| ------------------------------------------------------------------------------ |
| -- -- |
| -- GNAT COMPILER COMPONENTS -- |
| -- -- |
| -- P A R _ S C O -- |
| -- -- |
| -- B o d y -- |
| -- -- |
| -- Copyright (C) 2009-2022, Free Software Foundation, Inc. -- |
| -- -- |
| -- GNAT is free software; you can redistribute it and/or modify it under -- |
| -- terms of the GNU General Public License as published by the Free Soft- -- |
| -- ware Foundation; either version 3, or (at your option) any later ver- -- |
| -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- |
| -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- |
| -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- |
| -- for more details. You should have received a copy of the GNU General -- |
| -- Public License distributed with GNAT; see file COPYING3. If not, go to -- |
| -- http://www.gnu.org/licenses for a complete copy of the license. -- |
| -- -- |
| -- GNAT was originally developed by the GNAT team at New York University. -- |
| -- Extensive contributions were provided by Ada Core Technologies Inc. -- |
| -- -- |
| ------------------------------------------------------------------------------ |
| |
| with Aspects; use Aspects; |
| with Atree; use Atree; |
| with Debug; use Debug; |
| with Errout; use Errout; |
| with Lib; use Lib; |
| with Lib.Util; use Lib.Util; |
| with Namet; use Namet; |
| with Nlists; use Nlists; |
| with Opt; use Opt; |
| with Output; use Output; |
| with Put_SCOs; |
| with SCOs; use SCOs; |
| with Sem; use Sem; |
| with Sem_Util; use Sem_Util; |
| with Sinfo; use Sinfo; |
| with Sinfo.Nodes; use Sinfo.Nodes; |
| with Sinfo.Utils; use Sinfo.Utils; |
| with Sinput; use Sinput; |
| with Snames; use Snames; |
| with Table; |
| |
| with GNAT.HTable; use GNAT.HTable; |
| with GNAT.Heap_Sort_G; |
| |
| package body Par_SCO is |
| |
| -------------------------- |
| -- First-pass SCO table -- |
| -------------------------- |
| |
| -- The Short_Circuit_And_Or pragma enables one to use AND and OR operators |
| -- in source code while the ones used with booleans will be interpreted as |
| -- their short circuit alternatives (AND THEN and OR ELSE). Thus, the true |
| -- meaning of these operators is known only after the semantic analysis. |
| |
| -- However, decision SCOs include short circuit operators only. The SCO |
| -- information generation pass must be done before expansion, hence before |
| -- the semantic analysis. Because of this, the SCO information generation |
| -- is done in two passes. |
| |
| -- The first one (SCO_Record_Raw, before semantic analysis) completes the |
| -- SCO_Raw_Table assuming all AND/OR operators are short circuit ones. |
| -- Then, the semantic analysis determines which operators are promoted to |
| -- short circuit ones. Finally, the second pass (SCO_Record_Filtered) |
| -- translates the SCO_Raw_Table to SCO_Table, taking care of removing the |
| -- remaining AND/OR operators and of adjusting decisions accordingly |
| -- (splitting decisions, removing empty ones, etc.). |
| |
| type SCO_Generation_State_Type is (None, Raw, Filtered); |
| SCO_Generation_State : SCO_Generation_State_Type := None; |
| -- Keep track of the SCO generation state: this will prevent us from |
| -- running some steps multiple times (the second pass has to be started |
| -- from multiple places). |
| |
| package SCO_Raw_Table is new Table.Table |
| (Table_Component_Type => SCO_Table_Entry, |
| Table_Index_Type => Nat, |
| Table_Low_Bound => 1, |
| Table_Initial => 500, |
| Table_Increment => 300, |
| Table_Name => "Raw_Table"); |
| |
| ----------------------- |
| -- Unit Number Table -- |
| ----------------------- |
| |
| -- This table parallels the SCO_Unit_Table, keeping track of the unit |
| -- numbers corresponding to the entries made in this table, so that before |
| -- writing out the SCO information to the ALI file, we can fill in the |
| -- proper dependency numbers and file names. |
| |
| -- Note that the zeroth entry is here for convenience in sorting the table; |
| -- the real lower bound is 1. |
| |
| package SCO_Unit_Number_Table is new Table.Table |
| (Table_Component_Type => Unit_Number_Type, |
| Table_Index_Type => SCO_Unit_Index, |
| Table_Low_Bound => 0, -- see note above on sort |
| Table_Initial => 20, |
| Table_Increment => 200, |
| Table_Name => "SCO_Unit_Number_Entry"); |
| |
| ------------------------------------------ |
| -- Condition/Operator/Pragma Hash Table -- |
| ------------------------------------------ |
| |
| -- We need to be able to get to conditions quickly for handling the calls |
| -- to Set_SCO_Condition efficiently, and similarly to get to pragmas to |
| -- handle calls to Set_SCO_Pragma_Enabled (the same holds for operators and |
| -- Set_SCO_Logical_Operator). For this purpose we identify the conditions, |
| -- operators and pragmas in the table by their starting sloc, and use this |
| -- hash table to map from these sloc values to SCO_Table indexes. |
| |
| type Header_Num is new Integer range 0 .. 996; |
| -- Type for hash table headers |
| |
| function Hash (F : Source_Ptr) return Header_Num; |
| -- Function to Hash source pointer value |
| |
| function Equal (F1 : Source_Ptr; F2 : Source_Ptr) return Boolean; |
| -- Function to test two keys for equality |
| |
| function "<" (S1 : Source_Location; S2 : Source_Location) return Boolean; |
| -- Function to test for source locations order |
| |
| package SCO_Raw_Hash_Table is new Simple_HTable |
| (Header_Num, Int, 0, Source_Ptr, Hash, Equal); |
| -- The actual hash table |
| |
| -------------------------- |
| -- Internal Subprograms -- |
| -------------------------- |
| |
| function Has_Decision (N : Node_Id) return Boolean; |
| -- N is the node for a subexpression. Returns True if the subexpression |
| -- contains a nested decision (i.e. either is a logical operator, or |
| -- contains a logical operator in its subtree). |
| -- |
| -- This must be used in the first pass (SCO_Record_Raw) only: here AND/OR |
| -- operators are considered as short circuit, just in case the |
| -- Short_Circuit_And_Or pragma is used: only real short circuit operations |
| -- will be kept in the secord pass. |
| |
| type Tristate is (False, True, Unknown); |
| |
| function Is_Logical_Operator (N : Node_Id) return Tristate; |
| -- N is the node for a subexpression. This procedure determines whether N |
| -- is a logical operator: True for short circuit conditions, Unknown for OR |
| -- and AND (the Short_Circuit_And_Or pragma may be used) and False |
| -- otherwise. Note that in cases where True is returned, callers assume |
| -- Nkind (N) in N_Op. |
| |
| function To_Source_Location (S : Source_Ptr) return Source_Location; |
| -- Converts Source_Ptr value to Source_Location (line/col) format |
| |
| procedure Process_Decisions |
| (N : Node_Id; |
| T : Character; |
| Pragma_Sloc : Source_Ptr); |
| -- If N is Empty, has no effect. Otherwise scans the tree for the node N, |
| -- to output any decisions it contains. T is one of IEGPWX (for context of |
| -- expression: if/exit when/entry guard/pragma/while/expression). If T is |
| -- other than X, the node N is the if expression involved, and a decision |
| -- is always present (at the very least a simple decision is present at the |
| -- top level). |
| |
| procedure Process_Decisions |
| (L : List_Id; |
| T : Character; |
| Pragma_Sloc : Source_Ptr); |
| -- Calls above procedure for each element of the list L |
| |
| procedure Set_Raw_Table_Entry |
| (C1 : Character; |
| C2 : Character; |
| From : Source_Ptr; |
| To : Source_Ptr; |
| Last : Boolean; |
| Pragma_Sloc : Source_Ptr := No_Location; |
| Pragma_Aspect_Name : Name_Id := No_Name); |
| -- Append an entry to SCO_Raw_Table with fields set as per arguments |
| |
| type Dominant_Info is record |
| K : Character; |
| -- F/T/S/E for a valid dominance marker, or ' ' for no dominant |
| |
| N : Node_Id; |
| -- Node providing the Sloc(s) for the dominance marker |
| end record; |
| No_Dominant : constant Dominant_Info := (' ', Empty); |
| |
| procedure Record_Instance (Id : Instance_Id; Inst_Sloc : Source_Ptr); |
| -- Add one entry from the instance table to the corresponding SCO table |
| |
| procedure Traverse_Declarations_Or_Statements |
| (L : List_Id; |
| D : Dominant_Info := No_Dominant; |
| P : Node_Id := Empty); |
| -- Process L, a list of statements or declarations dominated by D. If P is |
| -- present, it is processed as though it had been prepended to L. |
| |
| function Traverse_Declarations_Or_Statements |
| (L : List_Id; |
| D : Dominant_Info := No_Dominant; |
| P : Node_Id := Empty) return Dominant_Info; |
| -- Same as above, and returns dominant information corresponding to the |
| -- last node with SCO in L. |
| |
| -- The following Traverse_* routines perform appropriate calls to |
| -- Traverse_Declarations_Or_Statements to traverse specific node kinds. |
| -- Parameter D, when present, indicates the dominant of the first |
| -- declaration or statement within N. |
| |
| procedure Traverse_Generic_Package_Declaration (N : Node_Id); |
| |
| procedure Traverse_Handled_Statement_Sequence |
| (N : Node_Id; |
| D : Dominant_Info := No_Dominant); |
| |
| procedure Traverse_Package_Body (N : Node_Id); |
| |
| procedure Traverse_Package_Declaration |
| (N : Node_Id; |
| D : Dominant_Info := No_Dominant); |
| |
| procedure Traverse_Subprogram_Or_Task_Body |
| (N : Node_Id; |
| D : Dominant_Info := No_Dominant); |
| |
| procedure Traverse_Protected_Or_Task_Definition (N : Node_Id); |
| |
| -- Note regarding traversals: In a few cases where an Alternatives list is |
| -- involved, pragmas such as "pragma Page" may show up before the first |
| -- alternative. We skip them because we're out of statement or declaration |
| -- context, so these can't be pragmas of interest for SCO purposes, and |
| -- the regular alternative processing typically involves attribute queries |
| -- which aren't valid for a pragma. |
| |
| procedure Write_SCOs_To_ALI_File is new Put_SCOs; |
| -- Write SCO information to the ALI file using routines in Lib.Util |
| |
| ---------- |
| -- dsco -- |
| ---------- |
| |
| procedure dsco is |
| procedure Dump_Entry (Index : Nat; T : SCO_Table_Entry); |
| -- Dump a SCO table entry |
| |
| ---------------- |
| -- Dump_Entry -- |
| ---------------- |
| |
| procedure Dump_Entry (Index : Nat; T : SCO_Table_Entry) is |
| begin |
| Write_Str (" "); |
| Write_Int (Index); |
| Write_Char ('.'); |
| |
| if T.C1 /= ' ' then |
| Write_Str (" C1 = '"); |
| Write_Char (T.C1); |
| Write_Char ('''); |
| end if; |
| |
| if T.C2 /= ' ' then |
| Write_Str (" C2 = '"); |
| Write_Char (T.C2); |
| Write_Char ('''); |
| end if; |
| |
| if T.From /= No_Source_Location then |
| Write_Str (" From = "); |
| Write_Int (Int (T.From.Line)); |
| Write_Char (':'); |
| Write_Int (Int (T.From.Col)); |
| end if; |
