| /* Definitions of target machine for GNU compiler, for IBM S/390 |
| Copyright (C) 1999-2022 Free Software Foundation, Inc. |
| Contributed by Hartmut Penner (hpenner@de.ibm.com) and |
| Ulrich Weigand (uweigand@de.ibm.com). |
| Andreas Krebbel (Andreas.Krebbel@de.ibm.com) |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #ifndef _S390_H |
| #define _S390_H |
| |
| /* Optional architectural facilities supported by the processor. */ |
| |
| enum processor_flags |
| { |
| PF_IEEE_FLOAT = 1, |
| PF_ZARCH = 2, |
| PF_LONG_DISPLACEMENT = 4, |
| PF_EXTIMM = 8, |
| PF_DFP = 16, |
| PF_Z10 = 32, |
| PF_Z196 = 64, |
| PF_ZEC12 = 128, |
| PF_TX = 256, |
| PF_Z13 = 512, |
| PF_VX = 1024, |
| PF_Z14 = 2048, |
| PF_VXE = 4096, |
| PF_VXE2 = 8192, |
| PF_Z15 = 16384, |
| PF_NNPA = 32768, |
| PF_Z16 = 65536 |
| }; |
| |
| /* This is necessary to avoid a warning about comparing different enum |
| types. */ |
| #define s390_tune_attr ((enum attr_cpu)(s390_tune > PROCESSOR_3931_Z16 ? PROCESSOR_3931_Z16 : s390_tune )) |
| |
| /* These flags indicate that the generated code should run on a cpu |
| providing the respective hardware facility regardless of the |
| current cpu mode (ESA or z/Architecture). */ |
| |
| #define TARGET_CPU_IEEE_FLOAT \ |
| (s390_arch_flags & PF_IEEE_FLOAT) |
| #define TARGET_CPU_IEEE_FLOAT_P(opts) \ |
| (opts->x_s390_arch_flags & PF_IEEE_FLOAT) |
| #define TARGET_CPU_LONG_DISPLACEMENT \ |
| (s390_arch_flags & PF_LONG_DISPLACEMENT) |
| #define TARGET_CPU_LONG_DISPLACEMENT_P(opts) \ |
| (opts->x_s390_arch_flags & PF_LONG_DISPLACEMENT) |
| #define TARGET_CPU_EXTIMM \ |
| (s390_arch_flags & PF_EXTIMM) |
| #define TARGET_CPU_EXTIMM_P(opts) \ |
| (opts->x_s390_arch_flags & PF_EXTIMM) |
| #define TARGET_CPU_DFP \ |
| (s390_arch_flags & PF_DFP) |
| #define TARGET_CPU_DFP_P(opts) \ |
| (opts->x_s390_arch_flags & PF_DFP) |
| #define TARGET_CPU_Z10 \ |
| (s390_arch_flags & PF_Z10) |
| #define TARGET_CPU_Z10_P(opts) \ |
| (opts->x_s390_arch_flags & PF_Z10) |
| #define TARGET_CPU_Z196 \ |
| (s390_arch_flags & PF_Z196) |
| #define TARGET_CPU_Z196_P(opts) \ |
| (opts->x_s390_arch_flags & PF_Z196) |
| #define TARGET_CPU_ZEC12 \ |
| (s390_arch_flags & PF_ZEC12) |
| #define TARGET_CPU_ZEC12_P(opts) \ |
| (opts->x_s390_arch_flags & PF_ZEC12) |
| #define TARGET_CPU_HTM \ |
| (s390_arch_flags & PF_TX) |
| #define TARGET_CPU_HTM_P(opts) \ |
| (opts->x_s390_arch_flags & PF_TX) |
| #define TARGET_CPU_Z13 \ |
| (s390_arch_flags & PF_Z13) |
| #define TARGET_CPU_Z13_P(opts) \ |
| (opts->x_s390_arch_flags & PF_Z13) |
| #define TARGET_CPU_VX \ |
| (s390_arch_flags & PF_VX) |
| #define TARGET_CPU_VX_P(opts) \ |
| (opts->x_s390_arch_flags & PF_VX) |
| #define TARGET_CPU_Z14 \ |
| (s390_arch_flags & PF_Z14) |
| #define TARGET_CPU_Z14_P(opts) \ |
| (opts->x_s390_arch_flags & PF_Z14) |
| #define TARGET_CPU_VXE \ |
| (s390_arch_flags & PF_VXE) |
| #define TARGET_CPU_VXE_P(opts) \ |
| (opts->x_s390_arch_flags & PF_VXE) |
| #define TARGET_CPU_Z15 \ |
| (s390_arch_flags & PF_Z15) |
| #define TARGET_CPU_Z15_P(opts) \ |
| (opts->x_s390_arch_flags & PF_Z15) |
| #define TARGET_CPU_VXE2 \ |
| (s390_arch_flags & PF_VXE2) |
| #define TARGET_CPU_VXE2_P(opts) \ |
| (opts->x_s390_arch_flags & PF_VXE2) |
| #define TARGET_CPU_Z16 \ |
| (s390_arch_flags & PF_Z16) |
| #define TARGET_CPU_Z16_P(opts) \ |
| (opts->x_s390_arch_flags & PF_Z16) |
| #define TARGET_CPU_NNPA \ |
| (s390_arch_flags & PF_NNPA) |
| #define TARGET_CPU_NNPA_P(opts) \ |
| (opts->x_s390_arch_flags & PF_NNPA) |
| |
| #define TARGET_HARD_FLOAT_P(opts) (!TARGET_SOFT_FLOAT_P(opts)) |
| |
| /* These flags indicate that the generated code should run on a cpu |
| providing the respective hardware facility when run in |
| z/Architecture mode. */ |
| |
| #define TARGET_LONG_DISPLACEMENT \ |
| (TARGET_ZARCH && TARGET_CPU_LONG_DISPLACEMENT) |
| #define TARGET_LONG_DISPLACEMENT_P(opts) \ |
| (TARGET_ZARCH_P (opts->x_target_flags) \ |
| && TARGET_CPU_LONG_DISPLACEMENT_P (opts)) |
| #define TARGET_EXTIMM \ |
| (TARGET_ZARCH && TARGET_CPU_EXTIMM) |
| #define TARGET_EXTIMM_P(opts) \ |
| (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_EXTIMM_P (opts)) |
| #define TARGET_DFP \ |
| (TARGET_ZARCH && TARGET_CPU_DFP && TARGET_HARD_FLOAT) |
| #define TARGET_DFP_P(opts) \ |
| (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_DFP_P (opts) \ |
| && TARGET_HARD_FLOAT_P (opts->x_target_flags)) |
| #define TARGET_Z10 \ |
| (TARGET_ZARCH && TARGET_CPU_Z10) |
| #define TARGET_Z10_P(opts) \ |
| (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z10_P (opts)) |
| #define TARGET_Z196 \ |
| (TARGET_ZARCH && TARGET_CPU_Z196) |
| #define TARGET_Z196_P(opts) \ |
| (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z196_P (opts)) |
| #define TARGET_ZEC12 \ |
| (TARGET_ZARCH && TARGET_CPU_ZEC12) |
| #define TARGET_ZEC12_P(opts) \ |
| (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_ZEC12_P (opts)) |
| #define TARGET_HTM (TARGET_OPT_HTM) |
| #define TARGET_HTM_P(opts) (TARGET_OPT_HTM_P (opts->x_target_flags)) |
| #define TARGET_Z13 \ |
| (TARGET_ZARCH && TARGET_CPU_Z13) |
| #define TARGET_Z13_P(opts) \ |
| (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z13_P (opts)) |
| #define TARGET_VX \ |
| (TARGET_ZARCH && TARGET_CPU_VX && TARGET_OPT_VX && TARGET_HARD_FLOAT) |
| #define TARGET_VX_P(opts) \ |
| (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_VX_P (opts) \ |
| && TARGET_OPT_VX_P (opts->x_target_flags) \ |
| && TARGET_HARD_FLOAT_P (opts->x_target_flags)) |
| #define TARGET_Z14 (TARGET_ZARCH && TARGET_CPU_Z14) |
| #define TARGET_Z14_P(opts) \ |
| (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z14_P (opts)) |
| #define TARGET_VXE \ |
| (TARGET_VX && TARGET_CPU_VXE) |
| #define TARGET_VXE_P(opts) \ |
