blob: f5f76e8089c9c229bbac77d9f24db5279800d763 [file] [log] [blame]
/* IRA allocation based on graph coloring.
Copyright (C) 2006-2022 Free Software Foundation, Inc.
Contributed by Vladimir Makarov <vmakarov@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "predict.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "insn-config.h"
#include "regs.h"
#include "ira.h"
#include "ira-int.h"
#include "reload.h"
#include "cfgloop.h"
/* To prevent soft conflict detection becoming quadratic in the
loop depth. Only for very pathological cases, so it hardly
seems worth a --param. */
const int max_soft_conflict_loop_depth = 64;
typedef struct allocno_hard_regs *allocno_hard_regs_t;
/* The structure contains information about hard registers can be
assigned to allocnos. Usually it is allocno profitable hard
registers but in some cases this set can be a bit different. Major
reason of the difference is a requirement to use hard register sets
that form a tree or a forest (set of trees), i.e. hard register set
of a node should contain hard register sets of its subnodes. */
struct allocno_hard_regs
{
/* Hard registers can be assigned to an allocno. */
HARD_REG_SET set;
/* Overall (spilling) cost of all allocnos with given register
set. */
int64_t cost;
};
typedef struct allocno_hard_regs_node *allocno_hard_regs_node_t;
/* A node representing allocno hard registers. Such nodes form a
forest (set of trees). Each subnode of given node in the forest
refers for hard register set (usually allocno profitable hard
register set) which is a subset of one referred from given
node. */
struct allocno_hard_regs_node
{
/* Set up number of the node in preorder traversing of the forest. */
int preorder_num;
/* Used for different calculation like finding conflict size of an
allocno. */
int check;
/* Used for calculation of conflict size of an allocno. The
conflict size of the allocno is maximal number of given allocno
hard registers needed for allocation of the conflicting allocnos.
Given allocno is trivially colored if this number plus the number
of hard registers needed for given allocno is not greater than
the number of given allocno hard register set. */
int conflict_size;
/* The number of hard registers given by member hard_regs. */
int hard_regs_num;
/* The following member is used to form the final forest. */
bool used_p;
/* Pointer to the corresponding profitable hard registers. */
allocno_hard_regs_t hard_regs;
/* Parent, first subnode, previous and next node with the same
parent in the forest. */
allocno_hard_regs_node_t parent, first, prev, next;
};
/* Info about changing hard reg costs of an allocno. */
struct update_cost_record
{
/* Hard regno for which we changed the cost. */
int hard_regno;
/* Divisor used when we changed the cost of HARD_REGNO. */
int divisor;
/* Next record for given allocno. */
struct update_cost_record *next;
};
/* To decrease footprint of ira_allocno structure we store all data
needed only for coloring in the following structure. */
struct allocno_color_data
{
/* TRUE value means that the allocno was not removed yet from the
conflicting graph during coloring. */
unsigned int in_graph_p : 1;
/* TRUE if it is put on the stack to make other allocnos
colorable. */
unsigned int may_be_spilled_p : 1;
/* TRUE if the allocno is trivially colorable. */
unsigned int colorable_p : 1;
/* Number of hard registers of the allocno class really
available for the allocno allocation. It is number of the
profitable hard regs. */
int available_regs_num;
/* Sum of frequencies of hard register preferences of all
conflicting allocnos which are not the coloring stack yet. */
int conflict_allocno_hard_prefs;
/* Allocnos in a bucket (used in coloring) chained by the following
two members. */
ira_allocno_t next_bucket_allocno;
ira_allocno_t prev_bucket_allocno;
/* Used for temporary purposes. */
int temp;
/* Used to exclude repeated processing. */
int last_process;
/* Profitable hard regs available for this pseudo allocation. It
means that the set excludes unavailable hard regs and hard regs
conflicting with given pseudo. They should be of the allocno
class. */
HARD_REG_SET profitable_hard_regs;
/* The allocno hard registers node. */
allocno_hard_regs_node_t hard_regs_node;
/* Array of structures allocno_hard_regs_subnode representing
given allocno hard registers node (the 1st element in the array)
and all its subnodes in the tree (forest) of allocno hard
register nodes (see comments above). */
int hard_regs_subnodes_start;
/* The length of the previous array. */
int hard_regs_subnodes_num;
/* Records about updating allocno hard reg costs from copies. If
the allocno did not get expected hard register, these records are
used to restore original hard reg costs of allocnos connected to
this allocno by copies. */
struct update_cost_record *update_cost_records;
/* Threads. We collect allocnos connected by copies into threads
and try to assign hard regs to allocnos by threads. */
/* Allocno representing all thread. */
ira_allocno_t first_thread_allocno;
/* Allocnos in thread forms a cycle list through the following
member. */
ira_allocno_t next_thread_allocno;
/* All thread frequency. Defined only for first thread allocno. */
int thread_freq;
/* Sum of frequencies of hard register preferences of the allocno. */
int hard_reg_prefs;
};
/* See above. */
typedef struct allocno_color_data *allocno_color_data_t;
/* Container for storing allocno data concerning coloring. */
static allocno_color_data_t allocno_color_data;
/* Macro to access the data concerning coloring. */
#define ALLOCNO_COLOR_DATA(a) ((allocno_color_data_t) ALLOCNO_ADD_DATA (a))
/* Used for finding allocno colorability to exclude repeated allocno
processing and for updating preferencing to exclude repeated
allocno processing during assignment. */
static int curr_allocno_process;
/* This file contains code for regional graph coloring, spill/restore
code placement optimization, and code helping the reload pass to do
a better job. */
/* Bitmap of allocnos which should be colored. */
static bitmap coloring_allocno_bitmap;
/* Bitmap of allocnos which should be taken into account during
coloring. In general case it contains allocnos from
coloring_allocno_bitmap plus other already colored conflicting
allocnos. */
static bitmap consideration_allocno_bitmap;
/* All allocnos sorted according their priorities. */
static ira_allocno_t *sorted_allocnos;
/* Vec representing the stack of allocnos used during coloring. */
static vec<ira_allocno_t> allocno_stack_vec;
/* Helper for qsort comparison callbacks - return a positive integer if
X > Y, or a negative value otherwise. Use a conditional expression
instead of a difference computation to insulate from possible overflow
issues, e.g. X - Y < 0 for some X > 0 and Y < 0. */
#define SORTGT(x,y) (((x) > (y)) ? 1 : -1)
/* Definition of vector of allocno hard registers. */
/* Vector of unique allocno hard registers. */
static vec<allocno_hard_regs_t> allocno_hard_regs_vec;
struct allocno_hard_regs_hasher : nofree_ptr_hash <allocno_hard_regs>
{
static inline hashval_t hash (const allocno_hard_regs *);
static inline bool equal (const allocno_hard_regs *,
const allocno_hard_regs *);
};
/* Returns hash value for allocno hard registers V. */
inline hashval_t
allocno_hard_regs_hasher::hash (const allocno_hard_regs *hv)
{
return iterative_hash (&hv->set, sizeof (HARD_REG_SET), 0);
}
/* Compares allocno hard registers V1 and V2. */
inline bool
allocno_hard_regs_hasher::equal (const allocno_hard_regs *hv1,
const allocno_hard_regs *hv2)
{
return hv1->set == hv2->set;
}
/* Hash table of unique allocno hard registers. */
static hash_table<allocno_hard_regs_hasher> *allocno_hard_regs_htab;
/* Return allocno hard registers in the hash table equal to HV. */
static allocno_hard_regs_t
find_hard_regs (allocno_hard_regs_t hv)
{
return allocno_hard_regs_htab->find (hv);
}
/* Insert allocno hard registers HV in the hash table (if it is not
there yet) and return the value which in the table. */
static allocno_hard_regs_t
insert_hard_regs (allocno_hard_regs_t hv)
{
allocno_hard_regs **slot = allocno_hard_regs_htab->find_slot (hv, INSERT);
if (*slot == NULL)
*slot = hv;
return *slot;
}
/* Initialize data concerning allocno hard registers. */
static void
init_allocno_hard_regs (void)
{
allocno_hard_regs_vec.create (200);
allocno_hard_regs_htab
= new hash_table<allocno_hard_regs_hasher> (200);
}
/* Add (or update info about) allocno hard registers with SET and
COST. */
static allocno_hard_regs_t
add_allocno_hard_regs (HARD_REG_SET set, int64_t cost)
{
struct allocno_hard_regs temp;
allocno_hard_regs_t hv;
gcc_assert (! hard_reg_set_empty_p (set));
temp.set = set;
if ((hv = find_hard_regs (&temp)) != NULL)
hv->cost += cost;
else
{
hv = ((struct allocno_hard_regs *)
ira_allocate (sizeof (struct allocno_hard_regs)));
hv->set = set;
hv->cost = cost;
allocno_hard_regs_vec.safe_push (hv);
insert_hard_regs (hv);
}
return hv;
}
/* Finalize data concerning allocno hard registers. */
static void
finish_allocno_hard_regs (void)
{
int i;
allocno_hard_regs_t hv;
for (i = 0;
allocno_hard_regs_vec.iterate (i, &hv);
i++)
ira_free (hv);
delete allocno_hard_regs_htab;
allocno_hard_regs_htab = NULL;
allocno_hard_regs_vec.release ();
}
/* Sort hard regs according to their frequency of usage. */
static int
allocno_hard_regs_compare (const void *v1p, const void *v2p)
{
allocno_hard_regs_t hv1 = *(const allocno_hard_regs_t *) v1p;
allocno_hard_regs_t hv2 = *(const allocno_hard_regs_t *) v2p;
if (hv2->cost > hv1->cost)
return 1;
else if (hv2->cost < hv1->cost)
return -1;
return SORTGT (allocno_hard_regs_hasher::hash(hv2), allocno_hard_regs_hasher::hash(hv1));
}
/* Used for finding a common ancestor of two allocno hard registers
nodes in the forest. We use the current value of
'node_check_tick' to mark all nodes from one node to the top and
then walking up from another node until we find a marked node.
