| // fast_float by Daniel Lemire |
| // fast_float by João Paulo Magalhaes |
| // |
| // with contributions from Eugene Golushkov |
| // with contributions from Maksim Kita |
| // with contributions from Marcin Wojdyr |
| // with contributions from Neal Richardson |
| // with contributions from Tim Paine |
| // with contributions from Fabio Pellacini |
| // |
| // MIT License Notice |
| // |
| // MIT License |
| // |
| // Copyright (c) 2021 The fast_float authors |
| // |
| // Permission is hereby granted, free of charge, to any |
| // person obtaining a copy of this software and associated |
| // documentation files (the "Software"), to deal in the |
| // Software without restriction, including without |
| // limitation the rights to use, copy, modify, merge, |
| // publish, distribute, sublicense, and/or sell copies of |
| // the Software, and to permit persons to whom the Software |
| // is furnished to do so, subject to the following |
| // conditions: |
| // |
| // The above copyright notice and this permission notice |
| // shall be included in all copies or substantial portions |
| // of the Software. |
| // |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF |
| // ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED |
| // TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A |
| // PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT |
| // SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY |
| // CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
| // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR |
| // IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| // DEALINGS IN THE SOFTWARE. |
| // |
| |
| #ifndef FASTFLOAT_FAST_FLOAT_H |
| #define FASTFLOAT_FAST_FLOAT_H |
| |
| namespace fast_float { |
| |
| using std::chars_format; |
| using std::from_chars_result; |
| |
| struct parse_options { |
| constexpr explicit parse_options(chars_format fmt = chars_format::general, |
| char dot = '.') |
| : format(fmt), decimal_point(dot) {} |
| |
| /** Which number formats are accepted */ |
| chars_format format; |
| /** The character used as decimal point */ |
| char decimal_point; |
| }; |
| |
| /** |
| * This function parses the character sequence [first,last) for a number. It parses floating-point numbers expecting |
| * a locale-indepent format equivalent to what is used by std::strtod in the default ("C") locale. |
| * The resulting floating-point value is the closest floating-point values (using either float or double), |
| * using the "round to even" convention for values that would otherwise fall right in-between two values. |
| * That is, we provide exact parsing according to the IEEE standard. |
| * |
| * Given a successful parse, the pointer (`ptr`) in the returned value is set to point right after the |
| * parsed number, and the `value` referenced is set to the parsed value. In case of error, the returned |
| * `ec` contains a representative error, otherwise the default (`std::errc()`) value is stored. |
| * |
| * The implementation does not throw and does not allocate memory (e.g., with `new` or `malloc`). |
| * |
| * Like the C++17 standard, the `fast_float::from_chars` functions take an optional last argument of |
| * the type `fast_float::chars_format`. It is a bitset value: we check whether |
| * `fmt & fast_float::chars_format::fixed` and `fmt & fast_float::chars_format::scientific` are set |
| * to determine whether we allow the fixed point and scientific notation respectively. |
| * The default is `fast_float::chars_format::general` which allows both `fixed` and `scientific`. |
| */ |
| template<typename T> |
| from_chars_result from_chars(const char *first, const char *last, |
| T &value, chars_format fmt = chars_format::general) noexcept; |
| |
| /** |
| * Like from_chars, but accepts an `options` argument to govern number parsing. |
| */ |
| template<typename T> |
| from_chars_result from_chars_advanced(const char *first, const char *last, |
| T &value, parse_options options) noexcept; |
| |
| } |
| #endif // FASTFLOAT_FAST_FLOAT_H |
| |
| #ifndef FASTFLOAT_FLOAT_COMMON_H |
| #define FASTFLOAT_FLOAT_COMMON_H |
| |
| #if (defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) \ |
| || defined(__amd64) || defined(__aarch64__) || defined(_M_ARM64) \ |
| || defined(__MINGW64__) \ |
| || defined(__s390x__) \ |
| || (defined(__ppc64__) || defined(__PPC64__) || defined(__ppc64le__) || defined(__PPC64LE__)) ) |
| #define FASTFLOAT_64BIT 1 |
| #elif (defined(__i386) || defined(__i386__) || defined(_M_IX86) \ |
| || defined(__arm__) || defined(_M_ARM) \ |
| || defined(__MINGW32__) || defined(__EMSCRIPTEN__)) |
| #define FASTFLOAT_32BIT 1 |
| #else |
| // Need to check incrementally, since SIZE_MAX is a size_t, avoid overflow. |
| // We can never tell the register width, but the SIZE_MAX is a good approximation. |
| // UINTPTR_MAX and INTPTR_MAX are optional, so avoid them for max portability. |
| #if SIZE_MAX == 0xffff |
| #error Unknown platform (16-bit, unsupported) |
| #elif SIZE_MAX == 0xffffffff |
| #define FASTFLOAT_32BIT 1 |
| #elif SIZE_MAX == 0xffffffffffffffff |
| #define FASTFLOAT_64BIT 1 |
| #else |
| #error Unknown platform (not 32-bit, not 64-bit?) |
| #endif |
| #endif |
| |
| #if ((defined(_WIN32) || defined(_WIN64)) && !defined(__clang__)) |
| #include <intrin.h> |
| #endif |
| |
| #if defined(_MSC_VER) && !defined(__clang__) |
| #define FASTFLOAT_VISUAL_STUDIO 1 |
| #endif |
| |
| #if defined __BYTE_ORDER__ && defined __ORDER_BIG_ENDIAN__ |
| #define FASTFLOAT_IS_BIG_ENDIAN (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) |
| #elif defined _WIN32 |
| #define FASTFLOAT_IS_BIG_ENDIAN 0 |
| #else |
| #if defined(__APPLE__) || defined(__FreeBSD__) |
| #include <machine/endian.h> |
| #elif defined(sun) || defined(__sun) |
| #include <sys/byteorder.h> |
| #else |
| #include <endian.h> |
| #endif |
| # |
| #ifndef __BYTE_ORDER__ |
| // safe choice |
| #define FASTFLOAT_IS_BIG_ENDIAN 0 |
| #endif |
| # |
| #ifndef __ORDER_LITTLE_ENDIAN__ |
| // safe choice |
| #define FASTFLOAT_IS_BIG_ENDIAN 0 |
| #endif |
| # |
| #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ |
| #define FASTFLOAT_IS_BIG_ENDIAN 0 |
| #else |
| #define FASTFLOAT_IS_BIG_ENDIAN 1 |
| #endif |
| #endif |
| |
| #ifdef FASTFLOAT_VISUAL_STUDIO |
| #define fastfloat_really_inline __forceinline |
| #else |
| #define fastfloat_really_inline inline __attribute__((always_inline)) |
| #endif |
| |
| #ifndef FASTFLOAT_ASSERT |
| #define FASTFLOAT_ASSERT(x) { if (!(x)) abort(); } |
| #endif |
| |
| #ifndef FASTFLOAT_DEBUG_ASSERT |
| #include <cassert> |
| #define FASTFLOAT_DEBUG_ASSERT(x) assert(x) |
| #endif |
| |
| // rust style `try!()` macro, or `?` operator |
| #define FASTFLOAT_TRY(x) { if (!(x)) return false; } |
| |
| namespace fast_float { |
| |
| // Compares two ASCII strings in a case insensitive manner. |
| inline bool fastfloat_strncasecmp(const char *input1, const char *input2, |
| size_t length) { |
| char running_diff{0}; |
| for (size_t i = 0; i < length; i++) { |
| running_diff |= (input1[i] ^ input2[i]); |
| } |
| return (running_diff == 0) || (running_diff == 32); |
| } |
| |
| #ifndef FLT_EVAL_METHOD |
| #error "FLT_EVAL_METHOD should be defined, please include cfloat." |
| #endif |
| |
| // a pointer and a length to a contiguous block of memory |
| template <typename T> |
| struct span { |
| const T* ptr; |
| size_t length; |
| span(const T* _ptr, size_t _length) : ptr(_ptr), length(_length) {} |
| span() : ptr(nullptr), length(0) {} |
| |
| constexpr size_t len() const noexcept { |
| return length; |
| } |
| |
| const T& operator[](size_t index) const noexcept { |
| FASTFLOAT_DEBUG_ASSERT(index < length); |
| return ptr[index]; |
| } |
| }; |
| |
| struct value128 { |
| uint64_t low; |
| uint64_t high; |
| value128(uint64_t _low, uint64_t _high) : low(_low), high(_high) {} |
| value128() : low(0), high(0) {} |
| }; |
| |
| /* result might be undefined when input_num is zero */ |
| fastfloat_really_inline int leading_zeroes(uint64_t input_num) { |
| FASTFLOAT_DEBUG_ASSERT(input_num > 0); |
| #ifdef FASTFLOAT_VISUAL_STUDIO |
| #if defined(_M_X64) || defined(_M_ARM64) |
| unsigned long leading_zero = 0; |
| // Search the mask data from most significant bit (MSB) |
| // to least significant bit (LSB) for a set bit (1). |
| _BitScanReverse64(&leading_zero, input_num); |
| return (int)(63 - leading_zero); |
| #else |
| int last_bit = 0; |
| if(input_num & uint64_t(0xffffffff00000000)) input_num >>= 32, last_bit |= 32; |
| if(input_num & uint64_t( 0xffff0000)) input_num >>= 16, last_bit |= 16; |
| if(input_num & uint64_t( 0xff00)) input_num >>= 8, last_bit |= 8; |
| if(input_num & uint64_t( 0xf0)) input_num >>= 4, last_bit |= 4; |
| if(input_num & uint64_t( 0xc)) input_num >>= 2, last_bit |= 2; |
| if(input_num & uint64_t( 0x2)) input_num >>= 1, last_bit |= 1; |
| return 63 - last_bit; |
| #endif |
| #else |
| return __builtin_clzll(input_num); |
| #endif |
| } |
| |
| #ifdef FASTFLOAT_32BIT |
| |
| // slow emulation routine for 32-bit |
| fastfloat_really_inline uint64_t emulu(uint32_t x, uint32_t y) { |
| return x * (uint64_t)y; |
| } |
| |
| // slow emulation routine for 32-bit |
| #if !defined(__MINGW64__) |
| fastfloat_really_inline uint64_t _umul128(uint64_t ab, uint64_t cd, |
| uint64_t *hi) { |
| uint64_t ad = emulu((uint32_t)(ab >> 32), (uint32_t)cd); |
| uint64_t bd = emulu((uint32_t)ab, (uint32_t)cd); |
| uint64_t adbc = ad + emulu((uint32_t)ab, (uint32_t)(cd >> 32)); |
| uint64_t adbc_carry = !!(adbc < ad); |
| uint64_t lo = bd + (adbc << 32); |
| *hi = emulu((uint32_t)(ab >> 32), (uint32_t)(cd >> 32)) + (adbc >> 32) + |
| (adbc_carry << 32) + !!(lo < bd); |
| return lo; |
| } |
| #endif // !__MINGW64__ |
| |
| #endif // FASTFLOAT_32BIT |
| |
| |
| // compute 64-bit a*b |
| fastfloat_really_inline value128 full_multiplication(uint64_t a, |
| uint64_t b) { |
| value128 answer; |
| #if defined(_M_ARM64) && !defined(__MINGW32__) |
| // ARM64 has native support for 64-bit multiplications, no need to emulate |
| // But MinGW on ARM64 doesn't have native support for 64-bit multiplications |
| answer.high = __umulh(a, b); |
| answer.low = a * b; |
| #elif defined(FASTFLOAT_32BIT) || (defined(_WIN64) && !defined(__clang__)) |
| answer.low = _umul128(a, b, &answer.high); // _umul128 not available on ARM64 |
| #elif defined(FASTFLOAT_64BIT) |
| __uint128_t r = ((__uint128_t)a) * b; |
| answer.low = uint64_t(r); |
| answer.high = uint64_t(r >> 64); |
| #else |
| #error Not implemented |
| #endif |
| return answer; |
| } |
| |
| struct adjusted_mantissa { |
| uint64_t mantissa{0}; |
| int32_t power2{0}; // a negative value indicates an invalid result |
| adjusted_mantissa() = default; |
| bool operator==(const adjusted_mantissa &o) const { |
| return mantissa == o.mantissa && power2 == o.power2; |
| } |
| bool operator!=(const adjusted_mantissa &o) const { |
| return mantissa != o.mantissa || power2 != o.power2; |
| } |
| }; |
| |
| // Bias so we can get the real exponent with an invalid adjusted_mantissa. |
| constexpr static int32_t invalid_am_bias = -0x8000; |
| |
| constexpr static double powers_of_ten_double[] = { |
| 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, |
| 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22}; |
| constexpr static float powers_of_ten_float[] = {1e0, 1e1, 1e2, 1e3, 1e4, 1e5, |
| 1e6, 1e7, 1e8, 1e9, 1e10}; |
| // used for max_mantissa_double and max_mantissa_float |
| constexpr uint64_t constant_55555 = 5 * 5 * 5 * 5 * 5; |
| // Largest integer value v so that (5**index * v) <= 1<<53. |
| // 0x10000000000000 == 1 << 53 |
| constexpr static uint64_t max_mantissa_double[] = { |
| 0x10000000000000, |
| 0x10000000000000 / 5, |
| 0x10000000000000 / (5 * 5), |
| 0x10000000000000 / (5 * 5 * 5), |
| 0x10000000000000 / (5 * 5 * 5 * 5), |
| 0x10000000000000 / (constant_55555), |
| 0x10000000000000 / (constant_55555 * 5), |
| 0x10000000000000 / (constant_55555 * 5 * 5), |
| 0x10000000000000 / (constant_55555 * 5 * 5 * 5), |
| 0x10000000000000 / (constant_55555 * 5 * 5 * 5 * 5), |
| 0x10000000000000 / (constant_55555 * constant_55555), |
| 0x10000000000000 / (constant_55555 * constant_55555 * 5), |
| 0x10000000000000 / (constant_55555 * constant_55555 * 5 * 5), |
| 0x10000000000000 / (constant_55555 * constant_55555 * 5 * 5 * 5), |
| 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555), |
| 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5), |
| 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5 * 5), |
| 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5), |
| 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5 * 5), |
| 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555), |
| 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555 * 5), |
| 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555 * 5 * 5), |
| 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5), |