| (TARGET_VX_P (opts) && TARGET_CPU_VXE_P (opts)) |
| #define TARGET_Z15 (TARGET_ZARCH && TARGET_CPU_Z15) |
| #define TARGET_Z15_P(opts) \ |
| (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z15_P (opts)) |
| #define TARGET_VXE2 \ |
| (TARGET_VX && TARGET_CPU_VXE2) |
| #define TARGET_VXE2_P(opts) \ |
| (TARGET_VX_P (opts) && TARGET_CPU_VXE2_P (opts)) |
| #define TARGET_Z16 (TARGET_ZARCH && TARGET_CPU_Z16) |
| #define TARGET_Z16_P(opts) \ |
| (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z16_P (opts)) |
| #define TARGET_NNPA \ |
| (TARGET_ZARCH && TARGET_CPU_NNPA) |
| #define TARGET_NNPA_P(opts) \ |
| (TARGET_ZARCH_P (opts) && TARGET_CPU_NNPA_P (opts)) |
| |
| #if defined(HAVE_AS_VECTOR_LOADSTORE_ALIGNMENT_HINTS_ON_Z13) |
| #define TARGET_VECTOR_LOADSTORE_ALIGNMENT_HINTS TARGET_Z13 |
| #elif defined(HAVE_AS_VECTOR_LOADSTORE_ALIGNMENT_HINTS) |
| #define TARGET_VECTOR_LOADSTORE_ALIGNMENT_HINTS TARGET_Z14 |
| #else |
| #define TARGET_VECTOR_LOADSTORE_ALIGNMENT_HINTS 0 |
| #endif |
| |
| /* Evaluate to true if it is ok to emit a non-signaling vector |
| comparison. */ |
| #define TARGET_NONSIGNALING_VECTOR_COMPARE_OK \ |
| (TARGET_VX && !TARGET_VXE && (flag_finite_math_only || !flag_trapping_math)) |
| |
| #ifdef HAVE_AS_MACHINE_MACHINEMODE |
| #define S390_USE_TARGET_ATTRIBUTE 1 |
| #else |
| #define S390_USE_TARGET_ATTRIBUTE 0 |
| #endif |
| |
| #ifdef HAVE_AS_ARCHITECTURE_MODIFIERS |
| #define S390_USE_ARCHITECTURE_MODIFIERS 1 |
| #else |
| #define S390_USE_ARCHITECTURE_MODIFIERS 0 |
| #endif |
| |
| #if S390_USE_TARGET_ATTRIBUTE |
| /* For switching between functions with different target attributes. */ |
| #define SWITCHABLE_TARGET 1 |
| #endif |
| |
| #define TARGET_SUPPORTS_WIDE_INT 1 |
| |
| /* Use the ABI introduced with IBM z13: |
| - pass vector arguments <= 16 bytes in VRs |
| - align *all* vector types to 8 bytes */ |
| #define TARGET_VX_ABI TARGET_VX |
| |
| #define TARGET_AVOID_CMP_AND_BRANCH (s390_tune == PROCESSOR_2817_Z196) |
| |
| /* Issue a write prefetch for the +4 cache line. */ |
| #define TARGET_SETMEM_PREFETCH_DISTANCE 1024 |
| |
| /* Expand to a C expressions evaluating to true if a setmem to VAL of |
| length LEN should be emitted using prefetch instructions. */ |
| #define TARGET_SETMEM_PFD(VAL,LEN) \ |
| (TARGET_Z10 \ |
| && (s390_tune < PROCESSOR_2964_Z13 || (VAL) != const0_rtx) \ |
| && (!CONST_INT_P (LEN) || INTVAL ((LEN)) > TARGET_SETMEM_PREFETCH_DISTANCE)) |
| |
| /* Run-time target specification. */ |
| |
| /* Defaults for option flags defined only on some subtargets. */ |
| #ifndef TARGET_TPF_PROFILING |
| #define TARGET_TPF_PROFILING 0 |
| #endif |
| |
| /* This will be overridden by OS headers. */ |
| #define TARGET_TPF 0 |
| |
| /* Target CPU builtins. */ |
| #define TARGET_CPU_CPP_BUILTINS() s390_cpu_cpp_builtins (pfile) |
| |
| #ifdef DEFAULT_TARGET_64BIT |
| #define TARGET_DEFAULT (MASK_64BIT | MASK_ZARCH | MASK_HARD_DFP \ |
| | MASK_OPT_HTM | MASK_OPT_VX) |
| #else |
| #define TARGET_DEFAULT 0 |
| #endif |
| |
| /* Support for configure-time defaults. |
| The order here is important so that -march doesn't squash the |
| tune values. */ |
| #define OPTION_DEFAULT_SPECS \ |
| { "mode", "%{!mesa:%{!mzarch:-m%(VALUE)}}" }, \ |
| { "tune", "%{!mtune=*:%{!march=*:-mtune=%(VALUE)}}" }, \ |
| { "arch", "%{!march=*:-march=%(VALUE)}" } |
| |
| #ifdef __s390__ |
| extern const char *s390_host_detect_local_cpu (int argc, const char **argv); |
| # define EXTRA_SPEC_FUNCTIONS \ |
| { "local_cpu_detect", s390_host_detect_local_cpu }, |
| |
| #define MARCH_MTUNE_NATIVE_SPECS \ |
| "%{mtune=native:%<mtune=native %:local_cpu_detect(tune)} " \ |
| "%{march=native:%<march=native" \ |
| " %:local_cpu_detect(arch %{mesa|mzarch:mesa_mzarch})}" |
| #else |
| # define MARCH_MTUNE_NATIVE_SPECS "" |
| #endif |
| |
| #ifdef DEFAULT_TARGET_64BIT |
| #define S390_TARGET_BITS_STRING "64" |
| #else |
| #define S390_TARGET_BITS_STRING "31" |
| #endif |
| |
| /* Defaulting rules. */ |
| #define DRIVER_SELF_SPECS \ |
| MARCH_MTUNE_NATIVE_SPECS, \ |
| "%{!m31:%{!m64:-m" S390_TARGET_BITS_STRING "}}", \ |
| "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}", \ |
| "%{!march=*:-march=z900}" |
| |
| /* Constants needed to control the TEST DATA CLASS (TDC) instruction. */ |
| #define S390_TDC_POSITIVE_ZERO (1 << 11) |
| #define S390_TDC_NEGATIVE_ZERO (1 << 10) |
| #define S390_TDC_POSITIVE_NORMALIZED_BFP_NUMBER (1 << 9) |
| #define S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER (1 << 8) |
| #define S390_TDC_POSITIVE_DENORMALIZED_BFP_NUMBER (1 << 7) |
| #define S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER (1 << 6) |
| #define S390_TDC_POSITIVE_INFINITY (1 << 5) |
| #define S390_TDC_NEGATIVE_INFINITY (1 << 4) |
| #define S390_TDC_POSITIVE_QUIET_NAN (1 << 3) |
| #define S390_TDC_NEGATIVE_QUIET_NAN (1 << 2) |
| #define S390_TDC_POSITIVE_SIGNALING_NAN (1 << 1) |
| #define S390_TDC_NEGATIVE_SIGNALING_NAN (1 << 0) |
| |
| /* The following values are different for DFP. */ |
| #define S390_TDC_POSITIVE_DENORMALIZED_DFP_NUMBER (1 << 9) |
| #define S390_TDC_NEGATIVE_DENORMALIZED_DFP_NUMBER (1 << 8) |
| #define S390_TDC_POSITIVE_NORMALIZED_DFP_NUMBER (1 << 7) |
| #define S390_TDC_NEGATIVE_NORMALIZED_DFP_NUMBER (1 << 6) |
| |
| /* For signbit, the BFP-DFP-difference makes no difference. */ |
| #define S390_TDC_SIGNBIT_SET (S390_TDC_NEGATIVE_ZERO \ |
| | S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER \ |
| | S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER\ |
| | S390_TDC_NEGATIVE_INFINITY \ |
| | S390_TDC_NEGATIVE_QUIET_NAN \ |
| | S390_TDC_NEGATIVE_SIGNALING_NAN ) |
| |
| #define S390_TDC_INFINITY (S390_TDC_POSITIVE_INFINITY \ |
| | S390_TDC_NEGATIVE_INFINITY ) |
| |
| /* Target machine storage layout. */ |
| |
| /* Everything is big-endian. */ |
