blob: dd29ffffc038742fce06386500d425c12dae6933 [file] [log] [blame]
/* A pass for lowering trees to RTL.
Copyright (C) 2004-2022 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "memmodel.h"
#include "tm_p.h"
#include "ssa.h"
#include "optabs.h"
#include "regs.h" /* For reg_renumber. */
#include "emit-rtl.h"
#include "recog.h"
#include "cgraph.h"
#include "diagnostic.h"
#include "fold-const.h"
#include "varasm.h"
#include "stor-layout.h"
#include "stmt.h"
#include "print-tree.h"
#include "cfgrtl.h"
#include "cfganal.h"
#include "cfgbuild.h"
#include "cfgcleanup.h"
#include "dojump.h"
#include "explow.h"
#include "calls.h"
#include "expr.h"
#include "internal-fn.h"
#include "tree-eh.h"
#include "gimple-iterator.h"
#include "gimple-expr.h"
#include "gimple-walk.h"
#include "tree-cfg.h"
#include "tree-dfa.h"
#include "tree-ssa.h"
#include "except.h"
#include "gimple-pretty-print.h"
#include "toplev.h"
#include "debug.h"
#include "tree-inline.h"
#include "value-prof.h"
#include "tree-ssa-live.h"
#include "tree-outof-ssa.h"
#include "cfgloop.h"
#include "insn-attr.h" /* For INSN_SCHEDULING. */
#include "stringpool.h"
#include "attribs.h"
#include "asan.h"
#include "tree-ssa-address.h"
#include "output.h"
#include "builtins.h"
#include "opts.h"
/* Some systems use __main in a way incompatible with its use in gcc, in these
cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
give the same symbol without quotes for an alternative entry point. You
must define both, or neither. */
#ifndef NAME__MAIN
#define NAME__MAIN "__main"
#endif
/* This variable holds information helping the rewriting of SSA trees
into RTL. */
struct ssaexpand SA;
/* This variable holds the currently expanded gimple statement for purposes
of comminucating the profile info to the builtin expanders. */
gimple *currently_expanding_gimple_stmt;
static rtx expand_debug_expr (tree);
static bool defer_stack_allocation (tree, bool);
static void record_alignment_for_reg_var (unsigned int);
/* Return an expression tree corresponding to the RHS of GIMPLE
statement STMT. */
tree
gimple_assign_rhs_to_tree (gimple *stmt)
{
tree t;
switch (gimple_assign_rhs_class (stmt))
{
case GIMPLE_TERNARY_RHS:
t = build3 (gimple_assign_rhs_code (stmt),
TREE_TYPE (gimple_assign_lhs (stmt)),
gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt),
gimple_assign_rhs3 (stmt));
break;
case GIMPLE_BINARY_RHS:
t = build2 (gimple_assign_rhs_code (stmt),
TREE_TYPE (gimple_assign_lhs (stmt)),
gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt));
break;
case GIMPLE_UNARY_RHS:
t = build1 (gimple_assign_rhs_code (stmt),
TREE_TYPE (gimple_assign_lhs (stmt)),
gimple_assign_rhs1 (stmt));
break;
case GIMPLE_SINGLE_RHS:
{
t = gimple_assign_rhs1 (stmt);
/* Avoid modifying this tree in place below. */
if ((gimple_has_location (stmt) && CAN_HAVE_LOCATION_P (t)
&& gimple_location (stmt) != EXPR_LOCATION (t))
|| (gimple_block (stmt) && currently_expanding_to_rtl
&& EXPR_P (t)))
t = copy_node (t);
break;
}
default:
gcc_unreachable ();
}
if (gimple_has_location (stmt) && CAN_HAVE_LOCATION_P (t))
SET_EXPR_LOCATION (t, gimple_location (stmt));
return t;
}
#ifndef STACK_ALIGNMENT_NEEDED
#define STACK_ALIGNMENT_NEEDED 1
#endif
#define SSAVAR(x) (TREE_CODE (x) == SSA_NAME ? SSA_NAME_VAR (x) : x)
/* Choose either CUR or NEXT as the leader DECL for a partition.
Prefer ignored decls, to simplify debug dumps and reduce ambiguity
out of the same user variable being in multiple partitions (this is
less likely for compiler-introduced temps). */
static tree
leader_merge (tree cur, tree next)
{
if (cur == NULL || cur == next)
return next;
if (DECL_P (cur) && DECL_IGNORED_P (cur))
return cur;
if (DECL_P (next) && DECL_IGNORED_P (next))
return next;
return cur;
}
/* Associate declaration T with storage space X. If T is no
SSA name this is exactly SET_DECL_RTL, otherwise make the
partition of T associated with X. */
static inline void
set_rtl (tree t, rtx x)
{
gcc_checking_assert (!x
|| !(TREE_CODE (t) == SSA_NAME || is_gimple_reg (t))
|| (use_register_for_decl (t)
? (REG_P (x)
|| (GET_CODE (x) == CONCAT
&& (REG_P (XEXP (x, 0))
|| SUBREG_P (XEXP (x, 0)))
&& (REG_P (XEXP (x, 1))
|| SUBREG_P (XEXP (x, 1))))
/* We need to accept PARALLELs for RESUT_DECLs
because of vector types with BLKmode returned
in multiple registers, but they are supposed
to be uncoalesced. */
|| (GET_CODE (x) == PARALLEL
&& SSAVAR (t)
&& TREE_CODE (SSAVAR (t)) == RESULT_DECL
&& (GET_MODE (x) == BLKmode
|| !flag_tree_coalesce_vars)))
: (MEM_P (x) || x == pc_rtx
|| (GET_CODE (x) == CONCAT
&& MEM_P (XEXP (x, 0))
&& MEM_P (XEXP (x, 1))))));
/* Check that the RTL for SSA_NAMEs and gimple-reg PARM_DECLs and
RESULT_DECLs has the expected mode. For memory, we accept
unpromoted modes, since that's what we're likely to get. For
PARM_DECLs and RESULT_DECLs, we'll have been called by
set_parm_rtl, which will give us the default def, so we don't
have to compute it ourselves. For RESULT_DECLs, we accept mode
mismatches too, as long as we have BLKmode or are not coalescing
across variables, so that we don't reject BLKmode PARALLELs or
unpromoted REGs. */
gcc_checking_assert (!x || x == pc_rtx || TREE_CODE (t) != SSA_NAME
|| (SSAVAR (t)
&& TREE_CODE (SSAVAR (t)) == RESULT_DECL
&& (promote_ssa_mode (t, NULL) == BLKmode
|| !flag_tree_coalesce_vars))
|| !use_register_for_decl (t)
|| GET_MODE (x) == promote_ssa_mode (t, NULL));
if (x)
{
bool skip = false;
tree cur = NULL_TREE;
rtx xm = x;
retry:
if (MEM_P (xm))
cur = MEM_EXPR (xm);
else if (REG_P (xm))
cur = REG_EXPR (xm);
else if (SUBREG_P (xm))
{
gcc_assert (subreg_lowpart_p (xm));
xm = SUBREG_REG (xm);
goto retry;
}
else if (GET_CODE (xm) == CONCAT)
{
xm = XEXP (xm, 0);
goto retry;
}
else if (GET_CODE (xm) == PARALLEL)
{
xm = XVECEXP (xm, 0, 0);
gcc_assert (GET_CODE (xm) == EXPR_LIST);
xm = XEXP (xm, 0);
goto retry;
}
else if (xm == pc_rtx)
skip = true;
else
gcc_unreachable ();
tree next = skip ? cur : leader_merge (cur, SSAVAR (t) ? SSAVAR (t) : t);
if (cur != next)
{
if (MEM_P (x))
set_mem_attributes (x,
next && TREE_CODE (next) == SSA_NAME
? TREE_TYPE (next)
: next, true);
else
set_reg_attrs_for_decl_rtl (next, x);
}
}
if (TREE_CODE (t) == SSA_NAME)
{
int part = var_to_partition (SA.map, t);
if (part != NO_PARTITION)
{
if (SA.partition_to_pseudo[part])
gcc_assert (SA.partition_to_pseudo[part] == x);
else if (x != pc_rtx)
SA.partition_to_pseudo[part] = x;
}
/* For the benefit of debug information at -O0 (where
vartracking doesn't run) record the place also in the base
DECL. For PARMs and RESULTs, do so only when setting the
default def. */
if (x && x != pc_rtx && SSA_NAME_VAR (t)
&& (VAR_P (SSA_NAME_VAR (t))
|| SSA_NAME_IS_DEFAULT_DEF (t)))
{
tree var = SSA_NAME_VAR (t);
/* If we don't yet have something recorded, just record it now. */
if (!DECL_RTL_SET_P (var))
SET_DECL_RTL (var, x);
/* If we have it set already to "multiple places" don't
change this. */
else if (DECL_RTL (var) == pc_rtx)
;
/* If we have something recorded and it's not the same place
as we want to record now, we have multiple partitions for the
same base variable, with different places. We can't just
randomly chose one, hence we have to say that we don't know.
This only happens with optimization, and there var-tracking
will figure out the right thing. */
else if (DECL_RTL (var) != x)
SET_DECL_RTL (var, pc_rtx);
}
}
else
SET_DECL_RTL (t, x);
}
/* This structure holds data relevant to one variable that will be
placed in a stack slot. */
class stack_var
{
public:
/* The Variable. */
tree decl;
/* Initially, the size of the variable. Later, the size of the partition,
if this variable becomes it's partition's representative. */
poly_uint64 size;
/* The *byte* alignment required for this variable. Or as, with the
size, the alignment for this partition. */
unsigned int alignb;
/* The partition representative. */
size_t representative;
/* The next stack variable in the partition, or EOC. */
size_t next;
/* The numbers of conflicting stack variables. */
bitmap conflicts;
};
#define EOC ((size_t)-1)
/* We have an array of such objects while deciding allocation. */
static class stack_var *stack_vars;
static size_t stack_vars_alloc;
static size_t stack_vars_num;
static hash_map<tree, size_t> *decl_to_stack_part;
/* Conflict bitmaps go on this obstack. This allows us to destroy
all of them in one big sweep. */
static bitmap_obstack stack_var_bitmap_obstack;
/* An array of indices such that stack_vars[stack_vars_sorted[i]].size
is non-decreasing. */
static size_t *stack_vars_sorted;
/* The phase of the stack frame. This is the known misalignment of
virtual_stack_vars_rtx from PREFERRED_STACK_BOUNDARY. That is,
(frame_offset+frame_phase) % PREFERRED_STACK_BOUNDARY == 0. */
static int frame_phase;
/* Used during expand_used_vars to remember if we saw any decls for
which we'd like to enable stack smashing protection. */
static bool has_protected_decls;
/* Used during expand_used_vars. Remember if we say a character buffer
smaller than our cutoff threshold. Used for -Wstack-protector. */
static bool has_short_buffer;
/* Compute the byte alignment to use for DECL. Ignore alignment
we can't do with expected alignment of the stack boundary. */
static unsigned int
align_local_variable (tree decl, bool really_expand)
{
unsigned int align;
if (TREE_CODE (decl) == SSA_NAME)
{
tree type = TREE_TYPE (decl);
machine_mode mode = TYPE_MODE (type);
align = TYPE_ALIGN (type);
if (mode != BLKmode
&& align < GET_MODE_ALIGNMENT (mode))
align = GET_MODE_ALIGNMENT (mode);
}
else
align = LOCAL_DECL_ALIGNMENT (decl);
if (hwasan_sanitize_stack_p ())
align = MAX (align, (unsigned) HWASAN_TAG_GRANULE_SIZE * BITS_PER_UNIT);
if (TREE_CODE (decl) != SSA_NAME && really_expand)
/* Don't change DECL_ALIGN when called from estimated_stack_frame_size.
That is done before IPA and could bump alignment based on host
backend even for offloaded code which wants different
LOCAL_DECL_ALIGNMENT. */
SET_DECL_ALIGN (decl, align);
return align / BITS_PER_UNIT;
}
/* Align given offset BASE with ALIGN. Truncate up if ALIGN_UP is true,
down otherwise. Return truncated BASE value. */
static inline unsigned HOST_WIDE_INT
align_base (HOST_WIDE_INT base, unsigned HOST_WIDE_INT align, bool align_up)
{
return align_up ? (base + align - 1) & -align : base & -align;
}
/* Allocate SIZE bytes at byte alignment ALIGN from the stack frame.
Return the frame offset. */
static poly_int64
alloc_stack_frame_space (poly_int64 size, unsigned HOST_WIDE_INT align)
{
poly_int64 offset, new_frame_offset;
if (FRAME_GROWS_DOWNWARD)
{
new_frame_offset
= aligned_lower_bound (frame_offset - frame_phase - size,
align) + frame_phase;
offset = new_frame_offset;
}
else
{
new_frame_offset
= aligned_upper_bound (frame_offset - frame_phase,
align) + frame_phase;
offset = new_frame_offset;
new_frame_offset += size;
}
frame_offset = new_frame_offset;
if (frame_offset_overflow (frame_offset, cfun->decl))
frame_offset = offset = 0;
return offset;
}
/* Ensure that the stack is aligned to ALIGN bytes.
