;; Matrix-Multiply Assist (MMA) patterns. ;; Copyright (C) 2020-2022 Free Software Foundation, Inc. ;; Contributed by Peter Bergner bergner@linux.ibm.com and ;; Michael Meissner meissner@linux.ibm.com ;; ;; This file is part of GCC. ;; ;; GCC is free software; you can redistribute it and/or modify it ;; under the terms of the GNU General Public License as published ;; by the Free Software Foundation; either version 3, or (at your ;; option) any later version. ;; ;; GCC is distributed in the hope that it will be useful, but WITHOUT ;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY ;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public ;; License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; http://www.gnu.org/licenses/.

;; The MMA patterns use the multi-register XOmode and OOmode opaque ;; modes to implement the target specific __vector_quad and ;; __vector_pair types that the MMA built-in functions reference. We ;; use OPAQUE_MODE to prevent anything from trying to open them up.

(define_constants [(MAX_MMA_OPERANDS 7)])

;; Constants for creating unspecs

(define_c_enum “unspec” [UNSPEC_VSX_ASSEMBLE UNSPEC_MMA_EXTRACT UNSPEC_MMA_PMXVBF16GER2 UNSPEC_MMA_PMXVBF16GER2NN UNSPEC_MMA_PMXVBF16GER2NP UNSPEC_MMA_PMXVBF16GER2PN UNSPEC_MMA_PMXVBF16GER2PP UNSPEC_MMA_PMXVF16GER2 UNSPEC_MMA_PMXVF16GER2NN UNSPEC_MMA_PMXVF16GER2NP UNSPEC_MMA_PMXVF16GER2PN UNSPEC_MMA_PMXVF16GER2PP UNSPEC_MMA_PMXVF32GER UNSPEC_MMA_PMXVF32GERNN UNSPEC_MMA_PMXVF32GERNP UNSPEC_MMA_PMXVF32GERPN UNSPEC_MMA_PMXVF32GERPP UNSPEC_MMA_PMXVF64GER UNSPEC_MMA_PMXVF64GERNN UNSPEC_MMA_PMXVF64GERNP UNSPEC_MMA_PMXVF64GERPN UNSPEC_MMA_PMXVF64GERPP UNSPEC_MMA_PMXVI16GER2 UNSPEC_MMA_PMXVI16GER2PP UNSPEC_MMA_PMXVI16GER2S UNSPEC_MMA_PMXVI16GER2SPP UNSPEC_MMA_PMXVI4GER8 UNSPEC_MMA_PMXVI4GER8PP UNSPEC_MMA_PMXVI8GER4 UNSPEC_MMA_PMXVI8GER4PP UNSPEC_MMA_PMXVI8GER4SPP UNSPEC_MMA_XVBF16GER2 UNSPEC_MMA_XVBF16GER2NN UNSPEC_MMA_XVBF16GER2NP UNSPEC_MMA_XVBF16GER2PN UNSPEC_MMA_XVBF16GER2PP UNSPEC_MMA_XVF16GER2 UNSPEC_MMA_XVF16GER2NN UNSPEC_MMA_XVF16GER2NP UNSPEC_MMA_XVF16GER2PN UNSPEC_MMA_XVF16GER2PP UNSPEC_MMA_XVF32GER UNSPEC_MMA_XVF32GERNN UNSPEC_MMA_XVF32GERNP UNSPEC_MMA_XVF32GERPN UNSPEC_MMA_XVF32GERPP UNSPEC_MMA_XVF64GER UNSPEC_MMA_XVF64GERNN UNSPEC_MMA_XVF64GERNP UNSPEC_MMA_XVF64GERPN UNSPEC_MMA_XVF64GERPP UNSPEC_MMA_XVI16GER2 UNSPEC_MMA_XVI16GER2PP UNSPEC_MMA_XVI16GER2S UNSPEC_MMA_XVI16GER2SPP UNSPEC_MMA_XVI4GER8 UNSPEC_MMA_XVI4GER8PP UNSPEC_MMA_XVI8GER4 UNSPEC_MMA_XVI8GER4PP UNSPEC_MMA_XVI8GER4SPP UNSPEC_MMA_XXMFACC UNSPEC_MMA_XXMTACC ])