| #define BITS_BIG_ENDIAN 1 |
| #define BYTES_BIG_ENDIAN 1 |
| #define WORDS_BIG_ENDIAN 1 |
| |
| #define STACK_SIZE_MODE (Pmode) |
| |
| /* Make the stack pointer to be moved downwards while issuing stack probes with |
| -fstack-check. We need this to prevent memory below the stack pointer from |
| being accessed. */ |
| #define STACK_CHECK_MOVING_SP 1 |
| |
| #ifndef IN_LIBGCC2 |
| |
| /* Width of a word, in units (bytes). */ |
| #define UNITS_PER_WORD (TARGET_ZARCH ? 8 : 4) |
| |
| /* Width of a pointer. To be used instead of UNITS_PER_WORD in |
| ABI-relevant contexts. This always matches |
| GET_MODE_SIZE (Pmode). */ |
| #define UNITS_PER_LONG (TARGET_64BIT ? 8 : 4) |
| #define MIN_UNITS_PER_WORD 4 |
| #define MAX_BITS_PER_WORD 64 |
| #else |
| |
| /* In libgcc, UNITS_PER_WORD has ABI-relevant effects, e.g. whether |
| the library should export TImode functions or not. Thus, we have |
| to redefine UNITS_PER_WORD depending on __s390x__ for libgcc. */ |
| #ifdef __s390x__ |
| #define UNITS_PER_WORD 8 |
| #else |
| #define UNITS_PER_WORD 4 |
| #endif |
| #endif |
| |
| /* Width of a pointer, in bits. */ |
| #define POINTER_SIZE (TARGET_64BIT ? 64 : 32) |
| |
| /* Allocation boundary (in *bits*) for storing arguments in argument list. */ |
| #define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32) |
| |
| /* Boundary (in *bits*) on which stack pointer should be aligned. */ |
| #define STACK_BOUNDARY 64 |
| |
| /* Allocation boundary (in *bits*) for the code of a function. */ |
| #define FUNCTION_BOUNDARY 64 |
| |
| /* There is no point aligning anything to a rounder boundary than this. */ |
| #define BIGGEST_ALIGNMENT 64 |
| |
| /* Alignment of field after `int : 0' in a structure. */ |
| #define EMPTY_FIELD_BOUNDARY 32 |
| |
| /* Alignment on even addresses for LARL instruction. */ |
| #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN) |
| |
| /* Alignment is not required by the hardware. */ |
| #define STRICT_ALIGNMENT 0 |
| |
| /* Mode of stack savearea. |
| FUNCTION is VOIDmode because calling convention maintains SP. |
| BLOCK needs Pmode for SP. |
| NONLOCAL needs twice Pmode to maintain both backchain and SP. */ |
| #define STACK_SAVEAREA_MODE(LEVEL) \ |
| ((LEVEL) == SAVE_FUNCTION ? VOIDmode \ |
| : (LEVEL) == SAVE_NONLOCAL ? (TARGET_64BIT ? OImode : TImode) : Pmode) |
| |
| |
| /* Type layout. */ |
| |
| /* Sizes in bits of the source language data types. */ |
| #define SHORT_TYPE_SIZE 16 |
| #define INT_TYPE_SIZE 32 |
| #define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32) |
| #define LONG_LONG_TYPE_SIZE 64 |
| #define FLOAT_TYPE_SIZE 32 |
| #define DOUBLE_TYPE_SIZE 64 |
| #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64) |
| |
| /* Work around target_flags dependency in ada/targtyps.cc. */ |
| #define WIDEST_HARDWARE_FP_SIZE 64 |
| |
| /* We use "unsigned char" as default. */ |
| #define DEFAULT_SIGNED_CHAR 0 |
| |
| |
| /* Register usage. */ |
| |
| /* We have 16 general purpose registers (registers 0-15), |
| and 16 floating point registers (registers 16-31). |
| (On non-IEEE machines, we have only 4 fp registers.) |
| |
| Amongst the general purpose registers, some are used |
| for specific purposes: |
| GPR 11: Hard frame pointer (if needed) |
| GPR 12: Global offset table pointer (if needed) |
| GPR 13: Literal pool base register |
| GPR 14: Return address register |
| GPR 15: Stack pointer |
| |
| Registers 32-35 are 'fake' hard registers that do not |
| correspond to actual hardware: |
| Reg 32: Argument pointer |
| Reg 33: Condition code |
| Reg 34: Frame pointer |
| Reg 35: Return address pointer |
| |
| Registers 36 and 37 are mapped to access registers |
| 0 and 1, used to implement thread-local storage. |
| |
| Reg 38-53: Vector registers v16-v31 */ |
| |
| #define FIRST_PSEUDO_REGISTER 54 |
| |
| /* Standard register usage. */ |
| #define GENERAL_REGNO_P(N) ((int)(N) >= 0 && (N) < 16) |
| #define ADDR_REGNO_P(N) ((N) >= 1 && (N) < 16) |
| #define FP_REGNO_P(N) ((N) >= 16 && (N) < 32) |
| #define CC_REGNO_P(N) ((N) == 33) |
| #define FRAME_REGNO_P(N) ((N) == 32 || (N) == 34 || (N) == 35) |
| #define ACCESS_REGNO_P(N) ((N) == 36 || (N) == 37) |
| #define VECTOR_NOFP_REGNO_P(N) ((N) >= 38 && (N) <= 53) |
| #define VECTOR_REGNO_P(N) (FP_REGNO_P (N) || VECTOR_NOFP_REGNO_P (N)) |
| |
| #define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X))) |
| #define ADDR_REG_P(X) (REG_P (X) && ADDR_REGNO_P (REGNO (X))) |
| #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X))) |
| #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X))) |
| #define FRAME_REG_P(X) (REG_P (X) && FRAME_REGNO_P (REGNO (X))) |
| #define ACCESS_REG_P(X) (REG_P (X) && ACCESS_REGNO_P (REGNO (X))) |
| #define VECTOR_NOFP_REG_P(X) (REG_P (X) && VECTOR_NOFP_REGNO_P (REGNO (X))) |
| #define VECTOR_REG_P(X) (REG_P (X) && VECTOR_REGNO_P (REGNO (X))) |
| |
| /* Set up fixed registers and calling convention: |
| |
| GPRs 0-5 are always call-clobbered, |
| GPRs 6-15 are always call-saved. |
| GPR 12 is fixed if used as GOT pointer. |
| GPR 13 is always fixed (as literal pool pointer). |
| GPR 14 is always fixed on S/390 machines (as return address). |
| GPR 15 is always fixed (as stack pointer). |
| The 'fake' hard registers are call-clobbered and fixed. |
| The access registers are call-saved and fixed. |
| |
| On 31-bit, FPRs 18-19 are call-clobbered; |
| on 64-bit, FPRs 24-31 are call-clobbered. |
| The remaining FPRs are call-saved. |
| |
| All non-FP vector registers are call-clobbered v16-v31. */ |
| |
| #define FIXED_REGISTERS \ |
| { 0, 0, 0, 0, \ |
| 0, 0, 0, 0, \ |
| 0, 0, 0, 0, \ |
| 0, 1, 1, 1, \ |
| 0, 0, 0, 0, \ |
| 0, 0, 0, 0, \ |
| 0, 0, 0, 0, \ |
| 0, 0, 0, 0, \ |
| 1, 1, 1, 1, \ |
| 1, 1, \ |
| 0, 0, 0, 0, \ |