| 0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5 * 5)}; |
| // Largest integer value v so that (5**index * v) <= 1<<24. |
| // 0x1000000 == 1<<24 |
| constexpr static uint64_t max_mantissa_float[] = { |
| 0x1000000, |
| 0x1000000 / 5, |
| 0x1000000 / (5 * 5), |
| 0x1000000 / (5 * 5 * 5), |
| 0x1000000 / (5 * 5 * 5 * 5), |
| 0x1000000 / (constant_55555), |
| 0x1000000 / (constant_55555 * 5), |
| 0x1000000 / (constant_55555 * 5 * 5), |
| 0x1000000 / (constant_55555 * 5 * 5 * 5), |
| 0x1000000 / (constant_55555 * 5 * 5 * 5 * 5), |
| 0x1000000 / (constant_55555 * constant_55555), |
| 0x1000000 / (constant_55555 * constant_55555 * 5)}; |
| |
| template <typename T> struct binary_format { |
| using equiv_uint = typename std::conditional<sizeof(T) == 4, uint32_t, uint64_t>::type; |
| |
| static inline constexpr int mantissa_explicit_bits(); |
| static inline constexpr int minimum_exponent(); |
| static inline constexpr int infinite_power(); |
| static inline constexpr int sign_index(); |
| static inline constexpr int min_exponent_fast_path(); // used when fegetround() == FE_TONEAREST |
| static inline constexpr int max_exponent_fast_path(); |
| static inline constexpr int max_exponent_round_to_even(); |
| static inline constexpr int min_exponent_round_to_even(); |
| static inline constexpr uint64_t max_mantissa_fast_path(int64_t power); |
| static inline constexpr uint64_t max_mantissa_fast_path(); // used when fegetround() == FE_TONEAREST |
| static inline constexpr int largest_power_of_ten(); |
| static inline constexpr int smallest_power_of_ten(); |
| static inline constexpr T exact_power_of_ten(int64_t power); |
| static inline constexpr size_t max_digits(); |
| static inline constexpr equiv_uint exponent_mask(); |
| static inline constexpr equiv_uint mantissa_mask(); |
| static inline constexpr equiv_uint hidden_bit_mask(); |
| }; |
| |
| template <> inline constexpr int binary_format<double>::min_exponent_fast_path() { |
| #if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) |
| return 0; |
| #else |
| return -22; |
| #endif |
| } |
| |
| template <> inline constexpr int binary_format<float>::min_exponent_fast_path() { |
| #if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) |
| return 0; |
| #else |
| return -10; |
| #endif |
| } |
| |
| template <> inline constexpr int binary_format<double>::mantissa_explicit_bits() { |
| return 52; |
| } |
| template <> inline constexpr int binary_format<float>::mantissa_explicit_bits() { |
| return 23; |
| } |
| |
| template <> inline constexpr int binary_format<double>::max_exponent_round_to_even() { |
| return 23; |
| } |
| |
| template <> inline constexpr int binary_format<float>::max_exponent_round_to_even() { |
| return 10; |
| } |
| |
| template <> inline constexpr int binary_format<double>::min_exponent_round_to_even() { |
| return -4; |
| } |
| |
| template <> inline constexpr int binary_format<float>::min_exponent_round_to_even() { |
| return -17; |
| } |
| |
| template <> inline constexpr int binary_format<double>::minimum_exponent() { |
| return -1023; |
| } |
| template <> inline constexpr int binary_format<float>::minimum_exponent() { |
| return -127; |
| } |
| |
| template <> inline constexpr int binary_format<double>::infinite_power() { |
| return 0x7FF; |
| } |
| template <> inline constexpr int binary_format<float>::infinite_power() { |
| return 0xFF; |
| } |
| |
| template <> inline constexpr int binary_format<double>::sign_index() { return 63; } |
| template <> inline constexpr int binary_format<float>::sign_index() { return 31; } |
| |
| template <> inline constexpr int binary_format<double>::max_exponent_fast_path() { |
| return 22; |
| } |
| template <> inline constexpr int binary_format<float>::max_exponent_fast_path() { |
| return 10; |
| } |
| template <> inline constexpr uint64_t binary_format<double>::max_mantissa_fast_path() { |
| return uint64_t(2) << mantissa_explicit_bits(); |
| } |
| template <> inline constexpr uint64_t binary_format<double>::max_mantissa_fast_path(int64_t power) { |
| // caller is responsible to ensure that |
| // power >= 0 && power <= 22 |
| // |
| return max_mantissa_double[power]; |
| } |
| template <> inline constexpr uint64_t binary_format<float>::max_mantissa_fast_path() { |
| return uint64_t(2) << mantissa_explicit_bits(); |
| } |
| template <> inline constexpr uint64_t binary_format<float>::max_mantissa_fast_path(int64_t power) { |
| // caller is responsible to ensure that |
| // power >= 0 && power <= 10 |
| // |
| return max_mantissa_float[power]; |
| } |
| |
| template <> |
| inline constexpr double binary_format<double>::exact_power_of_ten(int64_t power) { |
| return powers_of_ten_double[power]; |
| } |
| template <> |
| inline constexpr float binary_format<float>::exact_power_of_ten(int64_t power) { |
| |
| return powers_of_ten_float[power]; |
| } |
| |
| |
| template <> |
| inline constexpr int binary_format<double>::largest_power_of_ten() { |
| return 308; |
| } |
| template <> |
| inline constexpr int binary_format<float>::largest_power_of_ten() { |
| return 38; |
| } |
| |
| template <> |
| inline constexpr int binary_format<double>::smallest_power_of_ten() { |
| return -342; |
| } |
| template <> |
| inline constexpr int binary_format<float>::smallest_power_of_ten() { |
| return -65; |
| } |
| |
| template <> inline constexpr size_t binary_format<double>::max_digits() { |
| return 769; |
| } |
| template <> inline constexpr size_t binary_format<float>::max_digits() { |
| return 114; |
| } |
| |
| template <> inline constexpr binary_format<float>::equiv_uint |
| binary_format<float>::exponent_mask() { |
| return 0x7F800000; |
| } |
| template <> inline constexpr binary_format<double>::equiv_uint |
| binary_format<double>::exponent_mask() { |
| return 0x7FF0000000000000; |
| } |
| |
| template <> inline constexpr binary_format<float>::equiv_uint |
| binary_format<float>::mantissa_mask() { |
| return 0x007FFFFF; |
| } |
| template <> inline constexpr binary_format<double>::equiv_uint |
| binary_format<double>::mantissa_mask() { |
| return 0x000FFFFFFFFFFFFF; |
| } |
| |
| template <> inline constexpr binary_format<float>::equiv_uint |
| binary_format<float>::hidden_bit_mask() { |
| return 0x00800000; |
| } |
| template <> inline constexpr binary_format<double>::equiv_uint |
| binary_format<double>::hidden_bit_mask() { |
| return 0x0010000000000000; |
| } |
| |
| template<typename T> |
| fastfloat_really_inline void to_float(bool negative, adjusted_mantissa am, T &value) { |
| uint64_t word = am.mantissa; |
| word |= uint64_t(am.power2) << binary_format<T>::mantissa_explicit_bits(); |
| word = negative |
| ? word | (uint64_t(1) << binary_format<T>::sign_index()) : word; |
| #if FASTFLOAT_IS_BIG_ENDIAN == 1 |
| if (std::is_same<T, float>::value) { |
| ::memcpy(&value, (char *)&word + 4, sizeof(T)); // extract value at offset 4-7 if float on big-endian |
| } else { |
| ::memcpy(&value, &word, sizeof(T)); |
| } |
| #else |
| // For little-endian systems: |
| ::memcpy(&value, &word, sizeof(T)); |
| #endif |
| } |
| |
| } // namespace fast_float |
| |
| #endif |
| |
| #ifndef FASTFLOAT_ASCII_NUMBER_H |
| #define FASTFLOAT_ASCII_NUMBER_H |
| |
| |
| namespace fast_float { |
| |
| // Next function can be micro-optimized, but compilers are entirely |
| // able to optimize it well. |
| fastfloat_really_inline bool is_integer(char c) noexcept { return c >= '0' && c <= '9'; } |
| |
| fastfloat_really_inline uint64_t byteswap(uint64_t val) { |
| return (val & 0xFF00000000000000) >> 56 |
| | (val & 0x00FF000000000000) >> 40 |
| | (val & 0x0000FF0000000000) >> 24 |
| | (val & 0x000000FF00000000) >> 8 |
| | (val & 0x00000000FF000000) << 8 |
| | (val & 0x0000000000FF0000) << 24 |
| | (val & 0x000000000000FF00) << 40 |
| | (val & 0x00000000000000FF) << 56; |
| } |
| |
| fastfloat_really_inline uint64_t read_u64(const char *chars) { |
| uint64_t val; |
| ::memcpy(&val, chars, sizeof(uint64_t)); |
| #if FASTFLOAT_IS_BIG_ENDIAN == 1 |
| // Need to read as-if the number was in little-endian order. |
| val = byteswap(val); |
| #endif |
| return val; |
| } |
| |
| fastfloat_really_inline void write_u64(uint8_t *chars, uint64_t val) { |
| #if FASTFLOAT_IS_BIG_ENDIAN == 1 |
| // Need to read as-if the number was in little-endian order. |
| val = byteswap(val); |
| #endif |
| ::memcpy(chars, &val, sizeof(uint64_t)); |
| } |
| |
| // credit @aqrit |
| fastfloat_really_inline uint32_t parse_eight_digits_unrolled(uint64_t val) { |
| const uint64_t mask = 0x000000FF000000FF; |
| const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32) |
| const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32) |
| val -= 0x3030303030303030; |
| val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8; |
| val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32; |
| return uint32_t(val); |
| } |
| |
| fastfloat_really_inline uint32_t parse_eight_digits_unrolled(const char *chars) noexcept { |
| return parse_eight_digits_unrolled(read_u64(chars)); |
| } |
| |
| // credit @aqrit |
| fastfloat_really_inline bool is_made_of_eight_digits_fast(uint64_t val) noexcept { |
| return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) & |
| 0x8080808080808080)); |
| } |
| |
| fastfloat_really_inline bool is_made_of_eight_digits_fast(const char *chars) noexcept { |
| return is_made_of_eight_digits_fast(read_u64(chars)); |
| } |
| |
| typedef span<const char> byte_span; |
| |
| struct parsed_number_string { |
| int64_t exponent{0}; |
| uint64_t mantissa{0}; |
| const char *lastmatch{nullptr}; |
| bool negative{false}; |
| bool valid{false}; |
| bool too_many_digits{false}; |
| // contains the range of the significant digits |
| byte_span integer{}; // non-nullable |
| byte_span fraction{}; // nullable |
| }; |
| |
| // Assuming that you use no more than 19 digits, this will |
| // parse an ASCII string. |
| fastfloat_really_inline |
| parsed_number_string parse_number_string(const char *p, const char *pend, parse_options options) noexcept { |
| const chars_format fmt = options.format; |
| const char decimal_point = options.decimal_point; |
| |
| parsed_number_string answer; |
| answer.valid = false; |
| answer.too_many_digits = false; |
| answer.negative = (*p == '-'); |
| if (*p == '-') { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here |
| ++p; |
| if (p == pend) { |
| return answer; |
| } |
| if (!is_integer(*p) && (*p != decimal_point)) { // a sign must be followed by an integer or the dot |
| return answer; |
| } |
| } |
| const char *const start_digits = p; |
| |
| uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad) |
| |
| while ((p != pend) && is_integer(*p)) { |
| // a multiplication by 10 is cheaper than an arbitrary integer |
| // multiplication |
| i = 10 * i + |
| uint64_t(*p - '0'); // might overflow, we will handle the overflow later |
| ++p; |
| } |
| const char *const end_of_integer_part = p; |
| int64_t digit_count = int64_t(end_of_integer_part - start_digits); |
| answer.integer = byte_span(start_digits, size_t(digit_count)); |
| int64_t exponent = 0; |
| if ((p != pend) && (*p == decimal_point)) { |
| ++p; |
| const char* before = p; |
| // can occur at most twice without overflowing, but let it occur more, since |
| // for integers with many digits, digit parsing is the primary bottleneck. |
| while ((std::distance(p, pend) >= 8) && is_made_of_eight_digits_fast(p)) { |
| i = i * 100000000 + parse_eight_digits_unrolled(p); // in rare cases, this will overflow, but that's ok |
| p += 8; |
| } |
| while ((p != pend) && is_integer(*p)) { |
| uint8_t digit = uint8_t(*p - '0'); |
| ++p; |
| i = i * 10 + digit; // in rare cases, this will overflow, but that's ok |
| } |
| exponent = before - p; |
| answer.fraction = byte_span(before, size_t(p - before)); |
| digit_count -= exponent; |
| } |
| // we must have encountered at least one integer! |
| if (digit_count == 0) { |
| return answer; |
| } |
| int64_t exp_number = 0; // explicit exponential part |
| if (bool(fmt & chars_format::scientific) && (p != pend) && (('e' == *p) || ('E' == *p))) { |
| const char * location_of_e = p; |
| ++p; |
| bool neg_exp = false; |
| if ((p != pend) && ('-' == *p)) { |
| neg_exp = true; |
| ++p; |
| } else if ((p != pend) && ('+' == *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1) |
| ++p; |
| } |
| if ((p == pend) || !is_integer(*p)) { |
| if(!bool(fmt & chars_format::fixed)) { |
| // We are in error. |
| return answer; |
| } |
| // Otherwise, we will be ignoring the 'e'. |
| p = location_of_e; |
| } else { |
| while ((p != pend) && is_integer(*p)) { |
| uint8_t digit = uint8_t(*p - '0'); |
| if (exp_number < 0x10000000) { |
| exp_number = 10 * exp_number + digit; |
| } |
| ++p; |
| } |
| if(neg_exp) { exp_number = - exp_number; } |
| exponent += exp_number; |
| } |
| } else { |
| // If it scientific and not fixed, we have to bail out. |