Return the new frame offset. */
static poly_int64
align_frame_offset (unsigned HOST_WIDE_INT align)
{
return alloc_stack_frame_space (0, align);
}
/* Accumulate DECL into STACK_VARS. */
static void
add_stack_var (tree decl, bool really_expand)
{
class stack_var *v;
if (stack_vars_num >= stack_vars_alloc)
{
if (stack_vars_alloc)
stack_vars_alloc = stack_vars_alloc * 3 / 2;
else
stack_vars_alloc = 32;
stack_vars
= XRESIZEVEC (class stack_var, stack_vars, stack_vars_alloc);
}
if (!decl_to_stack_part)
decl_to_stack_part = new hash_map<tree, size_t>;
v = &stack_vars[stack_vars_num];
decl_to_stack_part->put (decl, stack_vars_num);
v->decl = decl;
tree size = TREE_CODE (decl) == SSA_NAME
? TYPE_SIZE_UNIT (TREE_TYPE (decl))
: DECL_SIZE_UNIT (decl);
v->size = tree_to_poly_uint64 (size);
/* Ensure that all variables have size, so that &a != &b for any two
variables that are simultaneously live. */
if (known_eq (v->size, 0U))
v->size = 1;
v->alignb = align_local_variable (decl, really_expand);
/* An alignment of zero can mightily confuse us later. */
gcc_assert (v->alignb != 0);
/* All variables are initially in their own partition. */
v->representative = stack_vars_num;
v->next = EOC;
/* All variables initially conflict with no other. */
v->conflicts = NULL;
/* Ensure that this decl doesn't get put onto the list twice. */
set_rtl (decl, pc_rtx);
stack_vars_num++;
}
/* Make the decls associated with luid's X and Y conflict. */
static void
add_stack_var_conflict (size_t x, size_t y)
{
class stack_var *a = &stack_vars[x];
class stack_var *b = &stack_vars[y];
if (x == y)
return;
if (!a->conflicts)
a->conflicts = BITMAP_ALLOC (&stack_var_bitmap_obstack);
if (!b->conflicts)
b->conflicts = BITMAP_ALLOC (&stack_var_bitmap_obstack);
bitmap_set_bit (a->conflicts, y);
bitmap_set_bit (b->conflicts, x);
}
/* Check whether the decls associated with luid's X and Y conflict. */
static bool
stack_var_conflict_p (size_t x, size_t y)
{
class stack_var *a = &stack_vars[x];
class stack_var *b = &stack_vars[y];
if (x == y)
return false;
/* Partitions containing an SSA name result from gimple registers
with things like unsupported modes. They are top-level and
hence conflict with everything else. */
if (TREE_CODE (a->decl) == SSA_NAME || TREE_CODE (b->decl) == SSA_NAME)
return true;
if (!a->conflicts || !b->conflicts)
return false;
return bitmap_bit_p (a->conflicts, y);
}
/* Callback for walk_stmt_ops. If OP is a decl touched by add_stack_var
enter its partition number into bitmap DATA. */
static bool
visit_op (gimple *, tree op, tree, void *data)
{
bitmap active = (bitmap)data;
op = get_base_address (op);
if (op
&& DECL_P (op)
&& DECL_RTL_IF_SET (op) == pc_rtx)
{
size_t *v = decl_to_stack_part->get (op);
if (v)
bitmap_set_bit (active, *v);
}
return false;
}
/* Callback for walk_stmt_ops. If OP is a decl touched by add_stack_var
record conflicts between it and all currently active other partitions
from bitmap DATA. */
static bool
visit_conflict (gimple *, tree op, tree, void *data)
{
bitmap active = (bitmap)data;
op = get_base_address (op);
if (op
&& DECL_P (op)
&& DECL_RTL_IF_SET (op) == pc_rtx)
{
size_t *v = decl_to_stack_part->get (op);
if (v && bitmap_set_bit (active, *v))
{
size_t num = *v;
bitmap_iterator bi;
unsigned i;
gcc_assert (num < stack_vars_num);
EXECUTE_IF_SET_IN_BITMAP (active, 0, i, bi)
add_stack_var_conflict (num, i);
}
}
return false;
}
/* Helper routine for add_scope_conflicts, calculating the active partitions
at the end of BB, leaving the result in WORK. We're called to generate
conflicts when FOR_CONFLICT is true, otherwise we're just tracking
liveness. */
static void
add_scope_conflicts_1 (basic_block bb, bitmap work, bool for_conflict)
{
edge e;
edge_iterator ei;
gimple_stmt_iterator gsi;
walk_stmt_load_store_addr_fn visit;
bitmap_clear (work);
FOR_EACH_EDGE (e, ei, bb->preds)
bitmap_ior_into (work, (bitmap)e->src->aux);
visit = visit_op;
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
walk_stmt_load_store_addr_ops (stmt, work, NULL, NULL, visit);
}
for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
if (gimple_clobber_p (stmt))
{
tree lhs = gimple_assign_lhs (stmt);
size_t *v;
/* Nested function lowering might introduce LHSs
that are COMPONENT_REFs. */
if (!VAR_P (lhs))
continue;
if (DECL_RTL_IF_SET (lhs) == pc_rtx
&& (v = decl_to_stack_part->get (lhs)))
bitmap_clear_bit (work, *v);
}
else if (!is_gimple_debug (stmt))
{
if (for_conflict
&& visit == visit_op)
{
/* If this is the first real instruction in this BB we need
to add conflicts for everything live at this point now.
Unlike classical liveness for named objects we can't
rely on seeing a def/use of the names we're interested in.
There might merely be indirect loads/stores. We'd not add any
conflicts for such partitions. */
bitmap_iterator bi;
unsigned i;
EXECUTE_IF_SET_IN_BITMAP (work, 0, i, bi)
{
class stack_var *a = &stack_vars[i];
if (!a->conflicts)
a->conflicts = BITMAP_ALLOC (&stack_var_bitmap_obstack);
bitmap_ior_into (a->conflicts, work);
}
visit = visit_conflict;
}
walk_stmt_load_store_addr_ops (stmt, work, visit, visit, visit);
}
}
}
/* Generate stack partition conflicts between all partitions that are
simultaneously live. */
static void
add_scope_conflicts (void)
{
basic_block bb;
bool changed;
bitmap work = BITMAP_ALLOC (NULL);
int *rpo;
int n_bbs;
/* We approximate the live range of a stack variable by taking the first
mention of its name as starting point(s), and by the end-of-scope
death clobber added by gimplify as ending point(s) of the range.
This overapproximates in the case we for instance moved an address-taken
operation upward, without also moving a dereference to it upwards.
But it's conservatively correct as a variable never can hold values
before its name is mentioned at least once.
We then do a mostly classical bitmap liveness algorithm. */
FOR_ALL_BB_FN (bb, cfun)
bb->aux = BITMAP_ALLOC (&stack_var_bitmap_obstack);
rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
n_bbs = pre_and_rev_post_order_compute (NULL, rpo, false);
changed = true;
while (changed)
{
int i;
changed = false;
for (i = 0; i < n_bbs; i++)
{
bitmap active;
bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
active = (bitmap)bb->aux;
add_scope_conflicts_1 (bb, work, false);
if (bitmap_ior_into (active, work))
changed = true;
}
}
FOR_EACH_BB_FN (bb, cfun)
add_scope_conflicts_1 (bb, work, true);
free (rpo);
BITMAP_FREE (work);
FOR_ALL_BB_FN (bb, cfun)
BITMAP_FREE (bb->aux);
}
/* A subroutine of partition_stack_vars. A comparison function for qsort,
sorting an array of indices by the properties of the object. */
static int
stack_var_cmp (const void *a, const void *b)
{
size_t ia = *(const size_t *)a;
size_t ib = *(const size_t *)b;
unsigned int aligna = stack_vars[ia].alignb;
unsigned int alignb = stack_vars[ib].alignb;
poly_int64 sizea = stack_vars[ia].size;
poly_int64 sizeb = stack_vars[ib].size;
tree decla = stack_vars[ia].decl;
tree declb = stack_vars[ib].decl;
bool largea, largeb;
unsigned int uida, uidb;
/* Primary compare on "large" alignment. Large comes first. */
largea = (aligna * BITS_PER_UNIT > MAX_SUPPORTED_STACK_ALIGNMENT);
largeb = (alignb * BITS_PER_UNIT > MAX_SUPPORTED_STACK_ALIGNMENT);
if (largea != largeb)
return (int)largeb - (int)largea;
/* Secondary compare on size, decreasing */
int diff = compare_sizes_for_sort (sizeb, sizea);
if (diff != 0)
return diff;
/* Tertiary compare on true alignment, decreasing. */
if (aligna < alignb)
return -1;
if (aligna > alignb)
return 1;
/* Final compare on ID for sort stability, increasing.
Two SSA names are compared by their version, SSA names come before
non-SSA names, and two normal decls are compared by their DECL_UID. */
if (TREE_CODE (decla) == SSA_NAME)
{
if (TREE_CODE (declb) == SSA_NAME)
uida = SSA_NAME_VERSION (decla), uidb = SSA_NAME_VERSION (declb);
else
return -1;
}
else if (TREE_CODE (declb) == SSA_NAME)
return 1;
else
uida = DECL_UID (decla), uidb = DECL_UID (declb);
if (uida < uidb)
return 1;
if (uida > uidb)
return -1;
return 0;
}
struct part_traits : unbounded_int_hashmap_traits <size_t, bitmap> {};
typedef hash_map<size_t, bitmap, part_traits> part_hashmap;
/* If the points-to solution *PI points to variables that are in a partition
together with other variables add all partition members to the pointed-to
variables bitmap. */
static void
add_partitioned_vars_to_ptset (struct pt_solution *pt,
part_hashmap *decls_to_partitions,
hash_set<bitmap> *visited, bitmap temp)
{
bitmap_iterator bi;
unsigned i;
bitmap *part;
if (pt->anything
|| pt->vars == NULL
/* The pointed-to vars bitmap is shared, it is enough to
visit it once. */
|| visited->add (pt->vars))
return;
bitmap_clear (temp);
/* By using a temporary bitmap to store all members of the partitions
we have to add we make sure to visit each of the partitions only
once. */
EXECUTE_IF_SET_IN_BITMAP (pt->vars, 0, i, bi)
if ((!temp
|| !bitmap_bit_p (temp, i))
&& (part = decls_to_partitions->get (i)))
bitmap_ior_into (temp, *part);
if (!bitmap_empty_p (temp))
bitmap_ior_into (pt->vars, temp);
}
/* Update points-to sets based on partition info, so we can use them on RTL.
The bitmaps representing stack partitions will be saved until expand,
where partitioned decls used as bases in memory expressions will be
rewritten. */
static void
update_alias_info_with_stack_vars (void)
{
part_hashmap *decls_to_partitions = NULL;
size_t i, j;
tree var = NULL_TREE;
for (i = 0; i < stack_vars_num; i++)
{
bitmap part = NULL;
tree name;
struct ptr_info_def *pi;
/* Not interested in partitions with single variable. */
if (stack_vars[i].representative != i
|| stack_vars[i].next == EOC)
continue;
if (!decls_to_partitions)
{
decls_to_partitions = new part_hashmap;
cfun->gimple_df->decls_to_pointers = new hash_map<tree, tree>;
}
/* Create an SSA_NAME that points to the partition for use
as base during alias-oracle queries on RTL for bases that
have been partitioned. */
if (var == NULL_TREE)
var = create_tmp_var (ptr_type_node);
name = make_ssa_name (var);
/* Create bitmaps representing partitions. They will be used for
points-to sets later, so use GGC alloc. */
part = BITMAP_GGC_ALLOC ();
for (j = i; j != EOC; j = stack_vars[j].next)
{
tree decl = stack_vars[j].decl;
unsigned int uid = DECL_PT_UID (decl);
bitmap_set_bit (part, uid);
decls_to_partitions->put (uid, part);
cfun->gimple_df->decls_to_pointers->put (decl, name);
if (TREE_ADDRESSABLE (decl))
TREE_ADDRESSABLE (name) = 1;
}
/* Make the SSA name point to all partition members. */
pi = get_ptr_info (name);
pt_solution_set (&pi->pt, part, false);
}
/* Make all points-to sets that contain one member of a partition
contain all members of the partition. */
if (decls_to_partitions)
{
unsigned i;
tree name;
hash_set<bitmap> visited;
bitmap temp = BITMAP_ALLOC (&stack_var_bitmap_obstack);
FOR_EACH_SSA_NAME (i, name, cfun)
{
struct ptr_info_def *pi;
if (POINTER_TYPE_P (TREE_TYPE (name))
&& ((pi = SSA_NAME_PTR_INFO (name)) != NULL))
add_partitioned_vars_to_ptset (&pi->pt, decls_to_partitions,
&visited, temp);
}
add_partitioned_vars_to_ptset (&cfun->gimple_df->escaped,
decls_to_partitions, &visited, temp);
delete decls_to_partitions;
BITMAP_FREE (temp);
}
}
/* A subroutine of partition_stack_vars. The UNION portion of a UNION/FIND
partitioning algorithm. Partitions A and B are known to be non-conflicting.
