio: |
| |
| -- Left_Small * (Lit_Value / K) |
| -- ---------------------------- |
| -- Result_Small |
| |
| -- Left_Small * Lit_Value 1 |
| -- = ---------------------- * - |
| -- Result_Small K |
| |
| -- is an integer or the reciprocal of an integer, and for |
| -- implementation efficiency we need the smallest such K. |
| |
| -- First we reduce the left fraction to lowest terms |
| |
| -- If denominator = 1, then for K = 1, the small ratio is an integer, and |
| -- this is clearly the minimum K case, so set |
| |
| -- K = 1, Right_Small = Lit_Value |
| |
| -- If denominator > 1, then set K to the numerator of the fraction, so |
| -- that the resulting small ratio is the reciprocal of the integer (the |
| -- denominator value). |
| |
| procedure Do_Multiply_Fixed_Universal |
| (N : Node_Id; |
| Left, Right : Node_Id) |
| is |
| Left_Type : constant Entity_Id := Etype (Left); |
| Result_Type : constant Entity_Id := Etype (N); |
| Left_Small : constant Ureal := Small_Value (Left_Type); |
| Lit_Value : constant Ureal := Realval (Right); |
| |
| Result_Small : Ureal; |
| Frac : Ureal; |
| Frac_Num : Uint; |
| Frac_Den : Uint; |
| Lit_K : Node_Id; |
| Lit_Int : Node_Id; |
| |
| begin |
| -- Get result small. If the result is an integer, treat it as though |
| -- it had a small of 1.0, all other processing is identical. |
| |
| if Is_Integer_Type (Result_Type) then |
| Result_Small := Ureal_1; |
| else |
| Result_Small := Small_Value (Result_Type); |
| end if; |
| |
| -- Determine if literal can be rewritten successfully |
| |
| Frac := (Left_Small * Lit_Value) / Result_Small; |
| Frac_Num := Norm_Num (Frac); |
| Frac_Den := Norm_Den (Frac); |
| |
| -- Case where fraction is an integer (K = 1, integer = numerator). If |
| -- this integer is not too large, this is the case where the result can |
| -- be obtained by multiplying by this integer value. |
| |
| if Frac_Den = 1 then |
| Lit_Int := Integer_Literal (N, Frac_Num, UR_Is_Negative (Frac)); |
| |
| if Present (Lit_Int) then |
| Set_Result (N, Build_Multiply (N, Left, Lit_Int)); |
| return; |
| end if; |
| |
| -- Case where we choose K to make fraction the reciprocal of an integer |
| -- (K = numerator of fraction, integer = denominator of fraction). If |
| -- both K and the denominator are small enough, this is the case where |
| -- the result can be obtained by first multiplying by K, and then |
| -- dividing by the integer value. |
| |
| else |
| Lit_Int := Integer_Literal (N, Frac_Den, UR_Is_Negative (Frac)); |
| Lit_K := Integer_Literal (N, Frac_Num, False); |
| |
| if Present (Lit_Int) and then Present (Lit_K) then |
| Set_Result (N, Build_Scaled_Divide (N, Left, Lit_K, Lit_Int)); |
| return; |
| end if; |
| end if; |
| |
| -- Fall through if the literal cannot be successfully rewritten, or if |
| -- the small ratio is out of range of integer arithmetic. In the former |
| -- case it is fine to use floating-point to get the close result set, |
| -- and in the latter case, it means that the result is zero or raises |
| -- constraint error, and we can do that accurately in floating-point. |
| |
| -- If we end up using floating-point, then we take the right integer |
| -- to be one, and its small to be the value of the original right real |
| -- literal. That way, we need only one floating-point multiplication. |
| |
| Set_Result (N, |
| Build_Multiply (N, Fpt_Value (Left), Real_Literal (N, Frac))); |
| end Do_Multiply_Fixed_Universal; |
| |
| --------------------------------- |
| -- Expand_Convert_Fixed_Static -- |
| --------------------------------- |
| |
| procedure Expand_Convert_Fixed_Static (N : Node_Id) is |
| begin |
| Rewrite (N, |
| Convert_To (Etype (N), |
| Make_Real_Literal (Sloc (N), Expr_Value_R (Expression (N))))); |
| Analyze_And_Resolve (N); |
| end Expand_Convert_Fixed_Static; |
| |
| ----------------------------------- |
| -- Expand_Convert_Fixed_To_Fixed -- |
| ----------------------------------- |
| |
| -- We have: |
| |
| -- Result_Value * Result_Small = Source_Value * Source_Small |
| -- Result_Value = Source_Value * (Source_Small / Result_Small) |
| |
| -- If the small ratio (Source_Small / Result_Small) is a sufficiently small |
| -- integer, then the perfect result set is obtained by a single integer |
| -- multiplication. |
| |
| -- If the small ratio is the reciprocal of a sufficiently small integer, |
| -- then the perfect result set is obtained by a single integer division. |