(define_c_enum “unspecv” [UNSPECV_MMA_ASSEMBLE UNSPECV_MMA_XXSETACCZ ])

;; MMA instructions with 1 accumulator argument (define_int_iterator MMA_ACC [UNSPEC_MMA_XXMFACC UNSPEC_MMA_XXMTACC])

;; MMA instructions with 2 vector arguments (define_int_iterator MMA_VV [UNSPEC_MMA_XVI4GER8 UNSPEC_MMA_XVI8GER4 UNSPEC_MMA_XVI16GER2 UNSPEC_MMA_XVI16GER2S UNSPEC_MMA_XVF16GER2 UNSPEC_MMA_XVBF16GER2 UNSPEC_MMA_XVF32GER])

;; MMA instructions with 1 accumulator and 2 vector arguments (define_int_iterator MMA_AVV [UNSPEC_MMA_XVI4GER8PP UNSPEC_MMA_XVI8GER4PP UNSPEC_MMA_XVI8GER4SPP UNSPEC_MMA_XVI16GER2PP UNSPEC_MMA_XVI16GER2SPP UNSPEC_MMA_XVF16GER2PP UNSPEC_MMA_XVF16GER2PN UNSPEC_MMA_XVF16GER2NP UNSPEC_MMA_XVF16GER2NN UNSPEC_MMA_XVBF16GER2PP UNSPEC_MMA_XVBF16GER2PN UNSPEC_MMA_XVBF16GER2NP UNSPEC_MMA_XVBF16GER2NN UNSPEC_MMA_XVF32GERPP UNSPEC_MMA_XVF32GERPN UNSPEC_MMA_XVF32GERNP UNSPEC_MMA_XVF32GERNN])

;; MMA instructions with 1 vector pair and 1 vector arguments (define_int_iterator MMA_PV [UNSPEC_MMA_XVF64GER])

;; MMA instructions with 1 accumulator, 1 vector pair and 1 vector arguments (define_int_iterator MMA_APV [UNSPEC_MMA_XVF64GERPP UNSPEC_MMA_XVF64GERPN UNSPEC_MMA_XVF64GERNP UNSPEC_MMA_XVF64GERNN])

;; MMA instructions with 2 vector, 2 4-bit and 1 8-bit arguments (define_int_iterator MMA_VVI4I4I8 [UNSPEC_MMA_PMXVI4GER8])

;; MMA instructions with 1 accumulator, 2 vector, 2 4-bit and 1 8-bit arguments (define_int_iterator MMA_AVVI4I4I8 [UNSPEC_MMA_PMXVI4GER8PP])

;; MMA instructions with 2 vector, 2 4-bit and 1 2-bit arguments (define_int_iterator MMA_VVI4I4I2 [UNSPEC_MMA_PMXVI16GER2 UNSPEC_MMA_PMXVI16GER2S UNSPEC_MMA_PMXVF16GER2 UNSPEC_MMA_PMXVBF16GER2])

;; MMA instructions with 1 accumulator, 2 vector, 2 4-bit and 1 2-bit arguments (define_int_iterator MMA_AVVI4I4I2 [UNSPEC_MMA_PMXVI16GER2PP UNSPEC_MMA_PMXVI16GER2SPP UNSPEC_MMA_PMXVF16GER2PP UNSPEC_MMA_PMXVF16GER2PN UNSPEC_MMA_PMXVF16GER2NP UNSPEC_MMA_PMXVF16GER2NN UNSPEC_MMA_PMXVBF16GER2PP UNSPEC_MMA_PMXVBF16GER2PN UNSPEC_MMA_PMXVBF16GER2NP UNSPEC_MMA_PMXVBF16GER2NN])

;; MMA instructions with 2 vector and 2 4-bit arguments (define_int_iterator MMA_VVI4I4 [UNSPEC_MMA_PMXVF32GER])

;; MMA instructions with 1 accumulator, 2 vector and 2 4-bit arguments (define_int_iterator MMA_AVVI4I4 [UNSPEC_MMA_PMXVF32GERPP UNSPEC_MMA_PMXVF32GERPN UNSPEC_MMA_PMXVF32GERNP UNSPEC_MMA_PMXVF32GERNN])

