| // Copyright 2018 Ulf Adams |
| // |
| // The contents of this file may be used under the terms of the Apache License, |
| // Version 2.0. |
| // |
| // (See accompanying file LICENSE-Apache or copy at |
| // http://www.apache.org/licenses/LICENSE-2.0) |
| // |
| // Alternatively, the contents of this file may be used under the terms of |
| // the Boost Software License, Version 1.0. |
| // (See accompanying file LICENSE-Boost or copy at |
| // https://www.boost.org/LICENSE_1_0.txt) |
| // |
| // Unless required by applicable law or agreed to in writing, this software |
| // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| // KIND, either express or implied. |
| |
| // Runtime compiler options: |
| // -DRYU_DEBUG Generate verbose debugging output to stdout. |
| // |
| // -DRYU_ONLY_64_BIT_OPS Avoid using uint128_t or 64-bit intrinsics. Slower, |
| // depending on your compiler. |
| // |
| // -DRYU_OPTIMIZE_SIZE Use smaller lookup tables. Instead of storing every |
| // required power of 5, only store every 26th entry, and compute |
| // intermediate values with a multiplication. This reduces the lookup table |
| // size by about 10x (only one case, and only double) at the cost of some |
| // performance. Currently requires MSVC intrinsics. |
| |
| |
| |
| #ifdef RYU_DEBUG |
| #endif |
| |
| |
| // Include either the small or the full lookup tables depending on the mode. |
| #if defined(RYU_OPTIMIZE_SIZE) |
| #else |
| #endif |
| |
| #define DOUBLE_MANTISSA_BITS 52 |
| #define DOUBLE_EXPONENT_BITS 11 |
| #define DOUBLE_BIAS 1023 |
| |
| static inline uint32_t decimalLength17(const uint64_t v) { |
| // This is slightly faster than a loop. |
| // The average output length is 16.38 digits, so we check high-to-low. |
| // Function precondition: v is not an 18, 19, or 20-digit number. |
| // (17 digits are sufficient for round-tripping.) |
| assert(v < 100000000000000000L); |
| if (v >= 10000000000000000L) { return 17; } |
| if (v >= 1000000000000000L) { return 16; } |
| if (v >= 100000000000000L) { return 15; } |
| if (v >= 10000000000000L) { return 14; } |
| if (v >= 1000000000000L) { return 13; } |
| if (v >= 100000000000L) { return 12; } |
| if (v >= 10000000000L) { return 11; } |
| if (v >= 1000000000L) { return 10; } |
| if (v >= 100000000L) { return 9; } |
| if (v >= 10000000L) { return 8; } |
| if (v >= 1000000L) { return 7; } |
| if (v >= 100000L) { return 6; } |
| if (v >= 10000L) { return 5; } |
| if (v >= 1000L) { return 4; } |
| if (v >= 100L) { return 3; } |
| if (v >= 10L) { return 2; } |
| return 1; |
| } |
| |
| // A floating decimal representing m * 10^e. |
| typedef struct floating_decimal_64 { |
| uint64_t mantissa; |
| // Decimal exponent's range is -324 to 308 |
| // inclusive, and can fit in a short if needed. |
| int32_t exponent; |
| bool sign; |
| } floating_decimal_64; |
| |
| static inline floating_decimal_64 d2d(const uint64_t ieeeMantissa, const uint32_t ieeeExponent, const bool ieeeSign) { |
| int32_t e2; |
| uint64_t m2; |
| if (ieeeExponent == 0) { |
| // We subtract 2 so that the bounds computation has 2 additional bits. |
| e2 = 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2; |
| m2 = ieeeMantissa; |
| } else { |
| e2 = (int32_t) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2; |
| m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa; |
| } |
| const bool even = (m2 & 1) == 0; |
| const bool acceptBounds = even; |
| |
| #ifdef RYU_DEBUG |
| printf("-> %" PRIu64 " * 2^%d\n", m2, e2 + 2); |