It is also used to figure out allocno colorability as a mark that
we already reset value of member 'conflict_size' for the forest
node corresponding to the processed allocno. */
static int node_check_tick;
/* Roots of the forest containing hard register sets can be assigned
to allocnos. */
static allocno_hard_regs_node_t hard_regs_roots;
/* Definition of vector of allocno hard register nodes. */
/* Vector used to create the forest. */
static vec<allocno_hard_regs_node_t> hard_regs_node_vec;
/* Create and return allocno hard registers node containing allocno
hard registers HV. */
static allocno_hard_regs_node_t
create_new_allocno_hard_regs_node (allocno_hard_regs_t hv)
{
allocno_hard_regs_node_t new_node;
new_node = ((struct allocno_hard_regs_node *)
ira_allocate (sizeof (struct allocno_hard_regs_node)));
new_node->check = 0;
new_node->hard_regs = hv;
new_node->hard_regs_num = hard_reg_set_size (hv->set);
new_node->first = NULL;
new_node->used_p = false;
return new_node;
}
/* Add allocno hard registers node NEW_NODE to the forest on its level
given by ROOTS. */
static void
add_new_allocno_hard_regs_node_to_forest (allocno_hard_regs_node_t *roots,
allocno_hard_regs_node_t new_node)
{
new_node->next = *roots;
if (new_node->next != NULL)
new_node->next->prev = new_node;
new_node->prev = NULL;
*roots = new_node;
}
/* Add allocno hard registers HV (or its best approximation if it is
not possible) to the forest on its level given by ROOTS. */
static void
add_allocno_hard_regs_to_forest (allocno_hard_regs_node_t *roots,
allocno_hard_regs_t hv)
{
unsigned int i, start;
allocno_hard_regs_node_t node, prev, new_node;
HARD_REG_SET temp_set;
allocno_hard_regs_t hv2;
start = hard_regs_node_vec.length ();
for (node = *roots; node != NULL; node = node->next)
{
if (hv->set == node->hard_regs->set)
return;
if (hard_reg_set_subset_p (hv->set, node->hard_regs->set))
{
add_allocno_hard_regs_to_forest (&node->first, hv);
return;
}
if (hard_reg_set_subset_p (node->hard_regs->set, hv->set))
hard_regs_node_vec.safe_push (node);
else if (hard_reg_set_intersect_p (hv->set, node->hard_regs->set))
{
temp_set = hv->set & node->hard_regs->set;
hv2 = add_allocno_hard_regs (temp_set, hv->cost);
add_allocno_hard_regs_to_forest (&node->first, hv2);
}
}
if (hard_regs_node_vec.length ()
> start + 1)
{
/* Create a new node which contains nodes in hard_regs_node_vec. */
CLEAR_HARD_REG_SET (temp_set);
for (i = start;
i < hard_regs_node_vec.length ();
i++)
{
node = hard_regs_node_vec[i];
temp_set |= node->hard_regs->set;
}
hv = add_allocno_hard_regs (temp_set, hv->cost);
new_node = create_new_allocno_hard_regs_node (hv);
prev = NULL;
for (i = start;
i < hard_regs_node_vec.length ();
i++)
{
node = hard_regs_node_vec[i];
if (node->prev == NULL)
*roots = node->next;
else
node->prev->next = node->next;
if (node->next != NULL)
node->next->prev = node->prev;
if (prev == NULL)
new_node->first = node;
else
prev->next = node;
node->prev = prev;
node->next = NULL;
prev = node;
}
add_new_allocno_hard_regs_node_to_forest (roots, new_node);
}
hard_regs_node_vec.truncate (start);
}
/* Add allocno hard registers nodes starting with the forest level
given by FIRST which contains biggest set inside SET. */
static void
collect_allocno_hard_regs_cover (allocno_hard_regs_node_t first,
HARD_REG_SET set)
{
allocno_hard_regs_node_t node;
ira_assert (first != NULL);
for (node = first; node != NULL; node = node->next)
if (hard_reg_set_subset_p (node->hard_regs->set, set))
hard_regs_node_vec.safe_push (node);
else if (hard_reg_set_intersect_p (set, node->hard_regs->set))
collect_allocno_hard_regs_cover (node->first, set);
}
/* Set up field parent as PARENT in all allocno hard registers nodes
in forest given by FIRST. */
static void
setup_allocno_hard_regs_nodes_parent (allocno_hard_regs_node_t first,
allocno_hard_regs_node_t parent)
{
allocno_hard_regs_node_t node;
for (node = first; node != NULL; node = node->next)
{
node->parent = parent;
setup_allocno_hard_regs_nodes_parent (node->first, node);
}
}
/* Return allocno hard registers node which is a first common ancestor
node of FIRST and SECOND in the forest. */
static allocno_hard_regs_node_t
first_common_ancestor_node (allocno_hard_regs_node_t first,
allocno_hard_regs_node_t second)
{
allocno_hard_regs_node_t node;
node_check_tick++;
for (node = first; node != NULL; node = node->parent)
node->check = node_check_tick;
for (node = second; node != NULL; node = node->parent)
if (node->check == node_check_tick)
return node;
return first_common_ancestor_node (second, first);
}
/* Print hard reg set SET to F. */
static void
print_hard_reg_set (FILE *f, HARD_REG_SET set, bool new_line_p)
{
int i, start, end;
for (start = end = -1, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
bool reg_included = TEST_HARD_REG_BIT (set, i);
if (reg_included)
{
if (start == -1)
start = i;
end = i;
}
if (start >= 0 && (!reg_included || i == FIRST_PSEUDO_REGISTER - 1))
{
if (start == end)
fprintf (f, " %d", start);
else if (start == end + 1)
fprintf (f, " %d %d", start, end);
else
fprintf (f, " %d-%d", start, end);
start = -1;
}
}
if (new_line_p)
fprintf (f, "\n");
}
/* Print allocno hard register subforest given by ROOTS and its LEVEL
to F. */
static void
print_hard_regs_subforest (FILE *f, allocno_hard_regs_node_t roots,
int level)
{
int i;
allocno_hard_regs_node_t node;
for (node = roots; node != NULL; node = node->next)
{
fprintf (f, " ");
for (i = 0; i < level * 2; i++)
fprintf (f, " ");
fprintf (f, "%d:(", node->preorder_num);
print_hard_reg_set (f, node->hard_regs->set, false);
fprintf (f, ")@%" PRId64"\n", node->hard_regs->cost);
print_hard_regs_subforest (f, node->first, level + 1);
}
}
/* Print the allocno hard register forest to F. */
static void
print_hard_regs_forest (FILE *f)
{
fprintf (f, " Hard reg set forest:\n");
print_hard_regs_subforest (f, hard_regs_roots, 1);
}
/* Print the allocno hard register forest to stderr. */
void
ira_debug_hard_regs_forest (void)
{
print_hard_regs_forest (stderr);
}
/* Remove unused allocno hard registers nodes from forest given by its
*ROOTS. */
static void
remove_unused_allocno_hard_regs_nodes (allocno_hard_regs_node_t *roots)
{
allocno_hard_regs_node_t node, prev, next, last;
for (prev = NULL, node = *roots; node != NULL; node = next)
{
next = node->next;
if (node->used_p)
{
remove_unused_allocno_hard_regs_nodes (&node->first);
prev = node;
}
else
{
for (last = node->first;
last != NULL && last->next != NULL;
last = last->next)
;
if (last != NULL)
{
if (prev == NULL)
*roots = node->first;
else
prev->next = node->first;
if (next != NULL)
next->prev = last;
last->next = next;
next = node->first;
}
else
{
if (prev == NULL)
*roots = next;
else
prev->next = next;
if (next != NULL)
next->prev = prev;
}
ira_free (node);
}
}
}
/* Set up fields preorder_num starting with START_NUM in all allocno
hard registers nodes in forest given by FIRST. Return biggest set
PREORDER_NUM increased by 1. */
static int
enumerate_allocno_hard_regs_nodes (allocno_hard_regs_node_t first,
allocno_hard_regs_node_t parent,
int start_num)
{
allocno_hard_regs_node_t node;
for (node = first; node != NULL; node = node->next)
{
node->preorder_num = start_num++;
node->parent = parent;
start_num = enumerate_allocno_hard_regs_nodes (node->first, node,
start_num);
}
return start_num;
}
/* Number of allocno hard registers nodes in the forest. */
static int allocno_hard_regs_nodes_num;
/* Table preorder number of allocno hard registers node in the forest
-> the allocno hard registers node. */
static allocno_hard_regs_node_t *allocno_hard_regs_nodes;
/* See below. */
typedef struct allocno_hard_regs_subnode *allocno_hard_regs_subnode_t;
/* The structure is used to describes all subnodes (not only immediate
ones) in the mentioned above tree for given allocno hard register
node. The usage of such data accelerates calculation of
colorability of given allocno. */
struct allocno_hard_regs_subnode
{
/* The conflict size of conflicting allocnos whose hard register
sets are equal sets (plus supersets if given node is given
allocno hard registers node) of one in the given node. */
int left_conflict_size;
/* The summary conflict size of conflicting allocnos whose hard
register sets are strict subsets of one in the given node.
Overall conflict size is
left_conflict_subnodes_size
+ MIN (max_node_impact - left_conflict_subnodes_size,
left_conflict_size)
*/
short left_conflict_subnodes_size;
short max_node_impact;
};
/* Container for hard regs subnodes of all allocnos. */
static allocno_hard_regs_subnode_t allocno_hard_regs_subnodes;
/* Table (preorder number of allocno hard registers node in the
forest, preorder number of allocno hard registers subnode) -> index
of the subnode relative to the node. -1 if it is not a
subnode. */
static int *allocno_hard_regs_subnode_index;
/* Setup arrays ALLOCNO_HARD_REGS_NODES and
ALLOCNO_HARD_REGS_SUBNODE_INDEX. */
static void
setup_allocno_hard_regs_subnode_index (allocno_hard_regs_node_t first)
{
allocno_hard_regs_node_t node, parent;
int index;
for (node = first; node != NULL; node = node->next)
{
allocno_hard_regs_nodes[node->preorder_num] = node;
for (parent = node; parent != NULL; parent = parent->parent)
{
index = parent->preorder_num * allocno_hard_regs_nodes_num;
allocno_hard_regs_subnode_index[index + node->preorder_num]
= node->preorder_num - parent->preorder_num;
}
setup_allocno_hard_regs_subnode_index (node->first);
}
}
/* Count all allocno hard registers nodes in tree ROOT. */
static int
get_allocno_hard_regs_subnodes_num (allocno_hard_regs_node_t root)
{
int len = 1;
for (root = root->first; root != NULL; root = root->next)
len += get_allocno_hard_regs_subnodes_num (root);
return len;
}
/* Build the forest of allocno hard registers nodes and assign each
allocno a node from the forest. */
static void
form_allocno_hard_regs_nodes_forest (void)
{
unsigned int i, j, size, len;
int start;
ira_allocno_t a;
allocno_hard_regs_t hv;
bitmap_iterator bi;
HARD_REG_SET temp;
allocno_hard_regs_node_t node, allocno_hard_regs_node;
allocno_color_data_t allocno_data;
node_check_tick = 0;
init_allocno_hard_regs ();
hard_regs_roots = NULL;
hard_regs_node_vec.create (100);
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, i))
{
CLEAR_HARD_REG_SET (temp);
SET_HARD_REG_BIT (temp, i);
hv = add_allocno_hard_regs (temp, 0);
node = create_new_allocno_hard_regs_node (hv);
add_new_allocno_hard_regs_node_to_forest (&hard_regs_roots, node);
}
start = allocno_hard_regs_vec.length ();
EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
{
a = ira_allocnos[i];
allocno_data = ALLOCNO_COLOR_DATA (a);
if (hard_reg_set_empty_p (allocno_data->profitable_hard_regs))
continue;
hv = (add_allocno_hard_regs
(allocno_data->profitable_hard_regs,
ALLOCNO_MEMORY_COST (a) - ALLOCNO_CLASS_COST (a)));
}
temp = ~ira_no_alloc_regs;
add_allocno_hard_regs (temp, 0);
qsort (allocno_hard_regs_vec.address () + start,
allocno_hard_regs_vec.length () - start,
sizeof (allocno_hard_regs_t), allocno_hard_regs_compare);
for (i = start;
allocno_hard_regs_vec.iterate (i, &hv);
i++)
{
add_allocno_hard_regs_to_forest (&hard_regs_roots, hv);
ira_assert (hard_regs_node_vec.length () == 0);
}
/* We need to set up parent fields for right work of
first_common_ancestor_node. */
setup_allocno_hard_regs_nodes_parent (hard_regs_roots, NULL);
EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
{
a = ira_allocnos[i];
allocno_data = ALLOCNO_COLOR_DATA (a);
if (hard_reg_set_empty_p (allocno_data->profitable_hard_regs))
continue;
hard_regs_node_vec.truncate (0);
collect_allocno_hard_regs_cover (hard_regs_roots,
allocno_data->profitable_hard_regs);
allocno_hard_regs_node = NULL;
for (j = 0; hard_regs_node_vec.iterate (j, &node); j++)
allocno_hard_regs_node
= (j == 0
? node
: first_common_ancestor_node (node, allocno_hard_regs_node));
/* That is a temporary storage. */
allocno_hard_regs_node->used_p = true;
allocno_data->hard_regs_node = allocno_hard_regs_node;
}
ira_assert (hard_regs_roots->next == NULL);
hard_regs_roots->used_p = true;
remove_unused_allocno_hard_regs_nodes (&hard_regs_roots);
allocno_hard_regs_nodes_num
= enumerate_allocno_hard_regs_nodes (hard_regs_roots, NULL, 0);
allocno_hard_regs_nodes
= ((allocno_hard_regs_node_t *)
ira_allocate (allocno_hard_regs_nodes_num
* sizeof (allocno_hard_regs_node_t)));
size = allocno_hard_regs_nodes_num * allocno_hard_regs_nodes_num;
allocno_hard_regs_subnode_index
= (int *) ira_allocate (size * sizeof (int));
for (i = 0; i < size; i++)
allocno_hard_regs_subnode_index[i] = -1;
setup_allocno_hard_regs_subnode_index (hard_regs_roots);
start = 0;
EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
{
a = ira_allocnos[i];
allocno_data = ALLOCNO_COLOR_DATA (a);
if (hard_reg_set_empty_p (allocno_data->profitable_hard_regs))
continue;
len = get_allocno_hard_regs_subnodes_num (allocno_data->hard_regs_node);
allocno_data->hard_regs_subnodes_start = start;
allocno_data->hard_regs_subnodes_num = len;
start += len;
}
allocno_hard_regs_subnodes
= ((allocno_hard_regs_subnode_t)
ira_allocate (sizeof (struct allocno_hard_regs_subnode) * start));
hard_regs_node_vec.release ();
}
/* Free tree of allocno hard registers nodes given by its ROOT. */
static void
finish_allocno_hard_regs_nodes_tree (allocno_hard_regs_node_t root)
{
allocno_hard_regs_node_t child, next;
for (child = root->first; child != NULL; child = next)
{
next = child->next;
finish_allocno_hard_regs_nodes_tree (child);
}
ira_free (root);
}
/* Finish work with the forest of allocno hard registers nodes. */
static void
finish_allocno_hard_regs_nodes_forest (void)
{
allocno_hard_regs_node_t node, next;
ira_free (allocno_hard_regs_subnodes);
for (node = hard_regs_roots; node != NULL; node = next)
{
next = node->next;
finish_allocno_hard_regs_nodes_tree (node);
}
ira_free (allocno_hard_regs_nodes);
ira_free (allocno_hard_regs_subnode_index);
finish_allocno_hard_regs ();
}
/* Set up left conflict sizes and left conflict subnodes sizes of hard
registers subnodes of allocno A. Return TRUE if allocno A is
trivially colorable. */
static bool
setup_left_conflict_sizes_p (ira_allocno_t a)
{
int i, k, nobj, start;
int conflict_size, left_conflict_subnodes_size, node_preorder_num;
allocno_color_data_t data;
HARD_REG_SET profitable_hard_regs;
allocno_hard_regs_subnode_t subnodes;
allocno_hard_regs_node_t node;
HARD_REG_SET node_set;
nobj = ALLOCNO_NUM_OBJECTS (a);
data = ALLOCNO_COLOR_DATA (a);
subnodes = allocno_hard_regs_subnodes + data->hard_regs_subnodes_start;
profitable_hard_regs = data->profitable_hard_regs;
node = data->hard_regs_node;
node_preorder_num = node->preorder_num;
node_set = node->hard_regs->set;
node_check_tick++;
for (k = 0; k < nobj; k++)
{
ira_object_t obj = ALLOCNO_OBJECT (a, k);
ira_object_t conflict_obj;
ira_object_conflict_iterator oci;
FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
{
int size;
ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
allocno_hard_regs_node_t conflict_node, temp_node;
HARD_REG_SET conflict_node_set;
allocno_color_data_t conflict_data;
conflict_data = ALLOCNO_COLOR_DATA (conflict_a);
if (! ALLOCNO_COLOR_DATA (conflict_a)->in_graph_p
|| ! hard_reg_set_intersect_p (profitable_hard_regs,
conflict_data
->profitable_hard_regs))
continue;
conflict_node = conflict_data->hard_regs_node;
conflict_node_set = conflict_node->hard_regs->set;
if (hard_reg_set_subset_p (node_set, conflict_node_set))
temp_node = node;
else
{
ira_assert (hard_reg_set_subset_p (conflict_node_set, node_set));
temp_node = conflict_node;
}
if (temp_node->check != node_check_tick)
{
temp_node->check = node_check_tick;
temp_node->conflict_size = 0;
}
size = (ira_reg_class_max_nregs
[ALLOCNO_CLASS (conflict_a)][ALLOCNO_MODE (conflict_a)]);
if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1)
/* We will deal with the subwords individually. */
size = 1;
temp_node->conflict_size += size;
}
}
for (i = 0; i < data->hard_regs_subnodes_num; i++)
{
allocno_hard_regs_node_t temp_node;
temp_node = allocno_hard_regs_nodes[i + node_preorder_num];
ira_assert (temp_node->preorder_num == i + node_preorder_num);
subnodes[i].left_conflict_size = (temp_node->check != node_check_tick
? 0 : temp_node->conflict_size);
if (hard_reg_set_subset_p (temp_node->hard_regs->set,
profitable_hard_regs))
subnodes[i].max_node_impact = temp_node->hard_regs_num;
else
{
HARD_REG_SET temp_set;
int j, n, hard_regno;
enum reg_class aclass;
temp_set = temp_node->hard_regs->set & profitable_hard_regs;
aclass = ALLOCNO_CLASS (a);
for (n = 0, j = ira_class_hard_regs_num[aclass] - 1; j >= 0; j--)
{
hard_regno = ira_class_hard_regs[aclass][j];
if (TEST_HARD_REG_BIT (temp_set, hard_regno))
n++;
}
subnodes[i].max_node_impact = n;
}
subnodes[i].left_conflict_subnodes_size = 0;
}
start = node_preorder_num * allocno_hard_regs_nodes_num;
for (i = data->hard_regs_subnodes_num - 1; i > 0; i--)
{
int size, parent_i;
allocno_hard_regs_node_t parent;
size = (subnodes[i].left_conflict_subnodes_size
+ MIN (subnodes[i].max_node_impact
- subnodes[i].left_conflict_subnodes_size,
subnodes[i].left_conflict_size));
parent = allocno_hard_regs_nodes[i + node_preorder_num]->parent;
gcc_checking_assert(parent);
parent_i
= allocno_hard_regs_subnode_index[start + parent->preorder_num];
gcc_checking_assert(parent_i >= 0);
subnodes[parent_i].left_conflict_subnodes_size += size;
}
left_conflict_subnodes_size = subnodes[0].left_conflict_subnodes_size;
conflict_size
= (left_conflict_subnodes_size
+ MIN (subnodes[0].max_node_impact - left_conflict_subnodes_size,
subnodes[0].left_conflict_size));
conflict_size += ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
data->colorable_p = conflict_size <= data->available_regs_num;
return data->colorable_p;
}
/* Update left conflict sizes of hard registers subnodes of allocno A
after removing allocno REMOVED_A with SIZE from the conflict graph.