;; MMA instructions with 2 vector, 1 4-bit and 1 2-bit arguments (define_int_iterator MMA_PVI4I2 [UNSPEC_MMA_PMXVF64GER])

;; MMA instructions with 1 accumulator, 2 vector, 1 4-bit and 1 2-bit arguments (define_int_iterator MMA_APVI4I2 [UNSPEC_MMA_PMXVF64GERPP UNSPEC_MMA_PMXVF64GERPN UNSPEC_MMA_PMXVF64GERNP UNSPEC_MMA_PMXVF64GERNN])

;; MMA instructions with 2 vector and 3 4-bit arguments (define_int_iterator MMA_VVI4I4I4 [UNSPEC_MMA_PMXVI8GER4])

;; MMA instructions with 1 accumulator, 2 vector and 3 4-bit arguments (define_int_iterator MMA_AVVI4I4I4 [UNSPEC_MMA_PMXVI8GER4PP UNSPEC_MMA_PMXVI8GER4SPP])

(define_int_attr acc [(UNSPEC_MMA_XXMFACC “xxmfacc”) (UNSPEC_MMA_XXMTACC “xxmtacc”)])

(define_int_attr vv [(UNSPEC_MMA_XVI4GER8 “xvi4ger8”) (UNSPEC_MMA_XVI8GER4 “xvi8ger4”) (UNSPEC_MMA_XVI16GER2 “xvi16ger2”) (UNSPEC_MMA_XVI16GER2S “xvi16ger2s”) (UNSPEC_MMA_XVF16GER2 “xvf16ger2”) (UNSPEC_MMA_XVBF16GER2 “xvbf16ger2”) (UNSPEC_MMA_XVF32GER “xvf32ger”)])

(define_int_attr avv [(UNSPEC_MMA_XVI4GER8PP “xvi4ger8pp”) (UNSPEC_MMA_XVI8GER4PP “xvi8ger4pp”) (UNSPEC_MMA_XVI8GER4SPP “xvi8ger4spp”) (UNSPEC_MMA_XVI16GER2PP “xvi16ger2pp”) (UNSPEC_MMA_XVI16GER2SPP “xvi16ger2spp”) (UNSPEC_MMA_XVF16GER2PP “xvf16ger2pp”) (UNSPEC_MMA_XVF16GER2PN “xvf16ger2pn”) (UNSPEC_MMA_XVF16GER2NP “xvf16ger2np”) (UNSPEC_MMA_XVF16GER2NN “xvf16ger2nn”) (UNSPEC_MMA_XVBF16GER2PP “xvbf16ger2pp”) (UNSPEC_MMA_XVBF16GER2PN “xvbf16ger2pn”) (UNSPEC_MMA_XVBF16GER2NP “xvbf16ger2np”) (UNSPEC_MMA_XVBF16GER2NN “xvbf16ger2nn”) (UNSPEC_MMA_XVF32GERPP “xvf32gerpp”) (UNSPEC_MMA_XVF32GERPN “xvf32gerpn”) (UNSPEC_MMA_XVF32GERNP “xvf32gernp”) (UNSPEC_MMA_XVF32GERNN “xvf32gernn”)])

(define_int_attr pv [(UNSPEC_MMA_XVF64GER “xvf64ger”)])

(define_int_attr apv [(UNSPEC_MMA_XVF64GERPP “xvf64gerpp”) (UNSPEC_MMA_XVF64GERPN “xvf64gerpn”) (UNSPEC_MMA_XVF64GERNP “xvf64gernp”) (UNSPEC_MMA_XVF64GERNN “xvf64gernn”)])

(define_int_attr vvi4i4i8 [(UNSPEC_MMA_PMXVI4GER8 “pmxvi4ger8”)])

(define_int_attr avvi4i4i8 [(UNSPEC_MMA_PMXVI4GER8PP “pmxvi4ger8pp”)])