| |
| -- If the numerator and denominator of the small ratio are sufficiently |
| -- small integers, then the perfect result set is obtained by a scaled |
| -- divide operation. |
| |
| -- In other cases, we obtain the close result set by calculating the |
| -- result in floating-point. |
| |
| procedure Expand_Convert_Fixed_To_Fixed (N : Node_Id) is |
| Rng_Check : constant Boolean := Do_Range_Check (N); |
| Expr : constant Node_Id := Expression (N); |
| Result_Type : constant Entity_Id := Etype (N); |
| Source_Type : constant Entity_Id := Etype (Expr); |
| Small_Ratio : Ureal; |
| Ratio_Num : Uint; |
| Ratio_Den : Uint; |
| Lit_Num : Node_Id; |
| Lit_Den : Node_Id; |
| |
| begin |
| if Is_OK_Static_Expression (Expr) then |
| Expand_Convert_Fixed_Static (N); |
| return; |
| end if; |
| |
| Small_Ratio := Small_Value (Source_Type) / Small_Value (Result_Type); |
| Ratio_Num := Norm_Num (Small_Ratio); |
| Ratio_Den := Norm_Den (Small_Ratio); |
| |
| if Ratio_Den = 1 then |
| if Ratio_Num = 1 then |
| Set_Result (N, Expr); |
| return; |
| |
| else |
| Lit_Num := Integer_Literal (N, Ratio_Num); |
| |
| if Present (Lit_Num) then |
| Set_Result (N, Build_Multiply (N, Expr, Lit_Num)); |
| return; |
| end if; |
| end if; |
| |
| elsif Ratio_Num = 1 then |
| Lit_Den := Integer_Literal (N, Ratio_Den); |
| |
| if Present (Lit_Den) then |
| Set_Result (N, Build_Divide (N, Expr, Lit_Den), Rng_Check); |
| return; |
| end if; |
| |
| else |
| Lit_Num := Integer_Literal (N, Ratio_Num); |
| Lit_Den := Integer_Literal (N, Ratio_Den); |
| |
| if Present (Lit_Num) and then Present (Lit_Den) then |
| Set_Result |
| (N, Build_Scaled_Divide (N, Expr, Lit_Num, Lit_Den), Rng_Check); |
| return; |
| end if; |
| end if; |
| |
| -- Fall through to use floating-point for the close result set case, |
| -- as a result of the numerator or denominator of the small ratio not |
| -- being a sufficiently small integer. |
| |
| Set_Result (N, |
| Build_Multiply (N, |
| Fpt_Value (Expr), |
| Real_Literal (N, Small_Ratio)), |
| Rng_Check); |
| end Expand_Convert_Fixed_To_Fixed; |
| |
| ----------------------------------- |
| -- Expand_Convert_Fixed_To_Float -- |
| ----------------------------------- |
| |
| -- If the small of the fixed type is 1.0, then we simply convert the |
| -- integer value directly to the target floating-point type, otherwise |
| -- we first have to multiply by the small, in Universal_Real, and then |
| -- convert the result to the target floating-point type. |
| |
| procedure Expand_Convert_Fixed_To_Float (N : Node_Id) is |
| Rng_Check : constant Boolean := Do_Range_Check (N); |
| Expr : constant Node_Id := Expression (N); |
| Source_Type : constant Entity_Id := Etype (Expr); |
| Small : constant Ureal := Small_Value (Source_Type); |
| |
| begin |
| if Is_OK_Static_Expression (Expr) then |
| Expand_Convert_Fixed_Static (N); |
| return; |
| end if; |
| |
| if Small = Ureal_1 then |
| Set_Result (N, Expr); |
| |
| else |
| Set_Result (N, |
| Build_Multiply (N, |
| Fpt_Value (Expr), |
| Real_Literal (N, Small)), |
| Rng_Check); |
| end if; |
| end Expand_Convert_Fixed_To_Float; |
| |
| ------------------------------------- |
| -- Expand_Convert_Fixed_To_Integer -- |
| ------------------------------------- |
| |
| -- We have: |
| |
| -- Result_Value = Source_Value * Source_Small |
| |
| -- If the small value is a sufficiently small integer, then the perfect |
| -- result set is obtained by a single integer multiplication. |
| |
| -- If the small value is the reciprocal of a sufficiently small integer, |
| -- then the perfect result set is obtained by a single integer division. |
| |
| -- If the numerator and denominator of the small value are sufficiently |
| -- small integers, then the perfect result set is obtained by a scaled |
| -- divide operation. |
| |
| -- In other cases, we obtain the close result set by calculating the |
| -- result in floating-point. |
| |
| procedure Expand_Convert_Fixed_To_Integer (N : Node_Id) is |
| Rng_Check : constant Boolean := Do_Range_Check (N); |
| Expr : constant Node_Id := Expression (N); |
| Source_Type : constant Entity_Id := Etype (Expr); |
| Small : constant Ureal := Small_Value (Source_Type); |
| Small_Num : constant Uint := Norm_Num (Small); |
| Small_Den : constant Uint := Norm_Den (Small); |
| Lit_Num : Node_Id; |
| Lit_Den : Node_Id; |
| |
| begin |
| if Is_OK_Static_Expression (Expr) then |
| Expand_Convert_Fixed_Static (N); |