| #endif |
| |
| // Step 2: Determine the interval of valid decimal representations. |
| const uint64_t mv = 4 * m2; |
| // Implicit bool -> int conversion. True is 1, false is 0. |
| const uint32_t mmShift = ieeeMantissa != 0 || ieeeExponent <= 1; |
| // We would compute mp and mm like this: |
| // uint64_t mp = 4 * m2 + 2; |
| // uint64_t mm = mv - 1 - mmShift; |
| |
| // Step 3: Convert to a decimal power base using 128-bit arithmetic. |
| uint64_t vr, vp, vm; |
| int32_t e10; |
| bool vmIsTrailingZeros = false; |
| bool vrIsTrailingZeros = false; |
| if (e2 >= 0) { |
| // I tried special-casing q == 0, but there was no effect on performance. |
| // This expression is slightly faster than max(0, log10Pow2(e2) - 1). |
| const uint32_t q = log10Pow2(e2) - (e2 > 3); |
| e10 = (int32_t) q; |
| const int32_t k = DOUBLE_POW5_INV_BITCOUNT + pow5bits((int32_t) q) - 1; |
| const int32_t i = -e2 + (int32_t) q + k; |
| #if defined(RYU_OPTIMIZE_SIZE) |
| uint64_t pow5[2]; |
| double_computeInvPow5(q, pow5); |
| vr = mulShiftAll64(m2, pow5, i, &vp, &vm, mmShift); |
| #else |
| vr = mulShiftAll64(m2, DOUBLE_POW5_INV_SPLIT[q], i, &vp, &vm, mmShift); |
| #endif |
| #ifdef RYU_DEBUG |
| printf("%" PRIu64 " * 2^%d / 10^%u\n", mv, e2, q); |
| printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm); |
| #endif |
| if (q <= 21) { |
| // This should use q <= 22, but I think 21 is also safe. Smaller values |
| // may still be safe, but it's more difficult to reason about them. |
| // Only one of mp, mv, and mm can be a multiple of 5, if any. |
| const uint32_t mvMod5 = ((uint32_t) mv) - 5 * ((uint32_t) div5(mv)); |
| if (mvMod5 == 0) { |
| vrIsTrailingZeros = multipleOfPowerOf5(mv, q); |
| } else if (acceptBounds) { |
| // Same as min(e2 + (~mm & 1), pow5Factor(mm)) >= q |
| // <=> e2 + (~mm & 1) >= q && pow5Factor(mm) >= q |
| // <=> true && pow5Factor(mm) >= q, since e2 >= q. |
| vmIsTrailingZeros = multipleOfPowerOf5(mv - 1 - mmShift, q); |
| } else { |
| // Same as min(e2 + 1, pow5Factor(mp)) >= q. |
| vp -= multipleOfPowerOf5(mv + 2, q); |
| } |
| } |
| } else { |
| // This expression is slightly faster than max(0, log10Pow5(-e2) - 1). |
| const uint32_t q = log10Pow5(-e2) - (-e2 > 1); |
| e10 = (int32_t) q + e2; |
| const int32_t i = -e2 - (int32_t) q; |
| const int32_t k = pow5bits(i) - DOUBLE_POW5_BITCOUNT; |
| const int32_t j = (int32_t) q - k; |
| #if defined(RYU_OPTIMIZE_SIZE) |
| uint64_t pow5[2]; |
| double_computePow5(i, pow5); |
| vr = mulShiftAll64(m2, pow5, j, &vp, &vm, mmShift); |
| #else |
| vr = mulShiftAll64(m2, DOUBLE_POW5_SPLIT[i], j, &vp, &vm, mmShift); |
| #endif |
| #ifdef RYU_DEBUG |
| printf("%" PRIu64 " * 5^%d / 10^%u\n", mv, -e2, q); |
| printf("%u %d %d %d\n", q, i, k, j); |
| printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm); |
| #endif |
| if (q <= 1) { |
| // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits. |
| // mv = 4 * m2, so it always has at least two trailing 0 bits. |
| vrIsTrailingZeros = true; |
| if (acceptBounds) { |
| // mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1. |
| vmIsTrailingZeros = mmShift == 1; |
| } else { |
| // mp = mv + 2, so it always has at least one trailing 0 bit. |
| --vp; |
| } |
| } else if (q < 63) { // TODO(ulfjack): Use a tighter bound here. |
| // We want to know if the full product has at least q trailing zeros. |
| // We need to compute min(p2(mv), p5(mv) - e2) >= q |
| // <=> p2(mv) >= q && p5(mv) - e2 >= q |