(define_int_attr vvi4i4i2 [(UNSPEC_MMA_PMXVI16GER2 “pmxvi16ger2”) (UNSPEC_MMA_PMXVI16GER2S “pmxvi16ger2s”) (UNSPEC_MMA_PMXVF16GER2 “pmxvf16ger2”) (UNSPEC_MMA_PMXVBF16GER2 “pmxvbf16ger2”)])

(define_int_attr avvi4i4i2 [(UNSPEC_MMA_PMXVI16GER2PP “pmxvi16ger2pp”) (UNSPEC_MMA_PMXVI16GER2SPP “pmxvi16ger2spp”) (UNSPEC_MMA_PMXVF16GER2PP “pmxvf16ger2pp”) (UNSPEC_MMA_PMXVF16GER2PN “pmxvf16ger2pn”) (UNSPEC_MMA_PMXVF16GER2NP “pmxvf16ger2np”) (UNSPEC_MMA_PMXVF16GER2NN “pmxvf16ger2nn”) (UNSPEC_MMA_PMXVBF16GER2PP “pmxvbf16ger2pp”) (UNSPEC_MMA_PMXVBF16GER2PN “pmxvbf16ger2pn”) (UNSPEC_MMA_PMXVBF16GER2NP “pmxvbf16ger2np”) (UNSPEC_MMA_PMXVBF16GER2NN “pmxvbf16ger2nn”)])

(define_int_attr vvi4i4 [(UNSPEC_MMA_PMXVF32GER “pmxvf32ger”)])

(define_int_attr avvi4i4 [(UNSPEC_MMA_PMXVF32GERPP “pmxvf32gerpp”) (UNSPEC_MMA_PMXVF32GERPN “pmxvf32gerpn”) (UNSPEC_MMA_PMXVF32GERNP “pmxvf32gernp”) (UNSPEC_MMA_PMXVF32GERNN “pmxvf32gernn”)])

(define_int_attr pvi4i2 [(UNSPEC_MMA_PMXVF64GER “pmxvf64ger”)])

(define_int_attr apvi4i2 [(UNSPEC_MMA_PMXVF64GERPP “pmxvf64gerpp”) (UNSPEC_MMA_PMXVF64GERPN “pmxvf64gerpn”) (UNSPEC_MMA_PMXVF64GERNP “pmxvf64gernp”) (UNSPEC_MMA_PMXVF64GERNN “pmxvf64gernn”)])

(define_int_attr vvi4i4i4 [(UNSPEC_MMA_PMXVI8GER4 “pmxvi8ger4”)])

(define_int_attr avvi4i4i4 [(UNSPEC_MMA_PMXVI8GER4PP “pmxvi8ger4pp”) (UNSPEC_MMA_PMXVI8GER4SPP “pmxvi8ger4spp”)])

;; Vector pair support. OOmode can only live in VSRs. (define_expand “movoo” [(set (match_operand:OO 0 “nonimmediate_operand”) (match_operand:OO 1 “input_operand”))] "" { if (TARGET_MMA) { rs6000_emit_move (operands[0], operands[1], OOmode); DONE; } else if (currently_expanding_to_rtl && seen_error ()) { /* PR103353 shows we may want to continue to expand the __builtin_vsx_lxvp built-in function, even if we have already emitted error messages about some missing required conditions. As shown in that PR, without one explicit mov optab on OOmode provided, it would call emit_move_insn recursively. So we allow this pattern to be generated when we are expanding to RTL and have seen errors. It would not cause further ICEs as the compilation would stop soon after expanding. */ } else gcc_unreachable (); })

(define_insn_and_split “*movoo” [(set (match_operand:OO 0 “nonimmediate_operand” “=wa,m,wa”) (match_operand:OO 1 “input_operand” “m,wa,wa”))] “TARGET_MMA && (gpc_reg_operand (operands[0], OOmode) || gpc_reg_operand (operands[1], OOmode))” “@ lxvp%X1 %x0,%1 stxvp%X0 %x1,%0 #” “&& reload_completed && (!MEM_P (operands[0]) && !MEM_P (operands[1]))” [(const_int 0)] { rs6000_split_multireg_move (operands[0], operands[1]); DONE; } [(set_attr “type” “vecload,vecstore,veclogical”) (set_attr “size” “256”) (set_attr “length” “,,8”)])