| return; |
| end if; |
| |
| if Small_Den = 1 then |
| Lit_Num := Integer_Literal (N, Small_Num); |
| |
| if Present (Lit_Num) then |
| Set_Result (N, Build_Multiply (N, Expr, Lit_Num), Rng_Check); |
| return; |
| end if; |
| |
| elsif Small_Num = 1 then |
| Lit_Den := Integer_Literal (N, Small_Den); |
| |
| if Present (Lit_Den) then |
| Set_Result (N, Build_Divide (N, Expr, Lit_Den), Rng_Check); |
| return; |
| end if; |
| |
| else |
| Lit_Num := Integer_Literal (N, Small_Num); |
| Lit_Den := Integer_Literal (N, Small_Den); |
| |
| if Present (Lit_Num) and then Present (Lit_Den) then |
| Set_Result |
| (N, Build_Scaled_Divide (N, Expr, Lit_Num, Lit_Den), Rng_Check); |
| return; |
| end if; |
| end if; |
| |
| -- Fall through to use floating-point for the close result set case, |
| -- as a result of the numerator or denominator of the small value not |
| -- being a sufficiently small integer. |
| |
| Set_Result (N, |
| Build_Multiply (N, |
| Fpt_Value (Expr), |
| Real_Literal (N, Small)), |
| Rng_Check); |
| end Expand_Convert_Fixed_To_Integer; |
| |
| ----------------------------------- |
| -- Expand_Convert_Float_To_Fixed -- |
| ----------------------------------- |
| |
| -- We have |
| |
| -- Result_Value * Result_Small = Operand_Value |
| |
| -- so compute: |
| |
| -- Result_Value = Operand_Value * (1.0 / Result_Small) |
| |
| -- We do the small scaling in floating-point, and we do a multiplication |
| -- rather than a division, since it is accurate enough for the perfect |
| -- result cases, and faster. |
| |
| procedure Expand_Convert_Float_To_Fixed (N : Node_Id) is |
| Expr : constant Node_Id := Expression (N); |
| Result_Type : constant Entity_Id := Etype (N); |
| Rng_Check : constant Boolean := Do_Range_Check (N); |
| Small : constant Ureal := Small_Value (Result_Type); |
| |
| begin |
| -- Optimize small = 1, where we can avoid the multiply completely |
| |
| if Small = Ureal_1 then |
| Set_Result (N, Expr, Rng_Check, Trunc => True); |
| |
| -- Normal case where multiply is required. Rounding is truncating |
| -- for decimal fixed point types only, see RM 4.6(29), except if the |
| -- conversion comes from an attribute reference 'Round (RM 3.5.10 (14)): |
| -- The attribute is implemented by means of a conversion that must |
| -- round. |
| |
| else |
| Set_Result |
| (N => N, |
| Expr => |
| Build_Multiply |
| (N => N, |
| L => Fpt_Value (Expr), |
| R => Real_Literal (N, Ureal_1 / Small)), |
| Rchk => Rng_Check, |
| Trunc => Is_Decimal_Fixed_Point_Type (Result_Type) |
| and not Rounded_Result (N)); |
| end if; |
| end Expand_Convert_Float_To_Fixed; |
| |
| ------------------------------------- |
| -- Expand_Convert_Integer_To_Fixed -- |
| ------------------------------------- |
| |
| -- We have |
| |
| -- Result_Value * Result_Small = Operand_Value |
| -- Result_Value = Operand_Value / Result_Small |
| |
| -- If the small value is a sufficiently small integer, then the perfect |
| -- result set is obtained by a single integer division. |
| |
| -- If the small value is the reciprocal of a sufficiently small integer, |
| -- the perfect result set is obtained by a single integer multiplication. |
| |
| -- If the numerator and denominator of the small value are sufficiently |
| -- small integers, then the perfect result set is obtained by a scaled |
| -- divide operation. |
| |
| -- In other cases, we obtain the close result set by calculating the |
| -- result in floating-point using a multiplication by the reciprocal |
| -- of the Result_Small. |
| |
| procedure Expand_Convert_Integer_To_Fixed (N : Node_Id) is |
| Rng_Check : constant Boolean := Do_Range_Check (N); |
| Expr : constant Node_Id := Expression (N); |
| Result_Type : constant Entity_Id := Etype (N); |
| Small : constant Ureal := Small_Value (Result_Type); |
| Small_Num : constant Uint := Norm_Num (Small); |
| Small_Den : constant Uint := Norm_Den (Small); |
| Lit_Num : Node_Id; |
| Lit_Den : Node_Id; |
| |
| begin |
| if Small_Den = 1 then |
| Lit_Num := Integer_Literal (N, Small_Num); |
| |
| if Present (Lit_Num) then |
| Set_Result (N, Build_Divide (N, Expr, Lit_Num), Rng_Check); |
| return; |
| end if; |
| |
| elsif Small_Num = 1 then |
| Lit_Den := Integer_Literal (N, Small_Den); |
| |
| if Present (Lit_Den) then |
| Set_Result (N, Build_Multiply (N, Expr, Lit_Den), Rng_Check); |
| return; |
| end if; |
| |
| else |
| Lit_Num := Integer_Literal (N, Small_Num); |