| // <=> p2(mv) >= q (because -e2 >= q) |
| vrIsTrailingZeros = multipleOfPowerOf2(mv, q); |
| #ifdef RYU_DEBUG |
| printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false"); |
| #endif |
| } |
| } |
| #ifdef RYU_DEBUG |
| printf("e10=%d\n", e10); |
| printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm); |
| printf("vm is trailing zeros=%s\n", vmIsTrailingZeros ? "true" : "false"); |
| printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false"); |
| #endif |
| |
| // Step 4: Find the shortest decimal representation in the interval of valid representations. |
| int32_t removed = 0; |
| uint8_t lastRemovedDigit = 0; |
| uint64_t output; |
| // On average, we remove ~2 digits. |
| if (vmIsTrailingZeros || vrIsTrailingZeros) { |
| // General case, which happens rarely (~0.7%). |
| for (;;) { |
| const uint64_t vpDiv10 = div10(vp); |
| const uint64_t vmDiv10 = div10(vm); |
| if (vpDiv10 <= vmDiv10) { |
| break; |
| } |
| const uint32_t vmMod10 = ((uint32_t) vm) - 10 * ((uint32_t) vmDiv10); |
| const uint64_t vrDiv10 = div10(vr); |
| const uint32_t vrMod10 = ((uint32_t) vr) - 10 * ((uint32_t) vrDiv10); |
| vmIsTrailingZeros &= vmMod10 == 0; |
| vrIsTrailingZeros &= lastRemovedDigit == 0; |
| lastRemovedDigit = (uint8_t) vrMod10; |
| vr = vrDiv10; |
| vp = vpDiv10; |
| vm = vmDiv10; |
| ++removed; |
| } |
| #ifdef RYU_DEBUG |
| printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm); |
| printf("d-10=%s\n", vmIsTrailingZeros ? "true" : "false"); |
| #endif |
| if (vmIsTrailingZeros) { |
| for (;;) { |
| const uint64_t vmDiv10 = div10(vm); |
| const uint32_t vmMod10 = ((uint32_t) vm) - 10 * ((uint32_t) vmDiv10); |
| if (vmMod10 != 0) { |
| break; |
| } |
| const uint64_t vpDiv10 = div10(vp); |
| const uint64_t vrDiv10 = div10(vr); |
| const uint32_t vrMod10 = ((uint32_t) vr) - 10 * ((uint32_t) vrDiv10); |
| vrIsTrailingZeros &= lastRemovedDigit == 0; |
| lastRemovedDigit = (uint8_t) vrMod10; |
| vr = vrDiv10; |
| vp = vpDiv10; |
| vm = vmDiv10; |
| ++removed; |
| } |
| } |
| #ifdef RYU_DEBUG |
| printf("%" PRIu64 " %d\n", vr, lastRemovedDigit); |
| printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false"); |
| #endif |
| if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0) { |
| // Round even if the exact number is .....50..0. |
| lastRemovedDigit = 4; |
| } |
| // We need to take vr + 1 if vr is outside bounds or we need to round up. |
| output = vr + ((vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5); |
| } else { |
| // Specialized for the common case (~99.3%). Percentages below are relative to this. |
| bool roundUp = false; |
| const uint64_t vpDiv100 = div100(vp); |
| const uint64_t vmDiv100 = div100(vm); |
| if (vpDiv100 > vmDiv100) { // Optimization: remove two digits at a time (~86.2%). |
| const uint64_t vrDiv100 = div100(vr); |
| const uint32_t vrMod100 = ((uint32_t) vr) - 100 * ((uint32_t) vrDiv100); |
| roundUp = vrMod100 >= 50; |
| vr = vrDiv100; |
| vp = vpDiv100; |
| vm = vmDiv100; |
| removed += 2; |
| } |
| // Loop iterations below (approximately), without optimization above: |
| // 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02% |
| // Loop iterations below (approximately), with optimization above: |
| // 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02% |
| for (;;) { |
| const uint64_t vpDiv10 = div10(vp); |
| const uint64_t vmDiv10 = div10(vm); |
| if (vpDiv10 <= vmDiv10) { |
| break; |
| } |
| const uint64_t vrDiv10 = div10(vr); |