;; Vector quad support. XOmode can only live in FPRs. (define_expand “movxo” [(set (match_operand:XO 0 “nonimmediate_operand”) (match_operand:XO 1 “input_operand”))] "" { if (TARGET_MMA) { rs6000_emit_move (operands[0], operands[1], XOmode); DONE; } else if (currently_expanding_to_rtl && seen_error ()) { /* PR103353 shows we may want to continue to expand the __builtin_vsx_lxvp built-in function, even if we have already emitted error messages about some missing required conditions. So do the same handlings for XOmode as OOmode here. */ } else gcc_unreachable (); })

(define_insn_and_split “*movxo” [(set (match_operand:XO 0 “nonimmediate_operand” “=d,m,d”) (match_operand:XO 1 “input_operand” “m,d,d”))] “TARGET_MMA && (gpc_reg_operand (operands[0], XOmode) || gpc_reg_operand (operands[1], XOmode))” "@

#" “&& reload_completed” [(const_int 0)] { rs6000_split_multireg_move (operands[0], operands[1]); DONE; } [(set_attr “type” “vecload,vecstore,veclogical”) (set_attr “length” “,,16”) (set_attr “max_prefixed_insns” “2,2,*”)])

(define_expand “vsx_assemble_pair” [(match_operand:OO 0 “vsx_register_operand”) (match_operand:V16QI 1 “mma_assemble_input_operand”) (match_operand:V16QI 2 “mma_assemble_input_operand”)] “TARGET_MMA” { rtx src = gen_rtx_UNSPEC (OOmode, gen_rtvec (2, operands[1], operands[2]), UNSPEC_VSX_ASSEMBLE); emit_move_insn (operands[0], src); DONE; })

;; We cannot update the two output registers atomically, so mark the output ;; as an early clobber so we don't accidentally clobber the input operands. */

(define_insn_and_split “*vsx_assemble_pair” [(set (match_operand:OO 0 “vsx_register_operand” “=&wa”) (unspec:OO [(match_operand:V16QI 1 “mma_assemble_input_operand” “mwa”) (match_operand:V16QI 2 “mma_assemble_input_operand” “mwa”)] UNSPEC_VSX_ASSEMBLE))] “TARGET_MMA” “#” “&& reload_completed” [(const_int 0)] { rtx src = gen_rtx_UNSPEC (OOmode, gen_rtvec (2, operands[1], operands[2]), UNSPEC_VSX_ASSEMBLE); rs6000_split_multireg_move (operands[0], src); DONE; })

(define_expand “vsx_disassemble_pair” [(match_operand:V16QI 0 “mma_disassemble_output_operand”) (match_operand:OO 1 “vsx_register_operand”) (match_operand 2 “const_0_to_1_operand”)] “TARGET_MMA” { rtx src; int regoff = INTVAL (operands[2]); src = gen_rtx_UNSPEC (V16QImode, gen_rtvec (2, operands[1], GEN_INT (regoff)), UNSPEC_MMA_EXTRACT); emit_move_insn (operands[0], src); DONE; })

(define_insn_and_split “*vsx_disassemble_pair” [(set (match_operand:V16QI 0 “mma_disassemble_output_operand” “=mwa”) (unspec:V16QI [(match_operand:OO 1 “vsx_register_operand” “wa”) (match_operand 2 “const_0_to_1_operand”)] UNSPEC_MMA_EXTRACT))] “TARGET_MMA && vsx_register_operand (operands[1], OOmode)” “#” “&& reload_completed” [(const_int 0)] { int reg = REGNO (operands[1]); int regoff = INTVAL (operands[2]); rtx src = gen_rtx_REG (V16QImode, reg + regoff); emit_move_insn (operands[0], src); DONE; })