| if(bool(fmt & chars_format::scientific) && !bool(fmt & chars_format::fixed)) { return answer; } |
| } |
| answer.lastmatch = p; |
| answer.valid = true; |
| |
| // If we frequently had to deal with long strings of digits, |
| // we could extend our code by using a 128-bit integer instead |
| // of a 64-bit integer. However, this is uncommon. |
| // |
| // We can deal with up to 19 digits. |
| if (digit_count > 19) { // this is uncommon |
| // It is possible that the integer had an overflow. |
| // We have to handle the case where we have 0.0000somenumber. |
| // We need to be mindful of the case where we only have zeroes... |
| // E.g., 0.000000000...000. |
| const char *start = start_digits; |
| while ((start != pend) && (*start == '0' || *start == decimal_point)) { |
| if(*start == '0') { digit_count --; } |
| start++; |
| } |
| if (digit_count > 19) { |
| answer.too_many_digits = true; |
| // Let us start again, this time, avoiding overflows. |
| // We don't need to check if is_integer, since we use the |
| // pre-tokenized spans from above. |
| i = 0; |
| p = answer.integer.ptr; |
| const char* int_end = p + answer.integer.len(); |
| const uint64_t minimal_nineteen_digit_integer{1000000000000000000}; |
| while((i < minimal_nineteen_digit_integer) && (p != int_end)) { |
| i = i * 10 + uint64_t(*p - '0'); |
| ++p; |
| } |
| if (i >= minimal_nineteen_digit_integer) { // We have a big integers |
| exponent = end_of_integer_part - p + exp_number; |
| } else { // We have a value with a fractional component. |
| p = answer.fraction.ptr; |
| const char* frac_end = p + answer.fraction.len(); |
| while((i < minimal_nineteen_digit_integer) && (p != frac_end)) { |
| i = i * 10 + uint64_t(*p - '0'); |
| ++p; |
| } |
| exponent = answer.fraction.ptr - p + exp_number; |
| } |
| // We have now corrected both exponent and i, to a truncated value |
| } |
| } |
| answer.exponent = exponent; |
| answer.mantissa = i; |
| return answer; |
| } |
| |
| } // namespace fast_float |
| |
| #endif |
| |
| #ifndef FASTFLOAT_FAST_TABLE_H |
| #define FASTFLOAT_FAST_TABLE_H |
| |
| namespace fast_float { |
| |
| /** |
| * When mapping numbers from decimal to binary, |
| * we go from w * 10^q to m * 2^p but we have |
| * 10^q = 5^q * 2^q, so effectively |
| * we are trying to match |
| * w * 2^q * 5^q to m * 2^p. Thus the powers of two |
| * are not a concern since they can be represented |
| * exactly using the binary notation, only the powers of five |
| * affect the binary significand. |
| */ |
| |
| /** |
| * The smallest non-zero float (binary64) is 2^−1074. |
| * We take as input numbers of the form w x 10^q where w < 2^64. |
| * We have that w * 10^-343 < 2^(64-344) 5^-343 < 2^-1076. |
| * However, we have that |
| * (2^64-1) * 10^-342 = (2^64-1) * 2^-342 * 5^-342 > 2^−1074. |
| * Thus it is possible for a number of the form w * 10^-342 where |
| * w is a 64-bit value to be a non-zero floating-point number. |
| ********* |
| * Any number of form w * 10^309 where w>= 1 is going to be |
| * infinite in binary64 so we never need to worry about powers |
| * of 5 greater than 308. |
| */ |
| template <class unused = void> |
| struct powers_template { |
| |
| constexpr static int smallest_power_of_five = binary_format<double>::smallest_power_of_ten(); |
| constexpr static int largest_power_of_five = binary_format<double>::largest_power_of_ten(); |
| constexpr static int number_of_entries = 2 * (largest_power_of_five - smallest_power_of_five + 1); |
| // Powers of five from 5^-342 all the way to 5^308 rounded toward one. |
| static const uint64_t power_of_five_128[number_of_entries]; |
| }; |
| |
| template <class unused> |
| const uint64_t powers_template<unused>::power_of_five_128[number_of_entries] = { |
| 0xeef453d6923bd65a,0x113faa2906a13b3f, |
| 0x9558b4661b6565f8,0x4ac7ca59a424c507, |
| 0xbaaee17fa23ebf76,0x5d79bcf00d2df649, |
| 0xe95a99df8ace6f53,0xf4d82c2c107973dc, |
| 0x91d8a02bb6c10594,0x79071b9b8a4be869, |
| 0xb64ec836a47146f9,0x9748e2826cdee284, |
| 0xe3e27a444d8d98b7,0xfd1b1b2308169b25, |
| 0x8e6d8c6ab0787f72,0xfe30f0f5e50e20f7, |
| 0xb208ef855c969f4f,0xbdbd2d335e51a935, |
| 0xde8b2b66b3bc4723,0xad2c788035e61382, |
| 0x8b16fb203055ac76,0x4c3bcb5021afcc31, |
| 0xaddcb9e83c6b1793,0xdf4abe242a1bbf3d, |
| 0xd953e8624b85dd78,0xd71d6dad34a2af0d, |
| 0x87d4713d6f33aa6b,0x8672648c40e5ad68, |
| 0xa9c98d8ccb009506,0x680efdaf511f18c2, |
| 0xd43bf0effdc0ba48,0x212bd1b2566def2, |
| 0x84a57695fe98746d,0x14bb630f7604b57, |
| 0xa5ced43b7e3e9188,0x419ea3bd35385e2d, |
| 0xcf42894a5dce35ea,0x52064cac828675b9, |
| 0x818995ce7aa0e1b2,0x7343efebd1940993, |
| 0xa1ebfb4219491a1f,0x1014ebe6c5f90bf8, |
| 0xca66fa129f9b60a6,0xd41a26e077774ef6, |
| 0xfd00b897478238d0,0x8920b098955522b4, |
| 0x9e20735e8cb16382,0x55b46e5f5d5535b0, |
| 0xc5a890362fddbc62,0xeb2189f734aa831d, |
| 0xf712b443bbd52b7b,0xa5e9ec7501d523e4, |
| 0x9a6bb0aa55653b2d,0x47b233c92125366e, |
| 0xc1069cd4eabe89f8,0x999ec0bb696e840a, |
| 0xf148440a256e2c76,0xc00670ea43ca250d, |
| 0x96cd2a865764dbca,0x380406926a5e5728, |
| 0xbc807527ed3e12bc,0xc605083704f5ecf2, |
| 0xeba09271e88d976b,0xf7864a44c633682e, |
| 0x93445b8731587ea3,0x7ab3ee6afbe0211d, |
| 0xb8157268fdae9e4c,0x5960ea05bad82964, |
| 0xe61acf033d1a45df,0x6fb92487298e33bd, |
| 0x8fd0c16206306bab,0xa5d3b6d479f8e056, |
| 0xb3c4f1ba87bc8696,0x8f48a4899877186c, |
| 0xe0b62e2929aba83c,0x331acdabfe94de87, |
| 0x8c71dcd9ba0b4925,0x9ff0c08b7f1d0b14, |
| 0xaf8e5410288e1b6f,0x7ecf0ae5ee44dd9, |
| 0xdb71e91432b1a24a,0xc9e82cd9f69d6150, |
| 0x892731ac9faf056e,0xbe311c083a225cd2, |
| 0xab70fe17c79ac6ca,0x6dbd630a48aaf406, |
| 0xd64d3d9db981787d,0x92cbbccdad5b108, |
| 0x85f0468293f0eb4e,0x25bbf56008c58ea5, |
| 0xa76c582338ed2621,0xaf2af2b80af6f24e, |
| 0xd1476e2c07286faa,0x1af5af660db4aee1, |
| 0x82cca4db847945ca,0x50d98d9fc890ed4d, |
| 0xa37fce126597973c,0xe50ff107bab528a0, |
| 0xcc5fc196fefd7d0c,0x1e53ed49a96272c8, |
| 0xff77b1fcbebcdc4f,0x25e8e89c13bb0f7a, |
| 0x9faacf3df73609b1,0x77b191618c54e9ac, |
| 0xc795830d75038c1d,0xd59df5b9ef6a2417, |
| 0xf97ae3d0d2446f25,0x4b0573286b44ad1d, |
| 0x9becce62836ac577,0x4ee367f9430aec32, |
| 0xc2e801fb244576d5,0x229c41f793cda73f, |
| 0xf3a20279ed56d48a,0x6b43527578c1110f, |
| 0x9845418c345644d6,0x830a13896b78aaa9, |
| 0xbe5691ef416bd60c,0x23cc986bc656d553, |
| 0xedec366b11c6cb8f,0x2cbfbe86b7ec8aa8, |
| 0x94b3a202eb1c3f39,0x7bf7d71432f3d6a9, |
| 0xb9e08a83a5e34f07,0xdaf5ccd93fb0cc53, |
| 0xe858ad248f5c22c9,0xd1b3400f8f9cff68, |
| 0x91376c36d99995be,0x23100809b9c21fa1, |
| 0xb58547448ffffb2d,0xabd40a0c2832a78a, |
| 0xe2e69915b3fff9f9,0x16c90c8f323f516c, |
| 0x8dd01fad907ffc3b,0xae3da7d97f6792e3, |
| 0xb1442798f49ffb4a,0x99cd11cfdf41779c, |
| 0xdd95317f31c7fa1d,0x40405643d711d583, |
| 0x8a7d3eef7f1cfc52,0x482835ea666b2572, |
| 0xad1c8eab5ee43b66,0xda3243650005eecf, |
| 0xd863b256369d4a40,0x90bed43e40076a82, |
| 0x873e4f75e2224e68,0x5a7744a6e804a291, |
| 0xa90de3535aaae202,0x711515d0a205cb36, |
| 0xd3515c2831559a83,0xd5a5b44ca873e03, |
| 0x8412d9991ed58091,0xe858790afe9486c2, |
| 0xa5178fff668ae0b6,0x626e974dbe39a872, |
| 0xce5d73ff402d98e3,0xfb0a3d212dc8128f, |
| 0x80fa687f881c7f8e,0x7ce66634bc9d0b99, |
| 0xa139029f6a239f72,0x1c1fffc1ebc44e80, |
| 0xc987434744ac874e,0xa327ffb266b56220, |
| 0xfbe9141915d7a922,0x4bf1ff9f0062baa8, |
| 0x9d71ac8fada6c9b5,0x6f773fc3603db4a9, |
| 0xc4ce17b399107c22,0xcb550fb4384d21d3, |
| 0xf6019da07f549b2b,0x7e2a53a146606a48, |
| 0x99c102844f94e0fb,0x2eda7444cbfc426d, |
| 0xc0314325637a1939,0xfa911155fefb5308, |
| 0xf03d93eebc589f88,0x793555ab7eba27ca, |
| 0x96267c7535b763b5,0x4bc1558b2f3458de, |
| 0xbbb01b9283253ca2,0x9eb1aaedfb016f16, |
| 0xea9c227723ee8bcb,0x465e15a979c1cadc, |
| 0x92a1958a7675175f,0xbfacd89ec191ec9, |
| 0xb749faed14125d36,0xcef980ec671f667b, |
| 0xe51c79a85916f484,0x82b7e12780e7401a, |
| 0x8f31cc0937ae58d2,0xd1b2ecb8b0908810, |
| 0xb2fe3f0b8599ef07,0x861fa7e6dcb4aa15, |
| 0xdfbdcece67006ac9,0x67a791e093e1d49a, |
| 0x8bd6a141006042bd,0xe0c8bb2c5c6d24e0, |
| 0xaecc49914078536d,0x58fae9f773886e18, |
| 0xda7f5bf590966848,0xaf39a475506a899e, |
| 0x888f99797a5e012d,0x6d8406c952429603, |
| 0xaab37fd7d8f58178,0xc8e5087ba6d33b83, |
| 0xd5605fcdcf32e1d6,0xfb1e4a9a90880a64, |
| 0x855c3be0a17fcd26,0x5cf2eea09a55067f, |
| 0xa6b34ad8c9dfc06f,0xf42faa48c0ea481e, |
| 0xd0601d8efc57b08b,0xf13b94daf124da26, |
| 0x823c12795db6ce57,0x76c53d08d6b70858, |
| 0xa2cb1717b52481ed,0x54768c4b0c64ca6e, |
| 0xcb7ddcdda26da268,0xa9942f5dcf7dfd09, |
| 0xfe5d54150b090b02,0xd3f93b35435d7c4c, |
| 0x9efa548d26e5a6e1,0xc47bc5014a1a6daf, |
| 0xc6b8e9b0709f109a,0x359ab6419ca1091b, |
| 0xf867241c8cc6d4c0,0xc30163d203c94b62, |
| 0x9b407691d7fc44f8,0x79e0de63425dcf1d, |
| 0xc21094364dfb5636,0x985915fc12f542e4, |
| 0xf294b943e17a2bc4,0x3e6f5b7b17b2939d, |
| 0x979cf3ca6cec5b5a,0xa705992ceecf9c42, |
| 0xbd8430bd08277231,0x50c6ff782a838353, |
| 0xece53cec4a314ebd,0xa4f8bf5635246428, |
| 0x940f4613ae5ed136,0x871b7795e136be99, |
| 0xb913179899f68584,0x28e2557b59846e3f, |
| 0xe757dd7ec07426e5,0x331aeada2fe589cf, |
| 0x9096ea6f3848984f,0x3ff0d2c85def7621, |
| 0xb4bca50b065abe63,0xfed077a756b53a9, |
| 0xe1ebce4dc7f16dfb,0xd3e8495912c62894, |
| 0x8d3360f09cf6e4bd,0x64712dd7abbbd95c, |
| 0xb080392cc4349dec,0xbd8d794d96aacfb3, |
| 0xdca04777f541c567,0xecf0d7a0fc5583a0, |
| 0x89e42caaf9491b60,0xf41686c49db57244, |
| 0xac5d37d5b79b6239,0x311c2875c522ced5, |
| 0xd77485cb25823ac7,0x7d633293366b828b, |
| 0x86a8d39ef77164bc,0xae5dff9c02033197, |
| 0xa8530886b54dbdeb,0xd9f57f830283fdfc, |
| 0xd267caa862a12d66,0xd072df63c324fd7b, |
| 0x8380dea93da4bc60,0x4247cb9e59f71e6d, |
| 0xa46116538d0deb78,0x52d9be85f074e608, |
| 0xcd795be870516656,0x67902e276c921f8b, |
| 0x806bd9714632dff6,0xba1cd8a3db53b6, |
| 0xa086cfcd97bf97f3,0x80e8a40eccd228a4, |
| 0xc8a883c0fdaf7df0,0x6122cd128006b2cd, |
| 0xfad2a4b13d1b5d6c,0x796b805720085f81, |
| 0x9cc3a6eec6311a63,0xcbe3303674053bb0, |
| 0xc3f490aa77bd60fc,0xbedbfc4411068a9c, |
| 0xf4f1b4d515acb93b,0xee92fb5515482d44, |
| 0x991711052d8bf3c5,0x751bdd152d4d1c4a, |
| 0xbf5cd54678eef0b6,0xd262d45a78a0635d, |
| 0xef340a98172aace4,0x86fb897116c87c34, |
| 0x9580869f0e7aac0e,0xd45d35e6ae3d4da0, |
| 0xbae0a846d2195712,0x8974836059cca109, |
| 0xe998d258869facd7,0x2bd1a438703fc94b, |
| 0x91ff83775423cc06,0x7b6306a34627ddcf, |
| 0xb67f6455292cbf08,0x1a3bc84c17b1d542, |
| 0xe41f3d6a7377eeca,0x20caba5f1d9e4a93, |
| 0x8e938662882af53e,0x547eb47b7282ee9c, |
| 0xb23867fb2a35b28d,0xe99e619a4f23aa43, |
| 0xdec681f9f4c31f31,0x6405fa00e2ec94d4, |
| 0x8b3c113c38f9f37e,0xde83bc408dd3dd04, |
| 0xae0b158b4738705e,0x9624ab50b148d445, |
| 0xd98ddaee19068c76,0x3badd624dd9b0957, |
| 0x87f8a8d4cfa417c9,0xe54ca5d70a80e5d6, |
| 0xa9f6d30a038d1dbc,0x5e9fcf4ccd211f4c, |
| 0xd47487cc8470652b,0x7647c3200069671f, |
| 0x84c8d4dfd2c63f3b,0x29ecd9f40041e073, |
| 0xa5fb0a17c777cf09,0xf468107100525890, |
| 0xcf79cc9db955c2cc,0x7182148d4066eeb4, |
| 0x81ac1fe293d599bf,0xc6f14cd848405530, |
| 0xa21727db38cb002f,0xb8ada00e5a506a7c, |
| 0xca9cf1d206fdc03b,0xa6d90811f0e4851c, |
| 0xfd442e4688bd304a,0x908f4a166d1da663, |
| 0x9e4a9cec15763e2e,0x9a598e4e043287fe, |
| 0xc5dd44271ad3cdba,0x40eff1e1853f29fd, |
| 0xf7549530e188c128,0xd12bee59e68ef47c, |
| 0x9a94dd3e8cf578b9,0x82bb74f8301958ce, |
| 0xc13a148e3032d6e7,0xe36a52363c1faf01, |
| 0xf18899b1bc3f8ca1,0xdc44e6c3cb279ac1, |
| 0x96f5600f15a7b7e5,0x29ab103a5ef8c0b9, |
| 0xbcb2b812db11a5de,0x7415d448f6b6f0e7, |
| 0xebdf661791d60f56,0x111b495b3464ad21, |
| 0x936b9fcebb25c995,0xcab10dd900beec34, |
| 0xb84687c269ef3bfb,0x3d5d514f40eea742, |
| 0xe65829b3046b0afa,0xcb4a5a3112a5112, |
| 0x8ff71a0fe2c2e6dc,0x47f0e785eaba72ab, |
| 0xb3f4e093db73a093,0x59ed216765690f56, |
| 0xe0f218b8d25088b8,0x306869c13ec3532c, |
| 0x8c974f7383725573,0x1e414218c73a13fb, |
| 0xafbd2350644eeacf,0xe5d1929ef90898fa, |
| 0xdbac6c247d62a583,0xdf45f746b74abf39, |
| 0x894bc396ce5da772,0x6b8bba8c328eb783, |
| 0xab9eb47c81f5114f,0x66ea92f3f326564, |
| 0xd686619ba27255a2,0xc80a537b0efefebd, |
| 0x8613fd0145877585,0xbd06742ce95f5f36, |
| 0xa798fc4196e952e7,0x2c48113823b73704, |
| 0xd17f3b51fca3a7a0,0xf75a15862ca504c5, |
| 0x82ef85133de648c4,0x9a984d73dbe722fb, |
| 0xa3ab66580d5fdaf5,0xc13e60d0d2e0ebba, |
| 0xcc963fee10b7d1b3,0x318df905079926a8, |
| 0xffbbcfe994e5c61f,0xfdf17746497f7052, |
| 0x9fd561f1fd0f9bd3,0xfeb6ea8bedefa633, |
| 0xc7caba6e7c5382c8,0xfe64a52ee96b8fc0, |
| 0xf9bd690a1b68637b,0x3dfdce7aa3c673b0, |
| 0x9c1661a651213e2d,0x6bea10ca65c084e, |
| 0xc31bfa0fe5698db8,0x486e494fcff30a62, |
| 0xf3e2f893dec3f126,0x5a89dba3c3efccfa, |
| 0x986ddb5c6b3a76b7,0xf89629465a75e01c, |
| 0xbe89523386091465,0xf6bbb397f1135823, |
| 0xee2ba6c0678b597f,0x746aa07ded582e2c, |
| 0x94db483840b717ef,0xa8c2a44eb4571cdc, |
| 0xba121a4650e4ddeb,0x92f34d62616ce413, |
| 0xe896a0d7e51e1566,0x77b020baf9c81d17, |
| 0x915e2486ef32cd60,0xace1474dc1d122e, |
| 0xb5b5ada8aaff80b8,0xd819992132456ba, |
| 0xe3231912d5bf60e6,0x10e1fff697ed6c69, |