Return TRUE if A is trivially colorable. */
static bool
update_left_conflict_sizes_p (ira_allocno_t a,
ira_allocno_t removed_a, int size)
{
int i, conflict_size, before_conflict_size, diff, start;
int node_preorder_num, parent_i;
allocno_hard_regs_node_t node, removed_node, parent;
allocno_hard_regs_subnode_t subnodes;
allocno_color_data_t data = ALLOCNO_COLOR_DATA (a);
ira_assert (! data->colorable_p);
node = data->hard_regs_node;
node_preorder_num = node->preorder_num;
removed_node = ALLOCNO_COLOR_DATA (removed_a)->hard_regs_node;
ira_assert (hard_reg_set_subset_p (removed_node->hard_regs->set,
node->hard_regs->set)
|| hard_reg_set_subset_p (node->hard_regs->set,
removed_node->hard_regs->set));
start = node_preorder_num * allocno_hard_regs_nodes_num;
i = allocno_hard_regs_subnode_index[start + removed_node->preorder_num];
if (i < 0)
i = 0;
subnodes = allocno_hard_regs_subnodes + data->hard_regs_subnodes_start;
before_conflict_size
= (subnodes[i].left_conflict_subnodes_size
+ MIN (subnodes[i].max_node_impact
- subnodes[i].left_conflict_subnodes_size,
subnodes[i].left_conflict_size));
subnodes[i].left_conflict_size -= size;
for (;;)
{
conflict_size
= (subnodes[i].left_conflict_subnodes_size
+ MIN (subnodes[i].max_node_impact
- subnodes[i].left_conflict_subnodes_size,
subnodes[i].left_conflict_size));
if ((diff = before_conflict_size - conflict_size) == 0)
break;
ira_assert (conflict_size < before_conflict_size);
parent = allocno_hard_regs_nodes[i + node_preorder_num]->parent;
if (parent == NULL)
break;
parent_i
= allocno_hard_regs_subnode_index[start + parent->preorder_num];
if (parent_i < 0)
break;
i = parent_i;
before_conflict_size
= (subnodes[i].left_conflict_subnodes_size
+ MIN (subnodes[i].max_node_impact
- subnodes[i].left_conflict_subnodes_size,
subnodes[i].left_conflict_size));
subnodes[i].left_conflict_subnodes_size -= diff;
}
if (i != 0
|| (conflict_size
+ ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]
> data->available_regs_num))
return false;
data->colorable_p = true;
return true;
}
/* Return true if allocno A has empty profitable hard regs. */
static bool
empty_profitable_hard_regs (ira_allocno_t a)
{
allocno_color_data_t data = ALLOCNO_COLOR_DATA (a);
return hard_reg_set_empty_p (data->profitable_hard_regs);
}
/* Set up profitable hard registers for each allocno being
colored. */
static void
setup_profitable_hard_regs (void)
{
unsigned int i;
int j, k, nobj, hard_regno, nregs, class_size;
ira_allocno_t a;
bitmap_iterator bi;
enum reg_class aclass;
machine_mode mode;
allocno_color_data_t data;
/* Initial set up from allocno classes and explicitly conflicting
hard regs. */
EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
{
a = ira_allocnos[i];
if ((aclass = ALLOCNO_CLASS (a)) == NO_REGS)
continue;
data = ALLOCNO_COLOR_DATA (a);
if (ALLOCNO_UPDATED_HARD_REG_COSTS (a) == NULL
&& ALLOCNO_CLASS_COST (a) > ALLOCNO_MEMORY_COST (a)
/* Do not empty profitable regs for static chain pointer
pseudo when non-local goto is used. */
&& ! non_spilled_static_chain_regno_p (ALLOCNO_REGNO (a)))
CLEAR_HARD_REG_SET (data->profitable_hard_regs);
else
{
mode = ALLOCNO_MODE (a);
data->profitable_hard_regs
= ira_useful_class_mode_regs[aclass][mode];
nobj = ALLOCNO_NUM_OBJECTS (a);
for (k = 0; k < nobj; k++)
{
ira_object_t obj = ALLOCNO_OBJECT (a, k);
data->profitable_hard_regs
&= ~OBJECT_TOTAL_CONFLICT_HARD_REGS (obj);
}
}
}
/* Exclude hard regs already assigned for conflicting objects. */
EXECUTE_IF_SET_IN_BITMAP (consideration_allocno_bitmap, 0, i, bi)
{
a = ira_allocnos[i];
if ((aclass = ALLOCNO_CLASS (a)) == NO_REGS
|| ! ALLOCNO_ASSIGNED_P (a)
|| (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
continue;
mode = ALLOCNO_MODE (a);
nregs = hard_regno_nregs (hard_regno, mode);
nobj = ALLOCNO_NUM_OBJECTS (a);
for (k = 0; k < nobj; k++)
{
ira_object_t obj = ALLOCNO_OBJECT (a, k);
ira_object_t conflict_obj;
ira_object_conflict_iterator oci;
FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
{
ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
/* We can process the conflict allocno repeatedly with
the same result. */
if (nregs == nobj && nregs > 1)
{
int num = OBJECT_SUBWORD (conflict_obj);
if (REG_WORDS_BIG_ENDIAN)
CLEAR_HARD_REG_BIT
(ALLOCNO_COLOR_DATA (conflict_a)->profitable_hard_regs,
hard_regno + nobj - num - 1);
else
CLEAR_HARD_REG_BIT
(ALLOCNO_COLOR_DATA (conflict_a)->profitable_hard_regs,
hard_regno + num);
}
else
ALLOCNO_COLOR_DATA (conflict_a)->profitable_hard_regs
&= ~ira_reg_mode_hard_regset[hard_regno][mode];
}
}
}
/* Exclude too costly hard regs. */
EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
{
int min_cost = INT_MAX;
int *costs;
a = ira_allocnos[i];
if ((aclass = ALLOCNO_CLASS (a)) == NO_REGS
|| empty_profitable_hard_regs (a))
continue;
data = ALLOCNO_COLOR_DATA (a);
if ((costs = ALLOCNO_UPDATED_HARD_REG_COSTS (a)) != NULL
|| (costs = ALLOCNO_HARD_REG_COSTS (a)) != NULL)
{
class_size = ira_class_hard_regs_num[aclass];
for (j = 0; j < class_size; j++)
{
hard_regno = ira_class_hard_regs[aclass][j];
if (! TEST_HARD_REG_BIT (data->profitable_hard_regs,
hard_regno))
continue;
if (ALLOCNO_UPDATED_MEMORY_COST (a) < costs[j]
/* Do not remove HARD_REGNO for static chain pointer
pseudo when non-local goto is used. */
&& ! non_spilled_static_chain_regno_p (ALLOCNO_REGNO (a)))
CLEAR_HARD_REG_BIT (data->profitable_hard_regs,
hard_regno);
else if (min_cost > costs[j])
min_cost = costs[j];
}
}
else if (ALLOCNO_UPDATED_MEMORY_COST (a)
< ALLOCNO_UPDATED_CLASS_COST (a)
/* Do not empty profitable regs for static chain
pointer pseudo when non-local goto is used. */
&& ! non_spilled_static_chain_regno_p (ALLOCNO_REGNO (a)))
CLEAR_HARD_REG_SET (data->profitable_hard_regs);
if (ALLOCNO_UPDATED_CLASS_COST (a) > min_cost)
ALLOCNO_UPDATED_CLASS_COST (a) = min_cost;
}
}
/* This page contains functions used to choose hard registers for
allocnos. */
/* Pool for update cost records. */
static object_allocator<update_cost_record> update_cost_record_pool
("update cost records");
/* Return new update cost record with given params. */
static struct update_cost_record *
get_update_cost_record (int hard_regno, int divisor,
struct update_cost_record *next)
{
struct update_cost_record *record;
record = update_cost_record_pool.allocate ();
record->hard_regno = hard_regno;
record->divisor = divisor;
record->next = next;
return record;
}
/* Free memory for all records in LIST. */
static void
free_update_cost_record_list (struct update_cost_record *list)
{
struct update_cost_record *next;
while (list != NULL)
{
next = list->next;
update_cost_record_pool.remove (list);
list = next;
}
}
/* Free memory allocated for all update cost records. */
static void
finish_update_cost_records (void)
{
update_cost_record_pool.release ();
}
/* Array whose element value is TRUE if the corresponding hard
register was already allocated for an allocno. */
static bool allocated_hardreg_p[FIRST_PSEUDO_REGISTER];
/* Describes one element in a queue of allocnos whose costs need to be
updated. Each allocno in the queue is known to have an allocno
class. */
struct update_cost_queue_elem
{
/* This element is in the queue iff CHECK == update_cost_check. */
int check;
/* COST_HOP_DIVISOR**N, where N is the length of the shortest path
connecting this allocno to the one being allocated. */
int divisor;
/* Allocno from which we started chaining costs of connected
allocnos. */
ira_allocno_t start;
/* Allocno from which we are chaining costs of connected allocnos.
It is used not go back in graph of allocnos connected by
copies. */
ira_allocno_t from;
/* The next allocno in the queue, or null if this is the last element. */
ira_allocno_t next;
};
/* The first element in a queue of allocnos whose copy costs need to be
updated. Null if the queue is empty. */
static ira_allocno_t update_cost_queue;
/* The last element in the queue described by update_cost_queue.
Not valid if update_cost_queue is null. */
static struct update_cost_queue_elem *update_cost_queue_tail;
/* A pool of elements in the queue described by update_cost_queue.