| 0, 0, 0, 0, \ |
| 0, 0, 0, 0, \ |
| 0, 0, 0, 0 } |
| |
| #define CALL_REALLY_USED_REGISTERS \ |
| { 1, 1, 1, 1, /* r0 - r15 */ \ |
| 1, 1, 0, 0, \ |
| 0, 0, 0, 0, \ |
| 0, 0, 0, 0, \ |
| 1, 1, 1, 1, /* f0 (16) - f15 (31) */ \ |
| 1, 1, 1, 1, \ |
| 1, 1, 1, 1, \ |
| 1, 1, 1, 1, \ |
| 1, 1, 1, 1, /* arg, cc, fp, ret addr */ \ |
| 0, 0, /* a0 (36), a1 (37) */ \ |
| 1, 1, 1, 1, /* v16 (38) - v23 (45) */ \ |
| 1, 1, 1, 1, \ |
| 1, 1, 1, 1, /* v24 (46) - v31 (53) */ \ |
| 1, 1, 1, 1 } |
| |
| /* Preferred register allocation order. */ |
| #define REG_ALLOC_ORDER \ |
| { 1, 2, 3, 4, 5, 0, 12, 11, 10, 9, 8, 7, 6, 14, 13, \ |
| 16, 17, 18, 19, 20, 21, 22, 23, \ |
| 24, 25, 26, 27, 28, 29, 30, 31, \ |
| 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, \ |
| 15, 32, 33, 34, 35, 36, 37 } |
| |
| |
| #define HARD_REGNO_RENAME_OK(FROM, TO) \ |
| s390_hard_regno_rename_ok ((FROM), (TO)) |
| |
| /* Maximum number of registers to represent a value of mode MODE |
| in a register of class CLASS. */ |
| #define CLASS_MAX_NREGS(CLASS, MODE) \ |
| s390_class_max_nregs ((CLASS), (MODE)) |
| |
| /* We can reverse a CC mode safely if we know whether it comes from a |
| floating point compare or not. With the vector modes it is encoded |
| as part of the mode. |
| FIXME: It might make sense to do this for other cc modes as well. */ |
| #define REVERSIBLE_CC_MODE(MODE) \ |
| ((MODE) == CCVIALLmode || (MODE) == CCVIANYmode \ |
| || (MODE) == CCVFALLmode || (MODE) == CCVFANYmode) |
| |
| /* Given a condition code and a mode, return the inverse condition. */ |
| #define REVERSE_CONDITION(CODE, MODE) s390_reverse_condition (MODE, CODE) |
| |
| |
| /* Register classes. */ |
| |
| /* We use the following register classes: |
| GENERAL_REGS All general purpose registers |
| ADDR_REGS All general purpose registers except %r0 |
| (These registers can be used in address generation) |
| FP_REGS All floating point registers |
| CC_REGS The condition code register |
| ACCESS_REGS The access registers |
| |
| GENERAL_FP_REGS Union of GENERAL_REGS and FP_REGS |
| ADDR_FP_REGS Union of ADDR_REGS and FP_REGS |
| GENERAL_CC_REGS Union of GENERAL_REGS and CC_REGS |
| ADDR_CC_REGS Union of ADDR_REGS and CC_REGS |
| |
| NO_REGS No registers |
| ALL_REGS All registers |
| |
| Note that the 'fake' frame pointer and argument pointer registers |
| are included amongst the address registers here. */ |
| |
| enum reg_class |
| { |
| NO_REGS, CC_REGS, ADDR_REGS, GENERAL_REGS, ACCESS_REGS, |
| ADDR_CC_REGS, GENERAL_CC_REGS, |
| FP_REGS, ADDR_FP_REGS, GENERAL_FP_REGS, |
| VEC_REGS, ADDR_VEC_REGS, GENERAL_VEC_REGS, |
| ALL_REGS, LIM_REG_CLASSES |
| }; |
| #define N_REG_CLASSES (int) LIM_REG_CLASSES |
| |
| #define REG_CLASS_NAMES \ |
| { "NO_REGS", "CC_REGS", "ADDR_REGS", "GENERAL_REGS", "ACCESS_REGS", \ |
| "ADDR_CC_REGS", "GENERAL_CC_REGS", \ |
| "FP_REGS", "ADDR_FP_REGS", "GENERAL_FP_REGS", \ |
| "VEC_REGS", "ADDR_VEC_REGS", "GENERAL_VEC_REGS", \ |
| "ALL_REGS" } |
| |
| /* Class -> register mapping. */ |
| #define REG_CLASS_CONTENTS \ |
| { \ |
| { 0x00000000, 0x00000000 }, /* NO_REGS */ \ |
| { 0x00000000, 0x00000002 }, /* CC_REGS */ \ |
| { 0x0000fffe, 0x0000000d }, /* ADDR_REGS */ \ |
| { 0x0000ffff, 0x0000000d }, /* GENERAL_REGS */ \ |
| { 0x00000000, 0x00000030 }, /* ACCESS_REGS */ \ |
| { 0x0000fffe, 0x0000000f }, /* ADDR_CC_REGS */ \ |
| { 0x0000ffff, 0x0000000f }, /* GENERAL_CC_REGS */ \ |
| { 0xffff0000, 0x00000000 }, /* FP_REGS */ \ |
| { 0xfffffffe, 0x0000000d }, /* ADDR_FP_REGS */ \ |
| { 0xffffffff, 0x0000000d }, /* GENERAL_FP_REGS */ \ |
| { 0xffff0000, 0x003fffc0 }, /* VEC_REGS */ \ |
| { 0xfffffffe, 0x003fffcd }, /* ADDR_VEC_REGS */ \ |
| { 0xffffffff, 0x003fffcd }, /* GENERAL_VEC_REGS */ \ |
| { 0xffffffff, 0x003fffff }, /* ALL_REGS */ \ |
| } |
| |
| /* In some case register allocation order is not enough for IRA to |
| generate a good code. The following macro (if defined) increases |
| cost of REGNO for a pseudo approximately by pseudo usage frequency |
| multiplied by the macro value. |
| |
| We avoid usage of BASE_REGNUM by nonzero macro value because the |
| reload can decide not to use the hard register because some |
| constant was forced to be in memory. */ |
| #define IRA_HARD_REGNO_ADD_COST_MULTIPLIER(regno) \ |
| ((regno) != BASE_REGNUM ? 0.0 : 0.5) |
| |
| /* Register -> class mapping. */ |
| extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER]; |
| #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO]) |
| |
| /* ADDR_REGS can be used as base or index register. */ |
| #define INDEX_REG_CLASS ADDR_REGS |
| #define BASE_REG_CLASS ADDR_REGS |
| |
| /* Check whether REGNO is a hard register of the suitable class |
| or a pseudo register currently allocated to one such. */ |
| #define REGNO_OK_FOR_INDEX_P(REGNO) \ |
| (((REGNO) < FIRST_PSEUDO_REGISTER \ |
| && REGNO_REG_CLASS ((REGNO)) == ADDR_REGS) \ |
| || ADDR_REGNO_P (reg_renumber[REGNO])) |
| #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO) |
| |
| |
| /* Stack layout and calling conventions. */ |
| |
| /* Our stack grows from higher to lower addresses. However, local variables |
| are accessed by positive offsets, and function arguments are stored at |
| increasing addresses. */ |
| #define STACK_GROWS_DOWNWARD 1 |
| #define FRAME_GROWS_DOWNWARD 1 |
| /* #undef ARGS_GROW_DOWNWARD */ |
| |
| /* The basic stack layout looks like this: the stack pointer points |
| to the register save area for called functions. Above that area |
| is the location to place outgoing arguments. Above those follow |
| dynamic allocations (alloca), and finally the local variables. */ |
| |
| /* Offset from stack-pointer to first location of outgoing args. */ |
| #define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96) |