| |
| if T.To /= No_Source_Location then |
| Write_Str (" To = "); |
| Write_Int (Int (T.To.Line)); |
| Write_Char (':'); |
| Write_Int (Int (T.To.Col)); |
| end if; |
| |
| if T.Last then |
| Write_Str (" True"); |
| else |
| Write_Str (" False"); |
| end if; |
| |
| Write_Eol; |
| end Dump_Entry; |
| |
| -- Start of processing for dsco |
| |
| begin |
| -- Dump SCO unit table |
| |
| Write_Line ("SCO Unit Table"); |
| Write_Line ("--------------"); |
| |
| for Index in 1 .. SCO_Unit_Table.Last loop |
| declare |
| UTE : SCO_Unit_Table_Entry renames SCO_Unit_Table.Table (Index); |
| |
| begin |
| Write_Str (" "); |
| Write_Int (Int (Index)); |
| Write_Str (" Dep_Num = "); |
| Write_Int (Int (UTE.Dep_Num)); |
| Write_Str (" From = "); |
| Write_Int (Int (UTE.From)); |
| Write_Str (" To = "); |
| Write_Int (Int (UTE.To)); |
| |
| Write_Str (" File_Name = """); |
| |
| if UTE.File_Name /= null then |
| Write_Str (UTE.File_Name.all); |
| end if; |
| |
| Write_Char ('"'); |
| Write_Eol; |
| end; |
| end loop; |
| |
| -- Dump SCO Unit number table if it contains any entries |
| |
| if SCO_Unit_Number_Table.Last >= 1 then |
| Write_Eol; |
| Write_Line ("SCO Unit Number Table"); |
| Write_Line ("---------------------"); |
| |
| for Index in 1 .. SCO_Unit_Number_Table.Last loop |
| Write_Str (" "); |
| Write_Int (Int (Index)); |
| Write_Str (". Unit_Number = "); |
| Write_Int (Int (SCO_Unit_Number_Table.Table (Index))); |
| Write_Eol; |
| end loop; |
| end if; |
| |
| -- Dump SCO raw-table |
| |
| Write_Eol; |
| Write_Line ("SCO Raw Table"); |
| Write_Line ("---------"); |
| |
| if SCO_Generation_State = Filtered then |
| Write_Line ("Empty (free'd after second pass)"); |
| else |
| for Index in 1 .. SCO_Raw_Table.Last loop |
| Dump_Entry (Index, SCO_Raw_Table.Table (Index)); |
| end loop; |
| end if; |
| |
| -- Dump SCO table itself |
| |
| Write_Eol; |
| Write_Line ("SCO Filtered Table"); |
| Write_Line ("---------"); |
| |
| for Index in 1 .. SCO_Table.Last loop |
| Dump_Entry (Index, SCO_Table.Table (Index)); |
| end loop; |
| end dsco; |
| |
| ----------- |
| -- Equal -- |
| ----------- |
| |
| function Equal (F1 : Source_Ptr; F2 : Source_Ptr) return Boolean is |
| begin |
| return F1 = F2; |
| end Equal; |
| |
| ------- |
| -- < -- |
| ------- |
| |
| function "<" (S1 : Source_Location; S2 : Source_Location) return Boolean is |
| begin |
| return S1.Line < S2.Line |
| or else (S1.Line = S2.Line and then S1.Col < S2.Col); |
| end "<"; |
| |
| ------------------ |
| -- Has_Decision -- |
| ------------------ |
| |
| function Has_Decision (N : Node_Id) return Boolean is |
| function Check_Node (N : Node_Id) return Traverse_Result; |
| -- Determine if Nkind (N) indicates the presence of a decision (i.e. N |
| -- is a logical operator, which is a decision in itself, or an |
| -- IF-expression whose Condition attribute is a decision). |
| |
| ---------------- |
| -- Check_Node -- |
| ---------------- |
| |
| function Check_Node (N : Node_Id) return Traverse_Result is |
| begin |
| -- If we are not sure this is a logical operator (AND and OR may be |
| -- turned into logical operators with the Short_Circuit_And_Or |
| -- pragma), assume it is. Putative decisions will be discarded if |
| -- needed in the secord pass. |
| |
| if Is_Logical_Operator (N) /= False |
| or else Nkind (N) = N_If_Expression |
| then |
| return Abandon; |
| else |
| return OK; |
| end if; |
| end Check_Node; |
| |
| function Traverse is new Traverse_Func (Check_Node); |
| |
| -- Start of processing for Has_Decision |
| |
| begin |
| return Traverse (N) = Abandon; |
| end Has_Decision; |
| |
| ---------- |
| -- Hash -- |
| ---------- |
| |
| function Hash (F : Source_Ptr) return Header_Num is |
| begin |
| return Header_Num (Nat (F) mod 997); |
| end Hash; |
| |
| ---------------- |
| -- Initialize -- |
| ---------------- |
| |
| procedure Initialize is |
| begin |
| SCO_Unit_Number_Table.Init; |
| |
| -- The SCO_Unit_Number_Table entry with index 0 is intentionally set |
| -- aside to be used as temporary for sorting. |
| |
| SCO_Unit_Number_Table.Increment_Last; |
| end Initialize; |
| |
| ------------------------- |
| -- Is_Logical_Operator -- |
| ------------------------- |
| |
| function Is_Logical_Operator (N : Node_Id) return Tristate is |
| begin |
| if Nkind (N) in N_And_Then | N_Op_Not | N_Or_Else then |
| return True; |
| elsif Nkind (N) in N_Op_And | N_Op_Or then |
| return Unknown; |
| else |
| return False; |
| end if; |
| end Is_Logical_Operator; |
| |
| ----------------------- |
| -- Process_Decisions -- |
| ----------------------- |
| |
| -- Version taking a list |
| |
| procedure Process_Decisions |
| (L : List_Id; |
| T : Character; |
| Pragma_Sloc : Source_Ptr) |
| is |
| N : Node_Id; |
| |
| begin |
| N := First (L); |
| while Present (N) loop |
| Process_Decisions (N, T, Pragma_Sloc); |
| Next (N); |
| end loop; |
| end Process_Decisions; |
| |
| -- Version taking a node |
| |
| Current_Pragma_Sloc : Source_Ptr := No_Location; |
| -- While processing a pragma, this is set to the sloc of the N_Pragma node |
| |
| procedure Process_Decisions |
| (N : Node_Id; |
| T : Character; |
| Pragma_Sloc : Source_Ptr) |
| is |
| Mark : Nat; |
| -- This is used to mark the location of a decision sequence in the SCO |
| -- table. We use it for backing out a simple decision in an expression |
| -- context that contains only NOT operators. |
| |
| Mark_Hash : Nat; |
| -- Likewise for the putative SCO_Raw_Hash_Table entries: see below |
| |
| type Hash_Entry is record |
| Sloc : Source_Ptr; |
| SCO_Index : Nat; |
| end record; |
| -- We must register all conditions/pragmas in SCO_Raw_Hash_Table. |
| -- However we cannot register them in the same time we are adding the |
| -- corresponding SCO entries to the raw table since we may discard them |
| -- later on. So instead we put all putative conditions into Hash_Entries |
| -- (see below) and register them once we are sure we keep them. |
| -- |
| -- This data structure holds the conditions/pragmas to register in |
| -- SCO_Raw_Hash_Table. |
| |
| package Hash_Entries is new Table.Table |
| (Table_Component_Type => Hash_Entry, |
| Table_Index_Type => Nat, |
| Table_Low_Bound => 1, |
| Table_Initial => 10, |
| Table_Increment => 10, |
| Table_Name => "Hash_Entries"); |
| -- Hold temporarily (i.e. free'd before returning) the Hash_Entry before |
| -- they are registered in SCO_Raw_Hash_Table. |
| |
| X_Not_Decision : Boolean; |
| -- This flag keeps track of whether a decision sequence in the SCO table |
| -- contains only NOT operators, and is for an expression context (T=X). |
| -- The flag will be set False if T is other than X, or if an operator |
| -- other than NOT is in the sequence. |
| |
| procedure Output_Decision_Operand (N : Node_Id); |
| -- The node N is the top level logical operator of a decision, or it is |
| -- one of the operands of a logical operator belonging to a single |
| -- complex decision. This routine outputs the sequence of table entries |
| -- corresponding to the node. Note that we do not process the sub- |
| -- operands to look for further decisions, that processing is done in |
| -- Process_Decision_Operand, because we can't get decisions mixed up in |
| -- the global table. Call has no effect if N is Empty. |
| |
| procedure Output_Element (N : Node_Id); |
| -- Node N is an operand of a logical operator that is not itself a |
| -- logical operator, or it is a simple decision. This routine outputs |
| -- the table entry for the element, with C1 set to ' '. Last is set |
| -- False, and an entry is made in the condition hash table. |
| |
| procedure Output_Header (T : Character); |
| -- Outputs a decision header node. T is I/W/E/P for IF/WHILE/EXIT WHEN/ |
| -- PRAGMA, and 'X' for the expression case. |
| |
| procedure Process_Decision_Operand (N : Node_Id); |
| -- This is called on node N, the top level node of a decision, or on one |
| -- of its operands or suboperands after generating the full output for |
| -- the complex decision. It process the suboperands of the decision |
| -- looking for nested decisions. |
| |
| function Process_Node (N : Node_Id) return Traverse_Result; |
| -- Processes one node in the traversal, looking for logical operators, |
| -- and if one is found, outputs the appropriate table entries. |
| |
| ----------------------------- |
| -- Output_Decision_Operand -- |
| ----------------------------- |
| |
| procedure Output_Decision_Operand (N : Node_Id) is |
| C1 : Character; |
| C2 : Character; |
| -- C1 holds a character that identifies the operation while C2 |
| -- indicates whether we are sure (' ') or not ('?') this operation |
| -- belongs to the decision. '?' entries will be filtered out in the |
| -- second (SCO_Record_Filtered) pass. |
| |
| L : Node_Id; |
| T : Tristate; |
| |
| begin |
| if No (N) then |
| return; |
| end if; |
| |
| T := Is_Logical_Operator (N); |
| |
| -- Logical operator |
| |
| if T /= False then |
| if Nkind (N) = N_Op_Not then |
| C1 := '!'; |
| L := Empty; |
| |
| else |
| L := Left_Opnd (N); |
| |
| if Nkind (N) in N_Op_Or | N_Or_Else then |
| C1 := '|'; |
| else pragma Assert (Nkind (N) in N_Op_And | N_And_Then); |
| C1 := '&'; |
| end if; |
| end if; |
| |
| if T = True then |
| C2 := ' '; |
| else |
| C2 := '?'; |
| end if; |
| |
| Set_Raw_Table_Entry |
| (C1 => C1, |
| C2 => C2, |
| From => Sloc (N), |
| To => No_Location, |
| Last => False); |
| |
| Hash_Entries.Append ((Sloc (N), SCO_Raw_Table.Last)); |
| |
| Output_Decision_Operand (L); |
| Output_Decision_Operand (Right_Opnd (N)); |
| |
| -- Not a logical operator |
| |
| else |
| Output_Element (N); |
| end if; |
| end Output_Decision_Operand; |
| |
| -------------------- |
| -- Output_Element -- |
| -------------------- |
| |
| procedure Output_Element (N : Node_Id) is |
| FSloc : Source_Ptr; |
| LSloc : Source_Ptr; |
| begin |
| Sloc_Range (N, FSloc, LSloc); |
| Set_Raw_Table_Entry |
| (C1 => ' ', |
| C2 => 'c', |
| From => FSloc, |
| To => LSloc, |
| Last => False); |
| Hash_Entries.Append ((FSloc, SCO_Raw_Table.Last)); |
| end Output_Element; |
| |
| ------------------- |
| -- Output_Header -- |
| ------------------- |
| |
| procedure Output_Header (T : Character) is |
| Loc : Source_Ptr := No_Location; |
| -- Node whose Sloc is used for the decision |
| |
| Nam : Name_Id := No_Name; |
| -- For the case of an aspect, aspect name |
| |
| begin |
| case T is |
| when 'I' | 'E' | 'W' | 'a' | 'A' => |
| |
| -- For IF, EXIT, WHILE, or aspects, the token SLOC is that of |
| -- the parent of the expression. |
| |
| Loc := Sloc (Parent (N)); |
| |
| if T = 'a' or else T = 'A' then |
| Nam := Chars (Identifier (Parent (N))); |
| end if; |
| |
| when 'G' | 'P' => |
| |
| -- For entry guard, the token sloc is from the N_Entry_Body. |
| -- For PRAGMA, we must get the location from the pragma node. |