Merge them into a single partition A. */
static void
union_stack_vars (size_t a, size_t b)
{
class stack_var *vb = &stack_vars[b];
bitmap_iterator bi;
unsigned u;
gcc_assert (stack_vars[b].next == EOC);
/* Add B to A's partition. */
stack_vars[b].next = stack_vars[a].next;
stack_vars[b].representative = a;
stack_vars[a].next = b;
/* Make sure A is big enough to hold B. */
stack_vars[a].size = upper_bound (stack_vars[a].size, stack_vars[b].size);
/* Update the required alignment of partition A to account for B. */
if (stack_vars[a].alignb < stack_vars[b].alignb)
stack_vars[a].alignb = stack_vars[b].alignb;
/* Update the interference graph and merge the conflicts. */
if (vb->conflicts)
{
EXECUTE_IF_SET_IN_BITMAP (vb->conflicts, 0, u, bi)
add_stack_var_conflict (a, stack_vars[u].representative);
BITMAP_FREE (vb->conflicts);
}
}
/* A subroutine of expand_used_vars. Binpack the variables into
partitions constrained by the interference graph. The overall
algorithm used is as follows:
Sort the objects by size in descending order.
For each object A {
S = size(A)
O = 0
loop {
Look for the largest non-conflicting object B with size <= S.
UNION (A, B)
}
}
*/
static void
partition_stack_vars (void)
{
size_t si, sj, n = stack_vars_num;
stack_vars_sorted = XNEWVEC (size_t, stack_vars_num);
for (si = 0; si < n; ++si)
stack_vars_sorted[si] = si;
if (n == 1)
return;
qsort (stack_vars_sorted, n, sizeof (size_t), stack_var_cmp);
for (si = 0; si < n; ++si)
{
size_t i = stack_vars_sorted[si];
unsigned int ialign = stack_vars[i].alignb;
poly_int64 isize = stack_vars[i].size;
/* Ignore objects that aren't partition representatives. If we
see a var that is not a partition representative, it must
have been merged earlier. */
if (stack_vars[i].representative != i)
continue;
for (sj = si + 1; sj < n; ++sj)
{
size_t j = stack_vars_sorted[sj];
unsigned int jalign = stack_vars[j].alignb;
poly_int64 jsize = stack_vars[j].size;
/* Ignore objects that aren't partition representatives. */
if (stack_vars[j].representative != j)
continue;
/* Do not mix objects of "small" (supported) alignment
and "large" (unsupported) alignment. */
if ((ialign * BITS_PER_UNIT <= MAX_SUPPORTED_STACK_ALIGNMENT)
!= (jalign * BITS_PER_UNIT <= MAX_SUPPORTED_STACK_ALIGNMENT))
break;
/* For Address Sanitizer do not mix objects with different
sizes, as the shorter vars wouldn't be adequately protected.
Don't do that for "large" (unsupported) alignment objects,
those aren't protected anyway. */
if (asan_sanitize_stack_p ()
&& maybe_ne (isize, jsize)
&& ialign * BITS_PER_UNIT <= MAX_SUPPORTED_STACK_ALIGNMENT)
break;
/* Ignore conflicting objects. */
if (stack_var_conflict_p (i, j))
continue;
/* UNION the objects, placing J at OFFSET. */
union_stack_vars (i, j);
}
}
update_alias_info_with_stack_vars ();
}
/* A debugging aid for expand_used_vars. Dump the generated partitions. */
static void
dump_stack_var_partition (void)
{
size_t si, i, j, n = stack_vars_num;
for (si = 0; si < n; ++si)
{
i = stack_vars_sorted[si];
/* Skip variables that aren't partition representatives, for now. */
if (stack_vars[i].representative != i)
continue;
fprintf (dump_file, "Partition %lu: size ", (unsigned long) i);
print_dec (stack_vars[i].size, dump_file);
fprintf (dump_file, " align %u\n", stack_vars[i].alignb);
for (j = i; j != EOC; j = stack_vars[j].next)
{
fputc ('\t', dump_file);
print_generic_expr (dump_file, stack_vars[j].decl, dump_flags);
}
fputc ('\n', dump_file);
}
}
/* Assign rtl to DECL at BASE + OFFSET. */
static void
expand_one_stack_var_at (tree decl, rtx base, unsigned base_align,
poly_int64 offset)
{
unsigned align;
rtx x;
/* If this fails, we've overflowed the stack frame. Error nicely? */
gcc_assert (known_eq (offset, trunc_int_for_mode (offset, Pmode)));
if (hwasan_sanitize_stack_p ())
x = targetm.memtag.add_tag (base, offset,
hwasan_current_frame_tag ());
else
x = plus_constant (Pmode, base, offset);
x = gen_rtx_MEM (TREE_CODE (decl) == SSA_NAME
? TYPE_MODE (TREE_TYPE (decl))
: DECL_MODE (decl), x);
/* Set alignment we actually gave this decl if it isn't an SSA name.
If it is we generate stack slots only accidentally so it isn't as
important, we'll simply set the alignment directly on the MEM. */
if (stack_vars_base_reg_p (base))
offset -= frame_phase;
align = known_alignment (offset);
align *= BITS_PER_UNIT;
if (align == 0 || align > base_align)
align = base_align;
if (TREE_CODE (decl) != SSA_NAME)
{
/* One would think that we could assert that we're not decreasing
alignment here, but (at least) the i386 port does exactly this
via the MINIMUM_ALIGNMENT hook. */
SET_DECL_ALIGN (decl, align);
DECL_USER_ALIGN (decl) = 0;
}
set_rtl (decl, x);
set_mem_align (x, align);
}
class stack_vars_data
{
public:
/* Vector of offset pairs, always end of some padding followed
by start of the padding that needs Address Sanitizer protection.
The vector is in reversed, highest offset pairs come first. */
auto_vec<HOST_WIDE_INT> asan_vec;
/* Vector of partition representative decls in between the paddings. */
auto_vec<tree> asan_decl_vec;
/* Base pseudo register for Address Sanitizer protected automatic vars. */
rtx asan_base;
/* Alignment needed for the Address Sanitizer protected automatic vars. */
unsigned int asan_alignb;
};
/* A subroutine of expand_used_vars. Give each partition representative
a unique location within the stack frame. Update each partition member
with that location. */
static void
expand_stack_vars (bool (*pred) (size_t), class stack_vars_data *data)
{
size_t si, i, j, n = stack_vars_num;
poly_uint64 large_size = 0, large_alloc = 0;
rtx large_base = NULL;
rtx large_untagged_base = NULL;
unsigned large_align = 0;
bool large_allocation_done = false;
tree decl;
/* Determine if there are any variables requiring "large" alignment.
Since these are dynamically allocated, we only process these if
no predicate involved. */
large_align = stack_vars[stack_vars_sorted[0]].alignb * BITS_PER_UNIT;
if (pred == NULL && large_align > MAX_SUPPORTED_STACK_ALIGNMENT)
{
/* Find the total size of these variables. */
for (si = 0; si < n; ++si)
{
unsigned alignb;
i = stack_vars_sorted[si];
alignb = stack_vars[i].alignb;
/* All "large" alignment decls come before all "small" alignment
decls, but "large" alignment decls are not sorted based on
their alignment. Increase large_align to track the largest
required alignment. */
if ((alignb * BITS_PER_UNIT) > large_align)
large_align = alignb * BITS_PER_UNIT;
/* Stop when we get to the first decl with "small" alignment. */
if (alignb * BITS_PER_UNIT <= MAX_SUPPORTED_STACK_ALIGNMENT)
break;
/* Skip variables that aren't partition representatives. */
if (stack_vars[i].representative != i)
continue;
/* Skip variables that have already had rtl assigned. See also
add_stack_var where we perpetrate this pc_rtx hack. */
decl = stack_vars[i].decl;
if (TREE_CODE (decl) == SSA_NAME
? SA.partition_to_pseudo[var_to_partition (SA.map, decl)] != NULL_RTX
: DECL_RTL (decl) != pc_rtx)
continue;
large_size = aligned_upper_bound (large_size, alignb);
large_size += stack_vars[i].size;
}
}
for (si = 0; si < n; ++si)
{
rtx base;
unsigned base_align, alignb;
poly_int64 offset = 0;
i = stack_vars_sorted[si];
/* Skip variables that aren't partition representatives, for now. */
if (stack_vars[i].representative != i)
continue;
/* Skip variables that have already had rtl assigned. See also
add_stack_var where we perpetrate this pc_rtx hack. */
decl = stack_vars[i].decl;
if (TREE_CODE (decl) == SSA_NAME
? SA.partition_to_pseudo[var_to_partition (SA.map, decl)] != NULL_RTX
: DECL_RTL (decl) != pc_rtx)
continue;
/* Check the predicate to see whether this variable should be
allocated in this pass. */
if (pred && !pred (i))
continue;
base = (hwasan_sanitize_stack_p ()
? hwasan_frame_base ()
: virtual_stack_vars_rtx);
alignb = stack_vars[i].alignb;
if (alignb * BITS_PER_UNIT <= MAX_SUPPORTED_STACK_ALIGNMENT)
{
poly_int64 hwasan_orig_offset;
if (hwasan_sanitize_stack_p ())
{
/* There must be no tag granule "shared" between different
objects. This means that no HWASAN_TAG_GRANULE_SIZE byte
chunk can have more than one object in it.
We ensure this by forcing the end of the last bit of data to
be aligned to HWASAN_TAG_GRANULE_SIZE bytes here, and setting
the start of each variable to be aligned to
HWASAN_TAG_GRANULE_SIZE bytes in `align_local_variable`.
We can't align just one of the start or end, since there are
untagged things stored on the stack which we do not align to
HWASAN_TAG_GRANULE_SIZE bytes. If we only aligned the start
or the end of tagged objects then untagged objects could end
up sharing the first granule of a tagged object or sharing the
last granule of a tagged object respectively. */
hwasan_orig_offset = align_frame_offset (HWASAN_TAG_GRANULE_SIZE);
gcc_assert (stack_vars[i].alignb >= HWASAN_TAG_GRANULE_SIZE);
}
/* ASAN description strings don't yet have a syntax for expressing
polynomial offsets. */
HOST_WIDE_INT prev_offset;
if (asan_sanitize_stack_p ()
&& pred
&& frame_offset.is_constant (&prev_offset)
&& stack_vars[i].size.is_constant ())
{
if (data->asan_vec.is_empty ())
{
align_frame_offset (ASAN_RED_ZONE_SIZE);
prev_offset = frame_offset.to_constant ();
}
prev_offset = align_base (prev_offset,
ASAN_MIN_RED_ZONE_SIZE,
!FRAME_GROWS_DOWNWARD);
tree repr_decl = NULL_TREE;
unsigned HOST_WIDE_INT size
= asan_var_and_redzone_size (stack_vars[i].size.to_constant ());
if (data->asan_vec.is_empty ())
size = MAX (size, ASAN_RED_ZONE_SIZE);
unsigned HOST_WIDE_INT alignment = MAX (alignb,
ASAN_MIN_RED_ZONE_SIZE);
offset = alloc_stack_frame_space (size, alignment);
data->asan_vec.safe_push (prev_offset);
/* Allocating a constant amount of space from a constant
starting offset must give a constant result. */
data->asan_vec.safe_push ((offset + stack_vars[i].size)
.to_constant ());
/* Find best representative of the partition.