| Lit_Den := Integer_Literal (N, Small_Den); |
| |
| if Present (Lit_Num) and then Present (Lit_Den) then |
| Set_Result |
| (N, Build_Scaled_Divide (N, Expr, Lit_Den, Lit_Num), Rng_Check); |
| return; |
| end if; |
| end if; |
| |
| -- Fall through to use floating-point for the close result set case, |
| -- as a result of the numerator or denominator of the small value not |
| -- being a sufficiently small integer. |
| |
| Set_Result (N, |
| Build_Multiply (N, |
| Fpt_Value (Expr), |
| Real_Literal (N, Ureal_1 / Small)), |
| Rng_Check); |
| end Expand_Convert_Integer_To_Fixed; |
| |
| -------------------------------- |
| -- Expand_Decimal_Divide_Call -- |
| -------------------------------- |
| |
| -- We have four operands |
| |
| -- Dividend |
| -- Divisor |
| -- Quotient |
| -- Remainder |
| |
| -- All of which are decimal types, and which thus have associated |
| -- decimal scales. |
| |
| -- Computing the quotient is a similar problem to that faced by the |
| -- normal fixed-point division, except that it is simpler, because |
| -- we always have compatible smalls. |
| |
| -- Quotient = (Dividend / Divisor) * 10**q |
| |
| -- where 10 ** q = Dividend'Small / (Divisor'Small * Quotient'Small) |
| -- so q = Divisor'Scale + Quotient'Scale - Dividend'Scale |
| |
| -- For q >= 0, we compute |
| |
| -- Numerator := Dividend * 10 ** q |
| -- Denominator := Divisor |
| -- Quotient := Numerator / Denominator |
| |
| -- For q < 0, we compute |
| |
| -- Numerator := Dividend |
| -- Denominator := Divisor * 10 ** q |
| -- Quotient := Numerator / Denominator |
| |
| -- Both these divisions are done in truncated mode, and the remainder |
| -- from these divisions is used to compute the result Remainder. This |
| -- remainder has the effective scale of the numerator of the division, |
| |
| -- For q >= 0, the remainder scale is Dividend'Scale + q |
| -- For q < 0, the remainder scale is Dividend'Scale |
| |
| -- The result Remainder is then computed by a normal truncating decimal |
| -- conversion from this scale to the scale of the remainder, i.e. by a |
| -- division or multiplication by the appropriate power of 10. |
| |
| procedure Expand_Decimal_Divide_Call (N : Node_Id) is |
| Loc : constant Source_Ptr := Sloc (N); |
| |
| Dividend : Node_Id := First_Actual (N); |
| Divisor : Node_Id := Next_Actual (Dividend); |
| Quotient : Node_Id := Next_Actual (Divisor); |
| Remainder : Node_Id := Next_Actual (Quotient); |
| |
| Dividend_Type : constant Entity_Id := Etype (Dividend); |
| Divisor_Type : constant Entity_Id := Etype (Divisor); |
| Quotient_Type : constant Entity_Id := Etype (Quotient); |
| Remainder_Type : constant Entity_Id := Etype (Remainder); |
| |
| Dividend_Scale : constant Uint := Scale_Value (Dividend_Type); |
| Divisor_Scale : constant Uint := Scale_Value (Divisor_Type); |
| Quotient_Scale : constant Uint := Scale_Value (Quotient_Type); |
| Remainder_Scale : constant Uint := Scale_Value (Remainder_Type); |
| |
| Q : Uint; |
| Numerator_Scale : Uint; |
| Stmts : List_Id; |
| Qnn : Entity_Id; |
| Rnn : Entity_Id; |
| Computed_Remainder : Node_Id; |
| Adjusted_Remainder : Node_Id; |
| Scale_Adjust : Uint; |
| |
| begin |
| -- Relocate the operands, since they are now list elements, and we |
| -- need to reference them separately as operands in the expanded code. |
| |
| Dividend := Relocate_Node (Dividend); |
| Divisor := Relocate_Node (Divisor); |
| Quotient := Relocate_Node (Quotient); |
| Remainder := Relocate_Node (Remainder); |
| |
| -- Now compute Q, the adjustment scale |
| |
| Q := Divisor_Scale + Quotient_Scale - Dividend_Scale; |
| |
| -- If Q is non-negative then we need a scaled divide |
| |
| if Q >= 0 then |
| Build_Scaled_Divide_Code |
| (N, |
| Dividend, |
| Integer_Literal (N, Uint_10 ** Q), |
| Divisor, |
| Qnn, Rnn, Stmts); |
| |
| Numerator_Scale := Dividend_Scale + Q; |
| |
| -- If Q is negative, then we need a double divide |
| |
| else |
| Build_Double_Divide_Code |
| (N, |
| Dividend, |
| Divisor, |
| Integer_Literal (N, Uint_10 ** (-Q)), |
| Qnn, Rnn, Stmts); |
| |
| Numerator_Scale := Dividend_Scale; |
| end if; |
| |
| -- Add statement to set quotient value |
| |
| -- Quotient := quotient-type!(Qnn); |
| |
| Append_To (Stmts, |
| Make_Assignment_Statement (Loc, |
| Name => Quotient, |
| Expression => |
| Unchecked_Convert_To (Quotient_Type, |
| Build_Conversion (N, Quotient_Type, |
| New_Occurrence_Of (Qnn, Loc))))); |
| |