Elements are indexed by ALLOCNO_NUM. */
static struct update_cost_queue_elem *update_cost_queue_elems;
/* The current value of update_costs_from_copies call count. */
static int update_cost_check;
/* Allocate and initialize data necessary for function
update_costs_from_copies. */
static void
initiate_cost_update (void)
{
size_t size;
size = ira_allocnos_num * sizeof (struct update_cost_queue_elem);
update_cost_queue_elems
= (struct update_cost_queue_elem *) ira_allocate (size);
memset (update_cost_queue_elems, 0, size);
update_cost_check = 0;
}
/* Deallocate data used by function update_costs_from_copies. */
static void
finish_cost_update (void)
{
ira_free (update_cost_queue_elems);
finish_update_cost_records ();
}
/* When we traverse allocnos to update hard register costs, the cost
divisor will be multiplied by the following macro value for each
hop from given allocno to directly connected allocnos. */
#define COST_HOP_DIVISOR 4
/* Start a new cost-updating pass. */
static void
start_update_cost (void)
{
update_cost_check++;
update_cost_queue = NULL;
}
/* Add (ALLOCNO, START, FROM, DIVISOR) to the end of update_cost_queue, unless
ALLOCNO is already in the queue, or has NO_REGS class. */
static inline void
queue_update_cost (ira_allocno_t allocno, ira_allocno_t start,
ira_allocno_t from, int divisor)
{
struct update_cost_queue_elem *elem;
elem = &update_cost_queue_elems[ALLOCNO_NUM (allocno)];
if (elem->check != update_cost_check
&& ALLOCNO_CLASS (allocno) != NO_REGS)
{
elem->check = update_cost_check;
elem->start = start;
elem->from = from;
elem->divisor = divisor;
elem->next = NULL;
if (update_cost_queue == NULL)
update_cost_queue = allocno;
else
update_cost_queue_tail->next = allocno;
update_cost_queue_tail = elem;
}
}
/* Try to remove the first element from update_cost_queue. Return
false if the queue was empty, otherwise make (*ALLOCNO, *START,
*FROM, *DIVISOR) describe the removed element. */
static inline bool
get_next_update_cost (ira_allocno_t *allocno, ira_allocno_t *start,
ira_allocno_t *from, int *divisor)
{
struct update_cost_queue_elem *elem;
if (update_cost_queue == NULL)
return false;
*allocno = update_cost_queue;
elem = &update_cost_queue_elems[ALLOCNO_NUM (*allocno)];
*start = elem->start;
*from = elem->from;
*divisor = elem->divisor;
update_cost_queue = elem->next;
return true;
}
/* Increase costs of HARD_REGNO by UPDATE_COST and conflict cost by
UPDATE_CONFLICT_COST for ALLOCNO. Return true if we really
modified the cost. */
static bool
update_allocno_cost (ira_allocno_t allocno, int hard_regno,
int update_cost, int update_conflict_cost)
{
int i;
enum reg_class aclass = ALLOCNO_CLASS (allocno);
i = ira_class_hard_reg_index[aclass][hard_regno];
if (i < 0)
return false;
ira_allocate_and_set_or_copy_costs
(&ALLOCNO_UPDATED_HARD_REG_COSTS (allocno), aclass,
ALLOCNO_UPDATED_CLASS_COST (allocno),
ALLOCNO_HARD_REG_COSTS (allocno));
ira_allocate_and_set_or_copy_costs
(&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (allocno),
aclass, 0, ALLOCNO_CONFLICT_HARD_REG_COSTS (allocno));
ALLOCNO_UPDATED_HARD_REG_COSTS (allocno)[i] += update_cost;
ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (allocno)[i] += update_conflict_cost;
return true;
}
/* Return TRUE if the object OBJ conflicts with the allocno A. */
static bool
object_conflicts_with_allocno_p (ira_object_t obj, ira_allocno_t a)
{
if (!OBJECT_CONFLICT_VEC_P (obj))
for (int word = 0; word < ALLOCNO_NUM_OBJECTS (a); word++)
{
ira_object_t another_obj = ALLOCNO_OBJECT (a, word);
if (OBJECT_CONFLICT_ID (another_obj) >= OBJECT_MIN (obj)
&& OBJECT_CONFLICT_ID (another_obj) <= OBJECT_MAX (obj)
&& TEST_MINMAX_SET_BIT (OBJECT_CONFLICT_BITVEC (obj),
OBJECT_CONFLICT_ID (another_obj),
OBJECT_MIN (obj), OBJECT_MAX (obj)))
return true;
}
else
{
/* If this linear walk ever becomes a bottleneck we could add a
conflict_vec_sorted_p flag and if not set, sort the conflicts after
their ID so we can use a binary search. That would also require
tracking the actual number of conflicts in the vector to not rely
on the NULL termination. */
ira_object_conflict_iterator oci;
ira_object_t conflict_obj;
FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
if (OBJECT_ALLOCNO (conflict_obj) == a)
return true;
}
return false;
}
/* Return TRUE if allocnos A1 and A2 conflicts. Here we are
interested only in conflicts of allocnos with intersecting allocno
classes. */
static bool
allocnos_conflict_p (ira_allocno_t a1, ira_allocno_t a2)
{
/* Compute the upper bound for the linear iteration when the object
conflicts are represented as a sparse vector. In particular this
will make sure we prefer O(1) bitvector testing. */
int num_conflicts_in_vec1 = 0, num_conflicts_in_vec2 = 0;
for (int word = 0; word < ALLOCNO_NUM_OBJECTS (a1); ++word)
if (OBJECT_CONFLICT_VEC_P (ALLOCNO_OBJECT (a1, word)))
num_conflicts_in_vec1 += OBJECT_NUM_CONFLICTS (ALLOCNO_OBJECT (a1, word));
for (int word = 0; word < ALLOCNO_NUM_OBJECTS (a2); ++word)
if (OBJECT_CONFLICT_VEC_P (ALLOCNO_OBJECT (a2, word)))
num_conflicts_in_vec2 += OBJECT_NUM_CONFLICTS (ALLOCNO_OBJECT (a2, word));
if (num_conflicts_in_vec2 < num_conflicts_in_vec1)
std::swap (a1, a2);
for (int word = 0; word < ALLOCNO_NUM_OBJECTS (a1); word++)
{
ira_object_t obj = ALLOCNO_OBJECT (a1, word);
/* Take preferences of conflicting allocnos into account. */
if (object_conflicts_with_allocno_p (obj, a2))
return true;
}
return false;
}
/* Update (decrease if DECR_P) HARD_REGNO cost of allocnos connected
by copies to ALLOCNO to increase chances to remove some copies as
the result of subsequent assignment. Update conflict costs.
Record cost updates if RECORD_P is true. */
static void
update_costs_from_allocno (ira_allocno_t allocno, int hard_regno,
int divisor, bool decr_p, bool record_p)
{
int cost, update_cost, update_conflict_cost;
machine_mode mode;
enum reg_class rclass, aclass;
ira_allocno_t another_allocno, start = allocno, from = NULL;
ira_copy_t cp, next_cp;
rclass = REGNO_REG_CLASS (hard_regno);
do
{
mode = ALLOCNO_MODE (allocno);
ira_init_register_move_cost_if_necessary (mode);
for (cp = ALLOCNO_COPIES (allocno); cp != NULL; cp = next_cp)
{
if (cp->first == allocno)
{
next_cp = cp->next_first_allocno_copy;
another_allocno = cp->second;
}
else if (cp->second == allocno)
{
next_cp = cp->next_second_allocno_copy;
another_allocno = cp->first;
}
else
gcc_unreachable ();
if (another_allocno == from
|| (ALLOCNO_COLOR_DATA (another_allocno) != NULL
&& (ALLOCNO_COLOR_DATA (allocno)->first_thread_allocno
!= ALLOCNO_COLOR_DATA (another_allocno)->first_thread_allocno)))
continue;
aclass = ALLOCNO_CLASS (another_allocno);
if (! TEST_HARD_REG_BIT (reg_class_contents[aclass],
hard_regno)
|| ALLOCNO_ASSIGNED_P (another_allocno))
continue;
/* If we have different modes use the smallest one. It is
a sub-register move. It is hard to predict what LRA
will reload (the pseudo or its sub-register) but LRA
will try to minimize the data movement. Also for some
register classes bigger modes might be invalid,
e.g. DImode for AREG on x86. For such cases the
register move cost will be maximal. */
mode = narrower_subreg_mode (ALLOCNO_MODE (cp->first),
ALLOCNO_MODE (cp->second));
ira_init_register_move_cost_if_necessary (mode);
cost = (cp->second == allocno
? ira_register_move_cost[mode][rclass][aclass]
: ira_register_move_cost[mode][aclass][rclass]);
if (decr_p)
cost = -cost;
update_cost = cp->freq * cost / divisor;
update_conflict_cost = update_cost;
if (internal_flag_ira_verbose > 5 && ira_dump_file != NULL)
fprintf (ira_dump_file,
" a%dr%d (hr%d): update cost by %d, conflict cost by %d\n",
ALLOCNO_NUM (another_allocno), ALLOCNO_REGNO (another_allocno),
hard_regno, update_cost, update_conflict_cost);
if (update_cost == 0)
continue;
if (! update_allocno_cost (another_allocno, hard_regno,
update_cost, update_conflict_cost))
continue;
queue_update_cost (another_allocno, start, allocno,
divisor * COST_HOP_DIVISOR);
if (record_p && ALLOCNO_COLOR_DATA (another_allocno) != NULL)
ALLOCNO_COLOR_DATA (another_allocno)->update_cost_records
= get_update_cost_record (hard_regno, divisor,
ALLOCNO_COLOR_DATA (another_allocno)
->update_cost_records);
}
}
while (get_next_update_cost (&allocno, &start, &from, &divisor));
}
/* Decrease preferred ALLOCNO hard register costs and costs of
allocnos connected to ALLOCNO through copy. */
static void
update_costs_from_prefs (ira_allocno_t allocno)
{
ira_pref_t pref;
start_update_cost ();
for (pref = ALLOCNO_PREFS (allocno); pref != NULL; pref = pref->next_pref)
{
if (internal_flag_ira_verbose > 5 && ira_dump_file != NULL)
fprintf (ira_dump_file, " Start updating from pref of hr%d for a%dr%d:\n",
pref->hard_regno, ALLOCNO_NUM (allocno), ALLOCNO_REGNO (allocno));
update_costs_from_allocno (allocno, pref->hard_regno,
COST_HOP_DIVISOR, true, true);
}
}
/* Update (decrease if DECR_P) the cost of allocnos connected to
ALLOCNO through copies to increase chances to remove some copies as
the result of subsequent assignment. ALLOCNO was just assigned to
a hard register. Record cost updates if RECORD_P is true. */
static void
update_costs_from_copies (ira_allocno_t allocno, bool decr_p, bool record_p)
{
int hard_regno;
hard_regno = ALLOCNO_HARD_REGNO (allocno);
ira_assert (hard_regno >= 0 && ALLOCNO_CLASS (allocno) != NO_REGS);
start_update_cost ();
if (internal_flag_ira_verbose > 5 && ira_dump_file != NULL)
fprintf (ira_dump_file, " Start updating from a%dr%d by copies:\n",
ALLOCNO_NUM (allocno), ALLOCNO_REGNO (allocno));
update_costs_from_allocno (allocno, hard_regno, 1, decr_p, record_p);
}
/* Update conflict_allocno_hard_prefs of allocnos conflicting with
ALLOCNO. */
static void
update_conflict_allocno_hard_prefs (ira_allocno_t allocno)
{
int l, nr = ALLOCNO_NUM_OBJECTS (allocno);
for (l = 0; l < nr; l++)
{
ira_object_t conflict_obj, obj = ALLOCNO_OBJECT (allocno, l);
ira_object_conflict_iterator oci;
FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
{
ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
allocno_color_data_t conflict_data = ALLOCNO_COLOR_DATA (conflict_a);
ira_pref_t pref;
if (!(hard_reg_set_intersect_p
(ALLOCNO_COLOR_DATA (allocno)->profitable_hard_regs,
conflict_data->profitable_hard_regs)))
continue;
for (pref = ALLOCNO_PREFS (allocno);
pref != NULL;
pref = pref->next_pref)
conflict_data->conflict_allocno_hard_prefs += pref->freq;
}
}
}
/* Restore costs of allocnos connected to ALLOCNO by copies as it was
before updating costs of these allocnos from given allocno. This
is a wise thing to do as if given allocno did not get an expected
hard reg, using smaller cost of the hard reg for allocnos connected
by copies to given allocno becomes actually misleading. Free all
update cost records for ALLOCNO as we don't need them anymore. */
static void
restore_costs_from_copies (ira_allocno_t allocno)
{
struct update_cost_record *records, *curr;
if (ALLOCNO_COLOR_DATA (allocno) == NULL)
return;
records = ALLOCNO_COLOR_DATA (allocno)->update_cost_records;
start_update_cost ();
if (internal_flag_ira_verbose > 5 && ira_dump_file != NULL)
fprintf (ira_dump_file, " Start restoring from a%dr%d:\n",
ALLOCNO_NUM (allocno), ALLOCNO_REGNO (allocno));
for (curr = records; curr != NULL; curr = curr->next)
update_costs_from_allocno (allocno, curr->hard_regno,
curr->divisor, true, false);
free_update_cost_record_list (records);
ALLOCNO_COLOR_DATA (allocno)->update_cost_records = NULL;
}
/* This function updates COSTS (decrease if DECR_P) for hard_registers
of ACLASS by conflict costs of the unassigned allocnos
connected by copies with allocnos in update_cost_queue. This
update increases chances to remove some copies. */
static void
update_conflict_hard_regno_costs (int *costs, enum reg_class aclass,
bool decr_p)
{
int i, cost, class_size, freq, mult, div, divisor;
int index, hard_regno;
int *conflict_costs;
bool cont_p;
enum reg_class another_aclass;
ira_allocno_t allocno, another_allocno, start, from;
ira_copy_t cp, next_cp;
while (get_next_update_cost (&allocno, &start, &from, &divisor))
for (cp = ALLOCNO_COPIES (allocno); cp != NULL; cp = next_cp)
{
if (cp->first == allocno)
{
next_cp = cp->next_first_allocno_copy;
another_allocno = cp->second;
}
else if (cp->second == allocno)
{
next_cp = cp->next_second_allocno_copy;
another_allocno = cp->first;
}
else
gcc_unreachable ();
another_aclass = ALLOCNO_CLASS (another_allocno);
if (another_allocno == from
|| ALLOCNO_ASSIGNED_P (another_allocno)
|| ALLOCNO_COLOR_DATA (another_allocno)->may_be_spilled_p
|| ! ira_reg_classes_intersect_p[aclass][another_aclass])
continue;
if (allocnos_conflict_p (another_allocno, start))
continue;
class_size = ira_class_hard_regs_num[another_aclass];
ira_allocate_and_copy_costs
(&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (another_allocno),
another_aclass, ALLOCNO_CONFLICT_HARD_REG_COSTS (another_allocno));
conflict_costs
= ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (another_allocno);
if (conflict_costs == NULL)
cont_p = true;
else
{
mult = cp->freq;
freq = ALLOCNO_FREQ (another_allocno);
if (freq == 0)
freq = 1;
div = freq * divisor;
cont_p = false;
for (i = class_size - 1; i >= 0; i--)
{
hard_regno = ira_class_hard_regs[another_aclass][i];
ira_assert (hard_regno >= 0);
index = ira_class_hard_reg_index[aclass][hard_regno];
if (index < 0)
continue;
cost = (int) (((int64_t) conflict_costs [i] * mult) / div);
if (cost == 0)
continue;
cont_p = true;
if (decr_p)
cost = -cost;
costs[index] += cost;
}
}
/* Probably 5 hops will be enough. */
if (cont_p
&& divisor <= (COST_HOP_DIVISOR
* COST_HOP_DIVISOR
* COST_HOP_DIVISOR
* COST_HOP_DIVISOR))
queue_update_cost (another_allocno, start, from, divisor * COST_HOP_DIVISOR);
}
}
/* Set up conflicting (through CONFLICT_REGS) for each object of
allocno A and the start allocno profitable regs (through
START_PROFITABLE_REGS). Remember that the start profitable regs
exclude hard regs which cannot hold value of mode of allocno A.