| -- Argument N is the pragma argument, and we have to go up |
| -- two levels (through the pragma argument association) to |
| -- get to the pragma node itself. For the guard on a select |
| -- alternative, we do not have access to the token location for |
| -- the WHEN, so we use the first sloc of the condition itself. |
| -- First_Sloc gives the most sensible result, but we have to |
| -- beware of also using it when computing the dominance marker |
| -- sloc (in the Set_Statement_Entry procedure), as this is not |
| -- fully equivalent to the "To" sloc computed by |
| -- Sloc_Range (Guard, To, From). |
| |
| if Nkind (Parent (N)) in N_Accept_Alternative |
| | N_Delay_Alternative |
| | N_Terminate_Alternative |
| then |
| Loc := First_Sloc (N); |
| else |
| Loc := Sloc (Parent (Parent (N))); |
| end if; |
| |
| when 'X' => |
| |
| -- For an expression, no Sloc |
| |
| null; |
| |
| -- No other possibilities |
| |
| when others => |
| raise Program_Error; |
| end case; |
| |
| Set_Raw_Table_Entry |
| (C1 => T, |
| C2 => ' ', |
| From => Loc, |
| To => No_Location, |
| Last => False, |
| Pragma_Sloc => Pragma_Sloc, |
| Pragma_Aspect_Name => Nam); |
| |
| -- For an aspect specification, which will be rewritten into a |
| -- pragma, enter a hash table entry now. |
| |
| if T = 'a' then |
| Hash_Entries.Append ((Loc, SCO_Raw_Table.Last)); |
| end if; |
| end Output_Header; |
| |
| ------------------------------ |
| -- Process_Decision_Operand -- |
| ------------------------------ |
| |
| procedure Process_Decision_Operand (N : Node_Id) is |
| begin |
| if Is_Logical_Operator (N) /= False then |
| if Nkind (N) /= N_Op_Not then |
| Process_Decision_Operand (Left_Opnd (N)); |
| X_Not_Decision := False; |
| end if; |
| |
| Process_Decision_Operand (Right_Opnd (N)); |
| |
| else |
| Process_Decisions (N, 'X', Pragma_Sloc); |
| end if; |
| end Process_Decision_Operand; |
| |
| ------------------ |
| -- Process_Node -- |
| ------------------ |
| |
| function Process_Node (N : Node_Id) return Traverse_Result is |
| begin |
| case Nkind (N) is |
| |
| -- Logical operators, output table entries and then process |
| -- operands recursively to deal with nested conditions. |
| |
| when N_And_Then |
| | N_Op_And |
| | N_Op_Not |
| | N_Op_Or |
| | N_Or_Else |
| => |
| declare |
| T : Character; |
| |
| begin |
| -- If outer level, then type comes from call, otherwise it |
| -- is more deeply nested and counts as X for expression. |
| |
| if N = Process_Decisions.N then |
| T := Process_Decisions.T; |
| else |
| T := 'X'; |
| end if; |
| |
| -- Output header for sequence |
| |
| X_Not_Decision := T = 'X' and then Nkind (N) = N_Op_Not; |
| Mark := SCO_Raw_Table.Last; |
| Mark_Hash := Hash_Entries.Last; |
| Output_Header (T); |
| |
| -- Output the decision |
| |
| Output_Decision_Operand (N); |
| |
| -- If the decision was in an expression context (T = 'X') |
| -- and contained only NOT operators, then we don't output |
| -- it, so delete it. |
| |
| if X_Not_Decision then |
| SCO_Raw_Table.Set_Last (Mark); |
| Hash_Entries.Set_Last (Mark_Hash); |
| |
| -- Otherwise, set Last in last table entry to mark end |
| |
| else |
| SCO_Raw_Table.Table (SCO_Raw_Table.Last).Last := True; |
| end if; |
| |
| -- Process any embedded decisions |
| |
| Process_Decision_Operand (N); |
| return Skip; |
| end; |
| |
| -- Case expression |
| |
| -- Really hard to believe this is correct given the special |
| -- handling for if expressions below ??? |
| |
| when N_Case_Expression => |
| return OK; -- ??? |
| |
| -- If expression, processed like an if statement |
| |
| when N_If_Expression => |
| declare |
| Cond : constant Node_Id := First (Expressions (N)); |
| Thnx : constant Node_Id := Next (Cond); |
| Elsx : constant Node_Id := Next (Thnx); |
| |
| begin |
| Process_Decisions (Cond, 'I', Pragma_Sloc); |
| Process_Decisions (Thnx, 'X', Pragma_Sloc); |
| Process_Decisions (Elsx, 'X', Pragma_Sloc); |
| return Skip; |
| end; |
| |
| when N_Quantified_Expression => |
| declare |
| Cond : constant Node_Id := Condition (N); |
| begin |
| Process_Decisions (Cond, 'W', Pragma_Sloc); |
| return Skip; |
| end; |
| |
| -- All other cases, continue scan |
| |
| when others => |
| return OK; |
| end case; |
| end Process_Node; |
| |
| procedure Traverse is new Traverse_Proc (Process_Node); |
| |
| -- Start of processing for Process_Decisions |
| |
| begin |
| if No (N) then |
| return; |
| end if; |
| |
| Hash_Entries.Init; |
| |
| -- See if we have simple decision at outer level and if so then |
| -- generate the decision entry for this simple decision. A simple |
| -- decision is a boolean expression (which is not a logical operator |
| -- or short circuit form) appearing as the operand of an IF, WHILE, |
| -- EXIT WHEN, or special PRAGMA construct. |
| |
| if T /= 'X' and then Is_Logical_Operator (N) = False then |
| Output_Header (T); |
| Output_Element (N); |
| |
| -- Change Last in last table entry to True to mark end of |
| -- sequence, which is this case is only one element long. |
| |
| SCO_Raw_Table.Table (SCO_Raw_Table.Last).Last := True; |
| end if; |
| |
| Traverse (N); |
| |
| -- Now we have the definitive set of SCO entries, register them in the |
| -- corresponding hash table. |
| |
| for J in 1 .. Hash_Entries.Last loop |
| SCO_Raw_Hash_Table.Set |
| (Hash_Entries.Table (J).Sloc, |
| Hash_Entries.Table (J).SCO_Index); |
| end loop; |
| |
| Hash_Entries.Free; |
| end Process_Decisions; |
| |
| ----------- |
| -- pscos -- |
| ----------- |
| |
| procedure pscos is |
| procedure Write_Info_Char (C : Character) renames Write_Char; |
| -- Write one character; |
| |
| procedure Write_Info_Initiate (Key : Character) renames Write_Char; |
| -- Start new one and write one character; |
| |
| procedure Write_Info_Nat (N : Nat); |
| -- Write value of N |
| |
| procedure Write_Info_Terminate renames Write_Eol; |
| -- Terminate current line |
| |
| -------------------- |
| -- Write_Info_Nat -- |
| -------------------- |
| |
| procedure Write_Info_Nat (N : Nat) is |
| begin |
| Write_Int (N); |
| end Write_Info_Nat; |
| |
| procedure Debug_Put_SCOs is new Put_SCOs; |
| |
| -- Start of processing for pscos |
| |
| begin |
| Debug_Put_SCOs; |
| end pscos; |
| |
| --------------------- |
| -- Record_Instance -- |
| --------------------- |
| |
| procedure Record_Instance (Id : Instance_Id; Inst_Sloc : Source_Ptr) is |
| Inst_Src : constant Source_File_Index := |
| Get_Source_File_Index (Inst_Sloc); |
| begin |
| SCO_Instance_Table.Append |
| ((Inst_Dep_Num => Dependency_Num (Unit (Inst_Src)), |
| Inst_Loc => To_Source_Location (Inst_Sloc), |
| Enclosing_Instance => SCO_Instance_Index (Instance (Inst_Src)))); |
| |
| pragma Assert |
| (SCO_Instance_Table.Last = SCO_Instance_Index (Id)); |
| end Record_Instance; |
| |
| ---------------- |
| -- SCO_Output -- |
| ---------------- |
| |
| procedure SCO_Output is |
| procedure Populate_SCO_Instance_Table is |
| new Sinput.Iterate_On_Instances (Record_Instance); |
| |
| begin |
| pragma Assert (SCO_Generation_State = Filtered); |
| |
| if Debug_Flag_Dot_OO then |
| dsco; |
| end if; |
| |
| Populate_SCO_Instance_Table; |
| |
| -- Sort the unit tables based on dependency numbers |
| |
| Unit_Table_Sort : declare |
| function Lt (Op1 : Natural; Op2 : Natural) return Boolean; |
| -- Comparison routine for sort call |
| |
| procedure Move (From : Natural; To : Natural); |
| -- Move routine for sort call |
| |
| -------- |
| -- Lt -- |
| -------- |
| |
| function Lt (Op1 : Natural; Op2 : Natural) return Boolean is |
| begin |
| return |
| Dependency_Num |
| (SCO_Unit_Number_Table.Table (SCO_Unit_Index (Op1))) |
| < |
| Dependency_Num |
| (SCO_Unit_Number_Table.Table (SCO_Unit_Index (Op2))); |
| end Lt; |
| |
| ---------- |
| -- Move -- |
| ---------- |
| |
| procedure Move (From : Natural; To : Natural) is |
| begin |
| SCO_Unit_Table.Table (SCO_Unit_Index (To)) := |
| SCO_Unit_Table.Table (SCO_Unit_Index (From)); |
| SCO_Unit_Number_Table.Table (SCO_Unit_Index (To)) := |
| SCO_Unit_Number_Table.Table (SCO_Unit_Index (From)); |
| end Move; |
| |
| package Sorting is new GNAT.Heap_Sort_G (Move, Lt); |
| |
| -- Start of processing for Unit_Table_Sort |
| |
| begin |
| Sorting.Sort (Integer (SCO_Unit_Table.Last)); |
| end Unit_Table_Sort; |
| |
| -- Loop through entries in the unit table to set file name and |
| -- dependency number entries. |
| |
| for J in 1 .. SCO_Unit_Table.Last loop |
| declare |
| U : constant Unit_Number_Type := SCO_Unit_Number_Table.Table (J); |
| UTE : SCO_Unit_Table_Entry renames SCO_Unit_Table.Table (J); |
| |
| begin |
| Get_Name_String (Reference_Name (Source_Index (U))); |
| UTE.File_Name := new String'(Name_Buffer (1 .. Name_Len)); |
| UTE.Dep_Num := Dependency_Num (U); |
| end; |
| end loop; |
| |
| -- Now the tables are all setup for output to the ALI file |
| |
| Write_SCOs_To_ALI_File; |
| end SCO_Output; |
| |
| ------------------------- |
| -- SCO_Pragma_Disabled -- |
| ------------------------- |
| |
| function SCO_Pragma_Disabled (Loc : Source_Ptr) return Boolean is |
| Index : Nat; |
| |
| begin |
| if Loc = No_Location then |
| return False; |
| end if; |
| |
| Index := SCO_Raw_Hash_Table.Get (Loc); |
| |
| -- The test here for zero is to deal with possible previous errors, and |
| -- for the case of pragma statement SCOs, for which we always set the |
| -- Pragma_Sloc even if the particular pragma cannot be specifically |
| -- disabled. |
| |
| if Index /= 0 then |
| declare |
| T : SCO_Table_Entry renames SCO_Raw_Table.Table (Index); |
| |
| begin |
| case T.C1 is |
| when 'S' => |
| -- Pragma statement |
| |
| return T.C2 = 'p'; |
| |
| when 'A' => |
| -- Aspect decision (enabled) |
| |
| return False; |
| |
| when 'a' => |
| -- Aspect decision (not enabled) |
| |
| return True; |
| |
| when ASCII.NUL => |
| -- Nullified disabled SCO |
| |
| return True; |
| |
| when others => |
| raise Program_Error; |
| end case; |
| end; |
| |
| else |
| return False; |
| end if; |
| end SCO_Pragma_Disabled; |
| |
| -------------------- |
| -- SCO_Record_Raw -- |
| -------------------- |
| |
| procedure SCO_Record_Raw (U : Unit_Number_Type) is |
| procedure Traverse_Aux_Decls (N : Node_Id); |
| -- Traverse the Aux_Decls_Node of compilation unit N |
| |
| ------------------------ |
| -- Traverse_Aux_Decls -- |
| ------------------------ |
| |
| procedure Traverse_Aux_Decls (N : Node_Id) is |
| ADN : constant Node_Id := Aux_Decls_Node (N); |
| |
| begin |
| Traverse_Declarations_Or_Statements (Config_Pragmas (ADN)); |
| Traverse_Declarations_Or_Statements (Pragmas_After (ADN)); |
| |
| -- Declarations and Actions do not correspond to source constructs, |
| -- they contain only nodes from expansion, so at this point they |
| -- should still be empty: |
| |
| pragma Assert (No (Declarations (ADN))); |
| pragma Assert (No (Actions (ADN))); |
| end Traverse_Aux_Decls; |
| |