| 0x8df5efabc5979c8f,0xca8d3ffa1ef463c1, |
| 0xb1736b96b6fd83b3,0xbd308ff8a6b17cb2, |
| 0xddd0467c64bce4a0,0xac7cb3f6d05ddbde, |
| 0x8aa22c0dbef60ee4,0x6bcdf07a423aa96b, |
| 0xad4ab7112eb3929d,0x86c16c98d2c953c6, |
| 0xd89d64d57a607744,0xe871c7bf077ba8b7, |
| 0x87625f056c7c4a8b,0x11471cd764ad4972, |
| 0xa93af6c6c79b5d2d,0xd598e40d3dd89bcf, |
| 0xd389b47879823479,0x4aff1d108d4ec2c3, |
| 0x843610cb4bf160cb,0xcedf722a585139ba, |
| 0xa54394fe1eedb8fe,0xc2974eb4ee658828, |
| 0xce947a3da6a9273e,0x733d226229feea32, |
| 0x811ccc668829b887,0x806357d5a3f525f, |
| 0xa163ff802a3426a8,0xca07c2dcb0cf26f7, |
| 0xc9bcff6034c13052,0xfc89b393dd02f0b5, |
| 0xfc2c3f3841f17c67,0xbbac2078d443ace2, |
| 0x9d9ba7832936edc0,0xd54b944b84aa4c0d, |
| 0xc5029163f384a931,0xa9e795e65d4df11, |
| 0xf64335bcf065d37d,0x4d4617b5ff4a16d5, |
| 0x99ea0196163fa42e,0x504bced1bf8e4e45, |
| 0xc06481fb9bcf8d39,0xe45ec2862f71e1d6, |
| 0xf07da27a82c37088,0x5d767327bb4e5a4c, |
| 0x964e858c91ba2655,0x3a6a07f8d510f86f, |
| 0xbbe226efb628afea,0x890489f70a55368b, |
| 0xeadab0aba3b2dbe5,0x2b45ac74ccea842e, |
| 0x92c8ae6b464fc96f,0x3b0b8bc90012929d, |
| 0xb77ada0617e3bbcb,0x9ce6ebb40173744, |
| 0xe55990879ddcaabd,0xcc420a6a101d0515, |
| 0x8f57fa54c2a9eab6,0x9fa946824a12232d, |
| 0xb32df8e9f3546564,0x47939822dc96abf9, |
| 0xdff9772470297ebd,0x59787e2b93bc56f7, |
| 0x8bfbea76c619ef36,0x57eb4edb3c55b65a, |
| 0xaefae51477a06b03,0xede622920b6b23f1, |
| 0xdab99e59958885c4,0xe95fab368e45eced, |
| 0x88b402f7fd75539b,0x11dbcb0218ebb414, |
| 0xaae103b5fcd2a881,0xd652bdc29f26a119, |
| 0xd59944a37c0752a2,0x4be76d3346f0495f, |
| 0x857fcae62d8493a5,0x6f70a4400c562ddb, |
| 0xa6dfbd9fb8e5b88e,0xcb4ccd500f6bb952, |
| 0xd097ad07a71f26b2,0x7e2000a41346a7a7, |
| 0x825ecc24c873782f,0x8ed400668c0c28c8, |
| 0xa2f67f2dfa90563b,0x728900802f0f32fa, |
| 0xcbb41ef979346bca,0x4f2b40a03ad2ffb9, |
| 0xfea126b7d78186bc,0xe2f610c84987bfa8, |
| 0x9f24b832e6b0f436,0xdd9ca7d2df4d7c9, |
| 0xc6ede63fa05d3143,0x91503d1c79720dbb, |
| 0xf8a95fcf88747d94,0x75a44c6397ce912a, |
| 0x9b69dbe1b548ce7c,0xc986afbe3ee11aba, |
| 0xc24452da229b021b,0xfbe85badce996168, |
| 0xf2d56790ab41c2a2,0xfae27299423fb9c3, |
| 0x97c560ba6b0919a5,0xdccd879fc967d41a, |
| 0xbdb6b8e905cb600f,0x5400e987bbc1c920, |
| 0xed246723473e3813,0x290123e9aab23b68, |
| 0x9436c0760c86e30b,0xf9a0b6720aaf6521, |
| 0xb94470938fa89bce,0xf808e40e8d5b3e69, |
| 0xe7958cb87392c2c2,0xb60b1d1230b20e04, |
| 0x90bd77f3483bb9b9,0xb1c6f22b5e6f48c2, |
| 0xb4ecd5f01a4aa828,0x1e38aeb6360b1af3, |
| 0xe2280b6c20dd5232,0x25c6da63c38de1b0, |
| 0x8d590723948a535f,0x579c487e5a38ad0e, |
| 0xb0af48ec79ace837,0x2d835a9df0c6d851, |
| 0xdcdb1b2798182244,0xf8e431456cf88e65, |
| 0x8a08f0f8bf0f156b,0x1b8e9ecb641b58ff, |
| 0xac8b2d36eed2dac5,0xe272467e3d222f3f, |
| 0xd7adf884aa879177,0x5b0ed81dcc6abb0f, |
| 0x86ccbb52ea94baea,0x98e947129fc2b4e9, |
| 0xa87fea27a539e9a5,0x3f2398d747b36224, |
| 0xd29fe4b18e88640e,0x8eec7f0d19a03aad, |
| 0x83a3eeeef9153e89,0x1953cf68300424ac, |
| 0xa48ceaaab75a8e2b,0x5fa8c3423c052dd7, |
| 0xcdb02555653131b6,0x3792f412cb06794d, |
| 0x808e17555f3ebf11,0xe2bbd88bbee40bd0, |
| 0xa0b19d2ab70e6ed6,0x5b6aceaeae9d0ec4, |
| 0xc8de047564d20a8b,0xf245825a5a445275, |
| 0xfb158592be068d2e,0xeed6e2f0f0d56712, |
| 0x9ced737bb6c4183d,0x55464dd69685606b, |
| 0xc428d05aa4751e4c,0xaa97e14c3c26b886, |
| 0xf53304714d9265df,0xd53dd99f4b3066a8, |
| 0x993fe2c6d07b7fab,0xe546a8038efe4029, |
| 0xbf8fdb78849a5f96,0xde98520472bdd033, |
| 0xef73d256a5c0f77c,0x963e66858f6d4440, |
| 0x95a8637627989aad,0xdde7001379a44aa8, |
| 0xbb127c53b17ec159,0x5560c018580d5d52, |
| 0xe9d71b689dde71af,0xaab8f01e6e10b4a6, |
| 0x9226712162ab070d,0xcab3961304ca70e8, |
| 0xb6b00d69bb55c8d1,0x3d607b97c5fd0d22, |
| 0xe45c10c42a2b3b05,0x8cb89a7db77c506a, |
| 0x8eb98a7a9a5b04e3,0x77f3608e92adb242, |
| 0xb267ed1940f1c61c,0x55f038b237591ed3, |
| 0xdf01e85f912e37a3,0x6b6c46dec52f6688, |
| 0x8b61313bbabce2c6,0x2323ac4b3b3da015, |
| 0xae397d8aa96c1b77,0xabec975e0a0d081a, |
| 0xd9c7dced53c72255,0x96e7bd358c904a21, |
| 0x881cea14545c7575,0x7e50d64177da2e54, |
| 0xaa242499697392d2,0xdde50bd1d5d0b9e9, |
| 0xd4ad2dbfc3d07787,0x955e4ec64b44e864, |
| 0x84ec3c97da624ab4,0xbd5af13bef0b113e, |
| 0xa6274bbdd0fadd61,0xecb1ad8aeacdd58e, |
| 0xcfb11ead453994ba,0x67de18eda5814af2, |
| 0x81ceb32c4b43fcf4,0x80eacf948770ced7, |
| 0xa2425ff75e14fc31,0xa1258379a94d028d, |
| 0xcad2f7f5359a3b3e,0x96ee45813a04330, |
| 0xfd87b5f28300ca0d,0x8bca9d6e188853fc, |
| 0x9e74d1b791e07e48,0x775ea264cf55347e, |
| 0xc612062576589dda,0x95364afe032a819e, |
| 0xf79687aed3eec551,0x3a83ddbd83f52205, |
| 0x9abe14cd44753b52,0xc4926a9672793543, |
| 0xc16d9a0095928a27,0x75b7053c0f178294, |
| 0xf1c90080baf72cb1,0x5324c68b12dd6339, |
| 0x971da05074da7bee,0xd3f6fc16ebca5e04, |
| 0xbce5086492111aea,0x88f4bb1ca6bcf585, |
| 0xec1e4a7db69561a5,0x2b31e9e3d06c32e6, |
| 0x9392ee8e921d5d07,0x3aff322e62439fd0, |
| 0xb877aa3236a4b449,0x9befeb9fad487c3, |
| 0xe69594bec44de15b,0x4c2ebe687989a9b4, |
| 0x901d7cf73ab0acd9,0xf9d37014bf60a11, |
| 0xb424dc35095cd80f,0x538484c19ef38c95, |
| 0xe12e13424bb40e13,0x2865a5f206b06fba, |
| 0x8cbccc096f5088cb,0xf93f87b7442e45d4, |
| 0xafebff0bcb24aafe,0xf78f69a51539d749, |
| 0xdbe6fecebdedd5be,0xb573440e5a884d1c, |
| 0x89705f4136b4a597,0x31680a88f8953031, |
| 0xabcc77118461cefc,0xfdc20d2b36ba7c3e, |
| 0xd6bf94d5e57a42bc,0x3d32907604691b4d, |
| 0x8637bd05af6c69b5,0xa63f9a49c2c1b110, |
| 0xa7c5ac471b478423,0xfcf80dc33721d54, |
| 0xd1b71758e219652b,0xd3c36113404ea4a9, |
| 0x83126e978d4fdf3b,0x645a1cac083126ea, |
| 0xa3d70a3d70a3d70a,0x3d70a3d70a3d70a4, |
| 0xcccccccccccccccc,0xcccccccccccccccd, |
| 0x8000000000000000,0x0, |
| 0xa000000000000000,0x0, |
| 0xc800000000000000,0x0, |
| 0xfa00000000000000,0x0, |
| 0x9c40000000000000,0x0, |
| 0xc350000000000000,0x0, |
| 0xf424000000000000,0x0, |
| 0x9896800000000000,0x0, |
| 0xbebc200000000000,0x0, |
| 0xee6b280000000000,0x0, |
| 0x9502f90000000000,0x0, |
| 0xba43b74000000000,0x0, |
| 0xe8d4a51000000000,0x0, |
| 0x9184e72a00000000,0x0, |
| 0xb5e620f480000000,0x0, |
| 0xe35fa931a0000000,0x0, |
| 0x8e1bc9bf04000000,0x0, |
| 0xb1a2bc2ec5000000,0x0, |
| 0xde0b6b3a76400000,0x0, |
| 0x8ac7230489e80000,0x0, |
| 0xad78ebc5ac620000,0x0, |
| 0xd8d726b7177a8000,0x0, |
| 0x878678326eac9000,0x0, |
| 0xa968163f0a57b400,0x0, |
| 0xd3c21bcecceda100,0x0, |
| 0x84595161401484a0,0x0, |
| 0xa56fa5b99019a5c8,0x0, |
| 0xcecb8f27f4200f3a,0x0, |
| 0x813f3978f8940984,0x4000000000000000, |
| 0xa18f07d736b90be5,0x5000000000000000, |
| 0xc9f2c9cd04674ede,0xa400000000000000, |
| 0xfc6f7c4045812296,0x4d00000000000000, |
| 0x9dc5ada82b70b59d,0xf020000000000000, |
| 0xc5371912364ce305,0x6c28000000000000, |
| 0xf684df56c3e01bc6,0xc732000000000000, |
| 0x9a130b963a6c115c,0x3c7f400000000000, |
| 0xc097ce7bc90715b3,0x4b9f100000000000, |
| 0xf0bdc21abb48db20,0x1e86d40000000000, |
| 0x96769950b50d88f4,0x1314448000000000, |
| 0xbc143fa4e250eb31,0x17d955a000000000, |
| 0xeb194f8e1ae525fd,0x5dcfab0800000000, |
| 0x92efd1b8d0cf37be,0x5aa1cae500000000, |
| 0xb7abc627050305ad,0xf14a3d9e40000000, |
| 0xe596b7b0c643c719,0x6d9ccd05d0000000, |
| 0x8f7e32ce7bea5c6f,0xe4820023a2000000, |
| 0xb35dbf821ae4f38b,0xdda2802c8a800000, |
| 0xe0352f62a19e306e,0xd50b2037ad200000, |
| 0x8c213d9da502de45,0x4526f422cc340000, |
| 0xaf298d050e4395d6,0x9670b12b7f410000, |
| 0xdaf3f04651d47b4c,0x3c0cdd765f114000, |
| 0x88d8762bf324cd0f,0xa5880a69fb6ac800, |
| 0xab0e93b6efee0053,0x8eea0d047a457a00, |
| 0xd5d238a4abe98068,0x72a4904598d6d880, |
| 0x85a36366eb71f041,0x47a6da2b7f864750, |
| 0xa70c3c40a64e6c51,0x999090b65f67d924, |
| 0xd0cf4b50cfe20765,0xfff4b4e3f741cf6d, |
| 0x82818f1281ed449f,0xbff8f10e7a8921a4, |
| 0xa321f2d7226895c7,0xaff72d52192b6a0d, |
| 0xcbea6f8ceb02bb39,0x9bf4f8a69f764490, |
| 0xfee50b7025c36a08,0x2f236d04753d5b4, |
| 0x9f4f2726179a2245,0x1d762422c946590, |
| 0xc722f0ef9d80aad6,0x424d3ad2b7b97ef5, |
| 0xf8ebad2b84e0d58b,0xd2e0898765a7deb2, |
| 0x9b934c3b330c8577,0x63cc55f49f88eb2f, |
| 0xc2781f49ffcfa6d5,0x3cbf6b71c76b25fb, |
| 0xf316271c7fc3908a,0x8bef464e3945ef7a, |
| 0x97edd871cfda3a56,0x97758bf0e3cbb5ac, |
| 0xbde94e8e43d0c8ec,0x3d52eeed1cbea317, |
| 0xed63a231d4c4fb27,0x4ca7aaa863ee4bdd, |
| 0x945e455f24fb1cf8,0x8fe8caa93e74ef6a, |
| 0xb975d6b6ee39e436,0xb3e2fd538e122b44, |
| 0xe7d34c64a9c85d44,0x60dbbca87196b616, |
| 0x90e40fbeea1d3a4a,0xbc8955e946fe31cd, |
| 0xb51d13aea4a488dd,0x6babab6398bdbe41, |
| 0xe264589a4dcdab14,0xc696963c7eed2dd1, |
| 0x8d7eb76070a08aec,0xfc1e1de5cf543ca2, |
| 0xb0de65388cc8ada8,0x3b25a55f43294bcb, |
| 0xdd15fe86affad912,0x49ef0eb713f39ebe, |
| 0x8a2dbf142dfcc7ab,0x6e3569326c784337, |
| 0xacb92ed9397bf996,0x49c2c37f07965404, |
| 0xd7e77a8f87daf7fb,0xdc33745ec97be906, |
| 0x86f0ac99b4e8dafd,0x69a028bb3ded71a3, |
| 0xa8acd7c0222311bc,0xc40832ea0d68ce0c, |
| 0xd2d80db02aabd62b,0xf50a3fa490c30190, |
| 0x83c7088e1aab65db,0x792667c6da79e0fa, |
| 0xa4b8cab1a1563f52,0x577001b891185938, |
| 0xcde6fd5e09abcf26,0xed4c0226b55e6f86, |
| 0x80b05e5ac60b6178,0x544f8158315b05b4, |
| 0xa0dc75f1778e39d6,0x696361ae3db1c721, |
| 0xc913936dd571c84c,0x3bc3a19cd1e38e9, |
| 0xfb5878494ace3a5f,0x4ab48a04065c723, |
| 0x9d174b2dcec0e47b,0x62eb0d64283f9c76, |
| 0xc45d1df942711d9a,0x3ba5d0bd324f8394, |
| 0xf5746577930d6500,0xca8f44ec7ee36479, |
| 0x9968bf6abbe85f20,0x7e998b13cf4e1ecb, |
| 0xbfc2ef456ae276e8,0x9e3fedd8c321a67e, |
| 0xefb3ab16c59b14a2,0xc5cfe94ef3ea101e, |
| 0x95d04aee3b80ece5,0xbba1f1d158724a12, |
| 0xbb445da9ca61281f,0x2a8a6e45ae8edc97, |
| 0xea1575143cf97226,0xf52d09d71a3293bd, |
| 0x924d692ca61be758,0x593c2626705f9c56, |
| 0xb6e0c377cfa2e12e,0x6f8b2fb00c77836c, |
| 0xe498f455c38b997a,0xb6dfb9c0f956447, |
| 0x8edf98b59a373fec,0x4724bd4189bd5eac, |
| 0xb2977ee300c50fe7,0x58edec91ec2cb657, |
| 0xdf3d5e9bc0f653e1,0x2f2967b66737e3ed, |
| 0x8b865b215899f46c,0xbd79e0d20082ee74, |
| 0xae67f1e9aec07187,0xecd8590680a3aa11, |
| 0xda01ee641a708de9,0xe80e6f4820cc9495, |
| 0x884134fe908658b2,0x3109058d147fdcdd, |
| 0xaa51823e34a7eede,0xbd4b46f0599fd415, |
| 0xd4e5e2cdc1d1ea96,0x6c9e18ac7007c91a, |
| 0x850fadc09923329e,0x3e2cf6bc604ddb0, |
| 0xa6539930bf6bff45,0x84db8346b786151c, |
| 0xcfe87f7cef46ff16,0xe612641865679a63, |
| 0x81f14fae158c5f6e,0x4fcb7e8f3f60c07e, |
| 0xa26da3999aef7749,0xe3be5e330f38f09d, |
| 0xcb090c8001ab551c,0x5cadf5bfd3072cc5, |
| 0xfdcb4fa002162a63,0x73d9732fc7c8f7f6, |
| 0x9e9f11c4014dda7e,0x2867e7fddcdd9afa, |
| 0xc646d63501a1511d,0xb281e1fd541501b8, |
| 0xf7d88bc24209a565,0x1f225a7ca91a4226, |
| 0x9ae757596946075f,0x3375788de9b06958, |
| 0xc1a12d2fc3978937,0x52d6b1641c83ae, |
| 0xf209787bb47d6b84,0xc0678c5dbd23a49a, |
| 0x9745eb4d50ce6332,0xf840b7ba963646e0, |
| 0xbd176620a501fbff,0xb650e5a93bc3d898, |
| 0xec5d3fa8ce427aff,0xa3e51f138ab4cebe, |
| 0x93ba47c980e98cdf,0xc66f336c36b10137, |
| 0xb8a8d9bbe123f017,0xb80b0047445d4184, |
| 0xe6d3102ad96cec1d,0xa60dc059157491e5, |
| 0x9043ea1ac7e41392,0x87c89837ad68db2f, |
| 0xb454e4a179dd1877,0x29babe4598c311fb, |
| 0xe16a1dc9d8545e94,0xf4296dd6fef3d67a, |
| 0x8ce2529e2734bb1d,0x1899e4a65f58660c, |
| 0xb01ae745b101e9e4,0x5ec05dcff72e7f8f, |
| 0xdc21a1171d42645d,0x76707543f4fa1f73, |
| 0x899504ae72497eba,0x6a06494a791c53a8, |
| 0xabfa45da0edbde69,0x487db9d17636892, |
| 0xd6f8d7509292d603,0x45a9d2845d3c42b6, |
| 0x865b86925b9bc5c2,0xb8a2392ba45a9b2, |
| 0xa7f26836f282b732,0x8e6cac7768d7141e, |
| 0xd1ef0244af2364ff,0x3207d795430cd926, |
| 0x8335616aed761f1f,0x7f44e6bd49e807b8, |
| 0xa402b9c5a8d3a6e7,0x5f16206c9c6209a6, |
| 0xcd036837130890a1,0x36dba887c37a8c0f, |
| 0x802221226be55a64,0xc2494954da2c9789, |
| 0xa02aa96b06deb0fd,0xf2db9baa10b7bd6c, |
| 0xc83553c5c8965d3d,0x6f92829494e5acc7, |
| 0xfa42a8b73abbf48c,0xcb772339ba1f17f9, |
| 0x9c69a97284b578d7,0xff2a760414536efb, |
| 0xc38413cf25e2d70d,0xfef5138519684aba, |
| 0xf46518c2ef5b8cd1,0x7eb258665fc25d69, |
| 0x98bf2f79d5993802,0xef2f773ffbd97a61, |
| 0xbeeefb584aff8603,0xaafb550ffacfd8fa, |
| 0xeeaaba2e5dbf6784,0x95ba2a53f983cf38, |
| 0x952ab45cfa97a0b2,0xdd945a747bf26183, |
| 0xba756174393d88df,0x94f971119aeef9e4, |
| 0xe912b9d1478ceb17,0x7a37cd5601aab85d, |
| 0x91abb422ccb812ee,0xac62e055c10ab33a, |
| 0xb616a12b7fe617aa,0x577b986b314d6009, |
| 0xe39c49765fdf9d94,0xed5a7e85fda0b80b, |
| 0x8e41ade9fbebc27d,0x14588f13be847307, |
| 0xb1d219647ae6b31c,0x596eb2d8ae258fc8, |
| 0xde469fbd99a05fe3,0x6fca5f8ed9aef3bb, |
| 0x8aec23d680043bee,0x25de7bb9480d5854, |
| 0xada72ccc20054ae9,0xaf561aa79a10ae6a, |
| 0xd910f7ff28069da4,0x1b2ba1518094da04, |
| 0x87aa9aff79042286,0x90fb44d2f05d0842, |
| 0xa99541bf57452b28,0x353a1607ac744a53, |
| 0xd3fa922f2d1675f2,0x42889b8997915ce8, |
| 0x847c9b5d7c2e09b7,0x69956135febada11, |
| 0xa59bc234db398c25,0x43fab9837e699095, |
| 0xcf02b2c21207ef2e,0x94f967e45e03f4bb, |
| 0x8161afb94b44f57d,0x1d1be0eebac278f5, |
| 0xa1ba1ba79e1632dc,0x6462d92a69731732, |
| 0xca28a291859bbf93,0x7d7b8f7503cfdcfe, |
| 0xfcb2cb35e702af78,0x5cda735244c3d43e, |
| 0x9defbf01b061adab,0x3a0888136afa64a7, |
| 0xc56baec21c7a1916,0x88aaa1845b8fdd0, |