(define_expand “mma_assemble_acc” [(match_operand:XO 0 “fpr_reg_operand”) (match_operand:V16QI 1 “mma_assemble_input_operand”) (match_operand:V16QI 2 “mma_assemble_input_operand”) (match_operand:V16QI 3 “mma_assemble_input_operand”) (match_operand:V16QI 4 “mma_assemble_input_operand”)] “TARGET_MMA” { rtx src = gen_rtx_UNSPEC_VOLATILE (XOmode, gen_rtvec (4, operands[1], operands[2], operands[3], operands[4]), UNSPECV_MMA_ASSEMBLE); emit_move_insn (operands[0], src); DONE; })

;; We cannot update the four output registers atomically, so mark the output ;; as an early clobber so we don't accidentally clobber the input operands. */

(define_insn_and_split “*mma_assemble_acc” [(set (match_operand:XO 0 “fpr_reg_operand” “=&d”) (unspec_volatile:XO [(match_operand:V16QI 1 “mma_assemble_input_operand” “mwa”) (match_operand:V16QI 2 “mma_assemble_input_operand” “mwa”) (match_operand:V16QI 3 “mma_assemble_input_operand” “mwa”) (match_operand:V16QI 4 “mma_assemble_input_operand” “mwa”)] UNSPECV_MMA_ASSEMBLE))] “TARGET_MMA && fpr_reg_operand (operands[0], XOmode)” “#” “&& reload_completed” [(const_int 0)] { rtx src = gen_rtx_UNSPEC_VOLATILE (XOmode, gen_rtvec (4, operands[1], operands[2], operands[3], operands[4]), UNSPECV_MMA_ASSEMBLE); rs6000_split_multireg_move (operands[0], src); DONE; })

(define_expand “mma_disassemble_acc” [(match_operand:V16QI 0 “mma_disassemble_output_operand”) (match_operand:XO 1 “fpr_reg_operand”) (match_operand 2 “const_0_to_3_operand”)] “TARGET_MMA” { rtx src; int regoff = INTVAL (operands[2]); src = gen_rtx_UNSPEC (V16QImode, gen_rtvec (2, operands[1], GEN_INT (regoff)), UNSPEC_MMA_EXTRACT); emit_move_insn (operands[0], src); DONE; })

(define_insn_and_split “*mma_disassemble_acc” [(set (match_operand:V16QI 0 “mma_disassemble_output_operand” “=mwa”) (unspec:V16QI [(match_operand:XO 1 “fpr_reg_operand” “d”) (match_operand 2 “const_0_to_3_operand”)] UNSPEC_MMA_EXTRACT))] “TARGET_MMA && fpr_reg_operand (operands[1], XOmode)” “#” “&& reload_completed” [(const_int 0)] { int reg = REGNO (operands[1]); int regoff = INTVAL (operands[2]); rtx src = gen_rtx_REG (V16QImode, reg + regoff); emit_move_insn (operands[0], src); DONE; })

;; MMA instructions that do not use their accumulators as an input, still ;; must not allow their vector operands to overlap the registers used by ;; the accumulator. We enforce this by marking the output as early clobber.

(define_insn “mma_” [(set (match_operand:XO 0 “fpr_reg_operand” “=&d”) (unspec:XO [(match_operand:XO 1 “fpr_reg_operand” “0”)] MMA_ACC))] “TARGET_MMA” “ %A0” [(set_attr “type” “mma”)])

;; We can't have integer constants in XOmode so we wrap this in an ;; UNSPEC_VOLATILE.

(define_insn “mma_xxsetaccz” [(set (match_operand:XO 0 “fpr_reg_operand” “=d”) (unspec_volatile:XO [(const_int 0)] UNSPECV_MMA_XXSETACCZ))] “TARGET_MMA” “xxsetaccz %A0” [(set_attr “type” “mma”)])

(define_insn “mma_” [(set (match_operand:XO 0 “fpr_reg_operand” “=&d,&d”) (unspec:XO [(match_operand:V16QI 1 “vsx_register_operand” “v,?wa”) (match_operand:V16QI 2 “vsx_register_operand” “v,?wa”)] MMA_VV))] “TARGET_MMA” “ %A0,%x1,%x2” [(set_attr “type” “mma”)])