| -- Local variables |
| |
| From : Nat; |
| Lu : Node_Id; |
| |
| -- Start of processing for SCO_Record_Raw |
| |
| begin |
| -- It is legitimate to run this pass multiple times (once per unit) so |
| -- run it even if it was already run before. |
| |
| pragma Assert (SCO_Generation_State in None .. Raw); |
| SCO_Generation_State := Raw; |
| |
| -- Ignore call if not generating code and generating SCO's |
| |
| if not (Generate_SCO and then Operating_Mode = Generate_Code) then |
| return; |
| end if; |
| |
| -- Ignore call if this unit already recorded |
| |
| for J in 1 .. SCO_Unit_Number_Table.Last loop |
| if U = SCO_Unit_Number_Table.Table (J) then |
| return; |
| end if; |
| end loop; |
| |
| -- Otherwise record starting entry |
| |
| From := SCO_Raw_Table.Last + 1; |
| |
| -- Get Unit (checking case of subunit) |
| |
| Lu := Unit (Cunit (U)); |
| |
| if Nkind (Lu) = N_Subunit then |
| Lu := Proper_Body (Lu); |
| end if; |
| |
| -- Traverse the unit |
| |
| Traverse_Aux_Decls (Cunit (U)); |
| |
| case Nkind (Lu) is |
| when N_Generic_Instantiation |
| | N_Generic_Package_Declaration |
| | N_Package_Body |
| | N_Package_Declaration |
| | N_Protected_Body |
| | N_Subprogram_Body |
| | N_Subprogram_Declaration |
| | N_Task_Body |
| => |
| Traverse_Declarations_Or_Statements (L => No_List, P => Lu); |
| |
| -- All other cases of compilation units (e.g. renamings), generate no |
| -- SCO information. |
| |
| when others => |
| null; |
| end case; |
| |
| -- Make entry for new unit in unit tables, we will fill in the file |
| -- name and dependency numbers later. |
| |
| SCO_Unit_Table.Append ( |
| (Dep_Num => 0, |
| File_Name => null, |
| File_Index => Get_Source_File_Index (Sloc (Lu)), |
| From => From, |
| To => SCO_Raw_Table.Last)); |
| |
| SCO_Unit_Number_Table.Append (U); |
| end SCO_Record_Raw; |
| |
| ----------------------- |
| -- Set_SCO_Condition -- |
| ----------------------- |
| |
| procedure Set_SCO_Condition (Cond : Node_Id; Val : Boolean) is |
| |
| -- SCO annotations are not processed after the filtering pass |
| |
| pragma Assert (not Generate_SCO or else SCO_Generation_State = Raw); |
| |
| Constant_Condition_Code : constant array (Boolean) of Character := |
| (False => 'f', True => 't'); |
| |
| Orig : constant Node_Id := Original_Node (Cond); |
| Dummy : Source_Ptr; |
| Index : Nat; |
| Start : Source_Ptr; |
| |
| begin |
| Sloc_Range (Orig, Start, Dummy); |
| Index := SCO_Raw_Hash_Table.Get (Start); |
| |
| -- Index can be zero for boolean expressions that do not have SCOs |
| -- (simple decisions outside of a control flow structure), or in case |
| -- of a previous error. |
| |
| if Index = 0 then |
| return; |
| |
| else |
| pragma Assert (SCO_Raw_Table.Table (Index).C1 = ' '); |
| SCO_Raw_Table.Table (Index).C2 := Constant_Condition_Code (Val); |
| end if; |
| end Set_SCO_Condition; |
| |
| ------------------------------ |
| -- Set_SCO_Logical_Operator -- |
| ------------------------------ |
| |
| procedure Set_SCO_Logical_Operator (Op : Node_Id) is |
| |
| -- SCO annotations are not processed after the filtering pass |
| |
| pragma Assert (not Generate_SCO or else SCO_Generation_State = Raw); |
| |
| Orig : constant Node_Id := Original_Node (Op); |
| Orig_Sloc : constant Source_Ptr := Sloc (Orig); |
| Index : constant Nat := SCO_Raw_Hash_Table.Get (Orig_Sloc); |
| |
| begin |
| -- All (putative) logical operators are supposed to have their own entry |
| -- in the SCOs table. However, the semantic analysis may invoke this |
| -- subprogram with nodes that are out of the SCO generation scope. |
| |
| if Index /= 0 then |
| SCO_Raw_Table.Table (Index).C2 := ' '; |
| end if; |
| end Set_SCO_Logical_Operator; |
| |
| ---------------------------- |
| -- Set_SCO_Pragma_Enabled -- |
| ---------------------------- |
| |
| procedure Set_SCO_Pragma_Enabled (Loc : Source_Ptr) is |
| |
| -- SCO annotations are not processed after the filtering pass |
| |
| pragma Assert (not Generate_SCO or else SCO_Generation_State = Raw); |
| |
| Index : Nat; |
| |
| begin |
| -- Nothing to do if not generating SCO, or if we're not processing the |
| -- original source occurrence of the pragma. |
| |
| if not (Generate_SCO |
| and then In_Extended_Main_Source_Unit (Loc) |
| and then not (In_Instance or In_Inlined_Body)) |
| then |
| return; |
| end if; |
| |
| -- Note: the reason we use the Sloc value as the key is that in the |
| -- generic case, the call to this procedure is made on a copy of the |
| -- original node, so we can't use the Node_Id value. |
| |
| Index := SCO_Raw_Hash_Table.Get (Loc); |
| |
| -- A zero index here indicates that semantic analysis found an |
| -- activated pragma at Loc which does not have a corresponding pragma |
| -- or aspect at the syntax level. This may occur in legitimate cases |
| -- because of expanded code (such are Pre/Post conditions generated for |
| -- formal parameter validity checks), or as a consequence of a previous |
| -- error. |
| |
| if Index = 0 then |
| return; |
| |
| else |
| declare |
| T : SCO_Table_Entry renames SCO_Raw_Table.Table (Index); |
| |
| begin |
| -- Note: may be called multiple times for the same sloc, so |
| -- account for the fact that the entry may already have been |
| -- marked enabled. |
| |
| case T.C1 is |
| -- Aspect (decision SCO) |
| |
| when 'a' => |
| T.C1 := 'A'; |
| |
| when 'A' => |
| null; |
| |
| -- Pragma (statement SCO) |
| |
| when 'S' => |
| pragma Assert (T.C2 = 'p' or else T.C2 = 'P'); |
| T.C2 := 'P'; |
| |
| when others => |
| raise Program_Error; |
| end case; |
| end; |
| end if; |
| end Set_SCO_Pragma_Enabled; |
| |
| ------------------------- |
| -- Set_Raw_Table_Entry -- |
| ------------------------- |
| |
| procedure Set_Raw_Table_Entry |
| (C1 : Character; |
| C2 : Character; |
| From : Source_Ptr; |
| To : Source_Ptr; |
| Last : Boolean; |
| Pragma_Sloc : Source_Ptr := No_Location; |
| Pragma_Aspect_Name : Name_Id := No_Name) |
| is |
| pragma Assert (SCO_Generation_State = Raw); |
| begin |
| SCO_Raw_Table.Append |
| ((C1 => C1, |
| C2 => C2, |
| From => To_Source_Location (From), |
| To => To_Source_Location (To), |
| Last => Last, |
| Pragma_Sloc => Pragma_Sloc, |
| Pragma_Aspect_Name => Pragma_Aspect_Name)); |
| end Set_Raw_Table_Entry; |
| |
| ------------------------ |
| -- To_Source_Location -- |
| ------------------------ |
| |
| function To_Source_Location (S : Source_Ptr) return Source_Location is |
| begin |
| if S = No_Location then |
| return No_Source_Location; |
| else |
| return |
| (Line => Get_Logical_Line_Number (S), |
| Col => Get_Column_Number (S)); |
| end if; |
| end To_Source_Location; |
| |
| ----------------------------------------- |
| -- Traverse_Declarations_Or_Statements -- |
| ----------------------------------------- |
| |
| -- Tables used by Traverse_Declarations_Or_Statements for temporarily |
| -- holding statement and decision entries. These are declared globally |
| -- since they are shared by recursive calls to this procedure. |
| |
| type SC_Entry is record |
| N : Node_Id; |
| From : Source_Ptr; |
| To : Source_Ptr; |
| Typ : Character; |
| end record; |
| -- Used to store a single entry in the following table, From:To represents |
| -- the range of entries in the CS line entry, and typ is the type, with |
| -- space meaning that no type letter will accompany the entry. |
| |
| package SC is new Table.Table |
| (Table_Component_Type => SC_Entry, |
| Table_Index_Type => Nat, |
| Table_Low_Bound => 1, |
| Table_Initial => 1000, |
| Table_Increment => 200, |
| Table_Name => "SCO_SC"); |
| -- Used to store statement components for a CS entry to be output as a |
| -- result of the call to this procedure. SC.Last is the last entry stored, |
| -- so the current statement sequence is represented by SC_Array (SC_First |
| -- .. SC.Last), where SC_First is saved on entry to each recursive call to |
| -- the routine. |
| -- |
| -- Extend_Statement_Sequence adds an entry to this array, and then |
| -- Set_Statement_Entry clears the entries starting with SC_First, copying |
| -- these entries to the main SCO output table. The reason that we do the |
| -- temporary caching of results in this array is that we want the SCO table |
| -- entries for a given CS line to be contiguous, and the processing may |
| -- output intermediate entries such as decision entries. |
| |
| type SD_Entry is record |
| Nod : Node_Id; |
| Lst : List_Id; |
| Typ : Character; |
| Plo : Source_Ptr; |
| end record; |
| -- Used to store a single entry in the following table. Nod is the node to |
| -- be searched for decisions for the case of Process_Decisions_Defer with a |
| -- node argument (with Lst set to No_List. Lst is the list to be searched |
| -- for decisions for the case of Process_Decisions_Defer with a List |
| -- argument (in which case Nod is set to Empty). Plo is the sloc of the |
| -- enclosing pragma, if any. |
| |
| package SD is new Table.Table |
| (Table_Component_Type => SD_Entry, |
| Table_Index_Type => Nat, |
| Table_Low_Bound => 1, |
| Table_Initial => 1000, |
| Table_Increment => 200, |
| Table_Name => "SCO_SD"); |
| -- Used to store possible decision information. Instead of calling the |
| -- Process_Decisions procedures directly, we call Process_Decisions_Defer, |
| -- which simply stores the arguments in this table. Then when we clear |
| -- out a statement sequence using Set_Statement_Entry, after generating |
| -- the CS lines for the statements, the entries in this table result in |
| -- calls to Process_Decision. The reason for doing things this way is to |
| -- ensure that decisions are output after the CS line for the statements |
| -- in which the decisions occur. |
| |
| procedure Traverse_Declarations_Or_Statements |
| (L : List_Id; |
| D : Dominant_Info := No_Dominant; |
| P : Node_Id := Empty) |
| is |
| Discard_Dom : Dominant_Info; |
| pragma Warnings (Off, Discard_Dom); |
| begin |
| Discard_Dom := Traverse_Declarations_Or_Statements (L, D, P); |
| end Traverse_Declarations_Or_Statements; |
| |
| function Traverse_Declarations_Or_Statements |
| (L : List_Id; |
| D : Dominant_Info := No_Dominant; |
| P : Node_Id := Empty) return Dominant_Info |
| is |
| Current_Dominant : Dominant_Info := D; |
| -- Dominance information for the current basic block |
| |
| Current_Test : Node_Id; |
| -- Conditional node (N_If_Statement or N_Elsif being processed) |
| |
| N : Node_Id; |
| |
| SC_First : constant Nat := SC.Last + 1; |
| SD_First : constant Nat := SD.Last + 1; |
| -- Record first entries used in SC/SD at this recursive level |
| |
| procedure Extend_Statement_Sequence (N : Node_Id; Typ : Character); |
| -- Extend the current statement sequence to encompass the node N. Typ is |
| -- the letter that identifies the type of statement/declaration that is |
| -- being added to the sequence. |
| |
| procedure Process_Decisions_Defer (N : Node_Id; T : Character); |