| |
| /* Offset from the stack pointer register to an item dynamically |
| allocated on the stack, e.g., by `alloca'. */ |
| #define STACK_DYNAMIC_OFFSET(FUNDECL) \ |
| (STACK_POINTER_OFFSET + crtl->outgoing_args_size) |
| |
| /* Offset of first parameter from the argument pointer register value. |
| We have a fake argument pointer register that points directly to |
| the argument area. */ |
| #define FIRST_PARM_OFFSET(FNDECL) 0 |
| |
| /* Defining this macro makes __builtin_frame_address(0) and |
| __builtin_return_address(0) work with -fomit-frame-pointer. */ |
| #define INITIAL_FRAME_ADDRESS_RTX \ |
| (plus_constant (Pmode, arg_pointer_rtx, -STACK_POINTER_OFFSET)) |
| |
| /* The return address of the current frame is retrieved |
| from the initial value of register RETURN_REGNUM. |
| For frames farther back, we use the stack slot where |
| the corresponding RETURN_REGNUM register was saved. */ |
| #define DYNAMIC_CHAIN_ADDRESS(FRAME) \ |
| (TARGET_PACKED_STACK ? \ |
| plus_constant (Pmode, (FRAME), \ |
| STACK_POINTER_OFFSET - UNITS_PER_LONG) : (FRAME)) |
| |
| /* For -mpacked-stack this adds 160 - 8 (96 - 4) to the output of |
| builtin_frame_address. Otherwise arg pointer - |
| STACK_POINTER_OFFSET would be returned for |
| __builtin_frame_address(0) what might result in an address pointing |
| somewhere into the middle of the local variables since the packed |
| stack layout generally does not need all the bytes in the register |
| save area. */ |
| #define FRAME_ADDR_RTX(FRAME) \ |
| DYNAMIC_CHAIN_ADDRESS ((FRAME)) |
| |
| #define RETURN_ADDR_RTX(COUNT, FRAME) \ |
| s390_return_addr_rtx ((COUNT), DYNAMIC_CHAIN_ADDRESS ((FRAME))) |
| |
| /* In 31-bit mode, we need to mask off the high bit of return addresses. */ |
| #define MASK_RETURN_ADDR (TARGET_64BIT ? constm1_rtx : GEN_INT (0x7fffffff)) |
| |
| |
| /* Exception handling. */ |
| |
| /* Describe calling conventions for DWARF-2 exception handling. */ |
| #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_REGNUM) |
| #define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET |
| #define DWARF_FRAME_RETURN_COLUMN 14 |
| |
| /* Describe how we implement __builtin_eh_return. */ |
| #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM) |
| #define EH_RETURN_HANDLER_RTX gen_rtx_MEM (Pmode, return_address_pointer_rtx) |
| |
| /* Select a format to encode pointers in exception handling data. */ |
| #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \ |
| (flag_pic \ |
| ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \ |
| : DW_EH_PE_absptr) |
| |
| /* Register save slot alignment. */ |
| #define DWARF_CIE_DATA_ALIGNMENT (-UNITS_PER_LONG) |
| |
| /* Let the assembler generate debug line info. */ |
| #define DWARF2_ASM_LINE_DEBUG_INFO 1 |
| |
| /* Define the dwarf register mapping. |
| v16-v31 -> 68-83 |
| rX -> X otherwise */ |
| #define DEBUGGER_REGNO(regno) \ |
| (((regno) >= 38 && (regno) <= 53) ? (regno) + 30 : (regno)) |
| |
| /* Frame registers. */ |
| |
| #define STACK_POINTER_REGNUM 15 |
| #define FRAME_POINTER_REGNUM 34 |
| #define HARD_FRAME_POINTER_REGNUM 11 |
| #define ARG_POINTER_REGNUM 32 |
| #define RETURN_ADDRESS_POINTER_REGNUM 35 |
| |
| /* The static chain must be call-clobbered, but not used for |
| function argument passing. As register 1 is clobbered by |
| the trampoline code, we only have one option. */ |
| #define STATIC_CHAIN_REGNUM 0 |
| |
| /* Number of hardware registers that go into the DWARF-2 unwind info. |
| To avoid ABI incompatibility, this number must not change even as |
| 'fake' hard registers are added or removed. */ |
| #define DWARF_FRAME_REGISTERS 34 |
| |
| |
| /* Frame pointer and argument pointer elimination. */ |
| |
| #define ELIMINABLE_REGS \ |
| {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \ |
| { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \ |
| { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \ |
| { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \ |
| { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM }, \ |
| { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \ |
| { BASE_REGNUM, BASE_REGNUM }} |
| |
| #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ |
| (OFFSET) = s390_initial_elimination_offset ((FROM), (TO)) |
| |
| |
| /* Stack arguments. */ |
| |
| /* We need current_function_outgoing_args to be valid. */ |
| #define ACCUMULATE_OUTGOING_ARGS 1 |
| |
| |
| /* Register arguments. */ |
| |
| typedef struct s390_arg_structure |
| { |
| int gprs; /* gpr so far */ |
| int fprs; /* fpr so far */ |
| int vrs; /* vr so far */ |
| } |
| CUMULATIVE_ARGS; |
| |
| #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN, N_NAMED_ARGS) \ |
| ((CUM).gprs=0, (CUM).fprs=0, (CUM).vrs=0) |
| |
| #define FIRST_VEC_ARG_REGNO 46 |
| #define LAST_VEC_ARG_REGNO 53 |
| |
| /* Arguments can be placed in general registers 2 to 6, or in floating |
| point registers 0 and 2 for 31 bit and fprs 0, 2, 4 and 6 for 64 |
| bit. */ |
| #define FUNCTION_ARG_REGNO_P(N) \ |
| (((N) >=2 && (N) < 7) || (N) == 16 || (N) == 17 \ |
| || (TARGET_64BIT && ((N) == 18 || (N) == 19)) \ |
| || (TARGET_VX && ((N) >= FIRST_VEC_ARG_REGNO && (N) <= LAST_VEC_ARG_REGNO))) |
| |
| |
| /* Only gpr 2, fpr 0, and v24 are ever used as return registers. */ |
| #define FUNCTION_VALUE_REGNO_P(N) \ |
| ((N) == 2 || (N) == 16 \ |
| || (TARGET_VX && (N) == FIRST_VEC_ARG_REGNO)) |
| |
| |
| /* Function entry and exit. */ |
| |
| /* When returning from a function, the stack pointer does not matter. */ |
| #define EXIT_IGNORE_STACK 1 |
| |
| |
| /* Profiling. */ |
| |
| #define FUNCTION_PROFILER(FILE, LABELNO) \ |
| s390_function_profiler ((FILE), ((LABELNO))) |
| |
| #define PROFILE_BEFORE_PROLOGUE 1 |
| |
| #define NO_PROFILE_COUNTERS 1 |
| |
| |