| 0xf6c69a72a3989f5b,0x8aad549e57273d45, |
| 0x9a3c2087a63f6399,0x36ac54e2f678864b, |
| 0xc0cb28a98fcf3c7f,0x84576a1bb416a7dd, |
| 0xf0fdf2d3f3c30b9f,0x656d44a2a11c51d5, |
| 0x969eb7c47859e743,0x9f644ae5a4b1b325, |
| 0xbc4665b596706114,0x873d5d9f0dde1fee, |
| 0xeb57ff22fc0c7959,0xa90cb506d155a7ea, |
| 0x9316ff75dd87cbd8,0x9a7f12442d588f2, |
| 0xb7dcbf5354e9bece,0xc11ed6d538aeb2f, |
| 0xe5d3ef282a242e81,0x8f1668c8a86da5fa, |
| 0x8fa475791a569d10,0xf96e017d694487bc, |
| 0xb38d92d760ec4455,0x37c981dcc395a9ac, |
| 0xe070f78d3927556a,0x85bbe253f47b1417, |
| 0x8c469ab843b89562,0x93956d7478ccec8e, |
| 0xaf58416654a6babb,0x387ac8d1970027b2, |
| 0xdb2e51bfe9d0696a,0x6997b05fcc0319e, |
| 0x88fcf317f22241e2,0x441fece3bdf81f03, |
| 0xab3c2fddeeaad25a,0xd527e81cad7626c3, |
| 0xd60b3bd56a5586f1,0x8a71e223d8d3b074, |
| 0x85c7056562757456,0xf6872d5667844e49, |
| 0xa738c6bebb12d16c,0xb428f8ac016561db, |
| 0xd106f86e69d785c7,0xe13336d701beba52, |
| 0x82a45b450226b39c,0xecc0024661173473, |
| 0xa34d721642b06084,0x27f002d7f95d0190, |
| 0xcc20ce9bd35c78a5,0x31ec038df7b441f4, |
| 0xff290242c83396ce,0x7e67047175a15271, |
| 0x9f79a169bd203e41,0xf0062c6e984d386, |
| 0xc75809c42c684dd1,0x52c07b78a3e60868, |
| 0xf92e0c3537826145,0xa7709a56ccdf8a82, |
| 0x9bbcc7a142b17ccb,0x88a66076400bb691, |
| 0xc2abf989935ddbfe,0x6acff893d00ea435, |
| 0xf356f7ebf83552fe,0x583f6b8c4124d43, |
| 0x98165af37b2153de,0xc3727a337a8b704a, |
| 0xbe1bf1b059e9a8d6,0x744f18c0592e4c5c, |
| 0xeda2ee1c7064130c,0x1162def06f79df73, |
| 0x9485d4d1c63e8be7,0x8addcb5645ac2ba8, |
| 0xb9a74a0637ce2ee1,0x6d953e2bd7173692, |
| 0xe8111c87c5c1ba99,0xc8fa8db6ccdd0437, |
| 0x910ab1d4db9914a0,0x1d9c9892400a22a2, |
| 0xb54d5e4a127f59c8,0x2503beb6d00cab4b, |
| 0xe2a0b5dc971f303a,0x2e44ae64840fd61d, |
| 0x8da471a9de737e24,0x5ceaecfed289e5d2, |
| 0xb10d8e1456105dad,0x7425a83e872c5f47, |
| 0xdd50f1996b947518,0xd12f124e28f77719, |
| 0x8a5296ffe33cc92f,0x82bd6b70d99aaa6f, |
| 0xace73cbfdc0bfb7b,0x636cc64d1001550b, |
| 0xd8210befd30efa5a,0x3c47f7e05401aa4e, |
| 0x8714a775e3e95c78,0x65acfaec34810a71, |
| 0xa8d9d1535ce3b396,0x7f1839a741a14d0d, |
| 0xd31045a8341ca07c,0x1ede48111209a050, |
| 0x83ea2b892091e44d,0x934aed0aab460432, |
| 0xa4e4b66b68b65d60,0xf81da84d5617853f, |
| 0xce1de40642e3f4b9,0x36251260ab9d668e, |
| 0x80d2ae83e9ce78f3,0xc1d72b7c6b426019, |
| 0xa1075a24e4421730,0xb24cf65b8612f81f, |
| 0xc94930ae1d529cfc,0xdee033f26797b627, |
| 0xfb9b7cd9a4a7443c,0x169840ef017da3b1, |
| 0x9d412e0806e88aa5,0x8e1f289560ee864e, |
| 0xc491798a08a2ad4e,0xf1a6f2bab92a27e2, |
| 0xf5b5d7ec8acb58a2,0xae10af696774b1db, |
| 0x9991a6f3d6bf1765,0xacca6da1e0a8ef29, |
| 0xbff610b0cc6edd3f,0x17fd090a58d32af3, |
| 0xeff394dcff8a948e,0xddfc4b4cef07f5b0, |
| 0x95f83d0a1fb69cd9,0x4abdaf101564f98e, |
| 0xbb764c4ca7a4440f,0x9d6d1ad41abe37f1, |
| 0xea53df5fd18d5513,0x84c86189216dc5ed, |
| 0x92746b9be2f8552c,0x32fd3cf5b4e49bb4, |
| 0xb7118682dbb66a77,0x3fbc8c33221dc2a1, |
| 0xe4d5e82392a40515,0xfabaf3feaa5334a, |
| 0x8f05b1163ba6832d,0x29cb4d87f2a7400e, |
| 0xb2c71d5bca9023f8,0x743e20e9ef511012, |
| 0xdf78e4b2bd342cf6,0x914da9246b255416, |
| 0x8bab8eefb6409c1a,0x1ad089b6c2f7548e, |
| 0xae9672aba3d0c320,0xa184ac2473b529b1, |
| 0xda3c0f568cc4f3e8,0xc9e5d72d90a2741e, |
| 0x8865899617fb1871,0x7e2fa67c7a658892, |
| 0xaa7eebfb9df9de8d,0xddbb901b98feeab7, |
| 0xd51ea6fa85785631,0x552a74227f3ea565, |
| 0x8533285c936b35de,0xd53a88958f87275f, |
| 0xa67ff273b8460356,0x8a892abaf368f137, |
| 0xd01fef10a657842c,0x2d2b7569b0432d85, |
| 0x8213f56a67f6b29b,0x9c3b29620e29fc73, |
| 0xa298f2c501f45f42,0x8349f3ba91b47b8f, |
| 0xcb3f2f7642717713,0x241c70a936219a73, |
| 0xfe0efb53d30dd4d7,0xed238cd383aa0110, |
| 0x9ec95d1463e8a506,0xf4363804324a40aa, |
| 0xc67bb4597ce2ce48,0xb143c6053edcd0d5, |
| 0xf81aa16fdc1b81da,0xdd94b7868e94050a, |
| 0x9b10a4e5e9913128,0xca7cf2b4191c8326, |
| 0xc1d4ce1f63f57d72,0xfd1c2f611f63a3f0, |
| 0xf24a01a73cf2dccf,0xbc633b39673c8cec, |
| 0x976e41088617ca01,0xd5be0503e085d813, |
| 0xbd49d14aa79dbc82,0x4b2d8644d8a74e18, |
| 0xec9c459d51852ba2,0xddf8e7d60ed1219e, |
| 0x93e1ab8252f33b45,0xcabb90e5c942b503, |
| 0xb8da1662e7b00a17,0x3d6a751f3b936243, |
| 0xe7109bfba19c0c9d,0xcc512670a783ad4, |
| 0x906a617d450187e2,0x27fb2b80668b24c5, |
| 0xb484f9dc9641e9da,0xb1f9f660802dedf6, |
| 0xe1a63853bbd26451,0x5e7873f8a0396973, |
| 0x8d07e33455637eb2,0xdb0b487b6423e1e8, |
| 0xb049dc016abc5e5f,0x91ce1a9a3d2cda62, |
| 0xdc5c5301c56b75f7,0x7641a140cc7810fb, |
| 0x89b9b3e11b6329ba,0xa9e904c87fcb0a9d, |
| 0xac2820d9623bf429,0x546345fa9fbdcd44, |
| 0xd732290fbacaf133,0xa97c177947ad4095, |
| 0x867f59a9d4bed6c0,0x49ed8eabcccc485d, |
| 0xa81f301449ee8c70,0x5c68f256bfff5a74, |
| 0xd226fc195c6a2f8c,0x73832eec6fff3111, |
| 0x83585d8fd9c25db7,0xc831fd53c5ff7eab, |
| 0xa42e74f3d032f525,0xba3e7ca8b77f5e55, |
| 0xcd3a1230c43fb26f,0x28ce1bd2e55f35eb, |
| 0x80444b5e7aa7cf85,0x7980d163cf5b81b3, |
| 0xa0555e361951c366,0xd7e105bcc332621f, |
| 0xc86ab5c39fa63440,0x8dd9472bf3fefaa7, |
| 0xfa856334878fc150,0xb14f98f6f0feb951, |
| 0x9c935e00d4b9d8d2,0x6ed1bf9a569f33d3, |
| 0xc3b8358109e84f07,0xa862f80ec4700c8, |
| 0xf4a642e14c6262c8,0xcd27bb612758c0fa, |
| 0x98e7e9cccfbd7dbd,0x8038d51cb897789c, |
| 0xbf21e44003acdd2c,0xe0470a63e6bd56c3, |
| 0xeeea5d5004981478,0x1858ccfce06cac74, |
| 0x95527a5202df0ccb,0xf37801e0c43ebc8, |
| 0xbaa718e68396cffd,0xd30560258f54e6ba, |
| 0xe950df20247c83fd,0x47c6b82ef32a2069, |
| 0x91d28b7416cdd27e,0x4cdc331d57fa5441, |
| 0xb6472e511c81471d,0xe0133fe4adf8e952, |
| 0xe3d8f9e563a198e5,0x58180fddd97723a6, |
| 0x8e679c2f5e44ff8f,0x570f09eaa7ea7648,}; |
| using powers = powers_template<>; |
| |
| } |
| |
| #endif |
| |
| #ifndef FASTFLOAT_DECIMAL_TO_BINARY_H |
| #define FASTFLOAT_DECIMAL_TO_BINARY_H |
| |
| namespace fast_float { |
| |
| // This will compute or rather approximate w * 5**q and return a pair of 64-bit words approximating |
| // the result, with the "high" part corresponding to the most significant bits and the |
| // low part corresponding to the least significant bits. |
| // |
| template <int bit_precision> |
| fastfloat_really_inline |
| value128 compute_product_approximation(int64_t q, uint64_t w) { |
| const int index = 2 * int(q - powers::smallest_power_of_five); |
| // For small values of q, e.g., q in [0,27], the answer is always exact because |
| // The line value128 firstproduct = full_multiplication(w, power_of_five_128[index]); |
| // gives the exact answer. |
| value128 firstproduct = full_multiplication(w, powers::power_of_five_128[index]); |
| static_assert((bit_precision >= 0) && (bit_precision <= 64), " precision should be in (0,64]"); |
| constexpr uint64_t precision_mask = (bit_precision < 64) ? |
| (uint64_t(0xFFFFFFFFFFFFFFFF) >> bit_precision) |
| : uint64_t(0xFFFFFFFFFFFFFFFF); |
| if((firstproduct.high & precision_mask) == precision_mask) { // could further guard with (lower + w < lower) |
| // regarding the second product, we only need secondproduct.high, but our expectation is that the compiler will optimize this extra work away if needed. |
| value128 secondproduct = full_multiplication(w, powers::power_of_five_128[index + 1]); |
| firstproduct.low += secondproduct.high; |
| if(secondproduct.high > firstproduct.low) { |
| firstproduct.high++; |
| } |
| } |
| return firstproduct; |
| } |
| |
| namespace detail { |
| /** |
| * For q in (0,350), we have that |
| * f = (((152170 + 65536) * q ) >> 16); |
| * is equal to |
| * floor(p) + q |
| * where |
| * p = log(5**q)/log(2) = q * log(5)/log(2) |
| * |
| * For negative values of q in (-400,0), we have that |
| * f = (((152170 + 65536) * q ) >> 16); |
| * is equal to |
| * -ceil(p) + q |
| * where |
| * p = log(5**-q)/log(2) = -q * log(5)/log(2) |
| */ |
| constexpr fastfloat_really_inline int32_t power(int32_t q) noexcept { |
| return (((152170 + 65536) * q) >> 16) + 63; |
| } |
| } // namespace detail |
| |
| // create an adjusted mantissa, biased by the invalid power2 |
| // for significant digits already multiplied by 10 ** q. |
| template <typename binary> |
| fastfloat_really_inline |
| adjusted_mantissa compute_error_scaled(int64_t q, uint64_t w, int lz) noexcept { |
| int hilz = int(w >> 63) ^ 1; |
| adjusted_mantissa answer; |
| answer.mantissa = w << hilz; |
| int bias = binary::mantissa_explicit_bits() - binary::minimum_exponent(); |
| answer.power2 = int32_t(detail::power(int32_t(q)) + bias - hilz - lz - 62 + invalid_am_bias); |
| return answer; |
| } |
| |
| // w * 10 ** q, without rounding the representation up. |
| // the power2 in the exponent will be adjusted by invalid_am_bias. |
| template <typename binary> |
| fastfloat_really_inline |
| adjusted_mantissa compute_error(int64_t q, uint64_t w) noexcept { |
| int lz = leading_zeroes(w); |
| w <<= lz; |
| value128 product = compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w); |
| return compute_error_scaled<binary>(q, product.high, lz); |
| } |
| |
| // w * 10 ** q |
| // The returned value should be a valid ieee64 number that simply need to be packed. |
| // However, in some very rare cases, the computation will fail. In such cases, we |
| // return an adjusted_mantissa with a negative power of 2: the caller should recompute |
| // in such cases. |
| template <typename binary> |
| fastfloat_really_inline |
| adjusted_mantissa compute_float(int64_t q, uint64_t w) noexcept { |
| adjusted_mantissa answer; |
| if ((w == 0) || (q < binary::smallest_power_of_ten())) { |
| answer.power2 = 0; |
| answer.mantissa = 0; |
| // result should be zero |
| return answer; |
| } |
| if (q > binary::largest_power_of_ten()) { |
| // we want to get infinity: |
| answer.power2 = binary::infinite_power(); |
| answer.mantissa = 0; |
| return answer; |
| } |
| // At this point in time q is in [powers::smallest_power_of_five, powers::largest_power_of_five]. |
| |
| // We want the most significant bit of i to be 1. Shift if needed. |
| int lz = leading_zeroes(w); |
| w <<= lz; |
| |
| // The required precision is binary::mantissa_explicit_bits() + 3 because |
| // 1. We need the implicit bit |
| // 2. We need an extra bit for rounding purposes |
| // 3. We might lose a bit due to the "upperbit" routine (result too small, requiring a shift) |
| |
| value128 product = compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w); |
| if(product.low == 0xFFFFFFFFFFFFFFFF) { // could guard it further |
| // In some very rare cases, this could happen, in which case we might need a more accurate |
| // computation that what we can provide cheaply. This is very, very unlikely. |
| // |
| const bool inside_safe_exponent = (q >= -27) && (q <= 55); // always good because 5**q <2**128 when q>=0, |
| // and otherwise, for q<0, we have 5**-q<2**64 and the 128-bit reciprocal allows for exact computation. |
| if(!inside_safe_exponent) { |
| return compute_error_scaled<binary>(q, product.high, lz); |
| } |
| } |
| // The "compute_product_approximation" function can be slightly slower than a branchless approach: |
| // value128 product = compute_product(q, w); |
| // but in practice, we can win big with the compute_product_approximation if its additional branch |
| // is easily predicted. Which is best is data specific. |
| int upperbit = int(product.high >> 63); |
| |
| answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3); |
| |
| answer.power2 = int32_t(detail::power(int32_t(q)) + upperbit - lz - binary::minimum_exponent()); |
| if (answer.power2 <= 0) { // we have a subnormal? |
| // Here have that answer.power2 <= 0 so -answer.power2 >= 0 |
| if(-answer.power2 + 1 >= 64) { // if we have more than 64 bits below the minimum exponent, you have a zero for sure. |
| answer.power2 = 0; |
| answer.mantissa = 0; |
| // result should be zero |
| return answer; |
| } |
| // next line is safe because -answer.power2 + 1 < 64 |
| answer.mantissa >>= -answer.power2 + 1; |
| // Thankfully, we can't have both "round-to-even" and subnormals because |
| // "round-to-even" only occurs for powers close to 0. |
| answer.mantissa += (answer.mantissa & 1); // round up |
| answer.mantissa >>= 1; |
| // There is a weird scenario where we don't have a subnormal but just. |
| // Suppose we start with 2.2250738585072013e-308, we end up |
| // with 0x3fffffffffffff x 2^-1023-53 which is technically subnormal |
| // whereas 0x40000000000000 x 2^-1023-53 is normal. Now, we need to round |
| // up 0x3fffffffffffff x 2^-1023-53 and once we do, we are no longer |
| // subnormal, but we can only know this after rounding. |
| // So we only declare a subnormal if we are smaller than the threshold. |
| answer.power2 = (answer.mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) ? 0 : 1; |
| return answer; |
| } |
| |
| // usually, we round *up*, but if we fall right in between and and we have an |
| // even basis, we need to round down |
| // We are only concerned with the cases where 5**q fits in single 64-bit word. |