This covers mostly cases when multi-register value should be
aligned. */
static inline void
get_conflict_and_start_profitable_regs (ira_allocno_t a, bool retry_p,
HARD_REG_SET *conflict_regs,
HARD_REG_SET *start_profitable_regs)
{
int i, nwords;
ira_object_t obj;
nwords = ALLOCNO_NUM_OBJECTS (a);
for (i = 0; i < nwords; i++)
{
obj = ALLOCNO_OBJECT (a, i);
conflict_regs[i] = OBJECT_TOTAL_CONFLICT_HARD_REGS (obj);
}
if (retry_p)
*start_profitable_regs
= (reg_class_contents[ALLOCNO_CLASS (a)]
&~ (ira_prohibited_class_mode_regs
[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]));
else
*start_profitable_regs = ALLOCNO_COLOR_DATA (a)->profitable_hard_regs;
}
/* Return true if HARD_REGNO is ok for assigning to allocno A with
PROFITABLE_REGS and whose objects have CONFLICT_REGS. */
static inline bool
check_hard_reg_p (ira_allocno_t a, int hard_regno,
HARD_REG_SET *conflict_regs, HARD_REG_SET profitable_regs)
{
int j, nwords, nregs;
enum reg_class aclass;
machine_mode mode;
aclass = ALLOCNO_CLASS (a);
mode = ALLOCNO_MODE (a);
if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[aclass][mode],
hard_regno))
return false;
/* Checking only profitable hard regs. */
if (! TEST_HARD_REG_BIT (profitable_regs, hard_regno))
return false;
nregs = hard_regno_nregs (hard_regno, mode);
nwords = ALLOCNO_NUM_OBJECTS (a);
for (j = 0; j < nregs; j++)
{
int k;
int set_to_test_start = 0, set_to_test_end = nwords;
if (nregs == nwords)
{
if (REG_WORDS_BIG_ENDIAN)
set_to_test_start = nwords - j - 1;
else
set_to_test_start = j;
set_to_test_end = set_to_test_start + 1;
}
for (k = set_to_test_start; k < set_to_test_end; k++)
if (TEST_HARD_REG_BIT (conflict_regs[k], hard_regno + j))
break;
if (k != set_to_test_end)
break;
}
return j == nregs;
}
/* Return number of registers needed to be saved and restored at
function prologue/epilogue if we allocate HARD_REGNO to hold value
of MODE. */
static int
calculate_saved_nregs (int hard_regno, machine_mode mode)
{
int i;
int nregs = 0;
ira_assert (hard_regno >= 0);
for (i = hard_regno_nregs (hard_regno, mode) - 1; i >= 0; i--)
if (!allocated_hardreg_p[hard_regno + i]
&& !crtl->abi->clobbers_full_reg_p (hard_regno + i)
&& !LOCAL_REGNO (hard_regno + i))
nregs++;
return nregs;
}
/* Allocnos A1 and A2 are known to conflict. Check whether, in some loop L
that is either the current loop or a nested subloop, the conflict is of
the following form:
- One allocno (X) is a cap allocno for some non-cap allocno X2.
- X2 belongs to some loop L2.
- The other allocno (Y) is a non-cap allocno.
- Y is an ancestor of some allocno Y2 in L2. (Note that such a Y2
must exist, given that X and Y conflict.)
- Y2 is not referenced in L2 (that is, ALLOCNO_NREFS (Y2) == 0).
- Y can use a different allocation from Y2.
In this case, Y's register is live across L2 but is not used within it,
whereas X's register is used only within L2. The conflict is therefore
only "soft", in that it can easily be avoided by spilling Y2 inside L2
without affecting any insn references.
If the conflict does have this form, return the Y2 that would need to be
spilled in order to allow X and Y (and thus A1 and A2) to use the same
register. Return null otherwise. Returning null is conservatively correct;
any nonnnull return value is an optimization. */
ira_allocno_t
ira_soft_conflict (ira_allocno_t a1, ira_allocno_t a2)
{
/* Search for the loop L and its associated allocnos X and Y. */
int search_depth = 0;
while (ALLOCNO_CAP_MEMBER (a1) && ALLOCNO_CAP_MEMBER (a2))
{
a1 = ALLOCNO_CAP_MEMBER (a1);
a2 = ALLOCNO_CAP_MEMBER (a2);
if (search_depth++ > max_soft_conflict_loop_depth)
return nullptr;
}
/* This must be true if A1 and A2 conflict. */
ira_assert (ALLOCNO_LOOP_TREE_NODE (a1) == ALLOCNO_LOOP_TREE_NODE (a2));
/* Make A1 the cap allocno (X in the comment above) and A2 the
non-cap allocno (Y in the comment above). */
if (ALLOCNO_CAP_MEMBER (a2))
std::swap (a1, a2);
if (!ALLOCNO_CAP_MEMBER (a1))
return nullptr;
/* Search for the real allocno that A1 caps (X2 in the comment above). */
do
{
a1 = ALLOCNO_CAP_MEMBER (a1);
if (search_depth++ > max_soft_conflict_loop_depth)
return nullptr;
}
while (ALLOCNO_CAP_MEMBER (a1));
/* Find the associated allocno for A2 (Y2 in the comment above). */
auto node = ALLOCNO_LOOP_TREE_NODE (a1);
auto local_a2 = node->regno_allocno_map[ALLOCNO_REGNO (a2)];
/* Find the parent of LOCAL_A2/Y2. LOCAL_A2 must be a descendant of A2
for the conflict query to make sense, so this parent lookup must succeed.
If the parent allocno has no references, it is usually cheaper to
spill at that loop level instead. Keep searching until we find
a parent allocno that does have references (but don't look past
the starting allocno). */
ira_allocno_t local_parent_a2;
for (;;)
{
local_parent_a2 = ira_parent_allocno (local_a2);
if (local_parent_a2 == a2 || ALLOCNO_NREFS (local_parent_a2) != 0)
break;
local_a2 = local_parent_a2;
}
if (CHECKING_P)
{
/* Sanity check to make sure that the conflict we've been given
makes sense. */
auto test_a2 = local_parent_a2;
while (test_a2 != a2)
{
test_a2 = ira_parent_allocno (test_a2);
ira_assert (test_a2);
}
}
if (local_a2
&& ALLOCNO_NREFS (local_a2) == 0
&& ira_subloop_allocnos_can_differ_p (local_parent_a2))
return local_a2;
return nullptr;
}
/* The caller has decided to allocate HREGNO to A and has proved that
this is safe. However, the allocation might require the kind of
spilling described in the comment above ira_soft_conflict.
The caller has recorded that:
- The allocnos in ALLOCNOS_TO_SPILL are the ones that would need
to be spilled to satisfy soft conflicts for at least one allocation
(not necessarily HREGNO).
- The soft conflicts apply only to A allocations that overlap
SOFT_CONFLICT_REGS.
If allocating HREGNO is subject to any soft conflicts, record the
subloop allocnos that need to be spilled. */
static void
spill_soft_conflicts (ira_allocno_t a, bitmap allocnos_to_spill,
HARD_REG_SET soft_conflict_regs, int hregno)
{
auto nregs = hard_regno_nregs (hregno, ALLOCNO_MODE (a));
bitmap_iterator bi;
unsigned int i;
EXECUTE_IF_SET_IN_BITMAP (allocnos_to_spill, 0, i, bi)
{
/* SPILL_A needs to be spilled for at least one allocation
(not necessarily this one). */
auto spill_a = ira_allocnos[i];
/* Find the corresponding allocno for this loop. */
auto conflict_a = spill_a;
do
{
conflict_a = ira_parent_or_cap_allocno (conflict_a);
ira_assert (conflict_a);
}
while (ALLOCNO_LOOP_TREE_NODE (conflict_a)->level
> ALLOCNO_LOOP_TREE_NODE (a)->level);
ira_assert (ALLOCNO_LOOP_TREE_NODE (conflict_a)
== ALLOCNO_LOOP_TREE_NODE (a));
if (conflict_a == a)
{
/* SPILL_A is a descendant of A. We don't know (and don't need
to know) which cap allocnos have a soft conflict with A.
All we need to do is test whether the soft conflict applies
to the chosen allocation. */
if (ira_hard_reg_set_intersection_p (hregno, ALLOCNO_MODE (a),
soft_conflict_regs))
ALLOCNO_MIGHT_CONFLICT_WITH_PARENT_P (spill_a) = true;
}
else
{
/* SPILL_A is a descendant of CONFLICT_A, which has a soft conflict
with A. Test whether the soft conflict applies to the current
allocation. */
ira_assert (ira_soft_conflict (a, conflict_a) == spill_a);
auto conflict_hregno = ALLOCNO_HARD_REGNO (conflict_a);
ira_assert (conflict_hregno >= 0);
auto conflict_nregs = hard_regno_nregs (conflict_hregno,
ALLOCNO_MODE (conflict_a));
if (hregno + nregs > conflict_hregno
&& conflict_hregno + conflict_nregs > hregno)
ALLOCNO_MIGHT_CONFLICT_WITH_PARENT_P (spill_a) = true;
}
}
}
/* Choose a hard register for allocno A. If RETRY_P is TRUE, it means
that the function called from function
`ira_reassign_conflict_allocnos' and `allocno_reload_assign'. In
this case some allocno data are not defined or updated and we
should not touch these data. The function returns true if we
managed to assign a hard register to the allocno.
To assign a hard register, first of all we calculate all conflict
hard registers which can come from conflicting allocnos with
already assigned hard registers. After that we find first free
hard register with the minimal cost. During hard register cost
calculation we take conflict hard register costs into account to
give a chance for conflicting allocnos to get a better hard
register in the future.
If the best hard register cost is bigger than cost of memory usage
for the allocno, we don't assign a hard register to given allocno
at all.