Prefer those with DECL_NAME, even better
satisfying asan_protect_stack_decl predicate. */
for (j = i; j != EOC; j = stack_vars[j].next)
if (asan_protect_stack_decl (stack_vars[j].decl)
&& DECL_NAME (stack_vars[j].decl))
{
repr_decl = stack_vars[j].decl;
break;
}
else if (repr_decl == NULL_TREE
&& DECL_P (stack_vars[j].decl)
&& DECL_NAME (stack_vars[j].decl))
repr_decl = stack_vars[j].decl;
if (repr_decl == NULL_TREE)
repr_decl = stack_vars[i].decl;
data->asan_decl_vec.safe_push (repr_decl);
/* Make sure a representative is unpoison if another
variable in the partition is handled by
use-after-scope sanitization. */
if (asan_handled_variables != NULL
&& !asan_handled_variables->contains (repr_decl))
{
for (j = i; j != EOC; j = stack_vars[j].next)
if (asan_handled_variables->contains (stack_vars[j].decl))
break;
if (j != EOC)
asan_handled_variables->add (repr_decl);
}
data->asan_alignb = MAX (data->asan_alignb, alignb);
if (data->asan_base == NULL)
data->asan_base = gen_reg_rtx (Pmode);
base = data->asan_base;
if (!STRICT_ALIGNMENT)
base_align = crtl->max_used_stack_slot_alignment;
else
base_align = MAX (crtl->max_used_stack_slot_alignment,
GET_MODE_ALIGNMENT (SImode)
<< ASAN_SHADOW_SHIFT);
}
else
{
offset = alloc_stack_frame_space (stack_vars[i].size, alignb);
base_align = crtl->max_used_stack_slot_alignment;
if (hwasan_sanitize_stack_p ())
{
/* Align again since the point of this alignment is to handle
the "end" of the object (i.e. smallest address after the
stack object). For FRAME_GROWS_DOWNWARD that requires
aligning the stack before allocating, but for a frame that
grows upwards that requires aligning the stack after
allocation.
Use `frame_offset` to record the offset value rather than
`offset` since the `frame_offset` describes the extent
allocated for this particular variable while `offset`
describes the address that this variable starts at. */
align_frame_offset (HWASAN_TAG_GRANULE_SIZE);
hwasan_record_stack_var (virtual_stack_vars_rtx, base,
hwasan_orig_offset, frame_offset);
}
}
}
else
{
/* Large alignment is only processed in the last pass. */
if (pred)
continue;
/* If there were any variables requiring "large" alignment, allocate
space. */
if (maybe_ne (large_size, 0U) && ! large_allocation_done)
{
poly_int64 loffset;
rtx large_allocsize;
large_allocsize = gen_int_mode (large_size, Pmode);
get_dynamic_stack_size (&large_allocsize, 0, large_align, NULL);
loffset = alloc_stack_frame_space
(rtx_to_poly_int64 (large_allocsize),
PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT);
large_base = get_dynamic_stack_base (loffset, large_align, base);
large_allocation_done = true;
}
gcc_assert (large_base != NULL);
large_alloc = aligned_upper_bound (large_alloc, alignb);
offset = large_alloc;
large_alloc += stack_vars[i].size;
if (hwasan_sanitize_stack_p ())
{
/* An object with a large alignment requirement means that the
alignment requirement is greater than the required alignment
for tags. */
if (!large_untagged_base)
large_untagged_base
= targetm.memtag.untagged_pointer (large_base, NULL_RTX);
/* Ensure the end of the variable is also aligned correctly. */
poly_int64 align_again
= aligned_upper_bound (large_alloc, HWASAN_TAG_GRANULE_SIZE);
/* For large allocations we always allocate a chunk of space
(which is addressed by large_untagged_base/large_base) and
then use positive offsets from that. Hence the farthest
offset is `align_again` and the nearest offset from the base
is `offset`. */
hwasan_record_stack_var (large_untagged_base, large_base,
offset, align_again);
}
base = large_base;
base_align = large_align;
}
/* Create rtl for each variable based on their location within the
partition. */
for (j = i; j != EOC; j = stack_vars[j].next)
{
expand_one_stack_var_at (stack_vars[j].decl,
base, base_align, offset);
}
if (hwasan_sanitize_stack_p ())
hwasan_increment_frame_tag ();
}
gcc_assert (known_eq (large_alloc, large_size));
}
/* Take into account all sizes of partitions and reset DECL_RTLs. */
static poly_uint64
account_stack_vars (void)
{
size_t si, j, i, n = stack_vars_num;
poly_uint64 size = 0;
for (si = 0; si < n; ++si)
{
i = stack_vars_sorted[si];
/* Skip variables that aren't partition representatives, for now. */
if (stack_vars[i].representative != i)
continue;
size += stack_vars[i].size;
for (j = i; j != EOC; j = stack_vars[j].next)
set_rtl (stack_vars[j].decl, NULL);
}
return size;
}
/* Record the RTL assignment X for the default def of PARM. */
extern void
set_parm_rtl (tree parm, rtx x)
{
gcc_assert (TREE_CODE (parm) == PARM_DECL
|| TREE_CODE (parm) == RESULT_DECL);
if (x && !MEM_P (x))
{
unsigned int align = MINIMUM_ALIGNMENT (TREE_TYPE (parm),
TYPE_MODE (TREE_TYPE (parm)),
TYPE_ALIGN (TREE_TYPE (parm)));
/* If the variable alignment is very large we'll dynamicaly
allocate it, which means that in-frame portion is just a
pointer. ??? We've got a pseudo for sure here, do we
actually dynamically allocate its spilling area if needed?
??? Isn't it a problem when Pmode alignment also exceeds
MAX_SUPPORTED_STACK_ALIGNMENT, as can happen on cris and lm32? */
if (align > MAX_SUPPORTED_STACK_ALIGNMENT)
align = GET_MODE_ALIGNMENT (Pmode);
record_alignment_for_reg_var (align);
}
tree ssa = ssa_default_def (cfun, parm);
if (!ssa)
return set_rtl (parm, x);
int part = var_to_partition (SA.map, ssa);
gcc_assert (part != NO_PARTITION);
bool changed = bitmap_bit_p (SA.partitions_for_parm_default_defs, part);
gcc_assert (changed);
set_rtl (ssa, x);
gcc_assert (DECL_RTL (parm) == x);
}
/* A subroutine of expand_one_var. Called to immediately assign rtl
to a variable to be allocated in the stack frame. */
static void
expand_one_stack_var_1 (tree var)
{
poly_uint64 size;
poly_int64 offset;
unsigned byte_align;
if (TREE_CODE (var) == SSA_NAME)
{
tree type = TREE_TYPE (var);
size = tree_to_poly_uint64 (TYPE_SIZE_UNIT (type));
}
else
size = tree_to_poly_uint64 (DECL_SIZE_UNIT (var));
byte_align = align_local_variable (var, true);
/* We handle highly aligned variables in expand_stack_vars. */
gcc_assert (byte_align * BITS_PER_UNIT <= MAX_SUPPORTED_STACK_ALIGNMENT);
rtx base;
if (hwasan_sanitize_stack_p ())
{
/* Allocate zero bytes to align the stack. */
poly_int64 hwasan_orig_offset
= align_frame_offset (HWASAN_TAG_GRANULE_SIZE);
offset = alloc_stack_frame_space (size, byte_align);
align_frame_offset (HWASAN_TAG_GRANULE_SIZE);
base = hwasan_frame_base ();
/* Use `frame_offset` to automatically account for machines where the
frame grows upwards.
`offset` will always point to the "start" of the stack object, which
will be the smallest address, for ! FRAME_GROWS_DOWNWARD this is *not*
the "furthest" offset from the base delimiting the current stack
object. `frame_offset` will always delimit the extent that the frame.
*/
hwasan_record_stack_var (virtual_stack_vars_rtx, base,
hwasan_orig_offset, frame_offset);
}
else
{
offset = alloc_stack_frame_space (size, byte_align);
base = virtual_stack_vars_rtx;
}
expand_one_stack_var_at (var, base,
crtl->max_used_stack_slot_alignment, offset);
if (hwasan_sanitize_stack_p ())
hwasan_increment_frame_tag ();
}
/* Wrapper for expand_one_stack_var_1 that checks SSA_NAMEs are
already assigned some MEM. */
static void
expand_one_stack_var (tree var)
{
if (TREE_CODE (var) == SSA_NAME)
{
int part = var_to_partition (SA.map, var);
if (part != NO_PARTITION)
{
rtx x = SA.partition_to_pseudo[part];
gcc_assert (x);
gcc_assert (MEM_P (x));
return;
}
}
return expand_one_stack_var_1 (var);
}
/* A subroutine of expand_one_var. Called to assign rtl to a VAR_DECL
that will reside in a hard register. */
static void
expand_one_hard_reg_var (tree var)
{
rest_of_decl_compilation (var, 0, 0);
}
/* Record the alignment requirements of some variable assigned to a
pseudo. */
static void
record_alignment_for_reg_var (unsigned int align)
{
if (SUPPORTS_STACK_ALIGNMENT
&& crtl->stack_alignment_estimated < align)
{
/* stack_alignment_estimated shouldn't change after stack
realign decision made */
gcc_assert (!crtl->stack_realign_processed);
crtl->stack_alignment_estimated = align;
}
/* stack_alignment_needed > PREFERRED_STACK_BOUNDARY is permitted.
So here we only make sure stack_alignment_needed >= align. */
if (crtl->stack_alignment_needed < align)
crtl->stack_alignment_needed = align;
if (crtl->max_used_stack_slot_alignment < align)
crtl->max_used_stack_slot_alignment = align;
}
/* Create RTL for an SSA partition. */
static void
expand_one_ssa_partition (tree var)
{
int part = var_to_partition (SA.map, var);
gcc_assert (part != NO_PARTITION);
if (SA.partition_to_pseudo[part])
return;
unsigned int align = MINIMUM_ALIGNMENT (TREE_TYPE (var),
TYPE_MODE (TREE_TYPE (var)),
TYPE_ALIGN (TREE_TYPE (var)));
/* If the variable alignment is very large we'll dynamicaly allocate
it, which means that in-frame portion is just a pointer. */
if (align > MAX_SUPPORTED_STACK_ALIGNMENT)
align = GET_MODE_ALIGNMENT (Pmode);
record_alignment_for_reg_var (align);
if (!use_register_for_decl (var))
{
if (defer_stack_allocation (var, true))
add_stack_var (var, true);
else
expand_one_stack_var_1 (var);
return;
}
machine_mode reg_mode = promote_ssa_mode (var, NULL);
rtx x = gen_reg_rtx (reg_mode);
set_rtl (var, x);
/* For a promoted variable, X will not be used directly but wrapped in a
SUBREG with SUBREG_PROMOTED_VAR_P set, which means that the RTL land
will assume that its upper bits can be inferred from its lower bits.
Therefore, if X isn't initialized on every path from the entry, then
we must do it manually in order to fulfill the above assumption. */
if (reg_mode != TYPE_MODE (TREE_TYPE (var))
&& bitmap_bit_p (SA.partitions_for_undefined_values, part))
emit_move_insn (x, CONST0_RTX (reg_mode));
}
/* Record the association between the RTL generated for partition PART
and the underlying variable of the SSA_NAME VAR. */
static void
adjust_one_expanded_partition_var (tree var)
{
if (!var)
return;
tree decl = SSA_NAME_VAR (var);
int part = var_to_partition (SA.map, var);
if (part == NO_PARTITION)
return;
rtx x = SA.partition_to_pseudo[part];
gcc_assert (x);
set_rtl (var, x);
if (!REG_P (x))
return;
/* Note if the object is a user variable. */
if (decl && !DECL_ARTIFICIAL (decl))
mark_user_reg (x);
if (POINTER_TYPE_P (decl ? TREE_TYPE (decl) : TREE_TYPE (var)))
mark_reg_pointer (x, get_pointer_alignment (var));
}
/* A subroutine of expand_one_var. Called to assign rtl to a VAR_DECL
that will reside in a pseudo register. */
static void
expand_one_register_var (tree var)
{
if (TREE_CODE (var) == SSA_NAME)
{
int part = var_to_partition (SA.map, var);
if (part != NO_PARTITION)
{
rtx x = SA.partition_to_pseudo[part];
gcc_assert (x);
gcc_assert (REG_P (x));
return;
}
gcc_unreachable ();
}
tree decl = var;
tree type = TREE_TYPE (decl);
machine_mode reg_mode = promote_decl_mode (decl, NULL);
rtx x = gen_reg_rtx (reg_mode);
set_rtl (var, x);
/* Note if the object is a user variable. */
if (!DECL_ARTIFICIAL (decl))
mark_user_reg (x);
if (POINTER_TYPE_P (type))
mark_reg_pointer (x, get_pointer_alignment (var));
}
/* A subroutine of expand_one_var. Called to assign rtl to a VAR_DECL that
has some associated error, e.g. its type is error-mark. We just need
to pick something that won't crash the rest of the compiler. */
static void
expand_one_error_var (tree var)
{
machine_mode mode = DECL_MODE (var);
rtx x;
if (mode == BLKmode)
x = gen_rtx_MEM (BLKmode, const0_rtx);
else if (mode == VOIDmode)
x = const0_rtx;
else
x = gen_reg_rtx (mode);
SET_DECL_RTL (var, x);
}
/* A subroutine of expand_one_var. VAR is a variable that will be
allocated to the local stack frame. Return true if we wish to
add VAR to STACK_VARS so that it will be coalesced with other
variables. Return false to allocate VAR immediately.