| if ((product.low <= 1) && (q >= binary::min_exponent_round_to_even()) && (q <= binary::max_exponent_round_to_even()) && |
| ((answer.mantissa & 3) == 1) ) { // we may fall between two floats! |
| // To be in-between two floats we need that in doing |
| // answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3); |
| // ... we dropped out only zeroes. But if this happened, then we can go back!!! |
| if((answer.mantissa << (upperbit + 64 - binary::mantissa_explicit_bits() - 3)) == product.high) { |
| answer.mantissa &= ~uint64_t(1); // flip it so that we do not round up |
| } |
| } |
| |
| answer.mantissa += (answer.mantissa & 1); // round up |
| answer.mantissa >>= 1; |
| if (answer.mantissa >= (uint64_t(2) << binary::mantissa_explicit_bits())) { |
| answer.mantissa = (uint64_t(1) << binary::mantissa_explicit_bits()); |
| answer.power2++; // undo previous addition |
| } |
| |
| answer.mantissa &= ~(uint64_t(1) << binary::mantissa_explicit_bits()); |
| if (answer.power2 >= binary::infinite_power()) { // infinity |
| answer.power2 = binary::infinite_power(); |
| answer.mantissa = 0; |
| } |
| return answer; |
| } |
| |
| } // namespace fast_float |
| |
| #endif |
| |
| #ifndef FASTFLOAT_BIGINT_H |
| #define FASTFLOAT_BIGINT_H |
| |
| |
| namespace fast_float { |
| |
| // the limb width: we want efficient multiplication of double the bits in |
| // limb, or for 64-bit limbs, at least 64-bit multiplication where we can |
| // extract the high and low parts efficiently. this is every 64-bit |
| // architecture except for sparc, which emulates 128-bit multiplication. |
| // we might have platforms where `CHAR_BIT` is not 8, so let's avoid |
| // doing `8 * sizeof(limb)`. |
| #if defined(FASTFLOAT_64BIT) && !defined(__sparc) |
| #define FASTFLOAT_64BIT_LIMB 1 |
| typedef uint64_t limb; |
| constexpr size_t limb_bits = 64; |
| #else |
| #define FASTFLOAT_32BIT_LIMB |
| typedef uint32_t limb; |
| constexpr size_t limb_bits = 32; |
| #endif |
| |
| typedef span<limb> limb_span; |
| |
| // number of bits in a bigint. this needs to be at least the number |
| // of bits required to store the largest bigint, which is |
| // `log2(10**(digits + max_exp))`, or `log2(10**(767 + 342))`, or |
| // ~3600 bits, so we round to 4000. |
| constexpr size_t bigint_bits = 4000; |
| constexpr size_t bigint_limbs = bigint_bits / limb_bits; |
| |
| // vector-like type that is allocated on the stack. the entire |
| // buffer is pre-allocated, and only the length changes. |
| template <uint16_t size> |
| struct stackvec { |
| limb data[size]; |
| // we never need more than 150 limbs |
| uint16_t length{0}; |
| |
| stackvec() = default; |
| stackvec(const stackvec &) = delete; |
| stackvec &operator=(const stackvec &) = delete; |
| stackvec(stackvec &&) = delete; |
| stackvec &operator=(stackvec &&other) = delete; |
| |
| // create stack vector from existing limb span. |
| stackvec(limb_span s) { |
| FASTFLOAT_ASSERT(try_extend(s)); |
| } |
| |
| limb& operator[](size_t index) noexcept { |
| FASTFLOAT_DEBUG_ASSERT(index < length); |
| return data[index]; |
| } |
| const limb& operator[](size_t index) const noexcept { |
| FASTFLOAT_DEBUG_ASSERT(index < length); |
| return data[index]; |
| } |
| // index from the end of the container |
| const limb& rindex(size_t index) const noexcept { |
| FASTFLOAT_DEBUG_ASSERT(index < length); |
| size_t rindex = length - index - 1; |
| return data[rindex]; |
| } |
| |
| // set the length, without bounds checking. |
| void set_len(size_t len) noexcept { |
| length = uint16_t(len); |
| } |
| constexpr size_t len() const noexcept { |
| return length; |
| } |
| constexpr bool is_empty() const noexcept { |
| return length == 0; |
| } |
| constexpr size_t capacity() const noexcept { |
| return size; |
| } |
| // append item to vector, without bounds checking |
| void push_unchecked(limb value) noexcept { |
| data[length] = value; |
| length++; |
| } |
| // append item to vector, returning if item was added |
| bool try_push(limb value) noexcept { |
| if (len() < capacity()) { |
| push_unchecked(value); |
| return true; |
| } else { |
| return false; |
| } |
| } |
| // add items to the vector, from a span, without bounds checking |
| void extend_unchecked(limb_span s) noexcept { |
| limb* ptr = data + length; |
| ::memcpy((void*)ptr, (const void*)s.ptr, sizeof(limb) * s.len()); |
| set_len(len() + s.len()); |
| } |
| // try to add items to the vector, returning if items were added |
| bool try_extend(limb_span s) noexcept { |
| if (len() + s.len() <= capacity()) { |
| extend_unchecked(s); |
| return true; |
| } else { |
| return false; |
| } |
| } |
| // resize the vector, without bounds checking |
| // if the new size is longer than the vector, assign value to each |
| // appended item. |
| void resize_unchecked(size_t new_len, limb value) noexcept { |
| if (new_len > len()) { |
| size_t count = new_len - len(); |
| limb* first = data + len(); |
| limb* last = first + count; |
| ::std::fill(first, last, value); |
| set_len(new_len); |
| } else { |
| set_len(new_len); |
| } |
| } |
| // try to resize the vector, returning if the vector was resized. |
| bool try_resize(size_t new_len, limb value) noexcept { |
| if (new_len > capacity()) { |
| return false; |
| } else { |
| resize_unchecked(new_len, value); |
| return true; |
| } |
| } |
| // check if any limbs are non-zero after the given index. |
| // this needs to be done in reverse order, since the index |
| // is relative to the most significant limbs. |
| bool nonzero(size_t index) const noexcept { |
| while (index < len()) { |
| if (rindex(index) != 0) { |
| return true; |
| } |
| index++; |
| } |
| return false; |
| } |
| // normalize the big integer, so most-significant zero limbs are removed. |
| void normalize() noexcept { |
| while (len() > 0 && rindex(0) == 0) { |
| length--; |
| } |
| } |
| }; |
| |
| fastfloat_really_inline |
| uint64_t empty_hi64(bool& truncated) noexcept { |
| truncated = false; |
| return 0; |
| } |
| |
| fastfloat_really_inline |
| uint64_t uint64_hi64(uint64_t r0, bool& truncated) noexcept { |
| truncated = false; |
| int shl = leading_zeroes(r0); |
| return r0 << shl; |
| } |
| |
| fastfloat_really_inline |
| uint64_t uint64_hi64(uint64_t r0, uint64_t r1, bool& truncated) noexcept { |
| int shl = leading_zeroes(r0); |
| if (shl == 0) { |
| truncated = r1 != 0; |
| return r0; |
| } else { |
| int shr = 64 - shl; |
| truncated = (r1 << shl) != 0; |
| return (r0 << shl) | (r1 >> shr); |
| } |
| } |
| |
| fastfloat_really_inline |
| uint64_t uint32_hi64(uint32_t r0, bool& truncated) noexcept { |
| return uint64_hi64(r0, truncated); |
| } |
| |
| fastfloat_really_inline |
| uint64_t uint32_hi64(uint32_t r0, uint32_t r1, bool& truncated) noexcept { |
| uint64_t x0 = r0; |
| uint64_t x1 = r1; |
| return uint64_hi64((x0 << 32) | x1, truncated); |
| } |
| |
| fastfloat_really_inline |
| uint64_t uint32_hi64(uint32_t r0, uint32_t r1, uint32_t r2, bool& truncated) noexcept { |
| uint64_t x0 = r0; |
| uint64_t x1 = r1; |
| uint64_t x2 = r2; |
| return uint64_hi64(x0, (x1 << 32) | x2, truncated); |
| } |
| |
| // add two small integers, checking for overflow. |
| // we want an efficient operation. for msvc, where |
| // we don't have built-in intrinsics, this is still |
| // pretty fast. |
| fastfloat_really_inline |
| limb scalar_add(limb x, limb y, bool& overflow) noexcept { |
| limb z; |
| |
| // gcc and clang |
| #if defined(__has_builtin) |
| #if __has_builtin(__builtin_add_overflow) |
| overflow = __builtin_add_overflow(x, y, &z); |
| return z; |
| #endif |
| #endif |
| |
| // generic, this still optimizes correctly on MSVC. |
| z = x + y; |
| overflow = z < x; |
| return z; |
| } |
| |
| // multiply two small integers, getting both the high and low bits. |
| fastfloat_really_inline |
| limb scalar_mul(limb x, limb y, limb& carry) noexcept { |
| #ifdef FASTFLOAT_64BIT_LIMB |
| #if defined(__SIZEOF_INT128__) |
| // GCC and clang both define it as an extension. |
| __uint128_t z = __uint128_t(x) * __uint128_t(y) + __uint128_t(carry); |
| carry = limb(z >> limb_bits); |
| return limb(z); |
| #else |
| // fallback, no native 128-bit integer multiplication with carry. |
| // on msvc, this optimizes identically, somehow. |
| value128 z = full_multiplication(x, y); |
| bool overflow; |
| z.low = scalar_add(z.low, carry, overflow); |
| z.high += uint64_t(overflow); // cannot overflow |
| carry = z.high; |
| return z.low; |
| #endif |
| #else |
| uint64_t z = uint64_t(x) * uint64_t(y) + uint64_t(carry); |
| carry = limb(z >> limb_bits); |
| return limb(z); |
| #endif |
| } |
| |
| // add scalar value to bigint starting from offset. |
| // used in grade school multiplication |
| template <uint16_t size> |
| inline bool small_add_from(stackvec<size>& vec, limb y, size_t start) noexcept { |
| size_t index = start; |
| limb carry = y; |
| bool overflow; |
| while (carry != 0 && index < vec.len()) { |
| vec[index] = scalar_add(vec[index], carry, overflow); |
| carry = limb(overflow); |
| index += 1; |
| } |
| if (carry != 0) { |
| FASTFLOAT_TRY(vec.try_push(carry)); |
| } |
| return true; |
| } |
| |
| // add scalar value to bigint. |
| template <uint16_t size> |
| fastfloat_really_inline bool small_add(stackvec<size>& vec, limb y) noexcept { |
| return small_add_from(vec, y, 0); |
| } |
| |
| // multiply bigint by scalar value. |
| template <uint16_t size> |
| inline bool small_mul(stackvec<size>& vec, limb y) noexcept { |
| limb carry = 0; |
| for (size_t index = 0; index < vec.len(); index++) { |
| vec[index] = scalar_mul(vec[index], y, carry); |
| } |
| if (carry != 0) { |
| FASTFLOAT_TRY(vec.try_push(carry)); |
| } |
| return true; |
| } |
| |
| // add bigint to bigint starting from index. |
| // used in grade school multiplication |
| template <uint16_t size> |
| bool large_add_from(stackvec<size>& x, limb_span y, size_t start) noexcept { |
| // the effective x buffer is from `xstart..x.len()`, so exit early |
| // if we can't get that current range. |
| if (x.len() < start || y.len() > x.len() - start) { |
| FASTFLOAT_TRY(x.try_resize(y.len() + start, 0)); |
| } |
| |
| bool carry = false; |
| for (size_t index = 0; index < y.len(); index++) { |
| limb xi = x[index + start]; |
| limb yi = y[index]; |
| bool c1 = false; |
| bool c2 = false; |
| xi = scalar_add(xi, yi, c1); |
| if (carry) { |
| xi = scalar_add(xi, 1, c2); |
| } |
| x[index + start] = xi; |
| carry = c1 | c2; |
| } |
| |
| // handle overflow |
| if (carry) { |
| FASTFLOAT_TRY(small_add_from(x, 1, y.len() + start)); |
| } |
| return true; |
| } |
| |
| // add bigint to bigint. |
| template <uint16_t size> |
| fastfloat_really_inline bool large_add_from(stackvec<size>& x, limb_span y) noexcept { |
| return large_add_from(x, y, 0); |
| } |
| |
| // grade-school multiplication algorithm |
| template <uint16_t size> |
| bool long_mul(stackvec<size>& x, limb_span y) noexcept { |
| limb_span xs = limb_span(x.data, x.len()); |
| stackvec<size> z(xs); |
| limb_span zs = limb_span(z.data, z.len()); |
| |
| if (y.len() != 0) { |
| limb y0 = y[0]; |
| FASTFLOAT_TRY(small_mul(x, y0)); |
| for (size_t index = 1; index < y.len(); index++) { |
| limb yi = y[index]; |
| stackvec<size> zi; |
| if (yi != 0) { |
| // re-use the same buffer throughout |
| zi.set_len(0); |
| FASTFLOAT_TRY(zi.try_extend(zs)); |
| FASTFLOAT_TRY(small_mul(zi, yi)); |
| limb_span zis = limb_span(zi.data, zi.len()); |
| FASTFLOAT_TRY(large_add_from(x, zis, index)); |
| } |
| } |
| } |
| |
| x.normalize(); |
| return true; |
| } |
| |
| // grade-school multiplication algorithm |
| template <uint16_t size> |
| bool large_mul(stackvec<size>& x, limb_span y) noexcept { |
| if (y.len() == 1) { |
| FASTFLOAT_TRY(small_mul(x, y[0])); |
| } else { |
| FASTFLOAT_TRY(long_mul(x, y)); |
| } |
| return true; |
| } |
| |
| // big integer type. implements a small subset of big integer |
| // arithmetic, using simple algorithms since asymptotically |
| // faster algorithms are slower for a small number of limbs. |
| // all operations assume the big-integer is normalized. |
| struct bigint { |
| // storage of the limbs, in little-endian order. |
| stackvec<bigint_limbs> vec; |
| |
| bigint(): vec() {} |
| bigint(const bigint &) = delete; |
| bigint &operator=(const bigint &) = delete; |
| bigint(bigint &&) = delete; |
| bigint &operator=(bigint &&other) = delete; |
| |
| bigint(uint64_t value): vec() { |
| #ifdef FASTFLOAT_64BIT_LIMB |
| vec.push_unchecked(value); |
| #else |
| vec.push_unchecked(uint32_t(value)); |
| vec.push_unchecked(uint32_t(value >> 32)); |
| #endif |
| vec.normalize(); |
| } |
| |
| // get the high 64 bits from the vector, and if bits were truncated. |
| // this is to get the significant digits for the float. |
| uint64_t hi64(bool& truncated) const noexcept { |
| #ifdef FASTFLOAT_64BIT_LIMB |
| if (vec.len() == 0) { |
| return empty_hi64(truncated); |
| } else if (vec.len() == 1) { |