If we assign a hard register to the allocno, we update costs of the
hard register for allocnos connected by copies to improve a chance
to coalesce insns represented by the copies when we assign hard
registers to the allocnos connected by the copies. */
static bool
assign_hard_reg (ira_allocno_t a, bool retry_p)
{
HARD_REG_SET conflicting_regs[2], profitable_hard_regs;
int i, j, hard_regno, best_hard_regno, class_size;
int cost, mem_cost, min_cost, full_cost, min_full_cost, nwords, word;
int *a_costs;
enum reg_class aclass;
machine_mode mode;
static int costs[FIRST_PSEUDO_REGISTER], full_costs[FIRST_PSEUDO_REGISTER];
int saved_nregs;
enum reg_class rclass;
int add_cost;
#ifdef STACK_REGS
bool no_stack_reg_p;
#endif
auto_bitmap allocnos_to_spill;
HARD_REG_SET soft_conflict_regs = {};
ira_assert (! ALLOCNO_ASSIGNED_P (a));
get_conflict_and_start_profitable_regs (a, retry_p,
conflicting_regs,
&profitable_hard_regs);
aclass = ALLOCNO_CLASS (a);
class_size = ira_class_hard_regs_num[aclass];
best_hard_regno = -1;
mem_cost = 0;
memset (costs, 0, sizeof (int) * class_size);
memset (full_costs, 0, sizeof (int) * class_size);
#ifdef STACK_REGS
no_stack_reg_p = false;
#endif
if (! retry_p)
start_update_cost ();
mem_cost += ALLOCNO_UPDATED_MEMORY_COST (a);
ira_allocate_and_copy_costs (&ALLOCNO_UPDATED_HARD_REG_COSTS (a),
aclass, ALLOCNO_HARD_REG_COSTS (a));
a_costs = ALLOCNO_UPDATED_HARD_REG_COSTS (a);
#ifdef STACK_REGS
no_stack_reg_p = no_stack_reg_p || ALLOCNO_TOTAL_NO_STACK_REG_P (a);
#endif
cost = ALLOCNO_UPDATED_CLASS_COST (a);
for (i = 0; i < class_size; i++)
if (a_costs != NULL)
{
costs[i] += a_costs[i];
full_costs[i] += a_costs[i];
}
else
{
costs[i] += cost;
full_costs[i] += cost;
}
nwords = ALLOCNO_NUM_OBJECTS (a);
curr_allocno_process++;
for (word = 0; word < nwords; word++)
{
ira_object_t conflict_obj;
ira_object_t obj = ALLOCNO_OBJECT (a, word);
ira_object_conflict_iterator oci;
/* Take preferences of conflicting allocnos into account. */
FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
{
ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
enum reg_class conflict_aclass;
allocno_color_data_t data = ALLOCNO_COLOR_DATA (conflict_a);
/* Reload can give another class so we need to check all
allocnos. */
if (!retry_p
&& ((!ALLOCNO_ASSIGNED_P (conflict_a)
|| ALLOCNO_HARD_REGNO (conflict_a) < 0)
&& !(hard_reg_set_intersect_p
(profitable_hard_regs,
ALLOCNO_COLOR_DATA
(conflict_a)->profitable_hard_regs))))
{
/* All conflict allocnos are in consideration bitmap
when retry_p is false. It might change in future and
if it happens the assert will be broken. It means
the code should be modified for the new
assumptions. */
ira_assert (bitmap_bit_p (consideration_allocno_bitmap,
ALLOCNO_NUM (conflict_a)));
continue;
}
conflict_aclass = ALLOCNO_CLASS (conflict_a);
ira_assert (ira_reg_classes_intersect_p
[aclass][conflict_aclass]);
if (ALLOCNO_ASSIGNED_P (conflict_a))
{
hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
if (hard_regno >= 0
&& (ira_hard_reg_set_intersection_p
(hard_regno, ALLOCNO_MODE (conflict_a),
reg_class_contents[aclass])))
{
int n_objects = ALLOCNO_NUM_OBJECTS (conflict_a);
int conflict_nregs;
mode = ALLOCNO_MODE (conflict_a);
conflict_nregs = hard_regno_nregs (hard_regno, mode);
auto spill_a = (retry_p
? nullptr
: ira_soft_conflict (a, conflict_a));
if (spill_a)
{
if (bitmap_set_bit (allocnos_to_spill,
ALLOCNO_NUM (spill_a)))
{
ira_loop_border_costs border_costs (spill_a);
auto cost = border_costs.spill_inside_loop_cost ();
auto note_conflict = [&](int r)
{
SET_HARD_REG_BIT (soft_conflict_regs, r);
auto hri = ira_class_hard_reg_index[aclass][r];
if (hri >= 0)
{
costs[hri] += cost;
full_costs[hri] += cost;
}
};
for (int r = hard_regno;
r >= 0 && (int) end_hard_regno (mode, r) > hard_regno;
r--)
note_conflict (r);
for (int r = hard_regno + 1;
r < hard_regno + conflict_nregs;
r++)
note_conflict (r);
}
}
else
{
if (conflict_nregs == n_objects && conflict_nregs > 1)
{
int num = OBJECT_SUBWORD (conflict_obj);
if (REG_WORDS_BIG_ENDIAN)
SET_HARD_REG_BIT (conflicting_regs[word],
hard_regno + n_objects - num - 1);
else
SET_HARD_REG_BIT (conflicting_regs[word],
hard_regno + num);
}
else
conflicting_regs[word]
|= ira_reg_mode_hard_regset[hard_regno][mode];
if (hard_reg_set_subset_p (profitable_hard_regs,
conflicting_regs[word]))
goto fail;
}
}
}
else if (! retry_p
&& ! ALLOCNO_COLOR_DATA (conflict_a)->may_be_spilled_p
/* Don't process the conflict allocno twice. */
&& (ALLOCNO_COLOR_DATA (conflict_a)->last_process
!= curr_allocno_process))
{
int k, *conflict_costs;
ALLOCNO_COLOR_DATA (conflict_a)->last_process
= curr_allocno_process;
ira_allocate_and_copy_costs
(&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (conflict_a),
conflict_aclass,
ALLOCNO_CONFLICT_HARD_REG_COSTS (conflict_a));
conflict_costs
= ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (conflict_a);
if (conflict_costs != NULL)
for (j = class_size - 1; j >= 0; j--)
{
hard_regno = ira_class_hard_regs[aclass][j];
ira_assert (hard_regno >= 0);
k = ira_class_hard_reg_index[conflict_aclass][hard_regno];
if (k < 0
/* If HARD_REGNO is not available for CONFLICT_A,
the conflict would be ignored, since HARD_REGNO
will never be assigned to CONFLICT_A. */
|| !TEST_HARD_REG_BIT (data->profitable_hard_regs,
hard_regno))
continue;
full_costs[j] -= conflict_costs[k];
}
queue_update_cost (conflict_a, conflict_a, NULL, COST_HOP_DIVISOR);
}
}
}
if (! retry_p)
/* Take into account preferences of allocnos connected by copies to
the conflict allocnos. */
update_conflict_hard_regno_costs (full_costs, aclass, true);
/* Take preferences of allocnos connected by copies into
account. */
if (! retry_p)
{
start_update_cost ();
queue_update_cost (a, a, NULL, COST_HOP_DIVISOR);
update_conflict_hard_regno_costs (full_costs, aclass, false);
}
min_cost = min_full_cost = INT_MAX;
/* We don't care about giving callee saved registers to allocnos no
living through calls because call clobbered registers are
allocated first (it is usual practice to put them first in
REG_ALLOC_ORDER). */
mode = ALLOCNO_MODE (a);
for (i = 0; i < class_size; i++)
{
hard_regno = ira_class_hard_regs[aclass][i];
#ifdef STACK_REGS
if (no_stack_reg_p
&& FIRST_STACK_REG <= hard_regno && hard_regno <= LAST_STACK_REG)
continue;
#endif
if (! check_hard_reg_p (a, hard_regno,
conflicting_regs, profitable_hard_regs))
continue;
cost = costs[i];
full_cost = full_costs[i];
if (!HONOR_REG_ALLOC_ORDER)
{
if ((saved_nregs = calculate_saved_nregs (hard_regno, mode)) != 0)
/* We need to save/restore the hard register in
epilogue/prologue. Therefore we increase the cost. */
{
rclass = REGNO_REG_CLASS (hard_regno);
add_cost = ((ira_memory_move_cost[mode][rclass][0]
+ ira_memory_move_cost[mode][rclass][1])
* saved_nregs / hard_regno_nregs (hard_regno,
mode) - 1);
cost += add_cost;
full_cost += add_cost;
}
}
if (min_cost > cost)
min_cost = cost;
if (min_full_cost > full_cost)
{
min_full_cost = full_cost;
best_hard_regno = hard_regno;
ira_assert (hard_regno >= 0);
}
if (internal_flag_ira_verbose > 5 && ira_dump_file != NULL)
fprintf (ira_dump_file, "(%d=%d,%d) ", hard_regno, cost, full_cost);
}
if (internal_flag_ira_verbose > 5 && ira_dump_file != NULL)
fprintf (ira_dump_file, "\n");
if (min_full_cost > mem_cost
/* Do not spill static chain pointer pseudo when non-local goto
is used. */
&& ! non_spilled_static_chain_regno_p (ALLOCNO_REGNO (a)))
{
if (! retry_p && internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
fprintf (ira_dump_file, "(memory is more profitable %d vs %d) ",
mem_cost, min_full_cost);
best_hard_regno = -1;
}
fail:
if (best_hard_regno >= 0)
{
for (i = hard_regno_nregs (best_hard_regno, mode) - 1; i >= 0; i--)
allocated_hardreg_p[best_hard_regno + i] = true;
spill_soft_conflicts (a, allocnos_to_spill, soft_conflict_regs,
best_hard_regno);
}
if (! retry_p)
restore_costs_from_copies (a);
ALLOCNO_HARD_REGNO (a) = best_hard_regno;
ALLOCNO_ASSIGNED_P (a) = true;
if (best_hard_regno >= 0 && !retry_p)
update_costs_from_copies (a, true, true);
ira_assert (ALLOCNO_CLASS (a) == aclass);
/* We don't need updated costs anymore. */
ira_free_allocno_updated_costs (a);
return best_hard_regno >= 0;
}
/* An array used to sort copies. */
static ira_copy_t *sorted_copies;
/* If allocno A is a cap, return non-cap allocno from which A is
created. Otherwise, return A. */
static ira_allocno_t
get_cap_member (ira_allocno_t a)
{
ira_allocno_t member;
while ((member = ALLOCNO_CAP_MEMBER (a)) != NULL)
a = member;
return a;
}
/* Return TRUE if live ranges of allocnos A1 and A2 intersect. It is
used to find a conflict for new allocnos or allocnos with the
different allocno classes. */
static bool
allocnos_conflict_by_live_ranges_p (ira_allocno_t a1, ira_allocno_t a2)
{
rtx reg1, reg2;
int i, j;
int n1 = ALLOCNO_NUM_OBJECTS (a1);
int n2 = ALLOCNO_NUM_OBJECTS (a2);
if (a1 == a2)
return false;
reg1 = regno_reg_rtx[ALLOCNO_REGNO (a1)];
reg2 = regno_reg_rtx[ALLOCNO_REGNO (a2)];
if (reg1 != NULL && reg2 != NULL
&& ORIGINAL_REGNO (reg1) == ORIGINAL_REGNO (reg2))
return false;
/* We don't keep live ranges for caps because they can be quite big.