This function is used to reduce the number of variables considered
for coalescing, which reduces the size of the quadratic problem. */
static bool
defer_stack_allocation (tree var, bool toplevel)
{
tree size_unit = TREE_CODE (var) == SSA_NAME
? TYPE_SIZE_UNIT (TREE_TYPE (var))
: DECL_SIZE_UNIT (var);
poly_uint64 size;
/* Whether the variable is small enough for immediate allocation not to be
a problem with regard to the frame size. */
bool smallish
= (poly_int_tree_p (size_unit, &size)
&& (estimated_poly_value (size)
< param_min_size_for_stack_sharing));
/* If stack protection is enabled, *all* stack variables must be deferred,
so that we can re-order the strings to the top of the frame.
Similarly for Address Sanitizer. */
if (flag_stack_protect || asan_sanitize_stack_p ())
return true;
unsigned int align = TREE_CODE (var) == SSA_NAME
? TYPE_ALIGN (TREE_TYPE (var))
: DECL_ALIGN (var);
/* We handle "large" alignment via dynamic allocation. We want to handle
this extra complication in only one place, so defer them. */
if (align > MAX_SUPPORTED_STACK_ALIGNMENT)
return true;
bool ignored = TREE_CODE (var) == SSA_NAME
? !SSAVAR (var) || DECL_IGNORED_P (SSA_NAME_VAR (var))
: DECL_IGNORED_P (var);
/* When optimization is enabled, DECL_IGNORED_P variables originally scoped
might be detached from their block and appear at toplevel when we reach
here. We want to coalesce them with variables from other blocks when
the immediate contribution to the frame size would be noticeable. */
if (toplevel && optimize > 0 && ignored && !smallish)
return true;
/* Variables declared in the outermost scope automatically conflict
with every other variable. The only reason to want to defer them
at all is that, after sorting, we can more efficiently pack
small variables in the stack frame. Continue to defer at -O2. */
if (toplevel && optimize < 2)
return false;
/* Without optimization, *most* variables are allocated from the
stack, which makes the quadratic problem large exactly when we
want compilation to proceed as quickly as possible. On the
other hand, we don't want the function's stack frame size to
get completely out of hand. So we avoid adding scalars and
"small" aggregates to the list at all. */
if (optimize == 0 && smallish)
return false;
return true;
}
/* A subroutine of expand_used_vars. Expand one variable according to
its flavor. Variables to be placed on the stack are not actually
expanded yet, merely recorded.
When REALLY_EXPAND is false, only add stack values to be allocated.
Return stack usage this variable is supposed to take.
*/
static poly_uint64
expand_one_var (tree var, bool toplevel, bool really_expand,
bitmap forced_stack_var = NULL)
{
unsigned int align = BITS_PER_UNIT;
tree origvar = var;
var = SSAVAR (var);
if (TREE_TYPE (var) != error_mark_node && VAR_P (var))
{
if (is_global_var (var))
return 0;
/* Because we don't know if VAR will be in register or on stack,
we conservatively assume it will be on stack even if VAR is
eventually put into register after RA pass. For non-automatic
variables, which won't be on stack, we collect alignment of
type and ignore user specified alignment. Similarly for
SSA_NAMEs for which use_register_for_decl returns true. */
if (TREE_STATIC (var)
|| DECL_EXTERNAL (var)
|| (TREE_CODE (origvar) == SSA_NAME && use_register_for_decl (var)))
align = MINIMUM_ALIGNMENT (TREE_TYPE (var),
TYPE_MODE (TREE_TYPE (var)),
TYPE_ALIGN (TREE_TYPE (var)));
else if (DECL_HAS_VALUE_EXPR_P (var)
|| (DECL_RTL_SET_P (var) && MEM_P (DECL_RTL (var))))
/* Don't consider debug only variables with DECL_HAS_VALUE_EXPR_P set
or variables which were assigned a stack slot already by
expand_one_stack_var_at - in the latter case DECL_ALIGN has been
changed from the offset chosen to it. */
align = crtl->stack_alignment_estimated;
else
align = MINIMUM_ALIGNMENT (var, DECL_MODE (var), DECL_ALIGN (var));
/* If the variable alignment is very large we'll dynamicaly allocate
it, which means that in-frame portion is just a pointer. */
if (align > MAX_SUPPORTED_STACK_ALIGNMENT)
align = GET_MODE_ALIGNMENT (Pmode);
}
record_alignment_for_reg_var (align);
poly_uint64 size;
if (TREE_CODE (origvar) == SSA_NAME)
{
gcc_assert (!VAR_P (var)
|| (!DECL_EXTERNAL (var)
&& !DECL_HAS_VALUE_EXPR_P (var)
&& !TREE_STATIC (var)
&& TREE_TYPE (var) != error_mark_node
&& !DECL_HARD_REGISTER (var)
&& really_expand));
}
if (!VAR_P (var) && TREE_CODE (origvar) != SSA_NAME)
;
else if (DECL_EXTERNAL (var))
;
else if (DECL_HAS_VALUE_EXPR_P (var))
;
else if (TREE_STATIC (var))
;
else if (TREE_CODE (origvar) != SSA_NAME && DECL_RTL_SET_P (var))
;
else if (TREE_TYPE (var) == error_mark_node)
{
if (really_expand)
expand_one_error_var (var);
}
else if (VAR_P (var) && DECL_HARD_REGISTER (var))
{
if (really_expand)
{
expand_one_hard_reg_var (var);
if (!DECL_HARD_REGISTER (var))
/* Invalid register specification. */
expand_one_error_var (var);
}
}
else if (use_register_for_decl (var)
&& (!forced_stack_var
|| !bitmap_bit_p (forced_stack_var, DECL_UID (var))))
{
if (really_expand)
expand_one_register_var (origvar);
}
else if (!poly_int_tree_p (DECL_SIZE_UNIT (var), &size)
|| !valid_constant_size_p (DECL_SIZE_UNIT (var)))
{
/* Reject variables which cover more than half of the address-space. */
if (really_expand)
{
if (DECL_NONLOCAL_FRAME (var))
error_at (DECL_SOURCE_LOCATION (current_function_decl),
"total size of local objects is too large");
else
error_at (DECL_SOURCE_LOCATION (var),
"size of variable %q+D is too large", var);
expand_one_error_var (var);
}
}
else if (defer_stack_allocation (var, toplevel))
add_stack_var (origvar, really_expand);
else
{
if (really_expand)
{
if (lookup_attribute ("naked",
DECL_ATTRIBUTES (current_function_decl)))
error ("cannot allocate stack for variable %q+D, naked function",
var);
expand_one_stack_var (origvar);
}
return size;
}
return 0;
}
/* A subroutine of expand_used_vars. Walk down through the BLOCK tree
expanding variables. Those variables that can be put into registers
are allocated pseudos; those that can't are put on the stack.
TOPLEVEL is true if this is the outermost BLOCK. */
static void
expand_used_vars_for_block (tree block, bool toplevel, bitmap forced_stack_vars)
{
tree t;
/* Expand all variables at this level. */
for (t = BLOCK_VARS (block); t ; t = DECL_CHAIN (t))
if (TREE_USED (t)
&& ((!VAR_P (t) && TREE_CODE (t) != RESULT_DECL)
|| !DECL_NONSHAREABLE (t)))
expand_one_var (t, toplevel, true, forced_stack_vars);
/* Expand all variables at containing levels. */
for (t = BLOCK_SUBBLOCKS (block); t ; t = BLOCK_CHAIN (t))
expand_used_vars_for_block (t, false, forced_stack_vars);
}
/* A subroutine of expand_used_vars. Walk down through the BLOCK tree
and clear TREE_USED on all local variables. */
static void
clear_tree_used (tree block)
{
tree t;
for (t = BLOCK_VARS (block); t ; t = DECL_CHAIN (t))
/* if (!TREE_STATIC (t) && !DECL_EXTERNAL (t)) */
if ((!VAR_P (t) && TREE_CODE (t) != RESULT_DECL)
|| !DECL_NONSHAREABLE (t))
TREE_USED (t) = 0;
for (t = BLOCK_SUBBLOCKS (block); t ; t = BLOCK_CHAIN (t))
clear_tree_used (t);
}
/* Examine TYPE and determine a bit mask of the following features. */
#define SPCT_HAS_LARGE_CHAR_ARRAY 1
#define SPCT_HAS_SMALL_CHAR_ARRAY 2
#define SPCT_HAS_ARRAY 4
#define SPCT_HAS_AGGREGATE 8
static unsigned int
stack_protect_classify_type (tree type)
{
unsigned int ret = 0;
tree t;
switch (TREE_CODE (type))
{
case ARRAY_TYPE:
t = TYPE_MAIN_VARIANT (TREE_TYPE (type));
if (t == char_type_node
|| t == signed_char_type_node
|| t == unsigned_char_type_node)
{
unsigned HOST_WIDE_INT max = param_ssp_buffer_size;
unsigned HOST_WIDE_INT len;
if (!TYPE_SIZE_UNIT (type)
|| !tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
len = max;
else
len = tree_to_uhwi (TYPE_SIZE_UNIT (type));
if (len < max)
ret = SPCT_HAS_SMALL_CHAR_ARRAY | SPCT_HAS_ARRAY;
else
ret = SPCT_HAS_LARGE_CHAR_ARRAY | SPCT_HAS_ARRAY;
}
else
ret = SPCT_HAS_ARRAY;
break;
case UNION_TYPE:
case QUAL_UNION_TYPE:
case RECORD_TYPE:
ret = SPCT_HAS_AGGREGATE;
for (t = TYPE_FIELDS (type); t ; t = TREE_CHAIN (t))
if (TREE_CODE (t) == FIELD_DECL)
ret |= stack_protect_classify_type (TREE_TYPE (t));
break;
default:
break;
}
return ret;
}
/* Return nonzero if DECL should be segregated into the "vulnerable" upper
part of the local stack frame. Remember if we ever return nonzero for
any variable in this function. The return value is the phase number in
which the variable should be allocated. */
static int
stack_protect_decl_phase (tree decl)
{
unsigned int bits = stack_protect_classify_type (TREE_TYPE (decl));
int ret = 0;
if (bits & SPCT_HAS_SMALL_CHAR_ARRAY)
has_short_buffer = true;
tree attribs = DECL_ATTRIBUTES (current_function_decl);
if (!lookup_attribute ("no_stack_protector", attribs)
&& (flag_stack_protect == SPCT_FLAG_ALL
|| flag_stack_protect == SPCT_FLAG_STRONG
|| (flag_stack_protect == SPCT_FLAG_EXPLICIT
&& lookup_attribute ("stack_protect", attribs))))
{
if ((bits & (SPCT_HAS_SMALL_CHAR_ARRAY | SPCT_HAS_LARGE_CHAR_ARRAY))
&& !(bits & SPCT_HAS_AGGREGATE))
ret = 1;
else if (bits & SPCT_HAS_ARRAY)
ret = 2;
}
else
ret = (bits & SPCT_HAS_LARGE_CHAR_ARRAY) != 0;
if (ret)
has_protected_decls = true;
return ret;
}
/* Two helper routines that check for phase 1 and phase 2. These are used
as callbacks for expand_stack_vars. */
static bool
stack_protect_decl_phase_1 (size_t i)
{
return stack_protect_decl_phase (stack_vars[i].decl) == 1;
}
static bool
stack_protect_decl_phase_2 (size_t i)
{
return stack_protect_decl_phase (stack_vars[i].decl) == 2;
}
/* And helper function that checks for asan phase (with stack protector
it is phase 3). This is used as callback for expand_stack_vars.
Returns true if any of the vars in the partition need to be protected. */
static bool
asan_decl_phase_3 (size_t i)
{
while (i != EOC)
{
if (asan_protect_stack_decl (stack_vars[i].decl))
return true;
i = stack_vars[i].next;
}
return false;
}
/* Ensure that variables in different stack protection phases conflict
so that they are not merged and share the same stack slot.
Return true if there are any address taken variables. */
static bool
add_stack_protection_conflicts (void)
{
size_t i, j, n = stack_vars_num;
unsigned char *phase;
bool ret = false;
phase = XNEWVEC (unsigned char, n);
for (i = 0; i < n; ++i)
{
phase[i] = stack_protect_decl_phase (stack_vars[i].decl);
if (TREE_ADDRESSABLE (stack_vars[i].decl))
ret = true;
}
for (i = 0; i < n; ++i)
{
unsigned char ph_i = phase[i];
for (j = i + 1; j < n; ++j)
if (ph_i != phase[j])
add_stack_var_conflict (i, j);
}
XDELETEVEC (phase);
return ret;
}
/* Create a decl for the guard at the top of the stack frame. */
static void
create_stack_guard (void)
{
tree guard = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
VAR_DECL, NULL, ptr_type_node);
TREE_THIS_VOLATILE (guard) = 1;
TREE_USED (guard) = 1;
expand_one_stack_var (guard);
crtl->stack_protect_guard = guard;
}
/* Prepare for expanding variables. */
static void
init_vars_expansion (void)
{
/* Conflict bitmaps, and a few related temporary bitmaps, go here. */
bitmap_obstack_initialize (&stack_var_bitmap_obstack);
/* A map from decl to stack partition. */
decl_to_stack_part = new hash_map<tree, size_t>;
/* Initialize local stack smashing state. */
has_protected_decls = false;
has_short_buffer = false;
if (hwasan_sanitize_stack_p ())
hwasan_record_frame_init ();
}
/* Free up stack variable graph data. */
static void
fini_vars_expansion (void)
{
bitmap_obstack_release (&stack_var_bitmap_obstack);
if (stack_vars)
XDELETEVEC (stack_vars);
if (stack_vars_sorted)
XDELETEVEC (stack_vars_sorted);
stack_vars = NULL;
stack_vars_sorted = NULL;
stack_vars_alloc = stack_vars_num = 0;
delete decl_to_stack_part;
decl_to_stack_part = NULL;
}
/* Make a fair guess for the size of the stack frame of the function
in NODE. This doesn't have to be exact, the result is only used in
the inline heuristics. So we don't want to run the full stack var
packing algorithm (which is quadratic in the number of stack vars).