| pragma Inline (Process_Decisions_Defer); |
| -- This routine is logically the same as Process_Decisions, except that |
| -- the arguments are saved in the SD table for later processing when |
| -- Set_Statement_Entry is called, which goes through the saved entries |
| -- making the corresponding calls to Process_Decision. Note: the |
| -- enclosing statement must have already been added to the current |
| -- statement sequence, so that nested decisions are properly |
| -- identified as such. |
| |
| procedure Process_Decisions_Defer (L : List_Id; T : Character); |
| pragma Inline (Process_Decisions_Defer); |
| -- Same case for list arguments, deferred call to Process_Decisions |
| |
| procedure Set_Statement_Entry; |
| -- Output CS entries for all statements saved in table SC, and end the |
| -- current CS sequence. Then output entries for all decisions nested in |
| -- these statements, which have been deferred so far. |
| |
| procedure Traverse_One (N : Node_Id); |
| -- Traverse one declaration or statement |
| |
| procedure Traverse_Aspects (N : Node_Id); |
| -- Helper for Traverse_One: traverse N's aspect specifications |
| |
| procedure Traverse_Degenerate_Subprogram (N : Node_Id); |
| -- Common code to handle null procedures and expression functions. Emit |
| -- a SCO of the given Kind and N outside of the dominance flow. |
| |
| ------------------------------- |
| -- Extend_Statement_Sequence -- |
| ------------------------------- |
| |
| procedure Extend_Statement_Sequence (N : Node_Id; Typ : Character) is |
| Dummy : Source_Ptr; |
| F : Source_Ptr; |
| T : Source_Ptr; |
| To_Node : Node_Id := Empty; |
| |
| begin |
| Sloc_Range (N, F, T); |
| |
| case Nkind (N) is |
| when N_Accept_Statement => |
| if Present (Parameter_Specifications (N)) then |
| To_Node := Last (Parameter_Specifications (N)); |
| elsif Present (Entry_Index (N)) then |
| To_Node := Entry_Index (N); |
| else |
| To_Node := Entry_Direct_Name (N); |
| end if; |
| |
| when N_Case_Statement => |
| To_Node := Expression (N); |
| |
| when N_Elsif_Part |
| | N_If_Statement |
| => |
| To_Node := Condition (N); |
| |
| when N_Extended_Return_Statement => |
| To_Node := Last (Return_Object_Declarations (N)); |
| |
| when N_Loop_Statement => |
| To_Node := Iteration_Scheme (N); |
| |
| when N_Asynchronous_Select |
| | N_Conditional_Entry_Call |
| | N_Selective_Accept |
| | N_Single_Protected_Declaration |
| | N_Single_Task_Declaration |
| | N_Timed_Entry_Call |
| => |
| T := F; |
| |
| when N_Protected_Type_Declaration |
| | N_Task_Type_Declaration |
| => |
| if Has_Aspects (N) then |
| To_Node := Last (Aspect_Specifications (N)); |
| |
| elsif Present (Discriminant_Specifications (N)) then |
| To_Node := Last (Discriminant_Specifications (N)); |
| |
| else |
| To_Node := Defining_Identifier (N); |
| end if; |
| |
| when N_Subexpr => |
| To_Node := N; |
| |
| when others => |
| null; |
| end case; |
| |
| if Present (To_Node) then |
| Sloc_Range (To_Node, Dummy, T); |
| end if; |
| |
| SC.Append ((N, F, T, Typ)); |
| end Extend_Statement_Sequence; |
| |
| ----------------------------- |
| -- Process_Decisions_Defer -- |
| ----------------------------- |
| |
| procedure Process_Decisions_Defer (N : Node_Id; T : Character) is |
| begin |
| SD.Append ((N, No_List, T, Current_Pragma_Sloc)); |
| end Process_Decisions_Defer; |
| |
| procedure Process_Decisions_Defer (L : List_Id; T : Character) is |
| begin |
| SD.Append ((Empty, L, T, Current_Pragma_Sloc)); |
| end Process_Decisions_Defer; |
| |
| ------------------------- |
| -- Set_Statement_Entry -- |
| ------------------------- |
| |
| procedure Set_Statement_Entry is |
| SC_Last : constant Int := SC.Last; |
| SD_Last : constant Int := SD.Last; |
| |
| begin |
| -- Output statement entries from saved entries in SC table |
| |
| for J in SC_First .. SC_Last loop |
| if J = SC_First then |
| |
| if Current_Dominant /= No_Dominant then |
| declare |
| From : Source_Ptr; |
| To : Source_Ptr; |
| |
| begin |
| Sloc_Range (Current_Dominant.N, From, To); |
| |
| if Current_Dominant.K /= 'E' then |
| To := No_Location; |
| end if; |
| |
| -- Be consistent with the location determined in |
| -- Output_Header. |
| |
| if Current_Dominant.K = 'T' |
| and then Nkind (Parent (Current_Dominant.N)) |
| in N_Accept_Alternative |
| | N_Delay_Alternative |
| | N_Terminate_Alternative |
| then |
| From := First_Sloc (Current_Dominant.N); |
| end if; |
| |
| Set_Raw_Table_Entry |
| (C1 => '>', |
| C2 => Current_Dominant.K, |
| From => From, |
| To => To, |
| Last => False, |
| Pragma_Sloc => No_Location, |
| Pragma_Aspect_Name => No_Name); |
| end; |
| end if; |
| end if; |
| |
| declare |
| SCE : SC_Entry renames SC.Table (J); |
| Pragma_Sloc : Source_Ptr := No_Location; |
| Pragma_Aspect_Name : Name_Id := No_Name; |
| |
| begin |
| -- For the case of a statement SCO for a pragma controlled by |
| -- Set_SCO_Pragma_Enabled, set Pragma_Sloc so that the SCO (and |
| -- those of any nested decision) is emitted only if the pragma |
| -- is enabled. |
| |
| if SCE.Typ = 'p' then |
| Pragma_Sloc := SCE.From; |
| SCO_Raw_Hash_Table.Set |
| (Pragma_Sloc, SCO_Raw_Table.Last + 1); |
| Pragma_Aspect_Name := Pragma_Name_Unmapped (SCE.N); |
| pragma Assert (Pragma_Aspect_Name /= No_Name); |
| |
| elsif SCE.Typ = 'P' then |
| Pragma_Aspect_Name := Pragma_Name_Unmapped (SCE.N); |
| pragma Assert (Pragma_Aspect_Name /= No_Name); |
| end if; |
| |
| Set_Raw_Table_Entry |
| (C1 => 'S', |
| C2 => SCE.Typ, |
| From => SCE.From, |
| To => SCE.To, |
| Last => (J = SC_Last), |
| Pragma_Sloc => Pragma_Sloc, |
| Pragma_Aspect_Name => Pragma_Aspect_Name); |
| end; |
| end loop; |
| |
| -- Last statement of basic block, if present, becomes new current |
| -- dominant. |
| |
| if SC_Last >= SC_First then |
| Current_Dominant := ('S', SC.Table (SC_Last).N); |
| end if; |
| |
| -- Clear out used section of SC table |
| |
| SC.Set_Last (SC_First - 1); |
| |
| -- Output any embedded decisions |
| |
| for J in SD_First .. SD_Last loop |
| declare |
| SDE : SD_Entry renames SD.Table (J); |
| |
| begin |
| if Present (SDE.Nod) then |
| Process_Decisions (SDE.Nod, SDE.Typ, SDE.Plo); |
| else |
| Process_Decisions (SDE.Lst, SDE.Typ, SDE.Plo); |
| end if; |
| end; |
| end loop; |
| |
| -- Clear out used section of SD table |
| |
| SD.Set_Last (SD_First - 1); |
| end Set_Statement_Entry; |
| |
| ---------------------- |
| -- Traverse_Aspects -- |
| ---------------------- |
| |
| procedure Traverse_Aspects (N : Node_Id) is |
| AE : Node_Id; |
| AN : Node_Id; |
| C1 : Character; |
| |
| begin |
| AN := First (Aspect_Specifications (N)); |
| while Present (AN) loop |
| AE := Expression (AN); |
| |
| -- SCOs are generated before semantic analysis/expansion: |
| -- PPCs are not split yet. |
| |
| pragma Assert (not Split_PPC (AN)); |
| |
| C1 := ASCII.NUL; |
| |
| case Get_Aspect_Id (AN) is |
| |
| -- Aspects rewritten into pragmas controlled by a Check_Policy: |
| -- Current_Pragma_Sloc must be set to the sloc of the aspect |
| -- specification. The corresponding pragma will have the same |
| -- sloc. Note that Invariant, Pre, and Post will be enabled if |
| -- the policy is Check; on the other hand, predicate aspects |
| -- will be enabled for Check and Ignore (when Add_Predicate |
| -- is called) because the actual checks occur in client units. |
| -- When the assertion policy for Predicate is Disable, the |
| -- SCO remains disabled, because Add_Predicate is never called. |
| |
| -- Pre/post can have checks in client units too because of |
| -- inheritance, so should they receive the same treatment??? |
| |
| when Aspect_Dynamic_Predicate |
| | Aspect_Invariant |
| | Aspect_Post |
| | Aspect_Postcondition |
| | Aspect_Pre |
| | Aspect_Precondition |
| | Aspect_Predicate |
| | Aspect_Static_Predicate |
| | Aspect_Type_Invariant |
| => |
| C1 := 'a'; |
| |
| -- Other aspects: just process any decision nested in the |
| -- aspect expression. |
| |
| when others => |
| if Has_Decision (AE) then |
| C1 := 'X'; |
| end if; |
| end case; |
| |
| if C1 /= ASCII.NUL then |
| pragma Assert (Current_Pragma_Sloc = No_Location); |
| |
| if C1 = 'a' or else C1 = 'A' then |
| Current_Pragma_Sloc := Sloc (AN); |
| end if; |
| |
| Process_Decisions_Defer (AE, C1); |
| |
| Current_Pragma_Sloc := No_Location; |
| end if; |
| |
| Next (AN); |
| end loop; |
| end Traverse_Aspects; |
| |
| ------------------------------------ |
| -- Traverse_Degenerate_Subprogram -- |
| ------------------------------------ |
| |
| procedure Traverse_Degenerate_Subprogram (N : Node_Id) is |
| begin |
| -- Complete current sequence of statements |
| |
| Set_Statement_Entry; |
| |
| declare |
| Saved_Dominant : constant Dominant_Info := Current_Dominant; |
| -- Save last statement in current sequence as dominant |
| |
| begin |
| -- Output statement SCO for degenerate subprogram body (null |
| -- statement or freestanding expression) outside of the dominance |
| -- chain. |
| |
| Current_Dominant := No_Dominant; |
| Extend_Statement_Sequence (N, Typ => 'X'); |
| |
| -- For the case of an expression-function, collect decisions |
| -- embedded in the expression now. |
| |
| if Nkind (N) in N_Subexpr then |
| Process_Decisions_Defer (N, 'X'); |
| end if; |
| |
| Set_Statement_Entry; |
| |
| -- Restore current dominant information designating last statement |
| -- in previous sequence (i.e. make the dominance chain skip over |
| -- the degenerate body). |
| |
| Current_Dominant := Saved_Dominant; |
| end; |
| end Traverse_Degenerate_Subprogram; |
| |
| ------------------ |
| -- Traverse_One -- |
| ------------------ |
| |
| procedure Traverse_One (N : Node_Id) is |
| begin |
| -- Initialize or extend current statement sequence. Note that for |
| -- special cases such as IF and Case statements we will modify |
| -- the range to exclude internal statements that should not be |
| -- counted as part of the current statement sequence. |
| |
| case Nkind (N) is |
| |
| -- Package declaration |
| |
| when N_Package_Declaration => |
| Set_Statement_Entry; |
| Traverse_Package_Declaration (N, Current_Dominant); |
| |
| -- Generic package declaration |
| |
| when N_Generic_Package_Declaration => |
| Set_Statement_Entry; |
| Traverse_Generic_Package_Declaration (N); |
| |
| -- Package body |
| |
| when N_Package_Body => |
| Set_Statement_Entry; |
| Traverse_Package_Body (N); |
| |
| -- Subprogram declaration or subprogram body stub |
| |
| when N_Expression_Function |
| | N_Subprogram_Body_Stub |
| | N_Subprogram_Declaration |
| => |
| declare |
| Spec : constant Node_Id := Specification (N); |
| begin |
| Process_Decisions_Defer |
| (Parameter_Specifications (Spec), 'X'); |
| |
| -- Case of a null procedure: generate SCO for fictitious |
| -- NULL statement located at the NULL keyword in the |
| -- procedure specification. |
| |
| if Nkind (N) = N_Subprogram_Declaration |