| -- Now we need to deal with computing and setting the remainder. The |
| -- scale of the remainder is in Numerator_Scale, and the desired |
| -- scale is the scale of the given Remainder argument. There are |
| -- three cases: |
| |
| -- Numerator_Scale > Remainder_Scale |
| |
| -- in this case, there are extra digits in the computed remainder |
| -- which must be eliminated by an extra division: |
| |
| -- computed-remainder := Numerator rem Denominator |
| -- scale_adjust = Numerator_Scale - Remainder_Scale |
| -- adjusted-remainder := computed-remainder / 10 ** scale_adjust |
| |
| -- Numerator_Scale = Remainder_Scale |
| |
| -- in this case, the we have the remainder we need |
| |
| -- computed-remainder := Numerator rem Denominator |
| -- adjusted-remainder := computed-remainder |
| |
| -- Numerator_Scale < Remainder_Scale |
| |
| -- in this case, we have insufficient digits in the computed |
| -- remainder, which must be eliminated by an extra multiply |
| |
| -- computed-remainder := Numerator rem Denominator |
| -- scale_adjust = Remainder_Scale - Numerator_Scale |
| -- adjusted-remainder := computed-remainder * 10 ** scale_adjust |
| |
| -- Finally we assign the adjusted-remainder to the result Remainder |
| -- with conversions to get the proper fixed-point type representation. |
| |
| Computed_Remainder := New_Occurrence_Of (Rnn, Loc); |
| |
| if Numerator_Scale > Remainder_Scale then |
| Scale_Adjust := Numerator_Scale - Remainder_Scale; |
| Adjusted_Remainder := |
| Build_Divide |
| (N, Computed_Remainder, Integer_Literal (N, 10 ** Scale_Adjust)); |
| |
| elsif Numerator_Scale = Remainder_Scale then |
| Adjusted_Remainder := Computed_Remainder; |
| |
| else -- Numerator_Scale < Remainder_Scale |
| Scale_Adjust := Remainder_Scale - Numerator_Scale; |
| Adjusted_Remainder := |
| Build_Multiply |
| (N, Computed_Remainder, Integer_Literal (N, 10 ** Scale_Adjust)); |
| end if; |
| |
| -- Assignment of remainder result |
| |
| Append_To (Stmts, |
| Make_Assignment_Statement (Loc, |
| Name => Remainder, |
| Expression => |
| Unchecked_Convert_To (Remainder_Type, Adjusted_Remainder))); |
| |
| -- Final step is to rewrite the call with a block containing the |
| -- above sequence of constructed statements for the divide operation. |
| |
| Rewrite (N, |
| Make_Block_Statement (Loc, |
| Handled_Statement_Sequence => |
| Make_Handled_Sequence_Of_Statements (Loc, |
| Statements => Stmts))); |
| |
| Analyze (N); |
| end Expand_Decimal_Divide_Call; |
| |
| ----------------------------------------------- |
| -- Expand_Divide_Fixed_By_Fixed_Giving_Fixed -- |
| ----------------------------------------------- |
| |
| procedure Expand_Divide_Fixed_By_Fixed_Giving_Fixed (N : Node_Id) is |
| Left : constant Node_Id := Left_Opnd (N); |
| Right : constant Node_Id := Right_Opnd (N); |
| |
| begin |
| if Etype (Left) = Universal_Real then |
| Do_Divide_Universal_Fixed (N); |
| |
| elsif Etype (Right) = Universal_Real then |
| Do_Divide_Fixed_Universal (N); |
| |
| else |
| Do_Divide_Fixed_Fixed (N); |
| |
| -- A focused optimization: if after constant folding the |
| -- expression is of the form: T ((Exp * D) / D), where D is |
| -- a static constant, return T (Exp). This form will show up |
| -- when D is the denominator of the static expression for the |
| -- 'small of fixed-point types involved. This transformation |
| -- removes a division that may be expensive on some targets. |
| |
| if Nkind (N) = N_Type_Conversion |
| and then Nkind (Expression (N)) = N_Op_Divide |
| then |
| declare |
| Num : constant Node_Id := Left_Opnd (Expression (N)); |
| Den : constant Node_Id := Right_Opnd (Expression (N)); |
| |
| begin |
| if Nkind (Den) = N_Integer_Literal |
| and then Nkind (Num) = N_Op_Multiply |
| and then Nkind (Right_Opnd (Num)) = N_Integer_Literal |
| and then Intval (Den) = Intval (Right_Opnd (Num)) |
| then |
| Rewrite (Expression (N), Left_Opnd (Num)); |
| end if; |
| end; |
| end if; |
| end if; |
| end Expand_Divide_Fixed_By_Fixed_Giving_Fixed; |
| |
| ----------------------------------------------- |
| -- Expand_Divide_Fixed_By_Fixed_Giving_Float -- |
| ----------------------------------------------- |
| |
| -- The division is done in Universal_Real, and the result is multiplied |
| -- by the small ratio, which is Small (Right) / Small (Left). Special |
| -- treatment is required for universal operands, which represent their |
| -- own value and do not require conversion. |