| return uint64_hi64(vec.rindex(0), truncated); |
| } else { |
| uint64_t result = uint64_hi64(vec.rindex(0), vec.rindex(1), truncated); |
| truncated |= vec.nonzero(2); |
| return result; |
| } |
| #else |
| if (vec.len() == 0) { |
| return empty_hi64(truncated); |
| } else if (vec.len() == 1) { |
| return uint32_hi64(vec.rindex(0), truncated); |
| } else if (vec.len() == 2) { |
| return uint32_hi64(vec.rindex(0), vec.rindex(1), truncated); |
| } else { |
| uint64_t result = uint32_hi64(vec.rindex(0), vec.rindex(1), vec.rindex(2), truncated); |
| truncated |= vec.nonzero(3); |
| return result; |
| } |
| #endif |
| } |
| |
| // compare two big integers, returning the large value. |
| // assumes both are normalized. if the return value is |
| // negative, other is larger, if the return value is |
| // positive, this is larger, otherwise they are equal. |
| // the limbs are stored in little-endian order, so we |
| // must compare the limbs in ever order. |
| int compare(const bigint& other) const noexcept { |
| if (vec.len() > other.vec.len()) { |
| return 1; |
| } else if (vec.len() < other.vec.len()) { |
| return -1; |
| } else { |
| for (size_t index = vec.len(); index > 0; index--) { |
| limb xi = vec[index - 1]; |
| limb yi = other.vec[index - 1]; |
| if (xi > yi) { |
| return 1; |
| } else if (xi < yi) { |
| return -1; |
| } |
| } |
| return 0; |
| } |
| } |
| |
| // shift left each limb n bits, carrying over to the new limb |
| // returns true if we were able to shift all the digits. |
| bool shl_bits(size_t n) noexcept { |
| // Internally, for each item, we shift left by n, and add the previous |
| // right shifted limb-bits. |
| // For example, we transform (for u8) shifted left 2, to: |
| // b10100100 b01000010 |
| // b10 b10010001 b00001000 |
| FASTFLOAT_DEBUG_ASSERT(n != 0); |
| FASTFLOAT_DEBUG_ASSERT(n < sizeof(limb) * 8); |
| |
| size_t shl = n; |
| size_t shr = limb_bits - shl; |
| limb prev = 0; |
| for (size_t index = 0; index < vec.len(); index++) { |
| limb xi = vec[index]; |
| vec[index] = (xi << shl) | (prev >> shr); |
| prev = xi; |
| } |
| |
| limb carry = prev >> shr; |
| if (carry != 0) { |
| return vec.try_push(carry); |
| } |
| return true; |
| } |
| |
| // move the limbs left by `n` limbs. |
| bool shl_limbs(size_t n) noexcept { |
| FASTFLOAT_DEBUG_ASSERT(n != 0); |
| if (n + vec.len() > vec.capacity()) { |
| return false; |
| } else if (!vec.is_empty()) { |
| // move limbs |
| limb* dst = vec.data + n; |
| const limb* src = vec.data; |
| ::memmove(dst, src, sizeof(limb) * vec.len()); |
| // fill in empty limbs |
| limb* first = vec.data; |
| limb* last = first + n; |
| ::std::fill(first, last, 0); |
| vec.set_len(n + vec.len()); |
| return true; |
| } else { |
| return true; |
| } |
| } |
| |
| // move the limbs left by `n` bits. |
| bool shl(size_t n) noexcept { |
| size_t rem = n % limb_bits; |
| size_t div = n / limb_bits; |
| if (rem != 0) { |
| FASTFLOAT_TRY(shl_bits(rem)); |
| } |
| if (div != 0) { |
| FASTFLOAT_TRY(shl_limbs(div)); |
| } |
| return true; |
| } |
| |
| // get the number of leading zeros in the bigint. |
| int ctlz() const noexcept { |
| if (vec.is_empty()) { |
| return 0; |
| } else { |
| #ifdef FASTFLOAT_64BIT_LIMB |
| return leading_zeroes(vec.rindex(0)); |
| #else |
| // no use defining a specialized leading_zeroes for a 32-bit type. |
| uint64_t r0 = vec.rindex(0); |
| return leading_zeroes(r0 << 32); |
| #endif |
| } |
| } |
| |
| // get the number of bits in the bigint. |
| int bit_length() const noexcept { |
| int lz = ctlz(); |
| return int(limb_bits * vec.len()) - lz; |
| } |
| |
| bool mul(limb y) noexcept { |
| return small_mul(vec, y); |
| } |
| |
| bool add(limb y) noexcept { |
| return small_add(vec, y); |
| } |
| |
| // multiply as if by 2 raised to a power. |
| bool pow2(uint32_t exp) noexcept { |
| return shl(exp); |
| } |
| |
| // multiply as if by 5 raised to a power. |
| bool pow5(uint32_t exp) noexcept { |
| // multiply by a power of 5 |
| static constexpr uint32_t large_step = 135; |
| static constexpr uint64_t small_power_of_5[] = { |
| 1UL, 5UL, 25UL, 125UL, 625UL, 3125UL, 15625UL, 78125UL, 390625UL, |
| 1953125UL, 9765625UL, 48828125UL, 244140625UL, 1220703125UL, |
| 6103515625UL, 30517578125UL, 152587890625UL, 762939453125UL, |
| 3814697265625UL, 19073486328125UL, 95367431640625UL, 476837158203125UL, |
| 2384185791015625UL, 11920928955078125UL, 59604644775390625UL, |
| 298023223876953125UL, 1490116119384765625UL, 7450580596923828125UL, |
| }; |
| #ifdef FASTFLOAT_64BIT_LIMB |
| constexpr static limb large_power_of_5[] = { |
| 1414648277510068013UL, 9180637584431281687UL, 4539964771860779200UL, |
| 10482974169319127550UL, 198276706040285095UL}; |
| #else |
| constexpr static limb large_power_of_5[] = { |
| 4279965485U, 329373468U, 4020270615U, 2137533757U, 4287402176U, |
| 1057042919U, 1071430142U, 2440757623U, 381945767U, 46164893U}; |
| #endif |
| size_t large_length = sizeof(large_power_of_5) / sizeof(limb); |
| limb_span large = limb_span(large_power_of_5, large_length); |
| while (exp >= large_step) { |
| FASTFLOAT_TRY(large_mul(vec, large)); |
| exp -= large_step; |
| } |
| #ifdef FASTFLOAT_64BIT_LIMB |
| uint32_t small_step = 27; |
| limb max_native = 7450580596923828125UL; |
| #else |
| uint32_t small_step = 13; |
| limb max_native = 1220703125U; |
| #endif |
| while (exp >= small_step) { |
| FASTFLOAT_TRY(small_mul(vec, max_native)); |
| exp -= small_step; |
| } |
| if (exp != 0) { |
| FASTFLOAT_TRY(small_mul(vec, limb(small_power_of_5[exp]))); |
| } |
| |
| return true; |
| } |
| |
| // multiply as if by 10 raised to a power. |
| bool pow10(uint32_t exp) noexcept { |
| FASTFLOAT_TRY(pow5(exp)); |
| return pow2(exp); |
| } |
| }; |
| |
| } // namespace fast_float |
| |
| #endif |
| |
| #ifndef FASTFLOAT_ASCII_NUMBER_H |
| #define FASTFLOAT_ASCII_NUMBER_H |
| |
| |
| namespace fast_float { |
| |
| // Next function can be micro-optimized, but compilers are entirely |
| // able to optimize it well. |
| fastfloat_really_inline bool is_integer(char c) noexcept { return c >= '0' && c <= '9'; } |
| |
| fastfloat_really_inline uint64_t byteswap(uint64_t val) { |
| return (val & 0xFF00000000000000) >> 56 |
| | (val & 0x00FF000000000000) >> 40 |
| | (val & 0x0000FF0000000000) >> 24 |
| | (val & 0x000000FF00000000) >> 8 |
| | (val & 0x00000000FF000000) << 8 |
| | (val & 0x0000000000FF0000) << 24 |
| | (val & 0x000000000000FF00) << 40 |
| | (val & 0x00000000000000FF) << 56; |
| } |
| |
| fastfloat_really_inline uint64_t read_u64(const char *chars) { |
| uint64_t val; |
| ::memcpy(&val, chars, sizeof(uint64_t)); |
| #if FASTFLOAT_IS_BIG_ENDIAN == 1 |
| // Need to read as-if the number was in little-endian order. |
| val = byteswap(val); |
| #endif |
| return val; |
| } |
| |
| fastfloat_really_inline void write_u64(uint8_t *chars, uint64_t val) { |
| #if FASTFLOAT_IS_BIG_ENDIAN == 1 |
| // Need to read as-if the number was in little-endian order. |
| val = byteswap(val); |
| #endif |
| ::memcpy(chars, &val, sizeof(uint64_t)); |
| } |
| |
| // credit @aqrit |
| fastfloat_really_inline uint32_t parse_eight_digits_unrolled(uint64_t val) { |
| const uint64_t mask = 0x000000FF000000FF; |
| const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32) |
| const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32) |
| val -= 0x3030303030303030; |
| val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8; |
| val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32; |
| return uint32_t(val); |
| } |
| |
| fastfloat_really_inline uint32_t parse_eight_digits_unrolled(const char *chars) noexcept { |
| return parse_eight_digits_unrolled(read_u64(chars)); |
| } |
| |
| // credit @aqrit |
| fastfloat_really_inline bool is_made_of_eight_digits_fast(uint64_t val) noexcept { |
| return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) & |
| 0x8080808080808080)); |
| } |
| |
| fastfloat_really_inline bool is_made_of_eight_digits_fast(const char *chars) noexcept { |
| return is_made_of_eight_digits_fast(read_u64(chars)); |
| } |
| |
| typedef span<const char> byte_span; |
| |
| struct parsed_number_string { |
| int64_t exponent{0}; |
| uint64_t mantissa{0}; |
| const char *lastmatch{nullptr}; |
| bool negative{false}; |
| bool valid{false}; |
| bool too_many_digits{false}; |
| // contains the range of the significant digits |
| byte_span integer{}; // non-nullable |
| byte_span fraction{}; // nullable |
| }; |
| |
| // Assuming that you use no more than 19 digits, this will |
| // parse an ASCII string. |
| fastfloat_really_inline |
| parsed_number_string parse_number_string(const char *p, const char *pend, parse_options options) noexcept { |
| const chars_format fmt = options.format; |
| const char decimal_point = options.decimal_point; |
| |
| parsed_number_string answer; |
| answer.valid = false; |
| answer.too_many_digits = false; |
| answer.negative = (*p == '-'); |
| if (*p == '-') { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here |
| ++p; |
| if (p == pend) { |
| return answer; |
| } |
| if (!is_integer(*p) && (*p != decimal_point)) { // a sign must be followed by an integer or the dot |
| return answer; |
| } |
| } |
| const char *const start_digits = p; |
| |
| uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad) |
| |
| while ((p != pend) && is_integer(*p)) { |
| // a multiplication by 10 is cheaper than an arbitrary integer |
| // multiplication |
| i = 10 * i + |
| uint64_t(*p - '0'); // might overflow, we will handle the overflow later |
| ++p; |
| } |
| const char *const end_of_integer_part = p; |
| int64_t digit_count = int64_t(end_of_integer_part - start_digits); |
| answer.integer = byte_span(start_digits, size_t(digit_count)); |
| int64_t exponent = 0; |
| if ((p != pend) && (*p == decimal_point)) { |
| ++p; |
| const char* before = p; |
| // can occur at most twice without overflowing, but let it occur more, since |
| // for integers with many digits, digit parsing is the primary bottleneck. |
| while ((std::distance(p, pend) >= 8) && is_made_of_eight_digits_fast(p)) { |
| i = i * 100000000 + parse_eight_digits_unrolled(p); // in rare cases, this will overflow, but that's ok |
| p += 8; |
| } |
| while ((p != pend) && is_integer(*p)) { |
| uint8_t digit = uint8_t(*p - '0'); |
| ++p; |
| i = i * 10 + digit; // in rare cases, this will overflow, but that's ok |
| } |
| exponent = before - p; |
| answer.fraction = byte_span(before, size_t(p - before)); |
| digit_count -= exponent; |
| } |
| // we must have encountered at least one integer! |
| if (digit_count == 0) { |
| return answer; |
| } |
| int64_t exp_number = 0; // explicit exponential part |
| if ((fmt & chars_format::scientific) && (p != pend) && (('e' == *p) || ('E' == *p))) { |
| const char * location_of_e = p; |
| ++p; |
| bool neg_exp = false; |
| if ((p != pend) && ('-' == *p)) { |
| neg_exp = true; |
| ++p; |
| } else if ((p != pend) && ('+' == *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1) |
| ++p; |
| } |
| if ((p == pend) || !is_integer(*p)) { |
| if(!(fmt & chars_format::fixed)) { |
| // We are in error. |
| return answer; |
| } |
| // Otherwise, we will be ignoring the 'e'. |
| p = location_of_e; |
| } else { |
| while ((p != pend) && is_integer(*p)) { |
| uint8_t digit = uint8_t(*p - '0'); |
| if (exp_number < 0x10000000) { |
| exp_number = 10 * exp_number + digit; |
| } |
| ++p; |
| } |
| if(neg_exp) { exp_number = - exp_number; } |
| exponent += exp_number; |
| } |
| } else { |
| // If it scientific and not fixed, we have to bail out. |
| if((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) { return answer; } |
| } |
| answer.lastmatch = p; |
| answer.valid = true; |
| |
| // If we frequently had to deal with long strings of digits, |
| // we could extend our code by using a 128-bit integer instead |
| // of a 64-bit integer. However, this is uncommon. |
| // |
| // We can deal with up to 19 digits. |
| if (digit_count > 19) { // this is uncommon |
| // It is possible that the integer had an overflow. |
| // We have to handle the case where we have 0.0000somenumber. |
| // We need to be mindful of the case where we only have zeroes... |
| // E.g., 0.000000000...000. |
| const char *start = start_digits; |
| while ((start != pend) && (*start == '0' || *start == decimal_point)) { |
| if(*start == '0') { digit_count --; } |
| start++; |
| } |
| if (digit_count > 19) { |
| answer.too_many_digits = true; |
| // Let us start again, this time, avoiding overflows. |
| // We don't need to check if is_integer, since we use the |
| // pre-tokenized spans from above. |
| i = 0; |
| p = answer.integer.ptr; |
| const char* int_end = p + answer.integer.len(); |
| const uint64_t minimal_nineteen_digit_integer{1000000000000000000}; |
| while((i < minimal_nineteen_digit_integer) && (p != int_end)) { |
| i = i * 10 + uint64_t(*p - '0'); |
| ++p; |
| } |