Instead, we calculate the total size of all stack vars. This turns
out to be a pretty fair estimate -- packing of stack vars doesn't
happen very often. */
HOST_WIDE_INT
estimated_stack_frame_size (struct cgraph_node *node)
{
poly_int64 size = 0;
size_t i;
tree var;
struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
push_cfun (fn);
init_vars_expansion ();
FOR_EACH_LOCAL_DECL (fn, i, var)
if (auto_var_in_fn_p (var, fn->decl))
size += expand_one_var (var, true, false);
if (stack_vars_num > 0)
{
/* Fake sorting the stack vars for account_stack_vars (). */
stack_vars_sorted = XNEWVEC (size_t, stack_vars_num);
for (i = 0; i < stack_vars_num; ++i)
stack_vars_sorted[i] = i;
size += account_stack_vars ();
}
fini_vars_expansion ();
pop_cfun ();
return estimated_poly_value (size);
}
/* Check if the current function has calls that use a return slot. */
static bool
stack_protect_return_slot_p ()
{
basic_block bb;
FOR_ALL_BB_FN (bb, cfun)
for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
!gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
/* This assumes that calls to internal-only functions never
use a return slot. */
if (is_gimple_call (stmt)
&& !gimple_call_internal_p (stmt)
&& aggregate_value_p (TREE_TYPE (gimple_call_fntype (stmt)),
gimple_call_fndecl (stmt)))
return true;
}
return false;
}
/* Expand all variables used in the function. */
static rtx_insn *
expand_used_vars (bitmap forced_stack_vars)
{
tree var, outer_block = DECL_INITIAL (current_function_decl);
auto_vec<tree> maybe_local_decls;
rtx_insn *var_end_seq = NULL;
unsigned i;
unsigned len;
bool gen_stack_protect_signal = false;
/* Compute the phase of the stack frame for this function. */
{
int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
int off = targetm.starting_frame_offset () % align;
frame_phase = off ? align - off : 0;
}
/* Set TREE_USED on all variables in the local_decls. */
FOR_EACH_LOCAL_DECL (cfun, i, var)
TREE_USED (var) = 1;
/* Clear TREE_USED on all variables associated with a block scope. */
clear_tree_used (DECL_INITIAL (current_function_decl));
init_vars_expansion ();
if (targetm.use_pseudo_pic_reg ())
pic_offset_table_rtx = gen_reg_rtx (Pmode);
for (i = 0; i < SA.map->num_partitions; i++)
{
if (bitmap_bit_p (SA.partitions_for_parm_default_defs, i))
continue;
tree var = partition_to_var (SA.map, i);
gcc_assert (!virtual_operand_p (var));
expand_one_ssa_partition (var);
}
if (flag_stack_protect == SPCT_FLAG_STRONG)
gen_stack_protect_signal = stack_protect_return_slot_p ();
/* At this point all variables on the local_decls with TREE_USED
set are not associated with any block scope. Lay them out. */
len = vec_safe_length (cfun->local_decls);
FOR_EACH_LOCAL_DECL (cfun, i, var)
{
bool expand_now = false;
/* Expanded above already. */
if (is_gimple_reg (var))
{
TREE_USED (var) = 0;
goto next;
}
/* We didn't set a block for static or extern because it's hard
to tell the difference between a global variable (re)declared
in a local scope, and one that's really declared there to
begin with. And it doesn't really matter much, since we're
not giving them stack space. Expand them now. */
else if (TREE_STATIC (var) || DECL_EXTERNAL (var))
expand_now = true;
/* Expand variables not associated with any block now. Those created by
the optimizers could be live anywhere in the function. Those that
could possibly have been scoped originally and detached from their
block will have their allocation deferred so we coalesce them with
others when optimization is enabled. */
else if (TREE_USED (var))
expand_now = true;
/* Finally, mark all variables on the list as used. We'll use
this in a moment when we expand those associated with scopes. */
TREE_USED (var) = 1;
if (expand_now)
expand_one_var (var, true, true, forced_stack_vars);
next:
if (DECL_ARTIFICIAL (var) && !DECL_IGNORED_P (var))
{
rtx rtl = DECL_RTL_IF_SET (var);
/* Keep artificial non-ignored vars in cfun->local_decls
chain until instantiate_decls. */
if (rtl && (MEM_P (rtl) || GET_CODE (rtl) == CONCAT))
add_local_decl (cfun, var);
else if (rtl == NULL_RTX)
/* If rtl isn't set yet, which can happen e.g. with
-fstack-protector, retry before returning from this
function. */
maybe_local_decls.safe_push (var);
}
}
/* We duplicated some of the decls in CFUN->LOCAL_DECLS.
+-----------------+-----------------+
| ...processed... | ...duplicates...|
+-----------------+-----------------+
^
+-- LEN points here.
We just want the duplicates, as those are the artificial
non-ignored vars that we want to keep until instantiate_decls.
Move them down and truncate the array. */
if (!vec_safe_is_empty (cfun->local_decls))
cfun->local_decls->block_remove (0, len);
/* At this point, all variables within the block tree with TREE_USED
set are actually used by the optimized function. Lay them out. */
expand_used_vars_for_block (outer_block, true, forced_stack_vars);
tree attribs = DECL_ATTRIBUTES (current_function_decl);
if (stack_vars_num > 0)
{
bool has_addressable_vars = false;
add_scope_conflicts ();
/* If stack protection is enabled, we don't share space between
vulnerable data and non-vulnerable data. */
if (flag_stack_protect != 0
&& !lookup_attribute ("no_stack_protector", attribs)
&& (flag_stack_protect != SPCT_FLAG_EXPLICIT
|| (flag_stack_protect == SPCT_FLAG_EXPLICIT
&& lookup_attribute ("stack_protect", attribs))))
has_addressable_vars = add_stack_protection_conflicts ();
if (flag_stack_protect == SPCT_FLAG_STRONG && has_addressable_vars)
gen_stack_protect_signal = true;
/* Now that we have collected all stack variables, and have computed a
minimal interference graph, attempt to save some stack space. */
partition_stack_vars ();
if (dump_file)
dump_stack_var_partition ();
}
if (!lookup_attribute ("no_stack_protector", attribs))
switch (flag_stack_protect)
{
case SPCT_FLAG_ALL:
create_stack_guard ();
break;
case SPCT_FLAG_STRONG:
if (gen_stack_protect_signal
|| cfun->calls_alloca
|| has_protected_decls
|| lookup_attribute ("stack_protect", attribs))
create_stack_guard ();
break;
case SPCT_FLAG_DEFAULT:
if (cfun->calls_alloca
|| has_protected_decls
|| lookup_attribute ("stack_protect", attribs))
create_stack_guard ();
break;
case SPCT_FLAG_EXPLICIT:
if (lookup_attribute ("stack_protect", attribs))
create_stack_guard ();
break;
default:
break;
}
/* Assign rtl to each variable based on these partitions. */
if (stack_vars_num > 0)
{
class stack_vars_data data;
data.asan_base = NULL_RTX;
data.asan_alignb = 0;
/* Reorder decls to be protected by iterating over the variables
array multiple times, and allocating out of each phase in turn. */
/* ??? We could probably integrate this into the qsort we did
earlier, such that we naturally see these variables first,
and thus naturally allocate things in the right order. */
if (has_protected_decls)
{
/* Phase 1 contains only character arrays. */
expand_stack_vars (stack_protect_decl_phase_1, &data);
/* Phase 2 contains other kinds of arrays. */
if (!lookup_attribute ("no_stack_protector", attribs)
&& (flag_stack_protect == SPCT_FLAG_ALL
|| flag_stack_protect == SPCT_FLAG_STRONG
|| (flag_stack_protect == SPCT_FLAG_EXPLICIT
&& lookup_attribute ("stack_protect", attribs))))
expand_stack_vars (stack_protect_decl_phase_2, &data);
}
if (asan_sanitize_stack_p ())
/* Phase 3, any partitions that need asan protection
in addition to phase 1 and 2. */
expand_stack_vars (asan_decl_phase_3, &data);
/* ASAN description strings don't yet have a syntax for expressing
polynomial offsets. */
HOST_WIDE_INT prev_offset;
if (!data.asan_vec.is_empty ()
&& frame_offset.is_constant (&prev_offset))
{
HOST_WIDE_INT offset, sz, redzonesz;
redzonesz = ASAN_RED_ZONE_SIZE;
sz = data.asan_vec[0] - prev_offset;
if (data.asan_alignb > ASAN_RED_ZONE_SIZE
&& data.asan_alignb <= 4096
&& sz + ASAN_RED_ZONE_SIZE >= (int) data.asan_alignb)
redzonesz = ((sz + ASAN_RED_ZONE_SIZE + data.asan_alignb - 1)
& ~(data.asan_alignb - HOST_WIDE_INT_1)) - sz;
/* Allocating a constant amount of space from a constant
starting offset must give a constant result. */
offset = (alloc_stack_frame_space (redzonesz, ASAN_RED_ZONE_SIZE)
.to_constant ());
data.asan_vec.safe_push (prev_offset);
data.asan_vec.safe_push (offset);
/* Leave space for alignment if STRICT_ALIGNMENT. */
if (STRICT_ALIGNMENT)
alloc_stack_frame_space ((GET_MODE_ALIGNMENT (SImode)
<< ASAN_SHADOW_SHIFT)
/ BITS_PER_UNIT, 1);
var_end_seq
= asan_emit_stack_protection (virtual_stack_vars_rtx,
data.asan_base,
data.asan_alignb,
data.asan_vec.address (),
data.asan_decl_vec.address (),
data.asan_vec.length ());
}
expand_stack_vars (NULL, &data);
}
if (hwasan_sanitize_stack_p ())
hwasan_emit_prologue ();
if (asan_sanitize_allocas_p () && cfun->calls_alloca)
var_end_seq = asan_emit_allocas_unpoison (virtual_stack_dynamic_rtx,
virtual_stack_vars_rtx,
var_end_seq);
else if (hwasan_sanitize_allocas_p () && cfun->calls_alloca)
/* When using out-of-line instrumentation we only want to emit one function
call for clearing the tags in a region of shadow stack. When there are
alloca calls in this frame we want to emit a call using the
virtual_stack_dynamic_rtx, but when not we use the hwasan_frame_extent
rtx we created in expand_stack_vars. */
var_end_seq = hwasan_emit_untag_frame (virtual_stack_dynamic_rtx,
virtual_stack_vars_rtx);
else if (hwasan_sanitize_stack_p ())
/* If no variables were stored on the stack, `hwasan_get_frame_extent`
will return NULL_RTX and hence `hwasan_emit_untag_frame` will return
NULL (i.e. an empty sequence). */
var_end_seq = hwasan_emit_untag_frame (hwasan_get_frame_extent (),
virtual_stack_vars_rtx);
fini_vars_expansion ();
/* If there were any artificial non-ignored vars without rtl
found earlier, see if deferred stack allocation hasn't assigned
rtl to them. */
FOR_EACH_VEC_ELT_REVERSE (maybe_local_decls, i, var)
{
rtx rtl = DECL_RTL_IF_SET (var);
/* Keep artificial non-ignored vars in cfun->local_decls
chain until instantiate_decls. */
if (rtl && (MEM_P (rtl) || GET_CODE (rtl) == CONCAT))
add_local_decl (cfun, var);
}
/* If the target requires that FRAME_OFFSET be aligned, do it. */
if (STACK_ALIGNMENT_NEEDED)
{
HOST_WIDE_INT align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
if (FRAME_GROWS_DOWNWARD)
frame_offset = aligned_lower_bound (frame_offset, align);
else
frame_offset = aligned_upper_bound (frame_offset, align);
}
return var_end_seq;
}
/* If we need to produce a detailed dump, print the tree representation
for STMT to the dump file. SINCE is the last RTX after which the RTL
generated for STMT should have been appended. */
static void
maybe_dump_rtl_for_gimple_stmt (gimple *stmt, rtx_insn *since)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\n;; ");
print_gimple_stmt (dump_file, stmt, 0,
TDF_SLIM | (dump_flags & TDF_LINENO));
fprintf (dump_file, "\n");
print_rtl (dump_file, since ? NEXT_INSN (since) : since);
}
}
/* Maps the blocks that do not contain tree labels to rtx labels. */
static hash_map<basic_block, rtx_code_label *> *lab_rtx_for_bb;
/* Returns the label_rtx expression for a label starting basic block BB. */
static rtx_code_label *
label_rtx_for_bb (basic_block bb ATTRIBUTE_UNUSED)
{
if (bb->flags & BB_RTL)
return block_label (bb);
rtx_code_label **elt = lab_rtx_for_bb->get (bb);
if (elt)
return *elt;
/* Find the tree label if it is present. */
gimple_stmt_iterator gsi = gsi_start_bb (bb);
glabel *lab_stmt;
if (!gsi_end_p (gsi)
&& (lab_stmt = dyn_cast <glabel *> (gsi_stmt (gsi)))
&& !DECL_NONLOCAL (gimple_label_label (lab_stmt)))
return jump_target_rtx (gimple_label_label (lab_stmt));
rtx_code_label *l = gen_label_rtx ();
lab_rtx_for_bb->put (bb, l);
return l;
}
/* A subroutine of expand_gimple_cond. Given E, a fallthrough edge
of a basic block where we just expanded the conditional at the end,
possibly clean up the CFG and instruction sequence. LAST is the
last instruction before the just emitted jump sequence. */
static void
maybe_cleanup_end_of_block (edge e, rtx_insn *last)
{
/* Special case: when jumpif decides that the condition is
trivial it emits an unconditional jump (and the necessary
barrier). But we still have two edges, the fallthru one is
wrong. purge_dead_edges would clean this up later. Unfortunately
we have to insert insns (and split edges) before
find_many_sub_basic_blocks and hence before purge_dead_edges.