| |
| procedure Expand_Divide_Fixed_By_Fixed_Giving_Float (N : Node_Id) is |
| Left : constant Node_Id := Left_Opnd (N); |
| Right : constant Node_Id := Right_Opnd (N); |
| |
| Left_Type : constant Entity_Id := Etype (Left); |
| Right_Type : constant Entity_Id := Etype (Right); |
| |
| begin |
| -- Case of left operand is universal real, the result we want is: |
| |
| -- Left_Value / (Right_Value * Right_Small) |
| |
| -- so we compute this as: |
| |
| -- (Left_Value / Right_Small) / Right_Value |
| |
| if Left_Type = Universal_Real then |
| Set_Result (N, |
| Build_Divide (N, |
| Real_Literal (N, Realval (Left) / Small_Value (Right_Type)), |
| Fpt_Value (Right))); |
| |
| -- Case of right operand is universal real, the result we want is |
| |
| -- (Left_Value * Left_Small) / Right_Value |
| |
| -- so we compute this as: |
| |
| -- Left_Value * (Left_Small / Right_Value) |
| |
| -- Note we invert to a multiplication since usually floating-point |
| -- multiplication is much faster than floating-point division. |
| |
| elsif Right_Type = Universal_Real then |
| Set_Result (N, |
| Build_Multiply (N, |
| Fpt_Value (Left), |
| Real_Literal (N, Small_Value (Left_Type) / Realval (Right)))); |
| |
| -- Both operands are fixed, so the value we want is |
| |
| -- (Left_Value * Left_Small) / (Right_Value * Right_Small) |
| |
| -- which we compute as: |
| |
| -- (Left_Value / Right_Value) * (Left_Small / Right_Small) |
| |
| else |
| Set_Result (N, |
| Build_Multiply (N, |
| Build_Divide (N, Fpt_Value (Left), Fpt_Value (Right)), |
| Real_Literal (N, |
| Small_Value (Left_Type) / Small_Value (Right_Type)))); |
| end if; |
| end Expand_Divide_Fixed_By_Fixed_Giving_Float; |
| |
| ------------------------------------------------- |
| -- Expand_Divide_Fixed_By_Fixed_Giving_Integer -- |
| ------------------------------------------------- |
| |
| procedure Expand_Divide_Fixed_By_Fixed_Giving_Integer (N : Node_Id) is |
| Left : constant Node_Id := Left_Opnd (N); |
| Right : constant Node_Id := Right_Opnd (N); |
| begin |
| if Etype (Left) = Universal_Real then |
| Do_Divide_Universal_Fixed (N); |
| elsif Etype (Right) = Universal_Real then |
| Do_Divide_Fixed_Universal (N); |
| else |
| Do_Divide_Fixed_Fixed (N); |
| end if; |
| end Expand_Divide_Fixed_By_Fixed_Giving_Integer; |
| |
| ------------------------------------------------- |
| -- Expand_Divide_Fixed_By_Integer_Giving_Fixed -- |
| ------------------------------------------------- |
| |
| -- Since the operand and result fixed-point type is the same, this is |
| -- a straight divide by the right operand, the small can be ignored. |
| |
| procedure Expand_Divide_Fixed_By_Integer_Giving_Fixed (N : Node_Id) is |
| Left : constant Node_Id := Left_Opnd (N); |
| Right : constant Node_Id := Right_Opnd (N); |
| begin |
| Set_Result (N, Build_Divide (N, Left, Right)); |
| end Expand_Divide_Fixed_By_Integer_Giving_Fixed; |
| |
| ------------------------------------------------- |
| -- Expand_Multiply_Fixed_By_Fixed_Giving_Fixed -- |
| ------------------------------------------------- |
| |
| procedure Expand_Multiply_Fixed_By_Fixed_Giving_Fixed (N : Node_Id) is |
| Left : constant Node_Id := Left_Opnd (N); |
| Right : constant Node_Id := Right_Opnd (N); |
| |
| procedure Rewrite_Non_Static_Universal (Opnd : Node_Id); |
| -- The operand may be a non-static universal value, such an |
| -- exponentiation with a non-static exponent. In that case, treat |
| -- as a fixed * fixed multiplication, and convert the argument to |
| -- the target fixed type. |
| |
| ---------------------------------- |
| -- Rewrite_Non_Static_Universal -- |
| ---------------------------------- |
| |
| procedure Rewrite_Non_Static_Universal (Opnd : Node_Id) is |
| Loc : constant Source_Ptr := Sloc (N); |
| begin |
| Rewrite (Opnd, |
| Make_Type_Conversion (Loc, |
| Subtype_Mark => New_Occurrence_Of (Etype (N), Loc), |
| Expression => Expression (Opnd))); |
| Analyze_And_Resolve (Opnd, Etype (N)); |
| end Rewrite_Non_Static_Universal; |
| |
| -- Start of processing for Expand_Multiply_Fixed_By_Fixed_Giving_Fixed |
| |
| begin |
| if Etype (Left) = Universal_Real then |
| if Nkind (Left) = N_Real_Literal then |
| Do_Multiply_Fixed_Universal (N, Left => Right, Right => Left); |
| |
| elsif Nkind (Left) = N_Type_Conversion then |
| Rewrite_Non_Static_Universal (Left); |
| Do_Multiply_Fixed_Fixed (N); |
| end if; |
| |
| elsif Etype (Right) = Universal_Real then |