| if (i >= minimal_nineteen_digit_integer) { // We have a big integers |
| exponent = end_of_integer_part - p + exp_number; |
| } else { // We have a value with a fractional component. |
| p = answer.fraction.ptr; |
| const char* frac_end = p + answer.fraction.len(); |
| while((i < minimal_nineteen_digit_integer) && (p != frac_end)) { |
| i = i * 10 + uint64_t(*p - '0'); |
| ++p; |
| } |
| exponent = answer.fraction.ptr - p + exp_number; |
| } |
| // We have now corrected both exponent and i, to a truncated value |
| } |
| } |
| answer.exponent = exponent; |
| answer.mantissa = i; |
| return answer; |
| } |
| |
| } // namespace fast_float |
| |
| #endif |
| |
| #ifndef FASTFLOAT_DIGIT_COMPARISON_H |
| #define FASTFLOAT_DIGIT_COMPARISON_H |
| |
| |
| namespace fast_float { |
| |
| // 1e0 to 1e19 |
| constexpr static uint64_t powers_of_ten_uint64[] = { |
| 1UL, 10UL, 100UL, 1000UL, 10000UL, 100000UL, 1000000UL, 10000000UL, 100000000UL, |
| 1000000000UL, 10000000000UL, 100000000000UL, 1000000000000UL, 10000000000000UL, |
| 100000000000000UL, 1000000000000000UL, 10000000000000000UL, 100000000000000000UL, |
| 1000000000000000000UL, 10000000000000000000UL}; |
| |
| // calculate the exponent, in scientific notation, of the number. |
| // this algorithm is not even close to optimized, but it has no practical |
| // effect on performance: in order to have a faster algorithm, we'd need |
| // to slow down performance for faster algorithms, and this is still fast. |
| fastfloat_really_inline int32_t scientific_exponent(parsed_number_string& num) noexcept { |
| uint64_t mantissa = num.mantissa; |
| int32_t exponent = int32_t(num.exponent); |
| while (mantissa >= 10000) { |
| mantissa /= 10000; |
| exponent += 4; |
| } |
| while (mantissa >= 100) { |
| mantissa /= 100; |
| exponent += 2; |
| } |
| while (mantissa >= 10) { |
| mantissa /= 10; |
| exponent += 1; |
| } |
| return exponent; |
| } |
| |
| // this converts a native floating-point number to an extended-precision float. |
| template <typename T> |
| fastfloat_really_inline adjusted_mantissa to_extended(T value) noexcept { |
| using equiv_uint = typename binary_format<T>::equiv_uint; |
| constexpr equiv_uint exponent_mask = binary_format<T>::exponent_mask(); |
| constexpr equiv_uint mantissa_mask = binary_format<T>::mantissa_mask(); |
| constexpr equiv_uint hidden_bit_mask = binary_format<T>::hidden_bit_mask(); |
| |
| adjusted_mantissa am; |
| int32_t bias = binary_format<T>::mantissa_explicit_bits() - binary_format<T>::minimum_exponent(); |
| equiv_uint bits; |
| ::memcpy(&bits, &value, sizeof(T)); |
| if ((bits & exponent_mask) == 0) { |
| // denormal |
| am.power2 = 1 - bias; |
| am.mantissa = bits & mantissa_mask; |
| } else { |
| // normal |
| am.power2 = int32_t((bits & exponent_mask) >> binary_format<T>::mantissa_explicit_bits()); |
| am.power2 -= bias; |
| am.mantissa = (bits & mantissa_mask) | hidden_bit_mask; |
| } |
| |
| return am; |
| } |
| |
| // get the extended precision value of the halfway point between b and b+u. |
| // we are given a native float that represents b, so we need to adjust it |
| // halfway between b and b+u. |
| template <typename T> |
| fastfloat_really_inline adjusted_mantissa to_extended_halfway(T value) noexcept { |
| adjusted_mantissa am = to_extended(value); |
| am.mantissa <<= 1; |
| am.mantissa += 1; |
| am.power2 -= 1; |
| return am; |
| } |
| |
| // round an extended-precision float to the nearest machine float. |
| template <typename T, typename callback> |
| fastfloat_really_inline void round(adjusted_mantissa& am, callback cb) noexcept { |
| int32_t mantissa_shift = 64 - binary_format<T>::mantissa_explicit_bits() - 1; |
| if (-am.power2 >= mantissa_shift) { |
| // have a denormal float |
| int32_t shift = -am.power2 + 1; |
| cb(am, std::min<int32_t>(shift, 64)); |
| // check for round-up: if rounding-nearest carried us to the hidden bit. |
| am.power2 = (am.mantissa < (uint64_t(1) << binary_format<T>::mantissa_explicit_bits())) ? 0 : 1; |
| return; |
| } |
| |
| // have a normal float, use the default shift. |
| cb(am, mantissa_shift); |
| |
| // check for carry |
| if (am.mantissa >= (uint64_t(2) << binary_format<T>::mantissa_explicit_bits())) { |
| am.mantissa = (uint64_t(1) << binary_format<T>::mantissa_explicit_bits()); |
| am.power2++; |
| } |
| |
| // check for infinite: we could have carried to an infinite power |
| am.mantissa &= ~(uint64_t(1) << binary_format<T>::mantissa_explicit_bits()); |
| if (am.power2 >= binary_format<T>::infinite_power()) { |
| am.power2 = binary_format<T>::infinite_power(); |
| am.mantissa = 0; |
| } |
| } |
| |
| template <typename callback> |
| fastfloat_really_inline |
| void round_nearest_tie_even(adjusted_mantissa& am, int32_t shift, callback cb) noexcept { |
| uint64_t mask; |
| uint64_t halfway; |
| if (shift == 64) { |
| mask = UINT64_MAX; |
| } else { |
| mask = (uint64_t(1) << shift) - 1; |
| } |
| if (shift == 0) { |
| halfway = 0; |
| } else { |
| halfway = uint64_t(1) << (shift - 1); |
| } |
| uint64_t truncated_bits = am.mantissa & mask; |
| uint64_t is_above = truncated_bits > halfway; |
| uint64_t is_halfway = truncated_bits == halfway; |
| |
| // shift digits into position |
| if (shift == 64) { |
| am.mantissa = 0; |
| } else { |
| am.mantissa >>= shift; |
| } |
| am.power2 += shift; |
| |
| bool is_odd = (am.mantissa & 1) == 1; |
| am.mantissa += uint64_t(cb(is_odd, is_halfway, is_above)); |
| } |
| |
| fastfloat_really_inline void round_down(adjusted_mantissa& am, int32_t shift) noexcept { |
| if (shift == 64) { |
| am.mantissa = 0; |
| } else { |
| am.mantissa >>= shift; |
| } |
| am.power2 += shift; |
| } |
| |
| fastfloat_really_inline void skip_zeros(const char*& first, const char* last) noexcept { |
| uint64_t val; |
| while (std::distance(first, last) >= 8) { |
| ::memcpy(&val, first, sizeof(uint64_t)); |
| if (val != 0x3030303030303030) { |
| break; |
| } |
| first += 8; |
| } |
| while (first != last) { |
| if (*first != '0') { |
| break; |
| } |
| first++; |
| } |
| } |
| |
| // determine if any non-zero digits were truncated. |
| // all characters must be valid digits. |
| fastfloat_really_inline bool is_truncated(const char* first, const char* last) noexcept { |
| // do 8-bit optimizations, can just compare to 8 literal 0s. |
| uint64_t val; |
| while (std::distance(first, last) >= 8) { |
| ::memcpy(&val, first, sizeof(uint64_t)); |
| if (val != 0x3030303030303030) { |
| return true; |
| } |
| first += 8; |
| } |
| while (first != last) { |
| if (*first != '0') { |
| return true; |
| } |
| first++; |
| } |
| return false; |
| } |
| |
| fastfloat_really_inline bool is_truncated(byte_span s) noexcept { |
| return is_truncated(s.ptr, s.ptr + s.len()); |
| } |
| |
| fastfloat_really_inline |
| void parse_eight_digits(const char*& p, limb& value, size_t& counter, size_t& count) noexcept { |
| value = value * 100000000 + parse_eight_digits_unrolled(p); |
| p += 8; |
| counter += 8; |
| count += 8; |
| } |
| |
| fastfloat_really_inline |
| void parse_one_digit(const char*& p, limb& value, size_t& counter, size_t& count) noexcept { |
| value = value * 10 + limb(*p - '0'); |
| p++; |
| counter++; |
| count++; |
| } |
| |
| fastfloat_really_inline |
| void add_native(bigint& big, limb power, limb value) noexcept { |
| big.mul(power); |
| big.add(value); |
| } |
| |
| fastfloat_really_inline void round_up_bigint(bigint& big, size_t& count) noexcept { |
| // need to round-up the digits, but need to avoid rounding |
| // ....9999 to ...10000, which could cause a false halfway point. |
| add_native(big, 10, 1); |
| count++; |
| } |
| |
| // parse the significant digits into a big integer |
| inline void parse_mantissa(bigint& result, parsed_number_string& num, size_t max_digits, size_t& digits) noexcept { |
| // try to minimize the number of big integer and scalar multiplication. |
| // therefore, try to parse 8 digits at a time, and multiply by the largest |
| // scalar value (9 or 19 digits) for each step. |
| size_t counter = 0; |
| digits = 0; |
| limb value = 0; |
| #ifdef FASTFLOAT_64BIT_LIMB |
| size_t step = 19; |
| #else |
| size_t step = 9; |
| #endif |
| |
| // process all integer digits. |
| const char* p = num.integer.ptr; |
| const char* pend = p + num.integer.len(); |
| skip_zeros(p, pend); |
| // process all digits, in increments of step per loop |
| while (p != pend) { |
| while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && (max_digits - digits >= 8)) { |
| parse_eight_digits(p, value, counter, digits); |
| } |
| while (counter < step && p != pend && digits < max_digits) { |
| parse_one_digit(p, value, counter, digits); |
| } |
| if (digits == max_digits) { |
| // add the temporary value, then check if we've truncated any digits |
| add_native(result, limb(powers_of_ten_uint64[counter]), value); |
| bool truncated = is_truncated(p, pend); |
| if (num.fraction.ptr != nullptr) { |
| truncated |= is_truncated(num.fraction); |
| } |
| if (truncated) { |
| round_up_bigint(result, digits); |
| } |
| return; |
| } else { |
| add_native(result, limb(powers_of_ten_uint64[counter]), value); |
| counter = 0; |
| value = 0; |
| } |
| } |
| |
| // add our fraction digits, if they're available. |
| if (num.fraction.ptr != nullptr) { |
| p = num.fraction.ptr; |
| pend = p + num.fraction.len(); |
| if (digits == 0) { |
| skip_zeros(p, pend); |
| } |
| // process all digits, in increments of step per loop |
| while (p != pend) { |
| while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && (max_digits - digits >= 8)) { |
| parse_eight_digits(p, value, counter, digits); |
| } |
| while (counter < step && p != pend && digits < max_digits) { |
| parse_one_digit(p, value, counter, digits); |
| } |
| if (digits == max_digits) { |
| // add the temporary value, then check if we've truncated any digits |
| add_native(result, limb(powers_of_ten_uint64[counter]), value); |
| bool truncated = is_truncated(p, pend); |
| if (truncated) { |
| round_up_bigint(result, digits); |
| } |
| return; |
| } else { |
| add_native(result, limb(powers_of_ten_uint64[counter]), value); |
| counter = 0; |
| value = 0; |
| } |
| } |
| } |
| |
| if (counter != 0) { |
| add_native(result, limb(powers_of_ten_uint64[counter]), value); |
| } |
| } |
| |
| template <typename T> |
| inline adjusted_mantissa positive_digit_comp(bigint& bigmant, int32_t exponent) noexcept { |
| FASTFLOAT_ASSERT(bigmant.pow10(uint32_t(exponent))); |
| adjusted_mantissa answer; |
| bool truncated; |
| answer.mantissa = bigmant.hi64(truncated); |
| int bias = binary_format<T>::mantissa_explicit_bits() - binary_format<T>::minimum_exponent(); |
| answer.power2 = bigmant.bit_length() - 64 + bias; |
| |
| round<T>(answer, [truncated](adjusted_mantissa& a, int32_t shift) { |
| round_nearest_tie_even(a, shift, [truncated](bool is_odd, bool is_halfway, bool is_above) -> bool { |
| return is_above || (is_halfway && truncated) || (is_odd && is_halfway); |
| }); |
| }); |
| |
| return answer; |
| } |
| |
| // the scaling here is quite simple: we have, for the real digits `m * 10^e`, |
| // and for the theoretical digits `n * 2^f`. Since `e` is always negative, |
| // to scale them identically, we do `n * 2^f * 5^-f`, so we now have `m * 2^e`. |
| // we then need to scale by `2^(f- e)`, and then the two significant digits |
| // are of the same magnitude. |
| template <typename T> |
| inline adjusted_mantissa negative_digit_comp(bigint& bigmant, adjusted_mantissa am, int32_t exponent) noexcept { |
| bigint& real_digits = bigmant; |
| int32_t real_exp = exponent; |
| |
| // get the value of `b`, rounded down, and get a bigint representation of b+h |
| adjusted_mantissa am_b = am; |
| // gcc7 buf: use a lambda to remove the noexcept qualifier bug with -Wnoexcept-type. |
| round<T>(am_b, [](adjusted_mantissa&a, int32_t shift) { round_down(a, shift); }); |
| T b; |
| to_float(false, am_b, b); |
| adjusted_mantissa theor = to_extended_halfway(b); |
| bigint theor_digits(theor.mantissa); |
| int32_t theor_exp = theor.power2; |
| |
| // scale real digits and theor digits to be same power. |
| int32_t pow2_exp = theor_exp - real_exp; |
| uint32_t pow5_exp = uint32_t(-real_exp); |
| if (pow5_exp != 0) { |
| FASTFLOAT_ASSERT(theor_digits.pow5(pow5_exp)); |
| } |
| if (pow2_exp > 0) { |
| FASTFLOAT_ASSERT(theor_digits.pow2(uint32_t(pow2_exp))); |
| } else if (pow2_exp < 0) { |
| FASTFLOAT_ASSERT(real_digits.pow2(uint32_t(-pow2_exp))); |
| } |
| |
| // compare digits, and use it to director rounding |
| int ord = real_digits.compare(theor_digits); |
| adjusted_mantissa answer = am; |
| round<T>(answer, [ord](adjusted_mantissa& a, int32_t shift) { |
| round_nearest_tie_even(a, shift, [ord](bool is_odd, bool _, bool __) -> bool { |
| (void)_; // not needed, since we've done our comparison |
| (void)__; // not needed, since we've done our comparison |
| if (ord > 0) { |
| return true; |
| } else if<
|