| const uint32_t vrMod10 = ((uint32_t) vr) - 10 * ((uint32_t) vrDiv10); |
| roundUp = vrMod10 >= 5; |
| vr = vrDiv10; |
| vp = vpDiv10; |
| vm = vmDiv10; |
| ++removed; |
| } |
| #ifdef RYU_DEBUG |
| printf("%" PRIu64 " roundUp=%s\n", vr, roundUp ? "true" : "false"); |
| printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false"); |
| #endif |
| // We need to take vr + 1 if vr is outside bounds or we need to round up. |
| output = vr + (vr == vm || roundUp); |
| } |
| const int32_t exp = e10 + removed; |
| |
| #ifdef RYU_DEBUG |
| printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm); |
| printf("O=%" PRIu64 "\n", output); |
| printf("EXP=%d\n", exp); |
| #endif |
| |
| floating_decimal_64 fd; |
| fd.exponent = exp; |
| fd.mantissa = output; |
| fd.sign = ieeeSign; |
| return fd; |
| } |
| |
| static inline int to_chars(const floating_decimal_64 v, char* const result) { |
| // Step 5: Print the decimal representation. |
| int index = 0; |
| if (v.sign) { |
| result[index++] = '-'; |
| } |
| |
| uint64_t output = v.mantissa; |
| const uint32_t olength = decimalLength17(output); |
| |
| #ifdef RYU_DEBUG |
| printf("DIGITS=%" PRIu64 "\n", v.mantissa); |
| printf("OLEN=%u\n", olength); |
| printf("EXP=%u\n", v.exponent + olength); |
| #endif |
| |
| // Print the decimal digits. |
| // The following code is equivalent to: |
| // for (uint32_t i = 0; i < olength - 1; ++i) { |
| // const uint32_t c = output % 10; output /= 10; |
| // result[index + olength - i] = (char) ('0' + c); |
| // } |
| // result[index] = '0' + output % 10; |
| |
| uint32_t i = 0; |
| // We prefer 32-bit operations, even on 64-bit platforms. |
| // We have at most 17 digits, and uint32_t can store 9 digits. |
| // If output doesn't fit into uint32_t, we cut off 8 digits, |
| // so the rest will fit into uint32_t. |
| if ((output >> 32) != 0) { |
| // Expensive 64-bit division. |
| const uint64_t q = div1e8(output); |
| uint32_t output2 = ((uint32_t) output) - 100000000 * ((uint32_t) q); |
| output = q; |
| |
| const uint32_t c = output2 % 10000; |
| output2 /= 10000; |
| const uint32_t d = output2 % 10000; |
| const uint32_t c0 = (c % 100) << 1; |
| const uint32_t c1 = (c / 100) << 1; |
| const uint32_t d0 = (d % 100) << 1; |
| const uint32_t d1 = (d / 100) << 1; |
| memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2); |
| memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2); |
| memcpy(result + index + olength - i - 5, DIGIT_TABLE + d0, 2); |
| memcpy(result + index + olength - i - 7, DIGIT_TABLE + d1, 2); |
| i += 8; |
| } |
| uint32_t output2 = (uint32_t) output; |
| while (output2 >= 10000) { |
| #ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=38217 |
| const uint32_t c = output2 - 10000 * (output2 / 10000); |
| #else |
| const uint32_t c = output2 % 10000; |
| #endif |
| output2 /= 10000; |
| const uint32_t c0 = (c % 100) << 1; |
| const uint32_t c1 = (c / 100) << 1; |
| memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2); |
| memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2); |
| i += 4; |
| } |
| if (output2 >= 100) { |
| const uint32_t c = (output2 % 100) << 1; |
| output2 /= 100; |
| memcpy(result + index + olength - i - 1, DIGIT_TABLE + c, 2); |
| i += 2; |
| } |
| if (output2 >= 10) { |
| const uint32_t c = output2 << 1; |
| // We can't use memcpy here: the decimal dot goes between these two digits. |
| result[index + olength - i] = DIGIT_TABLE[c + 1]; |
| result[index] = DIGIT_TABLE[c]; |
| } else { |