(define_insn “mma_” [(set (match_operand:XO 0 “fpr_reg_operand” “=&d,&d”) (unspec:XO [(match_operand:XO 1 “fpr_reg_operand” “0,0”) (match_operand:V16QI 2 “vsx_register_operand” “v,?wa”) (match_operand:V16QI 3 “vsx_register_operand” “v,?wa”)] MMA_AVV))] “TARGET_MMA” “ %A0,%x2,%x3” [(set_attr “type” “mma”)])

(define_insn “mma_” [(set (match_operand:XO 0 “fpr_reg_operand” “=&d,&d”) (unspec:XO [(match_operand:OO 1 “vsx_register_operand” “v,?wa”) (match_operand:V16QI 2 “vsx_register_operand” “v,?wa”)] MMA_PV))] “TARGET_MMA” “ %A0,%x1,%x2” [(set_attr “type” “mma”)])

(define_insn “mma_” [(set (match_operand:XO 0 “fpr_reg_operand” “=&d,&d”) (unspec:XO [(match_operand:XO 1 “fpr_reg_operand” “0,0”) (match_operand:OO 2 “vsx_register_operand” “v,?wa”) (match_operand:V16QI 3 “vsx_register_operand” “v,?wa”)] MMA_APV))] “TARGET_MMA” “ %A0,%x2,%x3” [(set_attr “type” “mma”)])

(define_insn “mma_” [(set (match_operand:XO 0 “fpr_reg_operand” “=&d,&d”) (unspec:XO [(match_operand:V16QI 1 “vsx_register_operand” “v,?wa”) (match_operand:V16QI 2 “vsx_register_operand” “v,?wa”) (match_operand:SI 3 “const_0_to_15_operand” “n,n”) (match_operand:SI 4 “const_0_to_15_operand” “n,n”) (match_operand:SI 5 “u8bit_cint_operand” “n,n”)] MMA_VVI4I4I8))] “TARGET_MMA” “ %A0,%x1,%x2,%3,%4,%5” [(set_attr “type” “mma”) (set_attr “prefixed” “yes”)])

(define_insn “mma_” [(set (match_operand:XO 0 “fpr_reg_operand” “=&d,&d”) (unspec:XO [(match_operand:XO 1 “fpr_reg_operand” “0,0”) (match_operand:V16QI 2 “vsx_register_operand” “v,?wa”) (match_operand:V16QI 3 “vsx_register_operand” “v,?wa”) (match_operand:SI 4 “const_0_to_15_operand” “n,n”) (match_operand:SI 5 “const_0_to_15_operand” “n,n”) (match_operand:SI 6 “u8bit_cint_operand” “n,n”)] MMA_AVVI4I4I8))] “TARGET_MMA” “ %A0,%x2,%x3,%4,%5,%6” [(set_attr “type” “mma”) (set_attr “prefixed” “yes”)])

(define_insn “mma_” [(set (match_operand:XO 0 “fpr_reg_operand” “=&d,&d”) (unspec:XO [(match_operand:V16QI 1 “vsx_register_operand” “v,?wa”) (match_operand:V16QI 2 “vsx_register_operand” “v,?wa”) (match_operand:SI 3 “const_0_to_15_operand” “n,n”) (match_operand:SI 4 “const_0_to_15_operand” “n,n”) (match_operand:SI 5 “const_0_to_3_operand” “n,n”)] MMA_VVI4I4I2))] “TARGET_MMA” “ %A0,%x1,%x2,%3,%4,%5” [(set_attr “type” “mma”) (set_attr “prefixed” “yes”)])

(define_insn “mma_” [(set (match_operand:XO 0 “fpr_reg_operand” “=&d,&d”) (unspec:XO [(match_operand:XO 1 “fpr_reg_operand” “0,0”) (match_operand:V16QI 2 “vsx_register_operand” “v,?wa”) (match_operand:V16QI 3 “vsx_register_operand” “v,?wa”) (match_operand:SI 4 “const_0_to_15_operand” “n,n”) (match_operand:SI 5 “const_0_to_15_operand” “n,n”) (match_operand:SI 6 “const_0_to_3_operand” “n,n”)] MMA_AVVI4I4I2))] “TARGET_MMA” “ %A0,%x2,%x3,%4,%5,%6” [(set_attr “type” “mma”) (set_attr “prefixed” “yes”)])