Use ranges of non-cap allocno from which caps are created. */
a1 = get_cap_member (a1);
a2 = get_cap_member (a2);
for (i = 0; i < n1; i++)
{
ira_object_t c1 = ALLOCNO_OBJECT (a1, i);
for (j = 0; j < n2; j++)
{
ira_object_t c2 = ALLOCNO_OBJECT (a2, j);
if (ira_live_ranges_intersect_p (OBJECT_LIVE_RANGES (c1),
OBJECT_LIVE_RANGES (c2)))
return true;
}
}
return false;
}
/* The function is used to sort copies according to their execution
frequencies. */
static int
copy_freq_compare_func (const void *v1p, const void *v2p)
{
ira_copy_t cp1 = *(const ira_copy_t *) v1p, cp2 = *(const ira_copy_t *) v2p;
int pri1, pri2;
pri1 = cp1->freq;
pri2 = cp2->freq;
if (pri2 - pri1)
return pri2 - pri1;
/* If frequencies are equal, sort by copies, so that the results of
qsort leave nothing to chance. */
return cp1->num - cp2->num;
}
/* Return true if any allocno from thread of A1 conflicts with any
allocno from thread A2. */
static bool
allocno_thread_conflict_p (ira_allocno_t a1, ira_allocno_t a2)
{
ira_allocno_t a, conflict_a;
for (a = ALLOCNO_COLOR_DATA (a2)->next_thread_allocno;;
a = ALLOCNO_COLOR_DATA (a)->next_thread_allocno)
{
for (conflict_a = ALLOCNO_COLOR_DATA (a1)->next_thread_allocno;;
conflict_a = ALLOCNO_COLOR_DATA (conflict_a)->next_thread_allocno)
{
if (allocnos_conflict_by_live_ranges_p (a, conflict_a))
return true;
if (conflict_a == a1)
break;
}
if (a == a2)
break;
}
return false;
}
/* Merge two threads given correspondingly by their first allocnos T1
and T2 (more accurately merging T2 into T1). */
static void
merge_threads (ira_allocno_t t1, ira_allocno_t t2)
{
ira_allocno_t a, next, last;
gcc_assert (t1 != t2
&& ALLOCNO_COLOR_DATA (t1)->first_thread_allocno == t1
&& ALLOCNO_COLOR_DATA (t2)->first_thread_allocno == t2);
for (last = t2, a = ALLOCNO_COLOR_DATA (t2)->next_thread_allocno;;
a = ALLOCNO_COLOR_DATA (a)->next_thread_allocno)
{
ALLOCNO_COLOR_DATA (a)->first_thread_allocno = t1;
if (a == t2)
break;
last = a;
}
next = ALLOCNO_COLOR_DATA (t1)->next_thread_allocno;
ALLOCNO_COLOR_DATA (t1)->next_thread_allocno = t2;
ALLOCNO_COLOR_DATA (last)->next_thread_allocno = next;
ALLOCNO_COLOR_DATA (t1)->thread_freq += ALLOCNO_COLOR_DATA (t2)->thread_freq;
}
/* Create threads by processing CP_NUM copies from sorted copies. We
process the most expensive copies first. */
static void
form_threads_from_copies (int cp_num)
{
ira_allocno_t a, thread1, thread2;
ira_copy_t cp;
qsort (sorted_copies, cp_num, sizeof (ira_copy_t), copy_freq_compare_func);
/* Form threads processing copies, most frequently executed
first. */
for (int i = 0; i < cp_num; i++)
{
cp = sorted_copies[i];
thread1 = ALLOCNO_COLOR_DATA (cp->first)->first_thread_allocno;
thread2 = ALLOCNO_COLOR_DATA (cp->second)->first_thread_allocno;
if (thread1 == thread2)
continue;
if (! allocno_thread_conflict_p (thread1, thread2))
{
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
fprintf
(ira_dump_file,
" Forming thread by copy %d:a%dr%d-a%dr%d (freq=%d):\n",
cp->num, ALLOCNO_NUM (cp->first), ALLOCNO_REGNO (cp->first),
ALLOCNO_NUM (cp->second), ALLOCNO_REGNO (cp->second),
cp->freq);
merge_threads (thread1, thread2);
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
{
thread1 = ALLOCNO_COLOR_DATA (thread1)->first_thread_allocno;
fprintf (ira_dump_file, " Result (freq=%d): a%dr%d(%d)",
ALLOCNO_COLOR_DATA (thread1)->thread_freq,
ALLOCNO_NUM (thread1), ALLOCNO_REGNO (thread1),
ALLOCNO_FREQ (thread1));
for (a = ALLOCNO_COLOR_DATA (thread1)->next_thread_allocno;
a != thread1;
a = ALLOCNO_COLOR_DATA (a)->next_thread_allocno)
fprintf (ira_dump_file, " a%dr%d(%d)",
ALLOCNO_NUM (a), ALLOCNO_REGNO (a),
ALLOCNO_FREQ (a));
fprintf (ira_dump_file, "\n");
}
}
}
}
/* Create threads by processing copies of all alocnos from BUCKET. We
process the most expensive copies first. */
static void
form_threads_from_bucket (ira_allocno_t bucket)
{
ira_allocno_t a;
ira_copy_t cp, next_cp;
int cp_num = 0;
for (a = bucket; a != NULL; a = ALLOCNO_COLOR_DATA (a)->next_bucket_allocno)
{
for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
{
if (cp->first == a)
{
next_cp = cp->next_first_allocno_copy;
sorted_copies[cp_num++] = cp;
}
else if (cp->second == a)
next_cp = cp->next_second_allocno_copy;
else
gcc_unreachable ();
}
}
form_threads_from_copies (cp_num);
}
/* Create threads by processing copies of colorable allocno A. We
process most expensive copies first. */
static void
form_threads_from_colorable_allocno (ira_allocno_t a)
{
ira_allocno_t another_a;
ira_copy_t cp, next_cp;
int cp_num = 0;
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
fprintf (ira_dump_file, " Forming thread from allocno a%dr%d:\n",
ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
{
if (cp->first == a)
{
next_cp = cp->next_first_allocno_copy;
another_a = cp->second;
}
else if (cp->second == a)
{
next_cp = cp->next_second_allocno_copy;
another_a = cp->first;
}
else
gcc_unreachable ();
if ((! ALLOCNO_COLOR_DATA (another_a)->in_graph_p
&& !ALLOCNO_COLOR_DATA (another_a)->may_be_spilled_p)
|| ALLOCNO_COLOR_DATA (another_a)->colorable_p)
sorted_copies[cp_num++] = cp;
}
form_threads_from_copies (cp_num);
}
/* Form initial threads which contain only one allocno. */
static void
init_allocno_threads (void)
{
ira_allocno_t a;
unsigned int j;
bitmap_iterator bi;
ira_pref_t pref;
EXECUTE_IF_SET_IN_BITMAP (consideration_allocno_bitmap, 0, j, bi)
{
a = ira_allocnos[j];
/* Set up initial thread data: */
ALLOCNO_COLOR_DATA (a)->first_thread_allocno
= ALLOCNO_COLOR_DATA (a)->next_thread_allocno = a;
ALLOCNO_COLOR_DATA (a)->thread_freq = ALLOCNO_FREQ (a);
ALLOCNO_COLOR_DATA (a)->hard_reg_prefs = 0;
for (pref = ALLOCNO_PREFS (a); pref != NULL; pref = pref->next_pref)
ALLOCNO_COLOR_DATA (a)->hard_reg_prefs += pref->freq;
}
}
/* This page contains the allocator based on the Chaitin-Briggs algorithm. */
/* Bucket of allocnos that can colored currently without spilling. */
static ira_allocno_t colorable_allocno_bucket;
/* Bucket of allocnos that might be not colored currently without
spilling. */
static ira_allocno_t uncolorable_allocno_bucket;
/* The current number of allocnos in the uncolorable_bucket. */
static int uncolorable_allocnos_num;
/* Return the current spill priority of allocno A. The less the
number, the more preferable the allocno for spilling. */
static inline int
allocno_spill_priority (ira_allocno_t a)
{
allocno_color_data_t data = ALLOCNO_COLOR_DATA (a);
return (data->temp
/ (ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a)
* ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]
+ 1));
}
/* Add allocno A to bucket *BUCKET_PTR. A should be not in a bucket
before the call. */
static void
add_allocno_to_bucket (ira_allocno_t a, ira_allocno_t *bucket_ptr)
{
ira_allocno_t first_a;
allocno_color_data_t data;
if (bucket_ptr == &uncolorable_allocno_bucket
&& ALLOCNO_CLASS (a) != NO_REGS)
{
uncolorable_allocnos_num++;
ira_assert (uncolorable_allocnos_num > 0);
}
first_a = *bucket_ptr;
data = ALLOCNO_COLOR_DATA (a);
data->next_bucket_allocno = first_a;
data->prev_bucket_allocno = NULL;
if (first_a != NULL)
ALLOCNO_COLOR_DATA (first_a)->prev_bucket_allocno = a;
*bucket_ptr = a;
}
/* Compare two allocnos to define which allocno should be pushed first
into the coloring stack. If the return is a negative number, the
allocno given by the first parameter will be pushed first. In this
case such allocno has less priority than the second one and the
hard register will be assigned to it after assignment to the second
one. As the result of such assignment order, the second allocno
has a better chance to get the best hard register. */
static int
bucket_allocno_compare_func (const void *v1p, const void *v2p)
{
ira_allocno_t a1 = *(const ira_allocno_t *) v1p;
ira_allocno_t a2 = *(const ira_allocno_t *) v2p;
int diff, freq1, freq2, a1_num, a2_num, pref1, pref2;
ira_allocno_t t1 = ALLOCNO_COLOR_DATA (a1)->first_thread_allocno;
ira_allocno_t t2 = ALLOCNO_COLOR_DATA (a2)->first_thread_allocno;
int cl1 = ALLOCNO_CLASS (a1), cl2 = ALLOCNO_CLASS (a2);
freq1 = ALLOCNO_COLOR_DATA (t1)->thread_freq;
freq2 = ALLOCNO_COLOR_DATA (t2)->thread_freq;
if ((diff = freq1 - freq2) != 0)
return diff;
if ((diff = ALLOCNO_NUM (t2) - ALLOCNO_NUM (t1)) != 0)
return diff;
/* Push pseudos requiring less hard registers first. It means that
we will assign pseudos requiring more hard registers first
avoiding creation small holes in free hard register file into
which the pseudos requiring more hard registers cannot fit. */
if ((diff = (ira_reg_class_max_nregs[cl1][ALLOCNO_MODE (a1)]
- ira_reg_class_max_nregs[cl2][ALLOCNO_MODE (a2)])) != 0)
return diff;
freq1 = ALLOCNO_FREQ (a1);
freq2 = ALLOCNO_FREQ (a2);
if ((diff = freq1 - freq2) != 0)
return diff;
a1_num = ALLOCNO_COLOR_DATA (a1)->available_regs_num;
a2_num = ALLOCNO_COLOR_DATA (a2)->available_regs_num;
if ((diff = a2_num - a1_num) != 0)
return diff;
/* Push allocnos with minimal conflict_allocno_hard_prefs first. */
pref1 = ALLOCNO_COLOR_DATA (a1)->conflict_allocno_hard_prefs;
pref2 = ALLOCNO_COLOR_DATA (a2)->conflict_allocno_hard_prefs;
if ((diff = pref1 - pref2) != 0)
return diff;
return ALLOCNO_NUM (a2) - ALLOCNO_NUM (a1);
}
/* Sort bucket *BUCKET_PTR and return the result through
BUCKET_PTR. */
static void
sort_bucket (ira_allocno_t *bucket_ptr,
int (*compare_func) (const void *, const void *))
{
ira_allocno_t a, head;
int n;
for (n = 0, a = *bucket_ptr;
a != NULL;
a = ALLOCNO_COLOR_DATA (a)->next_bucket_allocno)
sorted_allocnos[n++] = a;
if (n <= 1)
return;
qsort (sorted_allocnos, n, sizeof (ira_allocno_t), compare_func);
head = NULL;
for (n--; n >= 0; n--)
{
a = sorted_allocnos[n];
ALLOCNO_COLOR_DATA (a)->next_bucket_allocno = head;
ALLOCNO_COLOR_DATA (a)->prev_bucket_allocno = NULL;
if (head != NULL)
ALLOCNO_COLOR_DATA (head)->prev_bucket_allocno = a;
head = a;
}
*bucket_ptr = head;
}
/* Add ALLOCNO to colorable bucket maintaining the order according
their priority. ALLOCNO should be not in a bucket before the
call. */
static void
add_allocno_to_ordered_colorable_bucket (ira_allocno_t allocno)
{
ira_allocno_t before, after;
form_threads_from_colorable_allocno (allocno);
for (before = colorable_allocno_bucket, after = NULL;
before != NULL;
after = before,
before = ALLOCNO_COLOR_DATA (before)->next_bucket_allocno)
if (bucket_allocno_compare_func (&allocno, &before) < 0)
break;
ALLOCNO_COLOR_DATA (allocno)->next_bucket_allocno = before;
ALLOCNO_COLOR_DATA (allocno)->prev_bucket_allocno = after;
if (after == NULL)
colorable_allocno_bucket = allocno;
else
ALLOCNO_COLOR_DATA (after)->next_bucket_allocno = allocno;
if (before != NULL)
ALLOCNO_COLOR_DATA (before)->prev_bucket_allocno = allocno;
}
/* Delete ALLOCNO from bucket *BUCKET_PTR. It should be there before
the call. */
static void
delete_allocno_from_bucket (ira_allocno_t allocno, ira_allocno_t *bucket_ptr)
{
ira_allocno_t prev_allocno, next_allocno;
if (bucket_ptr == &uncolorable_allocno_bucket
&& ALLOCNO_CLASS (allocno) != NO_REGS)
{
uncolorable_allocnos_num--;
ira_assert (uncolorable_allocnos_num >= 0);
}
prev_allocno = ALLOCNO_COLOR_DATA (allocno)->prev_bucket_allocno;
next_allocno = ALLOCNO_COLOR_DATA (allocno)->next_bucket_allocno;
if (prev_allocno != NULL)
ALLOCNO_COLOR_DATA (prev_allocno)->next_bucket_allocno = next_allocno;
else
{
ira_assert (*bucket_ptr == allocno);
*bucket_ptr = next_allocno;
}
if (next_allocno != NULL)
ALLOCNO_COLOR_DATA (next_allocno)->prev_bucket_allocno = prev_allocno;
}
/* Put allocno A onto the coloring stack without removing it from its
bucket. Pushing allocno to the coloring stack can result in moving
conflicting allocnos from the uncolorable bucket to the colorable
one. Update conflict_allocno_hard_prefs of the conflicting
allocnos which are not on stack yet. */
static void
push_allocno_to_stack (ira_allocno_t a)
{
enum reg_class aclass;
allocno_color_data_t data, conflict_data;
int size, i, n = ALLOCNO_NUM_OBJECTS (a);
data = ALLOCNO_COLOR_DATA (a);
data->in_graph_p = false;
allocno_stack_vec.safe_push (a);
aclass = ALLOCNO_CLASS (a);
if (aclass == NO_REGS)
return;
size = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
if (n > 1)
{
/* We will deal with the subwords individually. */
gcc_assert (size == ALLOCNO_NUM_OBJECTS (a));
size = 1;
}
for (i = 0; i < n; i++)
{
ira_object_t obj = ALLOCNO_OBJECT (a, i);
ira_object_t conflict_obj;
ira_object_conflict_iterator oci;
FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
{
ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
ira_pref_t pref;
conflict_data = ALLOCNO_COLOR_DATA (conflict_a);
if (! conflict_data->in_graph_p
|| ALLOCNO_ASSIGNED_P (conflict_a)
|| !(hard_reg_set_intersect_p
(ALLOCNO_COLOR_DATA (a)->profitable_hard_regs,
conflict_data->profitable_hard_regs)))
continue;
for (pref = ALLOCNO_PREFS (a); pref != NULL; pref = pref->next_pref)
conflict_data->conflict_allocno_hard_prefs -= pref->freq;
if (conflict_data->colorable_p)
continue;
ira_assert (bitmap_bit_p (coloring_allocno_bitmap,
ALLOCNO_NUM (conflict_a)));
if (update_left_conflict_sizes_p (conflict_a, a, size))
{
delete_allocno_from_bucket
(conflict_a, &uncolorable_allocno_bucket);
add_allocno_to_ordered_colorable_bucket (conflict_a);
if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
{
fprintf (ira_dump_file, " Making");
ira_print_expanded_allocno (conflict_a);
fprintf (ira_dump_file, " colorable\n");
}
}
}
}
}
/* Put ALLOCNO onto the coloring stack and remove it from its bucket.