| if Nkind (Right) = N_Real_Literal then |
| Do_Multiply_Fixed_Universal (N, Left, Right); |
| |
| elsif Nkind (Right) = N_Type_Conversion then |
| Rewrite_Non_Static_Universal (Right); |
| Do_Multiply_Fixed_Fixed (N); |
| end if; |
| |
| else |
| Do_Multiply_Fixed_Fixed (N); |
| end if; |
| end Expand_Multiply_Fixed_By_Fixed_Giving_Fixed; |
| |
| ------------------------------------------------- |
| -- Expand_Multiply_Fixed_By_Fixed_Giving_Float -- |
| ------------------------------------------------- |
| |
| -- The multiply is done in Universal_Real, and the result is multiplied |
| -- by the adjustment for the smalls which is Small (Right) * Small (Left). |
| -- Special treatment is required for universal operands. |
| |
| procedure Expand_Multiply_Fixed_By_Fixed_Giving_Float (N : Node_Id) is |
| Left : constant Node_Id := Left_Opnd (N); |
| Right : constant Node_Id := Right_Opnd (N); |
| |
| Left_Type : constant Entity_Id := Etype (Left); |
| Right_Type : constant Entity_Id := Etype (Right); |
| |
| begin |
| -- Case of left operand is universal real, the result we want is |
| |
| -- Left_Value * (Right_Value * Right_Small) |
| |
| -- so we compute this as: |
| |
| -- (Left_Value * Right_Small) * Right_Value; |
| |
| if Left_Type = Universal_Real then |
| Set_Result (N, |
| Build_Multiply (N, |
| Real_Literal (N, Realval (Left) * Small_Value (Right_Type)), |
| Fpt_Value (Right))); |
| |
| -- Case of right operand is universal real, the result we want is |
| |
| -- (Left_Value * Left_Small) * Right_Value |
| |
| -- so we compute this as: |
| |
| -- Left_Value * (Left_Small * Right_Value) |
| |
| elsif Right_Type = Universal_Real then |
| Set_Result (N, |
| Build_Multiply (N, |
| Fpt_Value (Left), |
| Real_Literal (N, Small_Value (Left_Type) * Realval (Right)))); |
| |
| -- Both operands are fixed, so the value we want is |
| |
| -- (Left_Value * Left_Small) * (Right_Value * Right_Small) |
| |
| -- which we compute as: |
| |
| -- (Left_Value * Right_Value) * (Right_Small * Left_Small) |
| |
| else |
| Set_Result (N, |
| Build_Multiply (N, |
| Build_Multiply (N, Fpt_Value (Left), Fpt_Value (Right)), |
| Real_Literal (N, |
| Small_Value (Right_Type) * Small_Value (Left_Type)))); |
| end if; |
| end Expand_Multiply_Fixed_By_Fixed_Giving_Float; |
| |
| --------------------------------------------------- |
| -- Expand_Multiply_Fixed_By_Fixed_Giving_Integer -- |
| --------------------------------------------------- |
| |
| procedure Expand_Multiply_Fixed_By_Fixed_Giving_Integer (N : Node_Id) is |
| Loc : constant Source_Ptr := Sloc (N); |
| Left : constant Node_Id := Left_Opnd (N); |
| Right : constant Node_Id := Right_Opnd (N); |
| |
| begin |
| if Etype (Left) = Universal_Real then |
| Do_Multiply_Fixed_Universal (N, Left => Right, Right => Left); |
| |
| elsif Etype (Right) = Universal_Real then |
| Do_Multiply_Fixed_Universal (N, Left, Right); |
| |
| -- If both types are equal and we need to avoid floating point |
| -- instructions, it's worth introducing a temporary with the |
| -- common type, because it may be evaluated more simply without |
| -- the need for run-time use of floating point. |
| |
| elsif Etype (Right) = Etype (Left) |
| and then Restriction_Active (No_Floating_Point) |
| then |
| declare |
| Temp : constant Entity_Id := Make_Temporary (Loc, 'F'); |
| Mult : constant Node_Id := Make_Op_Multiply (Loc, Left, Right); |
| Decl : constant Node_Id := |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Temp, |
| Object_Definition => New_Occurrence_Of (Etype (Right), Loc), |
| Expression => Mult); |
| |
| begin |
| Insert_Action (N, Decl); |
| Rewrite (N, |
| OK_Convert_To (Etype (N), New_Occurrence_Of (Temp, Loc))); |
| Analyze_And_Resolve (N, Standard_Integer); |
| end; |
| |
| else |
| Do_Multiply_Fixed_Fixed (N); |
| end if; |
| end Expand_Multiply_Fixed_By_Fixed_Giving_Integer; |
| |
| --------------------------------------------------- |
| -- Expand_Multiply_Fixed_By_Integer_Giving_Fixed -- |
| --------------------------------------------------- |
| |
| -- Since the operand and result fixed-point type is the same, this is |
| -- a straight multiply by the right operand, the small can be ignored. |
| |
| procedure Expand_Multiply_Fixed_By_Integer_Giving_Fixed (N : Node_Id) is |
| begin |
| Set_Result (N, |
| Build_Multiply (N, Left_Opnd (N), Right_Opnd (N))); |
| end Expand_Multiply_Fixed_By_Integer_Giving_Fixed; |
| |