| /* Trampolines for nested functions. */ |
| |
| #define TRAMPOLINE_SIZE (TARGET_64BIT ? 32 : 16) |
| #define TRAMPOLINE_ALIGNMENT BITS_PER_WORD |
| |
| /* Addressing modes, and classification of registers for them. */ |
| |
| /* Recognize any constant value that is a valid address. */ |
| #define CONSTANT_ADDRESS_P(X) 0 |
| |
| /* Maximum number of registers that can appear in a valid memory address. */ |
| #define MAX_REGS_PER_ADDRESS 2 |
| |
| /* This definition replaces the formerly used 'm' constraint with a |
| different constraint letter in order to avoid changing semantics of |
| the 'm' constraint when accepting new address formats in |
| TARGET_LEGITIMATE_ADDRESS_P. The constraint letter defined here |
| must not be used in insn definitions or inline assemblies. */ |
| #define TARGET_MEM_CONSTRAINT 'e' |
| |
| /* Try a machine-dependent way of reloading an illegitimate address |
| operand. If we find one, push the reload and jump to WIN. This |
| macro is used in only one place: `find_reloads_address' in reload.cc. */ |
| #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \ |
| do { \ |
| rtx new_rtx = legitimize_reload_address ((AD), (MODE), \ |
| (OPNUM), (int)(TYPE)); \ |
| if (new_rtx) \ |
| { \ |
| (AD) = new_rtx; \ |
| goto WIN; \ |
| } \ |
| } while (0) |
| |
| /* Helper macro for s390.cc and s390.md to check for symbolic constants. */ |
| #define SYMBOLIC_CONST(X) \ |
| (GET_CODE (X) == SYMBOL_REF \ |
| || GET_CODE (X) == LABEL_REF \ |
| || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X))) |
| |
| #define TLS_SYMBOLIC_CONST(X) \ |
| ((GET_CODE (X) == SYMBOL_REF && tls_symbolic_operand (X)) \ |
| || (GET_CODE (X) == CONST && tls_symbolic_reference_mentioned_p (X))) |
| |
| |
| /* Condition codes. */ |
| |
| /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE, |
| return the mode to be used for the comparison. */ |
| #define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y)) |
| |
| /* Relative costs of operations. */ |
| |
| /* A C expression for the cost of a branch instruction. A value of 1 |
| is the default; other values are interpreted relative to that. */ |
| #define BRANCH_COST(speed_p, predictable_p) s390_branch_cost |
| |
| /* Nonzero if access to memory by bytes is slow and undesirable. */ |
| #define SLOW_BYTE_ACCESS 1 |
| |
| /* An integer expression for the size in bits of the largest integer machine |
| mode that should actually be used. We allow pairs of registers. */ |
| #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode) |
| |
| /* The maximum number of bytes that a single instruction can move quickly |
| between memory and registers or between two memory locations. */ |
| #define MOVE_MAX (TARGET_ZARCH ? 16 : 8) |
| #define MOVE_MAX_PIECES (TARGET_ZARCH ? 8 : 4) |
| #define MAX_MOVE_MAX 16 |
| |
| /* Don't perform CSE on function addresses. */ |
| #define NO_FUNCTION_CSE 1 |
| |
| /* This value is used in tree-sra to decide whether it might benefical |
| to split a struct move into several word-size moves. For S/390 |
| only small values make sense here since struct moves are relatively |
| cheap thanks to mvc so the small default value chosen for archs |
| with memmove patterns should be ok. But this value is multiplied |
| in tree-sra with UNITS_PER_WORD to make a decision so we adjust it |
| here to compensate for that factor since mvc costs exactly the same |
| on 31 and 64 bit. */ |
| #define MOVE_RATIO(speed) (TARGET_64BIT? 2 : 4) |
| |
| |
| /* Sections. */ |
| |
| /* Output before read-only data. */ |
| #define TEXT_SECTION_ASM_OP ".text" |
| |
| /* Output before writable (initialized) data. */ |
| #define DATA_SECTION_ASM_OP ".data" |
| |
| /* Output before writable (uninitialized) data. */ |
| #define BSS_SECTION_ASM_OP ".bss" |
| |
| /* S/390 constant pool breaks the devices in crtstuff.c to control section |
| in where code resides. We have to write it as asm code. */ |
| #ifndef __s390x__ |
| #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \ |
| asm (SECTION_OP "\n\ |
| bras\t%r2,1f\n\ |
| 0: .long\t" USER_LABEL_PREFIX #FUNC " - 0b\n\ |
| 1: l\t%r3,0(%r2)\n\ |
| bas\t%r14,0(%r3,%r2)\n\ |
| .previous"); |
| #endif |
| |
| |
| /* Position independent code. */ |
| |
| #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 12 : INVALID_REGNUM) |
| |
| #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X) |
| |
| #ifndef TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE |
| #define TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE 1 |
| #endif |
| |
| |
| /* Assembler file format. */ |
| |
| /* Character to start a comment. */ |
| #define ASM_COMMENT_START "#" |
| |
| /* Declare an uninitialized external linkage data object. */ |
| #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \ |
| asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN)) |
| |
| /* Globalizing directive for a label. */ |
| #define GLOBAL_ASM_OP ".globl " |
| |
| /* Advance the location counter to a multiple of 2**LOG bytes. */ |
| #define ASM_OUTPUT_ALIGN(FILE, LOG) \ |
| if ((LOG)) fprintf ((FILE), "\t.align\t%d\n", 1 << (LOG)) |
| |
| /* Advance the location counter by SIZE bytes. */ |
| #define ASM_OUTPUT_SKIP(FILE, SIZE) \ |
| fprintf ((FILE), "\t.set\t.,.+" HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE)) |
| |
| /* The LOCAL_LABEL_PREFIX variable is used by dbxelf.h. */ |
| #define LOCAL_LABEL_PREFIX "." |
| |
| #define LABEL_ALIGN(LABEL) \ |
| s390_label_align ((LABEL)) |
| |
| /* How to refer to registers in assembler output. This sequence is |
| indexed by compiler's hard-register-number (see above). */ |
| #define REGISTER_NAMES \ |
| { "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \ |
| "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \ |
| "%f0", "%f2", "%f4", "%f6", "%f1", "%f3", "%f5", "%f7", \ |
| "%f8", "%f10", "%f12", "%f14", "%f9", "%f11", "%f13", "%f15", \ |
| "%ap", "%cc", "%fp", "%rp", "%a0", "%a1", \ |
| "%v16", "%v18", "%v20", "%v22", "%v17", "%v19", "%v21", "%v23", \ |
| "%v24", "%v26", "%v28", "%v30", "%v25", "%v27", "%v29", "%v31" \ |
| } |
| |
| #define ADDITIONAL_REGISTER_NAMES \ |
| { { "v0", 16 }, { "v2", 17 }, { "v4", 18 }, { "v6", 19 }, \ |
| { "v1", 20 }, { "v3", 21 }, { "v5", 22 }, { "v7", 23 }, \ |
| { "v8", 24 }, { "v10", 25 }, { "v12", 26 }, { "v14", 27 }, \ |
| { "v9", 28 }, { "v11", 29 }, { "v13", 30 }, { "v15", 31 } }; |
| |
| /* Print operand X (an rtx) in assembler syntax to file FILE. */ |
| #define PRINT_OPERAND(FILE, X, CODE) print_operand ((FILE), (X), (CODE)) |
| #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address ((FILE), (ADDR)) |
| |
| /* Output an element of a case-vector that is absolute. */ |
| #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ |
| do { \ |
| char buf[32]; \ |
| fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \ |
| ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \ |
| assemble_name ((FILE), buf); \ |
| fputc ('\n', (FILE)); \ |
| } while (0) |
| |
| /* Output an element of a case-vector that is relative. */ |
| #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ |
| do { \ |
| char buf[32]; \ |
| fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \ |
| ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \ |
| assemble_name ((FILE), buf); \ |
| fputc ('-', (FILE)); \ |
| ASM_GENERATE_INTERNAL_LABEL (buf, "L", (REL)); \ |
| assemble_name ((FILE), buf); \ |
| fputc ('\n', (FILE)); \ |
| } while (0) |
| |
| /* Mark the return register as used by the epilogue so that we can |
| use it in unadorned (return) and (simple_return) instructions. */ |
| #define EPILOGUE_USES(REGNO) ((REGNO) == RETURN_REGNUM) |
| |
| #undef ASM_OUTPUT_FUNCTION_LABEL |
| #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \ |
| s390_asm_output_function_label ((FILE), (NAME), (DECL)) |
| |
| #if S390_USE_TARGET_ATTRIBUTE |
| /* Hook to output .machine and .machinemode at start of function. */ |
| #undef ASM_OUTPUT_FUNCTION_PREFIX |
| #define ASM_OUTPUT_FUNCTION_PREFIX s390_asm_output_function_prefix |
| |
| /* Hook to output .machine and .machinemode at end of function. */ |
| #undef ASM_DECLARE_FUNCTION_SIZE |
| #define ASM_DECLARE_FUNCTION_SIZE s390_asm_declare_function_size |
| #endif |
| |
| /* Miscellaneous parameters. */ |
| |
| /* Specify the machine mode that this machine uses for the index in the |
| tablejump instruction. */ |
| #define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode) |
| |
| /* Specify the machine mode that pointers have. |
| After generation of rtl, the compiler makes no further distinction |
| between pointers and any other objects of this machine mode. */ |
| #define Pmode (TARGET_64BIT ? DImode : SImode) |
| |
| /* This is -1 for "pointer mode" extend. See ptr_extend in s390.md. */ |
| #define POINTERS_EXTEND_UNSIGNED -1 |
| |
| /* A function address in a call instruction is a byte address (for |
| indexing purposes) so give the MEM rtx a byte's mode. */ |
| #define FUNCTION_MODE QImode |
| |
| /* Specify the value which is used when clz operand is zero. */ |
| #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, 1) |
| |
| /* Machine-specific symbol_ref flags. */ |
| #define SYMBOL_FLAG_ALIGN_SHIFT SYMBOL_FLAG_MACH_DEP_SHIFT |
| #define SYMBOL_FLAG_ALIGN_MASK \ |
| ((SYMBOL_FLAG_MACH_DEP << 0) | (SYMBOL_FLAG_MACH_DEP << 1)) |
| |
| #define SYMBOL_FLAG_SET_ALIGN(X, A) \ |
| (SYMBOL_REF_FLAGS (X) = (SYMBOL_REF_FLAGS (X) & ~SYMBOL_FLAG_ALIGN_MASK) \ |
| | (A << SYMBOL_FLAG_ALIGN_SHIFT)) |
| |
| #define SYMBOL_FLAG_GET_ALIGN(X) \ |
| ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ALIGN_MASK) >> SYMBOL_FLAG_ALIGN_SHIFT) |
| |
| /* Helpers to access symbol_ref flags. They are used in |
| check_symref_alignment() and larl_operand to detect if the |
| available alignment matches the required one. We do not use |
| a positive check like _ALIGN2 because in that case we would have |
| to annotate every symbol_ref. However, we only want to touch |
| the symbol_refs that can be misaligned and assume that the others |
| are correctly aligned. Hence, if a symbol_ref does not have |
| a _NOTALIGN flag it is supposed to be correctly aligned. */ |
| #define SYMBOL_FLAG_SET_NOTALIGN2(X) SYMBOL_FLAG_SET_ALIGN((X), 1) |
| #define SYMBOL_FLAG_SET_NOTALIGN4(X) SYMBOL_FLAG_SET_ALIGN((X), 2) |
| #define SYMBOL_FLAG_SET_NOTALIGN8(X) SYMBOL_FLAG_SET_ALIGN((X), 3) |
| |
| #define SYMBOL_FLAG_NOTALIGN2_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 1) |
| #define SYMBOL_FLAG_NOTALIGN4_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 2 \ |
| || SYMBOL_FLAG_GET_ALIGN(X) == 1) |
| #define SYMBOL_FLAG_NOTALIGN8_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 3 \ |
| || SYMBOL_FLAG_GET_ALIGN(X) == 2 \ |
| || SYMBOL_FLAG_GET_ALIGN(X) == 1) |
| |
| /* Check whether integer displacement is in range for a short displacement. */ |
| #define SHORT_DISP_IN_RANGE(d) ((d) >= 0 && (d) <= 4095) |
| |
| /* Check whether integer displacement is in range. */ |
| #define DISP_IN_RANGE(d) \ |
| (TARGET_LONG_DISPLACEMENT \ |
| ? ((d) >= -524288 && (d) <= 524287) \ |
| : SHORT_DISP_IN_RANGE(d)) |
| |
| /* Reads can reuse write prefetches, used by tree-ssa-prefetch-loops.c. */ |
| #define READ_CAN_USE_WRITE_PREFETCH 1 |
| |
| extern const int processor_flags_table[]; |
| |
| struct s390_processor |
| { |
| /* The preferred name to be used in user visible output. */ |
| const char *const name; |
| /* CPU name as it should be passed to Binutils via .machine */ |
| const char *const binutils_name; |
| const enum processor_type processor; |