The allocno is in the colorable bucket if COLORABLE_P is TRUE. */
static void
remove_allocno_from_bucket_and_push (ira_allocno_t allocno, bool colorable_p)
{
if (colorable_p)
delete_allocno_from_bucket (allocno, &colorable_allocno_bucket);
else
delete_allocno_from_bucket (allocno, &uncolorable_allocno_bucket);
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
{
fprintf (ira_dump_file, " Pushing");
ira_print_expanded_allocno (allocno);
if (colorable_p)
fprintf (ira_dump_file, "(cost %d)\n",
ALLOCNO_COLOR_DATA (allocno)->temp);
else
fprintf (ira_dump_file, "(potential spill: %spri=%d, cost=%d)\n",
ALLOCNO_BAD_SPILL_P (allocno) ? "bad spill, " : "",
allocno_spill_priority (allocno),
ALLOCNO_COLOR_DATA (allocno)->temp);
}
if (! colorable_p)
ALLOCNO_COLOR_DATA (allocno)->may_be_spilled_p = true;
push_allocno_to_stack (allocno);
}
/* Put all allocnos from colorable bucket onto the coloring stack. */
static void
push_only_colorable (void)
{
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
fprintf (ira_dump_file, " Forming thread from colorable bucket:\n");
form_threads_from_bucket (colorable_allocno_bucket);
for (ira_allocno_t a = colorable_allocno_bucket;
a != NULL;
a = ALLOCNO_COLOR_DATA (a)->next_bucket_allocno)
update_costs_from_prefs (a);
sort_bucket (&colorable_allocno_bucket, bucket_allocno_compare_func);
for (;colorable_allocno_bucket != NULL;)
remove_allocno_from_bucket_and_push (colorable_allocno_bucket, true);
}
/* Return the frequency of exit edges (if EXIT_P) or entry from/to the
loop given by its LOOP_NODE. */
int
ira_loop_edge_freq (ira_loop_tree_node_t loop_node, int regno, bool exit_p)
{
int freq, i;
edge_iterator ei;
edge e;
ira_assert (current_loops != NULL && loop_node->loop != NULL
&& (regno < 0 || regno >= FIRST_PSEUDO_REGISTER));
freq = 0;
if (! exit_p)
{
FOR_EACH_EDGE (e, ei, loop_node->loop->header->preds)
if (e->src != loop_node->loop->latch
&& (regno < 0
|| (bitmap_bit_p (df_get_live_out (e->src), regno)
&& bitmap_bit_p (df_get_live_in (e->dest), regno))))
freq += EDGE_FREQUENCY (e);
}
else
{
auto_vec<edge> edges = get_loop_exit_edges (loop_node->loop);
FOR_EACH_VEC_ELT (edges, i, e)
if (regno < 0
|| (bitmap_bit_p (df_get_live_out (e->src), regno)
&& bitmap_bit_p (df_get_live_in (e->dest), regno)))
freq += EDGE_FREQUENCY (e);
}
return REG_FREQ_FROM_EDGE_FREQ (freq);
}
/* Construct an object that describes the boundary between A and its
parent allocno. */
ira_loop_border_costs::ira_loop_border_costs (ira_allocno_t a)
: m_mode (ALLOCNO_MODE (a)),
m_class (ALLOCNO_CLASS (a)),
m_entry_freq (ira_loop_edge_freq (ALLOCNO_LOOP_TREE_NODE (a),
ALLOCNO_REGNO (a), false)),
m_exit_freq (ira_loop_edge_freq (ALLOCNO_LOOP_TREE_NODE (a),
ALLOCNO_REGNO (a), true))
{
}
/* Calculate and return the cost of putting allocno A into memory. */
static int
calculate_allocno_spill_cost (ira_allocno_t a)
{
int regno, cost;
ira_allocno_t parent_allocno;
ira_loop_tree_node_t parent_node, loop_node;
regno = ALLOCNO_REGNO (a);
cost = ALLOCNO_UPDATED_MEMORY_COST (a) - ALLOCNO_UPDATED_CLASS_COST (a);
if (ALLOCNO_CAP (a) != NULL)
return cost;
loop_node = ALLOCNO_LOOP_TREE_NODE (a);
if ((parent_node = loop_node->parent) == NULL)
return cost;
if ((parent_allocno = parent_node->regno_allocno_map[regno]) == NULL)
return cost;
ira_loop_border_costs border_costs (a);
if (ALLOCNO_HARD_REGNO (parent_allocno) < 0)
cost -= border_costs.spill_outside_loop_cost ();
else
cost += (border_costs.spill_inside_loop_cost ()
- border_costs.move_between_loops_cost ());
return cost;
}
/* Used for sorting allocnos for spilling. */
static inline int
allocno_spill_priority_compare (ira_allocno_t a1, ira_allocno_t a2)
{
int pri1, pri2, diff;
/* Avoid spilling static chain pointer pseudo when non-local goto is
used. */
if (non_spilled_static_chain_regno_p (ALLOCNO_REGNO (a1)))
return 1;
else if (non_spilled_static_chain_regno_p (ALLOCNO_REGNO (a2)))
return -1;
if (ALLOCNO_BAD_SPILL_P (a1) && ! ALLOCNO_BAD_SPILL_P (a2))
return 1;
if (ALLOCNO_BAD_SPILL_P (a2) && ! ALLOCNO_BAD_SPILL_P (a1))
return -1;
pri1 = allocno_spill_priority (a1);
pri2 = allocno_spill_priority (a2);
if ((diff = pri1 - pri2) != 0)
return diff;
if ((diff
= ALLOCNO_COLOR_DATA (a1)->temp - ALLOCNO_COLOR_DATA (a2)->temp) != 0)
return diff;
return ALLOCNO_NUM (a1) - ALLOCNO_NUM (a2);
}
/* Used for sorting allocnos for spilling. */
static int
allocno_spill_sort_compare (const void *v1p, const void *v2p)
{
ira_allocno_t p1 = *(const ira_allocno_t *) v1p;
ira_allocno_t p2 = *(const ira_allocno_t *) v2p;
return allocno_spill_priority_compare (p1, p2);
}
/* Push allocnos to the coloring stack. The order of allocnos in the
stack defines the order for the subsequent coloring. */
static void
push_allocnos_to_stack (void)
{
ira_allocno_t a;
int cost;
/* Calculate uncolorable allocno spill costs. */
for (a = uncolorable_allocno_bucket;
a != NULL;
a = ALLOCNO_COLOR_DATA (a)->next_bucket_allocno)
if (ALLOCNO_CLASS (a) != NO_REGS)
{
cost = calculate_allocno_spill_cost (a);
/* ??? Remove cost of copies between the coalesced
allocnos. */
ALLOCNO_COLOR_DATA (a)->temp = cost;
}
sort_bucket (&uncolorable_allocno_bucket, allocno_spill_sort_compare);
for (;;)
{
push_only_colorable ();
a = uncolorable_allocno_bucket;
if (a == NULL)
break;
remove_allocno_from_bucket_and_push (a, false);
}
ira_assert (colorable_allocno_bucket == NULL
&& uncolorable_allocno_bucket == NULL);
ira_assert (uncolorable_allocnos_num == 0);
}
/* Pop the coloring stack and assign hard registers to the popped
allocnos. */
static void
pop_allocnos_from_stack (void)
{
ira_allocno_t allocno;
enum reg_class aclass;
for (;allocno_stack_vec.length () != 0;)
{
allocno = allocno_stack_vec.pop ();
aclass = ALLOCNO_CLASS (allocno);
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
{
fprintf (ira_dump_file, " Popping");
ira_print_expanded_allocno (allocno);
fprintf (ira_dump_file, " -- ");
}
if (aclass == NO_REGS)
{
ALLOCNO_HARD_REGNO (allocno) = -1;
ALLOCNO_ASSIGNED_P (allocno) = true;
ira_assert (ALLOCNO_UPDATED_HARD_REG_COSTS (allocno) == NULL);
ira_assert
(ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (allocno) == NULL);
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
fprintf (ira_dump_file, "assign memory\n");
}
else if (assign_hard_reg (allocno, false))
{
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
fprintf (ira_dump_file, " assign reg %d\n",
ALLOCNO_HARD_REGNO (allocno));
}
else if (ALLOCNO_ASSIGNED_P (allocno))
{
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
fprintf (ira_dump_file, "spill%s\n",
ALLOCNO_COLOR_DATA (allocno)->may_be_spilled_p
? "" : "!");
}
ALLOCNO_COLOR_DATA (allocno)->in_graph_p = true;
}
}
/* Set up number of available hard registers for allocno A. */
static void
setup_allocno_available_regs_num (ira_allocno_t a)
{
int i, n, hard_regno, hard_regs_num, nwords;
enum reg_class aclass;
allocno_color_data_t data;
aclass = ALLOCNO_CLASS (a);
data = ALLOCNO_COLOR_DATA (a);
data->available_regs_num = 0;
if (aclass == NO_REGS)
return;
hard_regs_num = ira_class_hard_regs_num[aclass];
nwords = ALLOCNO_NUM_OBJECTS (a);
for (n = 0, i = hard_regs_num - 1; i >= 0; i--)
{
hard_regno = ira_class_hard_regs[aclass][i];
/* Checking only profitable hard regs. */
if (TEST_HARD_REG_BIT (data->profitable_hard_regs, hard_regno))
n++;
}
data->available_regs_num = n;
if (internal_flag_ira_verbose <= 2 || ira_dump_file == NULL)
return;
fprintf
(ira_dump_file,
" Allocno a%dr%d of %s(%d) has %d avail. regs ",
ALLOCNO_NUM (a), ALLOCNO_REGNO (a),
reg_class_names[aclass], ira_class_hard_regs_num[aclass], n);
print_hard_reg_set (ira_dump_file, data->profitable_hard_regs, false);
fprintf (ira_dump_file, ", %snode: ",
data->profitable_hard_regs == data->hard_regs_node->hard_regs->set
? "" : "^");
print_hard_reg_set (ira_dump_file,
data->hard_regs_node->hard_regs->set, false);
for (i = 0; i < nwords; i++)
{
ira_object_t obj = ALLOCNO_OBJECT (a, i);
if (nwords != 1)
{
if (i != 0)
fprintf (ira_dump_file, ", ");
fprintf (ira_dump_file, " obj %d", i);
}
fprintf (ira_dump_file, " (confl regs = ");
print_hard_reg_set (ira_dump_file, OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
false);
fprintf (ira_dump_file, ")");
}
fprintf (ira_dump_file, "\n");
}
/* Put ALLOCNO in a bucket corresponding to its number and size of its
conflicting allocnos and hard registers. */
static void
put_allocno_into_bucket (ira_allocno_t allocno)
{
ALLOCNO_COLOR_DATA (allocno)->in_graph_p = true;
setup_allocno_available_regs_num (allocno);
if (setup_left_conflict_sizes_p (allocno))
add_allocno_to_bucket (allocno, &colorable_allocno_bucket);
else
add_allocno_to_bucket (allocno, &uncolorable_allocno_bucket);
}
/* Map: allocno number -> allocno priority. */
static int *allocno_priorities;
/* Set up priorities for N allocnos in array
CONSIDERATION_ALLOCNOS. */
static void
setup_allocno_priorities (ira_allocno_t *consideration_allocnos, int n)
{
int i, length, nrefs, priority, max_priority, mult, diff;
ira_allocno_t a;
max_priority = 0;
for (i = 0; i < n; i++)
{
a = consideration_allocnos[i];
nrefs = ALLOCNO_NREFS (a);
ira_assert (nrefs >= 0);
mult = floor_log2 (ALLOCNO_NREFS (a)) + 1;
ira_assert (mult >= 0);
mult *= ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
diff = ALLOCNO_MEMORY_COST (a) - ALLOCNO_CLASS_COST (a);
#ifdef __has_builtin
#if __has_builtin(__builtin_smul_overflow)
#define HAS_SMUL_OVERFLOW
#endif
#endif
/* Multiplication can overflow for very large functions.
Check the overflow and constrain the result if necessary: */
#ifdef HAS_SMUL_OVERFLOW
if (__builtin_smul_overflow (mult, diff, &priority)
|| priority < -INT_MAX)
priority = diff >= 0 ? INT_MAX : -INT_MAX;
#else
static_assert
(sizeof (long long) >= 2 * sizeof (int),
"overflow code does not work for such int and long long sizes");
long long priorityll = (long long) mult * diff;
if (priorityll < -INT_MAX || priorityll > INT_MAX)
priority = diff >= 0 ? INT_MAX : -INT_MAX;
else
priority = priorityll;
#endif
allocno_priorities[ALLOCNO_NUM (a)] = priority;
if (priority < 0)
priority = -priority;
if (max_priority < priority)
max_priority = priority;
}
mult = max_priority == 0 ? 1 : INT_MAX / max_priority;
for (i = 0; i < n; i++)
{
a = consideration_allocnos[i];
length = ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a);
if (ALLOCNO_NUM_OBJECTS (a) > 1)
length /= ALLOCNO_NUM_OBJECTS (a);
if (length <= 0)
length = 1;
allocno_priorities[ALLOCNO_NUM (a)]
= allocno_priorities[ALLOCNO_NUM (a)] * mult / length;
}
}
/* Sort allocnos according to the profit of usage of a hard register
instead of memory for them. */
static int
allocno_cost_compare_func (const void *v1p, const void *v2p)
{
ira_allocno_t p1 = *(const ira_allocno_t *) v1p;
ira_allocno_t p2 = *(const ira_allocno_t *) v2p;
int c1, c2;
c1 = ALLOCNO_UPDATED_MEMORY_COST (p1) - ALLOCNO_UPDATED_CLASS_COST (p1);
c2 = ALLOCNO_UPDATED_MEMORY_COST (p2) - ALLOCNO_UPDATED_CLASS_COST (p2);
if (c1 - c2)
return c1 - c2;