But splitting edges might create new blocks which depend on the
fact that if there are two edges there's no barrier. So the
barrier would get lost and verify_flow_info would ICE. Instead
of auditing all edge splitters to care for the barrier (which
normally isn't there in a cleaned CFG), fix it here. */
if (BARRIER_P (get_last_insn ()))
{
rtx_insn *insn;
remove_edge (e);
/* Now, we have a single successor block, if we have insns to
insert on the remaining edge we potentially will insert
it at the end of this block (if the dest block isn't feasible)
in order to avoid splitting the edge. This insertion will take
place in front of the last jump. But we might have emitted
multiple jumps (conditional and one unconditional) to the
same destination. Inserting in front of the last one then
is a problem. See PR 40021. We fix this by deleting all
jumps except the last unconditional one. */
insn = PREV_INSN (get_last_insn ());
/* Make sure we have an unconditional jump. Otherwise we're
confused. */
gcc_assert (JUMP_P (insn) && !any_condjump_p (insn));
for (insn = PREV_INSN (insn); insn != last;)
{
insn = PREV_INSN (insn);
if (JUMP_P (NEXT_INSN (insn)))
{
if (!any_condjump_p (NEXT_INSN (insn)))
{
gcc_assert (BARRIER_P (NEXT_INSN (NEXT_INSN (insn))));
delete_insn (NEXT_INSN (NEXT_INSN (insn)));
}
delete_insn (NEXT_INSN (insn));
}
}
}
}
/* A subroutine of expand_gimple_basic_block. Expand one GIMPLE_COND.
Returns a new basic block if we've terminated the current basic
block and created a new one. */
static basic_block
expand_gimple_cond (basic_block bb, gcond *stmt)
{
basic_block new_bb, dest;
edge true_edge;
edge false_edge;
rtx_insn *last2, *last;
enum tree_code code;
tree op0, op1;
code = gimple_cond_code (stmt);
op0 = gimple_cond_lhs (stmt);
op1 = gimple_cond_rhs (stmt);
/* We're sometimes presented with such code:
D.123_1 = x < y;
if (D.123_1 != 0)
...
This would expand to two comparisons which then later might
be cleaned up by combine. But some pattern matchers like if-conversion
work better when there's only one compare, so make up for this
here as special exception if TER would have made the same change. */
if (SA.values
&& TREE_CODE (op0) == SSA_NAME
&& TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
&& TREE_CODE (op1) == INTEGER_CST
&& ((gimple_cond_code (stmt) == NE_EXPR
&& integer_zerop (op1))
|| (gimple_cond_code (stmt) == EQ_EXPR
&& integer_onep (op1)))
&& bitmap_bit_p (SA.values, SSA_NAME_VERSION (op0)))
{
gimple *second = SSA_NAME_DEF_STMT (op0);
if (gimple_code (second) == GIMPLE_ASSIGN)
{
enum tree_code code2 = gimple_assign_rhs_code (second);
if (TREE_CODE_CLASS (code2) == tcc_comparison)
{
code = code2;
op0 = gimple_assign_rhs1 (second);
op1 = gimple_assign_rhs2 (second);
}
/* If jumps are cheap and the target does not support conditional
compare, turn some more codes into jumpy sequences. */
else if (BRANCH_COST (optimize_insn_for_speed_p (), false) < 4
&& targetm.gen_ccmp_first == NULL)
{
if ((code2 == BIT_AND_EXPR
&& TYPE_PRECISION (TREE_TYPE (op0)) == 1
&& TREE_CODE (gimple_assign_rhs2 (second)) != INTEGER_CST)
|| code2 == TRUTH_AND_EXPR)
{
code = TRUTH_ANDIF_EXPR;
op0 = gimple_assign_rhs1 (second);
op1 = gimple_assign_rhs2 (second);
}
else if (code2 == BIT_IOR_EXPR || code2 == TRUTH_OR_EXPR)
{
code = TRUTH_ORIF_EXPR;
op0 = gimple_assign_rhs1 (second);
op1 = gimple_assign_rhs2 (second);
}
}
}
}
/* Optimize (x % C1) == C2 or (x % C1) != C2 if it is beneficial
into (x - C2) * C3 < C4. */
if ((code == EQ_EXPR || code == NE_EXPR)
&& TREE_CODE (op0) == SSA_NAME
&& TREE_CODE (op1) == INTEGER_CST)
code = maybe_optimize_mod_cmp (code, &op0, &op1);
/* Optimize (x - y) < 0 into x < y if x - y has undefined overflow. */
if (!TYPE_UNSIGNED (TREE_TYPE (op0))
&& (code == LT_EXPR || code == LE_EXPR
|| code == GT_EXPR || code == GE_EXPR)
&& integer_zerop (op1)
&& TREE_CODE (op0) == SSA_NAME)
maybe_optimize_sub_cmp_0 (code, &op0, &op1);
last2 = last = get_last_insn ();
extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
set_curr_insn_location (gimple_location (stmt));
/* These flags have no purpose in RTL land. */
true_edge->flags &= ~EDGE_TRUE_VALUE;
false_edge->flags &= ~EDGE_FALSE_VALUE;
/* We can either have a pure conditional jump with one fallthru edge or
two-way jump that needs to be decomposed into two basic blocks. */
if (false_edge->dest == bb->next_bb)
{
jumpif_1 (code, op0, op1, label_rtx_for_bb (true_edge->dest),
true_edge->probability);
maybe_dump_rtl_for_gimple_stmt (stmt, last);
if (true_edge->goto_locus != UNKNOWN_LOCATION)
set_curr_insn_location (true_edge->goto_locus);
false_edge->flags |= EDGE_FALLTHRU;
maybe_cleanup_end_of_block (false_edge, last);
return NULL;
}
if (true_edge->dest == bb->next_bb)
{
jumpifnot_1 (code, op0, op1, label_rtx_for_bb (false_edge->dest),
false_edge->probability);
maybe_dump_rtl_for_gimple_stmt (stmt, last);
if (false_edge->goto_locus != UNKNOWN_LOCATION)
set_curr_insn_location (false_edge->goto_locus);
true_edge->flags |= EDGE_FALLTHRU;
maybe_cleanup_end_of_block (true_edge, last);
return NULL;
}
jumpif_1 (code, op0, op1, label_rtx_for_bb (true_edge->dest),
true_edge->probability);
last = get_last_insn ();
if (false_edge->goto_locus != UNKNOWN_LOCATION)
set_curr_insn_location (false_edge->goto_locus);
emit_jump (label_rtx_for_bb (false_edge->dest));
BB_END (bb) = last;
if (BARRIER_P (BB_END (bb)))
BB_END (bb) = PREV_INSN (BB_END (bb));
update_bb_for_insn (bb);
new_bb = create_basic_block (NEXT_INSN (last), get_last_insn (), bb);
dest = false_edge->dest;
redirect_edge_succ (false_edge, new_bb);
false_edge->flags |= EDGE_FALLTHRU;
new_bb->count = false_edge->count ();
loop_p loop = find_common_loop (bb->loop_father, dest->loop_father);
add_bb_to_loop (new_bb, loop);
if (loop->latch == bb
&& loop->header == dest)
loop->latch = new_bb;
make_single_succ_edge (new_bb, dest, 0);
if (BARRIER_P (BB_END (new_bb)))
BB_END (new_bb) = PREV_INSN (BB_END (new_bb));
update_bb_for_insn (new_bb);
maybe_dump_rtl_for_gimple_stmt (stmt, last2);
if (true_edge->goto_locus != UNKNOWN_LOCATION)
{
set_curr_insn_location (true_edge->goto_locus);
true_edge->goto_locus = curr_insn_location ();
}
return new_bb;
}
/* Mark all calls that can have a transaction restart. */
static void
mark_transaction_restart_calls (gimple *stmt)
{
struct tm_restart_node dummy;
tm_restart_node **slot;
if (!cfun->gimple_df->tm_restart)
return;
dummy.stmt = stmt;
slot = cfun->gimple_df->tm_restart->find_slot (&dummy, NO_INSERT);
if (slot)
{
struct tm_restart_node *n = *slot;
tree list = n->label_or_list;
rtx_insn *insn;
for (insn = next_real_insn (get_last_insn ());
!CALL_P (insn);
insn = next_real_insn (insn))
continue;
if (TREE_CODE (list) == LABEL_DECL)
add_reg_note (insn, REG_TM, label_rtx (list));
else
for (; list ; list = TREE_CHAIN (list))
add_reg_note (insn, REG_TM, label_rtx (TREE_VALUE (list)));
}
}
/* A subroutine of expand_gimple_stmt_1, expanding one GIMPLE_CALL
statement STMT. */
static void
expand_call_stmt (gcall *stmt)
{
tree exp, decl, lhs;
bool builtin_p;
size_t i;
if (gimple_call_internal_p (stmt))
{
expand_internal_call (stmt);
return;
}
/* If this is a call to a built-in function and it has no effect other
than setting the lhs, try to implement it using an internal function
instead. */
decl = gimple_call_fndecl (stmt);
if (gimple_call_lhs (stmt)
&& !gimple_has_side_effects (stmt)
&& (optimize || (decl && called_as_built_in (decl))))
{
internal_fn ifn = replacement_internal_fn (stmt);
if (ifn != IFN_LAST)
{
expand_internal_call (ifn, stmt);
return;
}
}
exp = build_vl_exp (CALL_EXPR, gimple_call_num_args (stmt) + 3);
CALL_EXPR_FN (exp) = gimple_call_fn (stmt);
builtin_p = decl && fndecl_built_in_p (decl);
/* If this is not a builtin function, the function type through which the
call is made may be different from the type of the function. */
if (!builtin_p)
CALL_EXPR_FN (exp)
= fold_convert (build_pointer_type (gimple_call_fntype (stmt)),
CALL_EXPR_FN (exp));
TREE_TYPE (exp) = gimple_call_return_type (stmt);
CALL_EXPR_STATIC_CHAIN (exp) = gimple_call_chain (stmt);
for (i = 0; i < gimple_call_num_args (stmt); i++)
{
tree arg = gimple_call_arg (stmt, i);
gimple *def;
/* TER addresses into arguments of builtin functions so we have a
chance to infer more correct alignment information. See PR39954. */
if (builtin_p
&& TREE_CODE (arg) == SSA_NAME
&& (def = get_gimple_for_ssa_name (arg))
&& gimple_assign_rhs_code (def) == ADDR_EXPR)
arg = gimple_assign_rhs1 (def);
CALL_EXPR_ARG (exp, i) = arg;
}
if (gimple_has_side_effects (stmt)
/* ??? Downstream in expand_expr_real_1 we assume that expressions
w/o side-effects do not throw so work around this here. */
|| stmt_could_throw_p (cfun, stmt))
TREE_SIDE_EFFECTS (exp) = 1;
if (gimple_call_nothrow_p (stmt))
TREE_NOTHROW (exp) = 1;
CALL_EXPR_TAILCALL (exp) = gimple_call_tail_p (stmt);
CALL_EXPR_MUST_TAIL_CALL (exp) = gimple_call_must_tail_p (stmt);
CALL_EXPR_RETURN_SLOT_OPT (exp) = gimple_call_return_slot_opt_p (stmt);
if (decl
&& fndecl_built_in_p (decl, BUILT_IN_NORMAL)
&& ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (decl)))
CALL_ALLOCA_FOR_VAR_P (exp) = gimple_call_alloca_for_var_p (stmt);
else
CALL_FROM_THUNK_P (exp) = gimple_call_from_thunk_p (stmt);
CALL_EXPR_VA_ARG_PACK (exp) = gimple_call_va_arg_pack_p (stmt);
CALL_EXPR_BY_DESCRIPTOR (exp) = gimple_call_by_descriptor_p (stmt);
SET_EXPR_LOCATION (exp, gimple_location (stmt));
/* Must come after copying location. */
copy_warning (exp, stmt);
/* Ensure RTL is created for debug args. */
if (decl && DECL_HAS_DEBUG_ARGS_P (decl))
{
vec<tree, va_gc> **debug_args = decl_debug_args_lookup (decl);
unsigned int ix;
tree dtemp;
if (debug_args)
for (ix = 1; (*debug_args)->iterate (ix, &dtemp); ix += 2)
{
gcc_assert (TREE_CODE (dtemp) == DEBUG_EXPR_DECL);
expand_debug_expr (dtemp);
}
}
rtx_insn *before_call = get_last_insn ();
lhs = gimple_call_lhs (stmt);
if (lhs)
expand_assignment (lhs, exp, false);
else
expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
/* If the gimple call is an indirect call and has 'nocf_check'
attribute find a generated CALL insn to mark it as no
control-flow verification is needed. */
if (gimple_call_nocf_check_p (stmt)
&& !gimple_call_fndecl (stmt))
{
rtx_insn *last = get_last_insn ();
while (!CALL_P (last)
&& last != before_call)
last = PREV_INSN (last);
if (last != before_call)
add_reg_note (last, REG_CALL_NOCF_CHECK, const0_rtx);
}
mark_transaction_restart_calls (stmt);
}
/* Generate RTL for an asm statement (explicit assembler code).