| --------------------------------------------------- |
| -- Expand_Multiply_Integer_By_Fixed_Giving_Fixed -- |
| --------------------------------------------------- |
| |
| -- Since the operand and result fixed-point type is the same, this is |
| -- a straight multiply by the right operand, the small can be ignored. |
| |
| procedure Expand_Multiply_Integer_By_Fixed_Giving_Fixed (N : Node_Id) is |
| begin |
| Set_Result (N, |
| Build_Multiply (N, Left_Opnd (N), Right_Opnd (N))); |
| end Expand_Multiply_Integer_By_Fixed_Giving_Fixed; |
| |
| --------------- |
| -- Fpt_Value -- |
| --------------- |
| |
| function Fpt_Value (N : Node_Id) return Node_Id is |
| begin |
| return Build_Conversion (N, Universal_Real, N); |
| end Fpt_Value; |
| |
| ------------------------ |
| -- Get_Size_For_Value -- |
| ------------------------ |
| |
| function Get_Size_For_Value (V : Uint) return Pos is |
| begin |
| pragma Assert (V >= Uint_0); |
| |
| if V < Uint_2 ** 7 then |
| return 8; |
| |
| elsif V < Uint_2 ** 15 then |
| return 16; |
| |
| elsif V < Uint_2 ** 31 then |
| return 32; |
| |
| elsif V < Uint_2 ** 63 then |
| return 64; |
| |
| elsif V < Uint_2 ** 127 then |
| return 128; |
| |
| else |
| return Pos'Last; |
| end if; |
| end Get_Size_For_Value; |
| |
| ----------------------- |
| -- Get_Type_For_Size -- |
| ----------------------- |
| |
| function Get_Type_For_Size (Siz : Pos; Force : Boolean) return Entity_Id is |
| begin |
| if Siz <= 8 then |
| return Standard_Integer_8; |
| |
| elsif Siz <= 16 then |
| return Standard_Integer_16; |
| |
| elsif Siz <= 32 then |
| return Standard_Integer_32; |
| |
| elsif Siz <= 64 |
| or else (Force and then System_Max_Integer_Size < 128) |
| then |
| return Standard_Integer_64; |
| |
| elsif (Siz <= 128 and then System_Max_Integer_Size = 128) |
| or else Force |
| then |
| return Standard_Integer_128; |
| |
| else |
| return Empty; |
| end if; |
| end Get_Type_For_Size; |
| |
| --------------------- |
| -- Integer_Literal -- |
| --------------------- |
| |
| function Integer_Literal |
| (N : Node_Id; |
| V : Uint; |
| Negative : Boolean := False) return Node_Id |
| is |
| T : Entity_Id; |
| L : Node_Id; |
| |
| begin |
| T := Get_Type_For_Size (Get_Size_For_Value (V), Force => False); |
| if No (T) then |
| return Empty; |
| end if; |
| |
| if Negative then |
| L := Make_Integer_Literal (Sloc (N), UI_Negate (V)); |
| else |
| L := Make_Integer_Literal (Sloc (N), V); |
| end if; |
| |
| -- Set type of result in case used elsewhere (see note at start) |
| |
| Set_Etype (L, T); |
| Set_Is_Static_Expression (L); |
| |
| -- We really need to set Analyzed here because we may be creating a |
| -- very strange beast, namely an integer literal typed as fixed-point |
| -- and the analyzer won't like that. |
| |
| Set_Analyzed (L); |
| return L; |
| end Integer_Literal; |
| |
| ------------------ |
| -- Real_Literal -- |
| ------------------ |
| |
| function Real_Literal (N : Node_Id; V : Ureal) return Node_Id is |
| L : Node_Id; |
| |
| begin |
| L := Make_Real_Literal (Sloc (N), V); |
| |
| -- Set type of result in case used elsewhere (see note at start) |
| |
| Set_Etype (L, Universal_Real); |
| return L; |
| end Real_Literal; |
| |
| ------------------------ |
| -- Rounded_Result_Set -- |
| ------------------------ |
| |
| function Rounded_Result_Set (N : Node_Id) return Boolean is |
| K : constant Node_Kind := Nkind (N); |
| begin |
| if (K = N_Type_Conversion or else |
| K = N_Op_Divide or else |
| K = N_Op_Multiply) |
| and then |
| (Rounded_Result (N) or else Is_Integer_Type (Etype (N))) |
| then |
| return True; |
| else |
| return False; |
| end if; |
| end Rounded_Result_Set; |
| |
| ---------------- |
| -- Set_Result -- |
| ---------------- |
| |
| procedure Set_Result |
| (N : Node_Id; |
| Expr : Node_Id; |
| Rchk : Boolean := False; |
| Trunc : Boolean := False) |
| is |
| Cnode : Node_Id; |
| |
| Expr_Type : constant Entity_Id := Etype (Expr); |
| Result_Type : constant Entity_Id := Etype (N); |
| |
| begin |
| -- No conversion required if types match and no range check or truncate |
| |
| if Result_Type = Expr_Type and then not (Rchk or Trunc) then |
| Cnode := Expr; |
| |
| -- Else perform required conversion |
| |
| else |
| Cnode := Build_Conversion (N, Result_Type, Expr, Rchk, Trunc); |
| end if; |
| |
| Rewrite (N, Cnode); |
| Analyze_And_Resolve (N, Result_Type); |
| end Set_Result; |
| |
| end Exp_Fixd; |