| result[index] = (char) ('0' + output2); |
| } |
| |
| // Print decimal point if needed. |
| if (olength > 1) { |
| result[index + 1] = '.'; |
| index += olength + 1; |
| } else { |
| ++index; |
| } |
| |
| // Print the exponent. |
| result[index++] = 'e'; |
| int32_t exp = v.exponent + (int32_t) olength - 1; |
| if (exp < 0) { |
| result[index++] = '-'; |
| exp = -exp; |
| } else |
| result[index++] = '+'; |
| |
| if (exp >= 100) { |
| const int32_t c = exp % 10; |
| memcpy(result + index, DIGIT_TABLE + 2 * (exp / 10), 2); |
| result[index + 2] = (char) ('0' + c); |
| index += 3; |
| } else { |
| memcpy(result + index, DIGIT_TABLE + 2 * exp, 2); |
| index += 2; |
| } |
| |
| return index; |
| } |
| |
| static inline bool d2d_small_int(const uint64_t ieeeMantissa, const uint32_t ieeeExponent, const bool ieeeSign, |
| floating_decimal_64* const v) { |
| const uint64_t m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa; |
| const int32_t e2 = (int32_t) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS; |
| |
| if (e2 > 0) { |
| // f = m2 * 2^e2 >= 2^53 is an integer. |
| // Ignore this case for now. |
| return false; |
| } |
| |
| if (e2 < -52) { |
| // f < 1. |
| return false; |
| } |
| |
| // Since 2^52 <= m2 < 2^53 and 0 <= -e2 <= 52: 1 <= f = m2 / 2^-e2 < 2^53. |
| // Test if the lower -e2 bits of the significand are 0, i.e. whether the fraction is 0. |
| const uint64_t mask = (1ull << -e2) - 1; |
| const uint64_t fraction = m2 & mask; |
| if (fraction != 0) { |
| return false; |
| } |
| |
| // f is an integer in the range [1, 2^53). |
| // Note: mantissa might contain trailing (decimal) 0's. |
| // Note: since 2^53 < 10^16, there is no need to adjust decimalLength17(). |
| v->mantissa = m2 >> -e2; |
| v->exponent = 0; |
| v->sign = ieeeSign; |
| return true; |
| } |
| |
| floating_decimal_64 floating_to_fd64(double f) { |
| // Step 1: Decode the floating-point number, and unify normalized and subnormal cases. |
| const uint64_t bits = double_to_bits(f); |
| |
| #ifdef RYU_DEBUG |
| printf("IN="); |
| for (int32_t bit = 63; bit >= 0; --bit) { |
| printf("%d", (int) ((bits >> bit) & 1)); |
| } |
| printf("\n"); |
| #endif |
| |
| // Decode bits into sign, mantissa, and exponent. |
| const bool ieeeSign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0; |
| const uint64_t ieeeMantissa = bits & ((1ull << DOUBLE_MANTISSA_BITS) - 1); |
| const uint32_t ieeeExponent = (uint32_t) ((bits >> DOUBLE_MANTISSA_BITS) & ((1u << DOUBLE_EXPONENT_BITS) - 1)); |
| // Case distinction; exit early for the easy cases. |
| if (ieeeExponent == ((1u << DOUBLE_EXPONENT_BITS) - 1u) || (ieeeExponent == 0 && ieeeMantissa == 0)) { |
| __builtin_abort(); |
| } |
| |
| floating_decimal_64 v; |
| const bool isSmallInt = d2d_small_int(ieeeMantissa, ieeeExponent, ieeeSign, &v); |
| if (isSmallInt) { |
| // For small integers in the range [1, 2^53), v.mantissa might contain trailing (decimal) zeros. |
| // For scientific notation we need to move these zeros into the exponent. |
| // (This is not needed for fixed-point notation, so it might be beneficial to trim |
| // trailing zeros in to_chars only if needed - once fixed-point notation output is implemented.) |
| for (;;) { |
| const uint64_t q = div10(v.mantissa); |
| const uint32_t r = ((uint32_t) v.mantissa) - 10 * ((uint32_t) q); |
| if (r != 0) { |
| break; |
| } |
| v.mantissa = q; |
| ++v.exponent; |
| } |
| } else { |
| v = d2d(ieeeMantissa, ieeeExponent, ieeeSign); |
| } |
| |
| return v; |
| } |