STRING is a STRING_CST node containing the assembler code text,
or an ADDR_EXPR containing a STRING_CST. VOL nonzero means the
insn is volatile; don't optimize it. */
static void
expand_asm_loc (tree string, int vol, location_t locus)
{
rtx body;
body = gen_rtx_ASM_INPUT_loc (VOIDmode,
ggc_strdup (TREE_STRING_POINTER (string)),
locus);
MEM_VOLATILE_P (body) = vol;
/* Non-empty basic ASM implicitly clobbers memory. */
if (TREE_STRING_LENGTH (string) != 0)
{
rtx asm_op, clob;
unsigned i, nclobbers;
auto_vec<rtx> input_rvec, output_rvec;
auto_vec<machine_mode> input_mode;
auto_vec<const char *> constraints;
auto_vec<rtx> clobber_rvec;
HARD_REG_SET clobbered_regs;
CLEAR_HARD_REG_SET (clobbered_regs);
clob = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode));
clobber_rvec.safe_push (clob);
if (targetm.md_asm_adjust)
targetm.md_asm_adjust (output_rvec, input_rvec, input_mode,
constraints, clobber_rvec, clobbered_regs,
locus);
asm_op = body;
nclobbers = clobber_rvec.length ();
body = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (1 + nclobbers));
XVECEXP (body, 0, 0) = asm_op;
for (i = 0; i < nclobbers; i++)
XVECEXP (body, 0, i + 1) = gen_rtx_CLOBBER (VOIDmode, clobber_rvec[i]);
}
emit_insn (body);
}
/* Return the number of times character C occurs in string S. */
static int
n_occurrences (int c, const char *s)
{
int n = 0;
while (*s)
n += (*s++ == c);
return n;
}
/* A subroutine of expand_asm_operands. Check that all operands have
the same number of alternatives. Return true if so. */
static bool
check_operand_nalternatives (const vec<const char *> &constraints)
{
unsigned len = constraints.length();
if (len > 0)
{
int nalternatives = n_occurrences (',', constraints[0]);
if (nalternatives + 1 > MAX_RECOG_ALTERNATIVES)
{
error ("too many alternatives in %<asm%>");
return false;
}
for (unsigned i = 1; i < len; ++i)
if (n_occurrences (',', constraints[i]) != nalternatives)
{
error ("operand constraints for %<asm%> differ "
"in number of alternatives");
return false;
}
}
return true;
}
/* Check for overlap between registers marked in CLOBBERED_REGS and
anything inappropriate in T. Emit error and return the register
variable definition for error, NULL_TREE for ok. */
static bool
tree_conflicts_with_clobbers_p (tree t, HARD_REG_SET *clobbered_regs,
location_t loc)
{
/* Conflicts between asm-declared register variables and the clobber
list are not allowed. */
tree overlap = tree_overlaps_hard_reg_set (t, clobbered_regs);
if (overlap)
{
error_at (loc, "%<asm%> specifier for variable %qE conflicts with "
"%<asm%> clobber list", DECL_NAME (overlap));
/* Reset registerness to stop multiple errors emitted for a single
variable. */
DECL_REGISTER (overlap) = 0;
return true;
}
return false;
}
/* Check that the given REGNO spanning NREGS is a valid
asm clobber operand. Some HW registers cannot be
saved/restored, hence they should not be clobbered by
asm statements. */
static bool
asm_clobber_reg_is_valid (int regno, int nregs, const char *regname)
{
bool is_valid = true;
HARD_REG_SET regset;
CLEAR_HARD_REG_SET (regset);
add_range_to_hard_reg_set (&regset, regno, nregs);
/* Clobbering the PIC register is an error. */
if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
&& overlaps_hard_reg_set_p (regset, Pmode, PIC_OFFSET_TABLE_REGNUM))
{
/* ??? Diagnose during gimplification? */
error ("PIC register clobbered by %qs in %<asm%>", regname);
is_valid = false;
}
else if (!in_hard_reg_set_p
(accessible_reg_set, reg_raw_mode[regno], regno))
{
/* ??? Diagnose during gimplification? */
error ("the register %qs cannot be clobbered in %<asm%>"
" for the current target", regname);
is_valid = false;
}
/* Clobbering the stack pointer register is deprecated. GCC expects
the value of the stack pointer after an asm statement to be the same
as it was before, so no asm can validly clobber the stack pointer in
the usual sense. Adding the stack pointer to the clobber list has
traditionally had some undocumented and somewhat obscure side-effects. */
if (overlaps_hard_reg_set_p (regset, Pmode, STACK_POINTER_REGNUM))
{
crtl->sp_is_clobbered_by_asm = true;
if (warning (OPT_Wdeprecated, "listing the stack pointer register"
" %qs in a clobber list is deprecated", regname))
inform (input_location, "the value of the stack pointer after"
" an %<asm%> statement must be the same as it was before"
" the statement");
}
return is_valid;
}
/* Generate RTL for an asm statement with arguments.
STRING is the instruction template.
OUTPUTS is a list of output arguments (lvalues); INPUTS a list of inputs.
Each output or input has an expression in the TREE_VALUE and
a tree list in TREE_PURPOSE which in turn contains a constraint
name in TREE_VALUE (or NULL_TREE) and a constraint string
in TREE_PURPOSE.
CLOBBERS is a list of STRING_CST nodes each naming a hard register
that is clobbered by this insn.
LABELS is a list of labels, and if LABELS is non-NULL, FALLTHRU_BB
should be the fallthru basic block of the asm goto.
Not all kinds of lvalue that may appear in OUTPUTS can be stored directly.
Some elements of OUTPUTS may be replaced with trees representing temporary
values. The caller should copy those temporary values to the originally
specified lvalues.
VOL nonzero means the insn is volatile; don't optimize it. */
static void
expand_asm_stmt (gasm *stmt)
{
class save_input_location
{
location_t old;
public:
explicit save_input_location(location_t where)
{
old = input_location;
input_location = where;
}
~save_input_location()
{
input_location = old;
}
};
location_t locus = gimple_location (stmt);
if (gimple_asm_input_p (stmt))
{
const char *s = gimple_asm_string (stmt);
tree string = build_string (strlen (s), s);
expand_asm_loc (string, gimple_asm_volatile_p (stmt), locus);
return;
}
/* There are some legacy diagnostics in here. */
save_input_location s_i_l(locus);
unsigned noutputs = gimple_asm_noutputs (stmt);
unsigned ninputs = gimple_asm_ninputs (stmt);
unsigned nlabels = gimple_asm_nlabels (stmt);
unsigned i;
bool error_seen = false;
/* ??? Diagnose during gimplification? */
if (ninputs + noutputs + nlabels > MAX_RECOG_OPERANDS)
{
error_at (locus, "more than %d operands in %<asm%>", MAX_RECOG_OPERANDS);
return;
}
auto_vec<tree, MAX_RECOG_OPERANDS> output_tvec;
auto_vec<tree, MAX_RECOG_OPERANDS> input_tvec;
auto_vec<const char *, MAX_RECOG_OPERANDS> constraints;
/* Copy the gimple vectors into new vectors that we can manipulate. */
output_tvec.safe_grow (noutputs, true);
input_tvec.safe_grow (ninputs, true);
constraints.safe_grow (noutputs + ninputs, true);
for (i = 0; i < noutputs; ++i)
{
tree t = gimple_asm_output_op (stmt, i);
output_tvec[i] = TREE_VALUE (t);
constraints[i] = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
}
for (i = 0; i < ninputs; i++)
{
tree t = gimple_asm_input_op (stmt, i);
input_tvec[i] = TREE_VALUE (t);
constraints[i + noutputs]
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
}
/* ??? Diagnose during gimplification? */
if (! check_operand_nalternatives (constraints))
return;
/* Count the number of meaningful clobbered registers, ignoring what
we would ignore later. */
auto_vec<rtx> clobber_rvec;
HARD_REG_SET clobbered_regs;
CLEAR_HARD_REG_SET (clobbered_regs);
if (unsigned n = gimple_asm_nclobbers (stmt))
{
clobber_rvec.reserve (n);
for (i = 0; i < n; i++)
{
tree t = gimple_asm_clobber_op (stmt, i);
const char *regname = TREE_STRING_POINTER (TREE_VALUE (t));
int nregs, j;
j = decode_reg_name_and_count (regname, &nregs);
if (j < 0)
{
if (j == -2)
{
/* ??? Diagnose during gimplification? */
error_at (locus, "unknown register name %qs in %<asm%>",
regname);
error_seen = true;
}
else if (j == -4)
{
rtx x = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode));
clobber_rvec.safe_push (x);
}
else
{
/* Otherwise we should have -1 == empty string
or -3 == cc, which is not a register. */
gcc_assert (j == -1 || j == -3);
}
}
else
for (int reg = j; reg < j + nregs; reg++)
{
if (!asm_clobber_reg_is_valid (reg, nregs, regname))
return;
SET_HARD_REG_BIT (clobbered_regs, reg);
rtx x = gen_rtx_REG (reg_raw_mode[reg], reg);
clobber_rvec.safe_push (x);
}
}
}
/* First pass over inputs and outputs checks validity and sets
mark_addressable if needed. */
/* ??? Diagnose during gimplification? */
for (i = 0; i < noutputs; ++i)
{
tree val = output_tvec[i];
tree type = TREE_TYPE (val);
const char *constraint;
bool is_inout;
bool allows_reg;
bool allows_mem;
/* Try to parse the output constraint. If that fails, there's
no point in going further. */
constraint = constraints[i];
if (!parse_output_constraint (&constraint, i, ninputs, noutputs,
&allows_mem, &allows_reg, &is_inout))
return;
/* If the output is a hard register, verify it doesn't conflict with
any other operand's possible hard register use. */
if (DECL_P (val)
&& REG_P (DECL_RTL (val))
&& HARD_REGISTER_P (DECL_RTL (val)))
{
unsigned j, output_hregno = REGNO (DECL_RTL (val));
bool early_clobber_p = strchr (constraints[i], '&') != NULL;
unsigned long match;
/* Verify the other outputs do not use the same hard register. */
for (j = i + 1; j < noutputs; ++j)
if (DECL_P (output_tvec[j])
&& REG_P (DECL_RTL (output_tvec[j]))
&& HARD_REGISTER_P (DECL_RTL (output_tvec[j]))
&& output_hregno == REGNO (DECL_RTL (output_tvec[j])))
{
error_at (locus, "invalid hard register usage between output "
"operands");
error_seen = true;
}
/* Verify matching constraint operands use the same hard register
and that the non-matching constraint operands do not use the same
hard register if the output is an early clobber operand. */
for (j = 0; j < ninputs; ++j)