| and then Nkind (Spec) = N_Procedure_Specification |
| and then Null_Present (Spec) |
| then |
| Traverse_Degenerate_Subprogram (Null_Statement (Spec)); |
| |
| -- Case of an expression function: generate a statement SCO |
| -- for the expression (and then decision SCOs for any nested |
| -- decisions). |
| |
| elsif Nkind (N) = N_Expression_Function then |
| Traverse_Degenerate_Subprogram (Expression (N)); |
| end if; |
| end; |
| |
| -- Entry declaration |
| |
| when N_Entry_Declaration => |
| Process_Decisions_Defer (Parameter_Specifications (N), 'X'); |
| |
| -- Generic subprogram declaration |
| |
| when N_Generic_Subprogram_Declaration => |
| Process_Decisions_Defer |
| (Generic_Formal_Declarations (N), 'X'); |
| Process_Decisions_Defer |
| (Parameter_Specifications (Specification (N)), 'X'); |
| |
| -- Task or subprogram body |
| |
| when N_Subprogram_Body |
| | N_Task_Body |
| => |
| Set_Statement_Entry; |
| Traverse_Subprogram_Or_Task_Body (N); |
| |
| -- Entry body |
| |
| when N_Entry_Body => |
| declare |
| Cond : constant Node_Id := |
| Condition (Entry_Body_Formal_Part (N)); |
| |
| Inner_Dominant : Dominant_Info := No_Dominant; |
| |
| begin |
| Set_Statement_Entry; |
| |
| if Present (Cond) then |
| Process_Decisions_Defer (Cond, 'G'); |
| |
| -- For an entry body with a barrier, the entry body |
| -- is dominated by a True evaluation of the barrier. |
| |
| Inner_Dominant := ('T', N); |
| end if; |
| |
| Traverse_Subprogram_Or_Task_Body (N, Inner_Dominant); |
| end; |
| |
| -- Protected body |
| |
| when N_Protected_Body => |
| Set_Statement_Entry; |
| Traverse_Declarations_Or_Statements (Declarations (N)); |
| |
| -- Exit statement, which is an exit statement in the SCO sense, |
| -- so it is included in the current statement sequence, but |
| -- then it terminates this sequence. We also have to process |
| -- any decisions in the exit statement expression. |
| |
| when N_Exit_Statement => |
| Extend_Statement_Sequence (N, 'E'); |
| Process_Decisions_Defer (Condition (N), 'E'); |
| Set_Statement_Entry; |
| |
| -- If condition is present, then following statement is |
| -- only executed if the condition evaluates to False. |
| |
| if Present (Condition (N)) then |
| Current_Dominant := ('F', N); |
| else |
| Current_Dominant := No_Dominant; |
| end if; |
| |
| -- Label, which breaks the current statement sequence, but the |
| -- label itself is not included in the next statement sequence, |
| -- since it generates no code. |
| |
| when N_Label => |
| Set_Statement_Entry; |
| Current_Dominant := No_Dominant; |
| |
| -- Block statement, which breaks the current statement sequence |
| |
| when N_Block_Statement => |
| Set_Statement_Entry; |
| |
| -- The first statement in the handled sequence of statements |
| -- is dominated by the elaboration of the last declaration. |
| |
| Current_Dominant := Traverse_Declarations_Or_Statements |
| (L => Declarations (N), |
| D => Current_Dominant); |
| |
| Traverse_Handled_Statement_Sequence |
| (N => Handled_Statement_Sequence (N), |
| D => Current_Dominant); |
| |
| -- If statement, which breaks the current statement sequence, |
| -- but we include the condition in the current sequence. |
| |
| when N_If_Statement => |
| Current_Test := N; |
| Extend_Statement_Sequence (N, 'I'); |
| Process_Decisions_Defer (Condition (N), 'I'); |
| Set_Statement_Entry; |
| |
| -- Now we traverse the statements in the THEN part |
| |
| Traverse_Declarations_Or_Statements |
| (L => Then_Statements (N), |
| D => ('T', N)); |
| |
| -- Loop through ELSIF parts if present |
| |
| if Present (Elsif_Parts (N)) then |
| declare |
| Saved_Dominant : constant Dominant_Info := |
| Current_Dominant; |
| |
| Elif : Node_Id := First (Elsif_Parts (N)); |
| |
| begin |
| while Present (Elif) loop |
| |
| -- An Elsif is executed only if the previous test |
| -- got a FALSE outcome. |
| |
| Current_Dominant := ('F', Current_Test); |
| |
| -- Now update current test information |
| |
| Current_Test := Elif; |
| |
| -- We generate a statement sequence for the |
| -- construct "ELSIF condition", so that we have |
| -- a statement for the resulting decisions. |
| |
| Extend_Statement_Sequence (Elif, 'I'); |
| Process_Decisions_Defer (Condition (Elif), 'I'); |
| Set_Statement_Entry; |
| |
| -- An ELSIF part is never guaranteed to have |
| -- been executed, following statements are only |
| -- dominated by the initial IF statement. |
| |
| Current_Dominant := Saved_Dominant; |
| |
| -- Traverse the statements in the ELSIF |
| |
| Traverse_Declarations_Or_Statements |
| (L => Then_Statements (Elif), |
| D => ('T', Elif)); |
| Next (Elif); |
| end loop; |
| end; |
| end if; |
| |
| -- Finally traverse the ELSE statements if present |
| |
| Traverse_Declarations_Or_Statements |
| (L => Else_Statements (N), |
| D => ('F', Current_Test)); |
| |
| -- CASE statement, which breaks the current statement sequence, |
| -- but we include the expression in the current sequence. |
| |
| when N_Case_Statement => |
| Extend_Statement_Sequence (N, 'C'); |
| Process_Decisions_Defer (Expression (N), 'X'); |
| Set_Statement_Entry; |
| |
| -- Process case branches, all of which are dominated by the |
| -- CASE statement. |
| |
| declare |
| Alt : Node_Id; |
| begin |
| Alt := First_Non_Pragma (Alternatives (N)); |
| while Present (Alt) loop |
| Traverse_Declarations_Or_Statements |
| (L => Statements (Alt), |
| D => Current_Dominant); |
| Next (Alt); |
| end loop; |
| end; |
| |
| -- ACCEPT statement |
| |
| when N_Accept_Statement => |
| Extend_Statement_Sequence (N, 'A'); |
| Set_Statement_Entry; |
| |
| -- Process sequence of statements, dominant is the ACCEPT |
| -- statement. |
| |
| Traverse_Handled_Statement_Sequence |
| (N => Handled_Statement_Sequence (N), |
| D => Current_Dominant); |
| |
| -- SELECT |
| |
| when N_Selective_Accept => |
| Extend_Statement_Sequence (N, 'S'); |
| Set_Statement_Entry; |
| |
| -- Process alternatives |
| |
| declare |
| Alt : Node_Id; |
| Guard : Node_Id; |
| S_Dom : Dominant_Info; |
| |
| begin |
| Alt := First (Select_Alternatives (N)); |
| while Present (Alt) loop |
| S_Dom := Current_Dominant; |
| Guard := Condition (Alt); |
| |
| if Present (Guard) then |
| Process_Decisions |
| (Guard, |
| 'G', |
| Pragma_Sloc => No_Location); |
| Current_Dominant := ('T', Guard); |
| end if; |
| |
| Traverse_One (Alt); |
| |
| Current_Dominant := S_Dom; |
| Next (Alt); |
| end loop; |
| end; |
| |
| Traverse_Declarations_Or_Statements |
| (L => Else_Statements (N), |
| D => Current_Dominant); |
| |
| when N_Conditional_Entry_Call |
| | N_Timed_Entry_Call |
| => |
| Extend_Statement_Sequence (N, 'S'); |
| Set_Statement_Entry; |
| |
| -- Process alternatives |
| |
| Traverse_One (Entry_Call_Alternative (N)); |
| |
| if Nkind (N) = N_Timed_Entry_Call then |
| Traverse_One (Delay_Alternative (N)); |
| else |
| Traverse_Declarations_Or_Statements |
| (L => Else_Statements (N), |
| D => Current_Dominant); |
| end if; |
| |
| when N_Asynchronous_Select => |
| Extend_Statement_Sequence (N, 'S'); |
| Set_Statement_Entry; |
| |
| Traverse_One (Triggering_Alternative (N)); |
| Traverse_Declarations_Or_Statements |
| (L => Statements (Abortable_Part (N)), |
| D => Current_Dominant); |
| |
| when N_Accept_Alternative => |
| Traverse_Declarations_Or_Statements |
| (L => Statements (N), |
| D => Current_Dominant, |
| P => Accept_Statement (N)); |
| |
| when N_Entry_Call_Alternative => |
| Traverse_Declarations_Or_Statements |
| (L => Statements (N), |
| D => Current_Dominant, |
| P => Entry_Call_Statement (N)); |
| |
| when N_Delay_Alternative => |
| Traverse_Declarations_Or_Statements |
| (L => Statements (N), |
| D => Current_Dominant, |
| P => Delay_Statement (N)); |
| |
| when N_Triggering_Alternative => |
| Traverse_Declarations_Or_Statements |
| (L => Statements (N), |
| D => Current_Dominant, |
| P => Triggering_Statement (N)); |
| |
| when N_Terminate_Alternative => |
| |
| -- It is dubious to emit a statement SCO for a TERMINATE |
| -- alternative, since no code is actually executed if the |
| -- alternative is selected -- the tasking runtime call just |
| -- never returns??? |
| |
| Extend_Statement_Sequence (N, ' '); |
| Set_Statement_Entry; |
| |
| -- Unconditional exit points, which are included in the current |
| -- statement sequence, but then terminate it |
| |
| when N_Goto_Statement |
| | N_Raise_Statement |
| | N_Requeue_Statement |
| => |
| Extend_Statement_Sequence (N, ' '); |
| Set_Statement_Entry; |
| Current_Dominant := No_Dominant; |
| |
| -- Simple return statement. which is an exit point, but we |
| -- have to process the return expression for decisions. |
| |
| when N_Simple_Return_Statement => |
| Extend_Statement_Sequence (N, ' '); |
| Process_Decisions_Defer (Expression (N), 'X'); |
| Set_Statement_Entry; |
| Current_Dominant := No_Dominant; |
| |
| -- Extended return statement |
| |
| when N_Extended_Return_Statement => |
| Extend_Statement_Sequence (N, 'R'); |
| Process_Decisions_Defer (Return_Object_Declarations (N), 'X'); |
| Set_Statement_Entry; |
| |
| Traverse_Handled_Statement_Sequence |
| (N => Handled_Statement_Sequence (N), |
| D => Current_Dominant); |
| |
| Current_Dominant := No_Dominant; |
| |
| -- Loop ends the current statement sequence, but we include |
| -- the iteration scheme if present in the current sequence. |
| -- But the body of the loop starts a new sequence, since it |
| -- may not be executed as part of the current sequence. |
| |
| when N_Loop_Statement => |
| declare |
| ISC : constant Node_Id := Iteration_Scheme (N); |
| Inner_Dominant : Dominant_Info := No_Dominant; |
| |
| begin |
| if Present (ISC) then |
| |
| -- If iteration scheme present, extend the current |
| -- statement sequence to include the iteration scheme |
| -- and process any decisions it contains. |
| |
| -- While loop |
| |
| if Present (Condition (ISC)) then |
| Extend_Statement_Sequence (N, 'W'); |
| Process_Decisions_Defer (Condition (ISC), 'W'); |
| |
| -- Set more specific dominant for inner statements |
| -- (the control sloc for the decision is that of |
| -- the WHILE token). |
| |
| Inner_Dominant := ('T', ISC); |
| |
| -- For loop |
| |
| else |
| Extend_Statement_Sequence (N, 'F'); |
| Process_Decisions_Defer |
| (Loop_Parameter_Specification (ISC), 'X'); |
| end if; |
| end if; |
| |
| Set_Statement_Entry; |
| |
| if Inner_Dominant = No_Dominant then |
| Inner_Dominant := Current_Dominant; |
| end if; |
| |
| Traverse_Declarations_Or_Statements |
| (L => Statements (N), |
| D => Inner_Dominant); |
| end; |
| |
| -- Pragma |
| |
| when N_Pragma => |
| |
| -- Record sloc of pragma (pragmas don't nest) |
| |
| pragma Assert (Current_Pragma_Sloc = No_Location); |
| Current_Pragma_Sloc := Sloc (N); |
| |
| -- Processing depends on the kind of pragma |
| |
| declare |
| Nam : constant Name_Id := Pragma_Name_Unmapped (N); |