| const struct processor_costs *cost; |
| int arch_level; |
| }; |
| |
| extern const struct s390_processor processor_table[]; |
| |
| /* The truth element value for vector comparisons. Our instructions |
| always generate -1 in that case. */ |
| #define VECTOR_STORE_FLAG_VALUE(MODE) CONSTM1_RTX (GET_MODE_INNER (MODE)) |
| |
| /* Target pragma. */ |
| |
| /* resolve_overloaded_builtin cannot be defined the normal way since |
| it is defined in code which technically belongs to the |
| front-end. */ |
| #define REGISTER_TARGET_PRAGMAS() \ |
| do { \ |
| s390_register_target_pragmas (); \ |
| } while (0) |
| |
| #ifndef USED_FOR_TARGET |
| /* The following structure is embedded in the machine |
| specific part of struct function. */ |
| |
| struct GTY (()) s390_frame_layout |
| { |
| /* Offset within stack frame. */ |
| HOST_WIDE_INT gprs_offset; |
| HOST_WIDE_INT f0_offset; |
| HOST_WIDE_INT f4_offset; |
| HOST_WIDE_INT f8_offset; |
| HOST_WIDE_INT backchain_offset; |
| |
| /* Number of first and last gpr where slots in the register |
| save area are reserved for. */ |
| int first_save_gpr_slot; |
| int last_save_gpr_slot; |
| |
| /* Location (FP register number) where GPRs (r0-r15) should |
| be saved to. |
| 0 - does not need to be saved at all |
| -1 - stack slot */ |
| #define SAVE_SLOT_NONE 0 |
| #define SAVE_SLOT_STACK -1 |
| signed char gpr_save_slots[16]; |
| |
| /* Number of first and last gpr to be saved, restored. */ |
| int first_save_gpr; |
| int first_restore_gpr; |
| int last_save_gpr; |
| int last_restore_gpr; |
| |
| /* Bits standing for floating point registers. Set, if the |
| respective register has to be saved. Starting with reg 16 (f0) |
| at the rightmost bit. |
| Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
| fpr 15 13 11 9 14 12 10 8 7 5 3 1 6 4 2 0 |
| reg 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 */ |
| unsigned int fpr_bitmap; |
| |
| /* Number of floating point registers f8-f15 which must be saved. */ |
| int high_fprs; |
| |
| /* Set if return address needs to be saved. |
| This flag is set by s390_return_addr_rtx if it could not use |
| the initial value of r14 and therefore depends on r14 saved |
| to the stack. */ |
| bool save_return_addr_p; |
| |
| /* Size of stack frame. */ |
| HOST_WIDE_INT frame_size; |
| }; |
| |
| |
| /* Define the structure for the machine field in struct function. */ |
| |
| struct GTY(()) machine_function |
| { |
| struct s390_frame_layout frame_layout; |
| |
| /* Literal pool base register. */ |
| rtx base_reg; |
| |
| bool has_landing_pad_p; |
| |
| /* True if the current function may contain a tbegin clobbering |
| FPRs. */ |
| bool tbegin_p; |
| |
| /* For -fsplit-stack support: A stack local which holds a pointer to |
| the stack arguments for a function with a variable number of |
| arguments. This is set at the start of the function and is used |
| to initialize the overflow_arg_area field of the va_list |
| structure. */ |
| rtx split_stack_varargs_pointer; |
| |
| enum indirect_branch indirect_branch_jump; |
| enum indirect_branch indirect_branch_call; |
| |
| enum indirect_branch function_return_mem; |
| enum indirect_branch function_return_reg; |
| }; |
| #endif |
| |
| #define TARGET_INDIRECT_BRANCH_NOBP_RET_OPTION \ |
| (cfun->machine->function_return_reg != indirect_branch_keep \ |
| || cfun->machine->function_return_mem != indirect_branch_keep) |
| |
| #define TARGET_INDIRECT_BRANCH_NOBP_RET \ |
| ((cfun->machine->function_return_reg != indirect_branch_keep \ |
| && !s390_return_addr_from_memory ()) \ |
| || (cfun->machine->function_return_mem != indirect_branch_keep \ |
| && s390_return_addr_from_memory ())) |
| |
| #define TARGET_INDIRECT_BRANCH_NOBP_JUMP \ |
| (cfun->machine->indirect_branch_jump != indirect_branch_keep) |
| |
| #define TARGET_INDIRECT_BRANCH_NOBP_JUMP_THUNK \ |
| (cfun->machine->indirect_branch_jump == indirect_branch_thunk \ |
| || cfun->machine->indirect_branch_jump == indirect_branch_thunk_extern) |
| |
| #define TARGET_INDIRECT_BRANCH_NOBP_JUMP_INLINE_THUNK \ |
| (cfun->machine->indirect_branch_jump == indirect_branch_thunk_inline) |
| |
| #define TARGET_INDIRECT_BRANCH_NOBP_CALL \ |
| (cfun->machine->indirect_branch_call != indirect_branch_keep) |
| |
| #ifndef TARGET_DEFAULT_INDIRECT_BRANCH_TABLE |
| #define TARGET_DEFAULT_INDIRECT_BRANCH_TABLE 0 |
| #endif |
| |
| #define TARGET_INDIRECT_BRANCH_THUNK_NAME_EXRL "__s390_indirect_jump_r%d" |
| #define TARGET_INDIRECT_BRANCH_THUNK_NAME_EX "__s390_indirect_jump_r%duse_r%d" |
| |
| #define TARGET_INDIRECT_BRANCH_TABLE s390_indirect_branch_table |
| |
| #ifdef GENERATOR_FILE |
| /* gencondmd.cc is built before insn-flags.h. Use an arbitrary opaque value |
| that cannot be optimized away by gen_insn. */ |
| #define HAVE_TF(icode) TARGET_HARD_FLOAT |
| #else |
| #define HAVE_TF(icode) (HAVE_##icode##_fpr || HAVE_##icode##_vr) |
| #endif |
| |
| /* Dispatcher for movtf. */ |
| #define EXPAND_MOVTF(icode) \ |
| do \ |
| { \ |
| if (TARGET_VXE) \ |
| emit_insn (gen_##icode##_vr (operands[0], operands[1])); \ |
| else \ |
| emit_insn (gen_##icode##_fpr (operands[0], operands[1])); \ |
| DONE; \ |
| } \ |
| while (false) |
| |
| /* Like EXPAND_MOVTF, but also legitimizes operands. */ |
| #define EXPAND_TF(icode, nops) \ |
| do \ |
| { \ |
| const size_t __nops = (nops); \ |
| expand_operand ops[__nops]; \ |
| create_output_operand (&ops[0], operands[0], GET_MODE (operands[0])); \ |
| for (size_t i = 1; i < __nops; i++) \ |
| create_input_operand (&ops[i], operands[i], GET_MODE (operands[i])); \ |
| if (TARGET_VXE) \ |
| expand_insn (CODE_FOR_##icode##_vr, __nops, ops); \ |
| else \ |
| expand_insn (CODE_FOR_##icode##_fpr, __nops, ops); \ |
| DONE; \ |
| } \ |
| while (false) |
| |
| #endif /* S390_H */ |