(define_insn “mma_” [(set (match_operand:XO 0 “fpr_reg_operand” “=&d,&d”) (unspec:XO [(match_operand:V16QI 1 “vsx_register_operand” “v,?wa”) (match_operand:V16QI 2 “vsx_register_operand” “v,?wa”) (match_operand:SI 3 “const_0_to_15_operand” “n,n”) (match_operand:SI 4 “const_0_to_15_operand” “n,n”)] MMA_VVI4I4))] “TARGET_MMA” “ %A0,%x1,%x2,%3,%4” [(set_attr “type” “mma”) (set_attr “prefixed” “yes”)])

(define_insn “mma_” [(set (match_operand:XO 0 “fpr_reg_operand” “=&d,&d”) (unspec:XO [(match_operand:XO 1 “fpr_reg_operand” “0,0”) (match_operand:V16QI 2 “vsx_register_operand” “v,?wa”) (match_operand:V16QI 3 “vsx_register_operand” “v,?wa”) (match_operand:SI 4 “const_0_to_15_operand” “n,n”) (match_operand:SI 5 “const_0_to_15_operand” “n,n”)] MMA_AVVI4I4))] “TARGET_MMA” “ %A0,%x2,%x3,%4,%5” [(set_attr “type” “mma”) (set_attr “prefixed” “yes”)])

(define_insn “mma_” [(set (match_operand:XO 0 “fpr_reg_operand” “=&d,&d”) (unspec:XO [(match_operand:OO 1 “vsx_register_operand” “v,?wa”) (match_operand:V16QI 2 “vsx_register_operand” “v,?wa”) (match_operand:SI 3 “const_0_to_15_operand” “n,n”) (match_operand:SI 4 “const_0_to_3_operand” “n,n”)] MMA_PVI4I2))] “TARGET_MMA” “ %A0,%x1,%x2,%3,%4” [(set_attr “type” “mma”) (set_attr “prefixed” “yes”)])

(define_insn “mma_” [(set (match_operand:XO 0 “fpr_reg_operand” “=&d,&d”) (unspec:XO [(match_operand:XO 1 “fpr_reg_operand” “0,0”) (match_operand:OO 2 “vsx_register_operand” “v,?wa”) (match_operand:V16QI 3 “vsx_register_operand” “v,?wa”) (match_operand:SI 4 “const_0_to_15_operand” “n,n”) (match_operand:SI 5 “const_0_to_3_operand” “n,n”)] MMA_APVI4I2))] “TARGET_MMA” “ %A0,%x2,%x3,%4,%5” [(set_attr “type” “mma”) (set_attr “prefixed” “yes”)])

(define_insn “mma_” [(set (match_operand:XO 0 “fpr_reg_operand” “=&d,&d”) (unspec:XO [(match_operand:V16QI 1 “vsx_register_operand” “v,?wa”) (match_operand:V16QI 2 “vsx_register_operand” “v,?wa”) (match_operand:SI 3 “const_0_to_15_operand” “n,n”) (match_operand:SI 4 “const_0_to_15_operand” “n,n”) (match_operand:SI 5 “const_0_to_15_operand” “n,n”)] MMA_VVI4I4I4))] “TARGET_MMA” “ %A0,%x1,%x2,%3,%4,%5” [(set_attr “type” “mma”) (set_attr “prefixed” “yes”)])

(define_insn “mma_” [(set (match_operand:XO 0 “fpr_reg_operand” “=&d,&d”) (unspec:XO [(match_operand:XO 1 “fpr_reg_operand” “0,0”) (match_operand:V16QI 2 “vsx_register_operand” “v,?wa”) (match_operand:V16QI 3 “vsx_register_operand” “v,?wa”) (match_operand:SI 4 “const_0_to_15_operand” “n,n”) (match_operand:SI 5 “const_0_to_15_operand” “n,n”) (match_operand:SI 6 “const_0_to_15_operand” “n,n”)] MMA_AVVI4I4I4))] “TARGET_MMA” “ %A0,%x2,%x3,%4,%5,%6” [(set_attr “type” “mma”) (set_attr “prefixed” “yes”)])