| Arg : Node_Id := |
| First (Pragma_Argument_Associations (N)); |
| Typ : Character; |
| |
| begin |
| case Nam is |
| when Name_Assert |
| | Name_Assert_And_Cut |
| | Name_Assume |
| | Name_Check |
| | Name_Loop_Invariant |
| | Name_Postcondition |
| | Name_Precondition |
| | Name_Type_Invariant |
| | Name_Invariant |
| => |
| -- For Assert/Check/Precondition/Postcondition, we |
| -- must generate a P entry for the decision. Note |
| -- that this is done unconditionally at this stage. |
| -- Output for disabled pragmas is suppressed later |
| -- on when we output the decision line in Put_SCOs, |
| -- depending on setting by Set_SCO_Pragma_Enabled. |
| |
| if Nam = Name_Check |
| or else Nam = Name_Type_Invariant |
| or else Nam = Name_Invariant |
| then |
| Next (Arg); |
| end if; |
| |
| Process_Decisions_Defer (Expression (Arg), 'P'); |
| Typ := 'p'; |
| |
| -- Pre/postconditions can be inherited so SCO should |
| -- never be deactivated??? |
| |
| when Name_Debug => |
| if Present (Arg) and then Present (Next (Arg)) then |
| |
| -- Case of a dyadic pragma Debug: first argument |
| -- is a P decision, any nested decision in the |
| -- second argument is an X decision. |
| |
| Process_Decisions_Defer (Expression (Arg), 'P'); |
| Next (Arg); |
| end if; |
| |
| Process_Decisions_Defer (Expression (Arg), 'X'); |
| Typ := 'p'; |
| |
| -- For all other pragmas, we generate decision entries |
| -- for any embedded expressions, and the pragma is |
| -- never disabled. |
| |
| -- Should generate P decisions (not X) for assertion |
| -- related pragmas: [{Static,Dynamic}_]Predicate??? |
| |
| when others => |
| Process_Decisions_Defer (N, 'X'); |
| Typ := 'P'; |
| end case; |
| |
| -- Add statement SCO |
| |
| Extend_Statement_Sequence (N, Typ); |
| |
| Current_Pragma_Sloc := No_Location; |
| end; |
| |
| -- Object declaration. Ignored if Prev_Ids is set, since the |
| -- parser generates multiple instances of the whole declaration |
| -- if there is more than one identifier declared, and we only |
| -- want one entry in the SCOs, so we take the first, for which |
| -- Prev_Ids is False. |
| |
| when N_Number_Declaration |
| | N_Object_Declaration |
| => |
| if not Prev_Ids (N) then |
| Extend_Statement_Sequence (N, 'o'); |
| |
| if Has_Decision (N) then |
| Process_Decisions_Defer (N, 'X'); |
| end if; |
| end if; |
| |
| -- All other cases, which extend the current statement sequence |
| -- but do not terminate it, even if they have nested decisions. |
| |
| when N_Protected_Type_Declaration |
| | N_Task_Type_Declaration |
| => |
| Extend_Statement_Sequence (N, 't'); |
| Process_Decisions_Defer (Discriminant_Specifications (N), 'X'); |
| Set_Statement_Entry; |
| |
| Traverse_Protected_Or_Task_Definition (N); |
| |
| when N_Single_Protected_Declaration |
| | N_Single_Task_Declaration |
| => |
| Extend_Statement_Sequence (N, 'o'); |
| Set_Statement_Entry; |
| |
| Traverse_Protected_Or_Task_Definition (N); |
| |
| when others => |
| |
| -- Determine required type character code, or ASCII.NUL if |
| -- no SCO should be generated for this node. |
| |
| declare |
| NK : constant Node_Kind := Nkind (N); |
| Typ : Character; |
| |
| begin |
| case NK is |
| when N_Full_Type_Declaration |
| | N_Incomplete_Type_Declaration |
| | N_Private_Extension_Declaration |
| | N_Private_Type_Declaration |
| => |
| Typ := 't'; |
| |
| when N_Subtype_Declaration => |
| Typ := 's'; |
| |
| when N_Renaming_Declaration => |
| Typ := 'r'; |
| |
| when N_Generic_Instantiation => |
| Typ := 'i'; |
| |
| when N_Package_Body_Stub |
| | N_Protected_Body_Stub |
| | N_Representation_Clause |
| | N_Task_Body_Stub |
| | N_Use_Package_Clause |
| | N_Use_Type_Clause |
| => |
| Typ := ASCII.NUL; |
| |
| when N_Procedure_Call_Statement => |
| Typ := ' '; |
| |
| when others => |
| if NK in N_Statement_Other_Than_Procedure_Call then |
| Typ := ' '; |
| else |
| Typ := 'd'; |
| end if; |
| end case; |
| |
| if Typ /= ASCII.NUL then |
| Extend_Statement_Sequence (N, Typ); |
| end if; |
| end; |
| |
| -- Process any embedded decisions |
| |
| if Has_Decision (N) then |
| Process_Decisions_Defer (N, 'X'); |
| end if; |
| end case; |
| |
| -- Process aspects if present |
| |
| Traverse_Aspects (N); |
| end Traverse_One; |
| |
| -- Start of processing for Traverse_Declarations_Or_Statements |
| |
| begin |
| -- Process single prefixed node |
| |
| if Present (P) then |
| Traverse_One (P); |
| end if; |
| |
| -- Loop through statements or declarations |
| |
| N := First (L); |
| while Present (N) loop |
| |
| -- Note: For separate bodies, we see the tree after Par.Labl has |
| -- introduced implicit labels, so we need to ignore those nodes. |
| |
| if Nkind (N) /= N_Implicit_Label_Declaration then |
| Traverse_One (N); |
| end if; |
| |
| Next (N); |
| end loop; |
| |
| -- End sequence of statements and flush deferred decisions |
| |
| if Present (P) or else Is_Non_Empty_List (L) then |
| Set_Statement_Entry; |
| end if; |
| |
| return Current_Dominant; |
| end Traverse_Declarations_Or_Statements; |
| |
| ------------------------------------------ |
| -- Traverse_Generic_Package_Declaration -- |
| ------------------------------------------ |
| |
| procedure Traverse_Generic_Package_Declaration (N : Node_Id) is |
| begin |
| Process_Decisions (Generic_Formal_Declarations (N), 'X', No_Location); |
| Traverse_Package_Declaration (N); |
| end Traverse_Generic_Package_Declaration; |
| |
| ----------------------------------------- |
| -- Traverse_Handled_Statement_Sequence -- |
| ----------------------------------------- |
| |
| procedure Traverse_Handled_Statement_Sequence |
| (N : Node_Id; |
| D : Dominant_Info := No_Dominant) |
| is |
| Handler : Node_Id; |
| |
| begin |
| -- For package bodies without a statement part, the parser adds an empty |
| -- one, to normalize the representation. The null statement therein, |
| -- which does not come from source, does not get a SCO. |
| |
| if Present (N) and then Comes_From_Source (N) then |
| Traverse_Declarations_Or_Statements (Statements (N), D); |
| |
| if Present (Exception_Handlers (N)) then |
| Handler := First_Non_Pragma (Exception_Handlers (N)); |
| while Present (Handler) loop |
| Traverse_Declarations_Or_Statements |
| (L => Statements (Handler), |
| D => ('E', Handler)); |
| Next (Handler); |
| end loop; |
| end if; |
| end if; |
| end Traverse_Handled_Statement_Sequence; |
| |
| --------------------------- |
| -- Traverse_Package_Body -- |
| --------------------------- |
| |
| procedure Traverse_Package_Body (N : Node_Id) is |
| Dom : Dominant_Info; |
| begin |
| -- The first statement in the handled sequence of statements is |
| -- dominated by the elaboration of the last declaration. |
| |
| Dom := Traverse_Declarations_Or_Statements (Declarations (N)); |
| |
| Traverse_Handled_Statement_Sequence |
| (Handled_Statement_Sequence (N), Dom); |
| end Traverse_Package_Body; |
| |
| ---------------------------------- |
| -- Traverse_Package_Declaration -- |
| ---------------------------------- |
| |
| procedure Traverse_Package_Declaration |
| (N : Node_Id; |
| D : Dominant_Info := No_Dominant) |
| is |
| Spec : constant Node_Id := Specification (N); |
| Dom : Dominant_Info; |
| |
| begin |
| Dom := |
| Traverse_Declarations_Or_Statements (Visible_Declarations (Spec), D); |
| |
| -- First private declaration is dominated by last visible declaration |
| |
| Traverse_Declarations_Or_Statements (Private_Declarations (Spec), Dom); |
| end Traverse_Package_Declaration; |
| |
| ------------------------------------------- |
| -- Traverse_Protected_Or_Task_Definition -- |
| ------------------------------------------- |
| |
| procedure Traverse_Protected_Or_Task_Definition (N : Node_Id) is |
| Dom_Info : Dominant_Info := ('S', N); |
| -- The first declaration is dominated by the protected or task [type] |
| -- declaration. |
| |
| Sync_Def : Node_Id; |
| -- N's protected or task definition |
| |
| Priv_Decl : List_Id; |
| Vis_Decl : List_Id; |
| -- Sync_Def's Visible_Declarations and Private_Declarations |
| |
| begin |
| case Nkind (N) is |
| when N_Protected_Type_Declaration |
| | N_Single_Protected_Declaration |
| => |
| Sync_Def := Protected_Definition (N); |
| |
| when N_Single_Task_Declaration |
| | N_Task_Type_Declaration |
| => |
| Sync_Def := Task_Definition (N); |
| |
| when others => |
| raise Program_Error; |
| end case; |
| |
| -- Sync_Def may be Empty at least for empty Task_Type_Declarations. |
| -- Querying Visible or Private_Declarations is invalid in this case. |
| |
| if Present (Sync_Def) then |
| Vis_Decl := Visible_Declarations (Sync_Def); |
| Priv_Decl := Private_Declarations (Sync_Def); |
| else |
| Vis_Decl := No_List; |
| Priv_Decl := No_List; |
| end if; |
| |
| Dom_Info := Traverse_Declarations_Or_Statements |
| (L => Vis_Decl, |
| D => Dom_Info); |
| |
| -- If visible declarations are present, the first private declaration |
| -- is dominated by the last visible declaration. |
| |
| Traverse_Declarations_Or_Statements |
| (L => Priv_Decl, |
| D => Dom_Info); |
| end Traverse_Protected_Or_Task_Definition; |
| |
| -------------------------------------- |
| -- Traverse_Subprogram_Or_Task_Body -- |
| -------------------------------------- |
| |
| procedure Traverse_Subprogram_Or_Task_Body |
| (N : Node_Id; |
| D : Dominant_Info := No_Dominant) |
| is |
| Decls : constant List_Id := Declarations (N); |
| Dom_Info : Dominant_Info := D; |
| |
| begin |
| -- If declarations are present, the first statement is dominated by the |
| -- last declaration. |
| |
| Dom_Info := Traverse_Declarations_Or_Statements |
| (L => Decls, D => Dom_Info); |
| |
| Traverse_Handled_Statement_Sequence |
| (N => Handled_Statement_Sequence (N), |
| D => Dom_Info); |
| end Traverse_Subprogram_Or_Task_Body; |
| |
| ------------------------- |
| -- SCO_Record_Filtered -- |
| ------------------------- |
| |
| procedure SCO_Record_Filtered is |
| type Decision is record |
| Kind : Character; |
| -- Type of the SCO decision (see comments for SCO_Table_Entry.C1) |
| |
| Sloc : Source_Location; |
| |
| Top : Nat; |
| -- Index in the SCO_Raw_Table for the root operator/condition for the |
| -- expression that controls the decision. |
| end record; |
| -- Decision descriptor: used to gather information about a candidate |
| -- SCO decision. |
| |
| package Pending_Decisions is new Table.Table |
| (Table_Component_Type => Decision, |
| Table_Index_Type => Nat, |
| Table_Low_Bound => 1, |
| Table_Initial => 1000, |
| Table_Increment => 200, |
| Table_Name => "Filter_Pending_Decisions"); |
| -- Table used to hold decisions to process during the collection pass |
| |
| procedure Add_Expression_Tree (Idx : in out Nat); |
| -- Add SCO raw table entries for the decision controlling expression |
| -- tree starting at Idx to the filtered SCO table. |
| |
| procedure Collect_Decisions |
| (D : Decision; |
| Next : out Nat); |
| -- Collect decisions to add to the filtered SCO table starting at the |
| -- D decision (including it and its nested operators/conditions). Set |
| -- Next to the first node index passed the whole decision. |
| |
| procedure Compute_Range |
| (Idx : in out Nat; |
| From : out Source_Location; |
| To : out Source_Location); |
| -- Compute the source location range for the expression tree starting at |
| -- Idx in the SCO raw table. Store its bounds in From and To. |
| |
| function Is_Decision (Idx : Nat) return Boolean; |
| -- Return if the expression tree starting at Idx has adjacent nested |
| -- nodes that make a decision. |
| |
| procedure Process_Pending_Decisions |
| (Original_Decision : SCO_Table_Entry); |
| -- Complete the filtered SCO table using collected decisions. Output |
| -- decisions inherit the pragma information from the original decision. |
| |
| procedure Search_Nested_Decisions (Idx : in out Nat); |
| -- Collect decisions to add to the filtered SCO table starting at the |
| -- node at Idx in the SCO raw table. This node must not be part of an |
| -- already-processed decision. Set Idx to the first node index passed |
| -- the whole expression tree. |
| |
| procedure Skip_Decision |
| (Idx : in out Nat; |
| Process_Nested_Decisions : Boolean); |
| -- Skip all the nodes that belong to the decision starting at Idx. If |
| -- Process_Nested_Decision, call Search_Nested_Decisions on the first |
| -- nested nodes that do not belong to the decision. Set Idx to the first |
| -- node index passed the whole expression tree. |
| |
| ------------------------- |
| -- Add_Expression_Tree -- |
| ------------------------- |
| |
| procedure Add_Expression_Tree (Idx : in out Nat) is |
| Node_Idx : constant Nat := Idx; |
| T : SCO_Table_Entry renames SCO_Raw_Table.Table (Node_Idx); |
| From : Source_Location; |
| To : Source_Location; |
| |
| begin |
| case T.C1 is |
| when ' ' => |
| |
| -- This is a single condition. Add an entry for it and move on |
| |
| SCO_Table.Append (T); |
| Idx := Idx + 1; |
| |
| when '!' => |
| |
| -- This is a NOT operator: add an entry for it and browse its |
| -- only child. |
| |
| SCO_Table.Append (T); |
| Idx := Idx + 1; |
| Add_Expression_Tree (Idx); |
| |
| when others => |
| |
| -- This must be an AND/OR/AND THEN/OR ELSE operator |
| |
| if T.C2 = '?' then |
| |
| -- This is not a short circuit operator: consider this one |
| -- and all its children as a single condition. |
| |
| Compute_Range (Idx, From, To); |
| SCO_Table.Append |
| ((From => From, |
| To => To, |
| C1 => ' ', |
| C2 => 'c', |
| Last => False, |
| Pragma_Sloc => No_Location, |
| Pragma_Aspect_Name => No_Name)); |
| |
| else |
| -- This is a real short circuit operator: add an entry for |
| -- it and browse its children. |
| |
| SCO_Table.Append (T); |
| Idx := Idx + 1; |
| Add_Expression_Tree (Idx); |
| Add_Expression_Tree (Idx); |
| end if; |
| end case; |
| end Add_Expression_Tree; |
| |
| ----------------------- |
| -- Collect_Decisions -- |
| ----------------------- |
| |
| procedure Collect_Decisions |
| (D : Decision; |
| Next : out Nat) |
| is |
| Idx : Nat := D.Top; |
| |
| begin |
| if D.Kind /= 'X' or else Is_Decision (D.Top) then |
| Pending_Decisions.Append (D); |
| end if; |
| |
| Skip_Decision (Idx, True); |
| Next := Idx; |
| end Collect_Decisions; |
| |
| ------------------- |
| -- Compute_Range -- |
| ------------------- |
| |
| procedure Compute_Range |
| (Idx : in out Nat; |
| From : out Source_Location; |
| To : out Source_Location) |
| is |
| Sloc_F : Source_Location := No_Source_Location; |
| Sloc_T : Source_Location := No_Source_Location; |
| |
| procedure Process_One; |
| -- Process one node of the tree, and recurse over children. Update |
| -- Idx during the traversal. |
| |
| ----------------- |
| -- Process_One -- |
| ----------------- |
| |
| procedure Process_One is |
| begin |
| if Sloc_F = No_Source_Location |
| or else |
| SCO_Raw_Table.Table (Idx).From < Sloc_F |
| then |
| Sloc_F := SCO_Raw_Table.Table (Idx).From; |
| end if; |
| |
| if Sloc_T = No_Source_Location |
| or else |
| Sloc_T < SCO_Raw_Table.Table (Idx).To |
| then |
| Sloc_T := SCO_Raw_Table.Table (Idx).To; |
| end if; |
| |
| if SCO_Raw_Table.Table (Idx).C1 = ' ' then |
| |
| -- This is a condition: nothing special to do |
| |
| Idx := Idx + 1; |
| |
| elsif SCO_Raw_Table.Table (Idx).C1 = '!' then |
| |
| -- The "not" operator has only one operand |
| |
| Idx := Idx + 1; |
| Process_One; |
| |
| else |
| -- This is an AND THEN or OR ELSE logical operator: follow the |
| -- left, then the right operands. |
| |
| Idx := Idx + 1; |
| |
| Process_One; |
| Process_One; |
| end if; |
| end Process_One; |
| |
| -- Start of processing for Compute_Range |
| |
| begin |
| Process_One; |
| From := Sloc_F; |
| To := Sloc_T; |
| end Compute_Range; |
| |
| ----------------- |
| -- Is_Decision -- |
| ----------------- |
| |
| function Is_Decision (Idx : Nat) return Boolean is |
| Index : Nat := Idx; |
| |
| begin |
| loop |
| declare |
| T : SCO_Table_Entry renames SCO_Raw_Table.Table (Index); |
| |
| begin |
| case T.C1 is |
| when ' ' => |
| return False; |
| |
| when '!' => |
| |
| -- This is a decision iff the only operand of the NOT |
| -- operator could be a standalone decision. |
| |
| Index := Idx + 1; |
| |
| when others => |
| |
| -- This node is a logical operator (and thus could be a |
| -- standalone decision) iff it is a short circuit |
| -- operator. |
| |
| return T.C2 /= '?'; |
| end case; |
| end; |
| end loop; |
| end Is_Decision; |
| |
| ------------------------------- |
| -- Process_Pending_Decisions -- |
| ------------------------------- |
| |
| procedure Process_Pending_Decisions |
| (Original_Decision : SCO_Table_Entry) |
| is |
| begin |
| for Index in 1 .. Pending_Decisions.Last loop |
| declare |
| D : Decision renames Pending_Decisions.Table (Index); |
| Idx : Nat := D.Top; |
| |
| begin |
| -- Add a SCO table entry for the decision itself |
| |
| pragma Assert (D.Kind /= ' '); |
| |
| SCO_Table.Append |
| ((To => No_Source_Location, |
| From => D.Sloc, |
| C1 => D.Kind, |
| C2 => ' ', |
| Last => False, |
| Pragma_Sloc => Original_Decision.Pragma_Sloc, |
| Pragma_Aspect_Name => |
| Original_Decision.Pragma_Aspect_Name)); |
| |
| -- Then add ones for its nested operators/operands. Do not |
| -- forget to tag its *last* entry as such. |
| |
| Add_Expression_Tree (Idx); |
| SCO_Table.Table (SCO_Table.Last).Last := True; |
| end; |
| end loop; |
| |
| -- Clear the pending decisions list |
| Pending_Decisions.Set_Last (0); |
| end Process_Pending_Decisions; |
| |
| ----------------------------- |
| -- Search_Nested_Decisions -- |
| ----------------------------- |
| |
| procedure Search_Nested_Decisions (Idx : in out Nat) is |
| begin |
| loop |
| declare |
| T : SCO_Table_Entry renames SCO_Raw_Table.Table (Idx); |
| |
| begin |
| case T.C1 is |
| when ' ' => |
| Idx := Idx + 1; |
| exit; |
| |
| when '!' => |
| Collect_Decisions |
| ((Kind => 'X', |
| Sloc => T.From, |
| Top => Idx), |
| Idx); |
| exit; |
| |
| when others => |
| if T.C2 = '?' then |
| |
| -- This is not a logical operator: start looking for |
| -- nested decisions from here. Recurse over the left |
| -- child and let the loop take care of the right one. |
| |
| Idx := Idx + 1; |
| Search_Nested_Decisions (Idx); |
| |
| else |
| -- We found a nested decision |
| |
| Collect_Decisions |
| ((Kind => 'X', |
| Sloc => T.From, |
| Top => Idx), |
| Idx); |
| exit; |
| end if; |
| end case; |
| end; |
| end loop; |
| end Search_Nested_Decisions; |
| |
| ------------------- |
| -- Skip_Decision -- |
| ------------------- |
| |
| procedure Skip_Decision |
| (Idx : in out Nat; |
| Process_Nested_Decisions : Boolean) |
| is |
| begin |
| loop |
| declare |
| T : SCO_Table_Entry renames SCO_Raw_Table.Table (Idx); |
| |
| begin |
| Idx := Idx + 1; |
| |
| case T.C1 is |
| when ' ' => |
| exit; |
| |
| when '!' => |
| |
| -- This NOT operator belongs to the outside decision: |
| -- just skip it. |
| |
| null; |
| |
| when others => |
| if T.C2 = '?' and then Process_Nested_Decisions then |
| |
| -- This is not a logical operator: start looking for |
| -- nested decisions from here. Recurse over the left |
| -- child and let the loop take care of the right one. |
| |
| Search_Nested_Decisions (Idx); |
| |
| else |
| -- This is a logical operator, so it belongs to the |
| -- outside decision: skip its left child, then let the |
| -- loop take care of the right one. |
| |
| Skip_Decision (Idx, Process_Nested_Decisions); |
| end if; |
| end case; |
| end; |
| end loop; |
| end Skip_Decision; |
| |
| -- Start of processing for SCO_Record_Filtered |
| |
| begin |
| -- Filtering must happen only once: do nothing if it this pass was |
| -- already run. |
| |
| if SCO_Generation_State = Filtered then |
| return; |
| else |
| pragma Assert (SCO_Generation_State = Raw); |
| SCO_Generation_State := Filtered; |
| end if; |
| |
| -- Loop through all SCO entries under SCO units |
| |
| for Unit_Idx in 1 .. SCO_Unit_Table.Last loop |
| declare |
| Unit : SCO_Unit_Table_Entry |
| renames SCO_Unit_Table.Table (Unit_Idx); |
| |
| Idx : Nat := Unit.From; |
| -- Index of the current SCO raw table entry |
| |
| New_From : constant Nat := SCO_Table.Last + 1; |
| -- After copying SCO enties of interest to the final table, we |
| -- will have to change the From/To indexes this unit targets. |
| -- This constant keeps track of the new From index. |
| |
| begin |
| while Idx <= Unit.To loop |
| declare |
| T : SCO_Table_Entry renames SCO_Raw_Table.Table (Idx); |
| |
| begin |
| case T.C1 is |
| |
| -- Decision (of any kind, including pragmas and aspects) |
| |
| when 'E' | 'G' | 'I' | 'W' | 'X' | 'P' | 'a' | 'A' => |
| if SCO_Pragma_Disabled (T.Pragma_Sloc) then |
| |
| -- Skip SCO entries for decisions in disabled |
| -- constructs (pragmas or aspects). |
| |
| Idx := Idx + 1; |
| Skip_Decision (Idx, False); |
| |
| else |
| Collect_Decisions |
| ((Kind => T.C1, |
| Sloc => T.From, |
| Top => Idx + 1), |
| Idx); |
| Process_Pending_Decisions (T); |
| end if; |
| |
| -- There is no translation/filtering to do for other kind |
| -- of SCO items (statements, dominance markers, etc.). |
| |
| when '|' | '&' | '!' | ' ' => |
| |
| -- SCO logical operators and conditions cannot exist |
| -- on their own: they must be inside a decision (such |
| -- entries must have been skipped by |
| -- Collect_Decisions). |
| |
| raise Program_Error; |
| |
| when others => |
| SCO_Table.Append (T); |
| Idx := Idx + 1; |
| end case; |
| end; |
| end loop; |
| |
| -- Now, update the SCO entry indexes in the unit entry |
| |
| Unit.From := New_From; |
| Unit.To := SCO_Table.Last; |
| end; |
| end loop; |
| |
| -- Then clear the raw table to free bytes |
| |
| SCO_Raw_Table.Free; |
| end SCO_Record_Filtered; |
| |
| end Par_SCO; |