| // Copyright 2018 Ulf Adams |
| // |
| // The contents of this file may be used under the terms of the Apache License, |
| // Version 2.0. |
| // |
| // (See accompanying file LICENSE-Apache or copy at |
| // http://www.apache.org/licenses/LICENSE-2.0) |
| // |
| // Alternatively, the contents of this file may be used under the terms of |
| // the Boost Software License, Version 1.0. |
| // (See accompanying file LICENSE-Boost or copy at |
| // https://www.boost.org/LICENSE_1_0.txt) |
| // |
| // Unless required by applicable law or agreed to in writing, this software |
| // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| // KIND, either express or implied. |
| |
| // Runtime compiler options: |
| // -DRYU_DEBUG Generate verbose debugging output to stdout. |
| |
| |
| |
| #ifdef RYU_DEBUG |
| #endif |
| |
| |
| #define FLOAT_MANTISSA_BITS 23 |
| #define FLOAT_EXPONENT_BITS 8 |
| #define FLOAT_BIAS 127 |
| |
| // A floating decimal representing m * 10^e. |
| typedef struct floating_decimal_32 { |
| uint32_t mantissa; |
| // Decimal exponent's range is -45 to 38 |
| // inclusive, and can fit in a short if needed. |
| int32_t exponent; |
| bool sign; |
| } floating_decimal_32; |
| |
| static inline floating_decimal_32 f2d(const uint32_t ieeeMantissa, const uint32_t ieeeExponent, const bool ieeeSign) { |
| int32_t e2; |
| uint32_t m2; |
| if (ieeeExponent == 0) { |
| // We subtract 2 so that the bounds computation has 2 additional bits. |
| e2 = 1 - FLOAT_BIAS - FLOAT_MANTISSA_BITS - 2; |
| m2 = ieeeMantissa; |
| } else { |
| e2 = (int32_t) ieeeExponent - FLOAT_BIAS - FLOAT_MANTISSA_BITS - 2; |
| m2 = (1u << FLOAT_MANTISSA_BITS) | ieeeMantissa; |
| } |
| const bool even = (m2 & 1) == 0; |
| const bool acceptBounds = even; |
| |
| #ifdef RYU_DEBUG |
| printf("-> %u * 2^%d\n", m2, e2 + 2); |
| #endif |
| |
| // Step 2: Determine the interval of valid decimal representations. |
| const uint32_t mv = 4 * m2; |
| const uint32_t mp = 4 * m2 + 2; |
| // Implicit bool -> int conversion. True is 1, false is 0. |
| const uint32_t mmShift = ieeeMantissa != 0 || ieeeExponent <= 1; |
| const uint32_t mm = 4 * m2 - 1 - mmShift; |
| |
| // Step 3: Convert to a decimal power base using 64-bit arithmetic. |
| uint32_t vr, vp, vm; |
| int32_t e10; |
| bool vmIsTrailingZeros = false; |
| bool vrIsTrailingZeros = false; |
| uint8_t lastRemovedDigit = 0; |
| if (e2 >= 0) { |
| const uint32_t q = log10Pow2(e2); |
| e10 = (int32_t) q; |
| const int32_t k = FLOAT_POW5_INV_BITCOUNT + pow5bits((int32_t) q) - 1; |
| const int32_t i = -e2 + (int32_t) q + k; |
| vr = mulPow5InvDivPow2(mv, q, i); |
| vp = mulPow5InvDivPow2(mp, q, i); |
| vm = mulPow5InvDivPow2(mm, q, i); |
| #ifdef RYU_DEBUG |
| printf("%u * 2^%d / 10^%u\n", mv, e2, q); |
| printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm); |
| #endif |
| if (q != 0 && (vp - 1) / 10 <= vm / 10) { |
| // We need to know one removed digit even if we are not going to loop below. We could use |
| // q = X - 1 above, except that would require 33 bits for the result, and we've found that |
| // 32-bit arithmetic is faster even on 64-bit machines. |
| const int32_t l = FLOAT_POW5_INV_BITCOUNT + pow5bits((int32_t) (q - 1)) - 1; |
| lastRemovedDigit = (uint8_t) (mulPow5InvDivPow2(mv, q - 1, -e2 + (int32_t) q - 1 + l) % 10); |
| } |
| if (q <= 9) { |
| // The largest power of 5 that fits in 24 bits is 5^10, but q <= 9 seems to be safe as well. |
| // Only one of mp, mv, and mm can be a multiple of 5, if any. |
| if (mv % 5 == 0) { |
| vrIsTrailingZeros = multipleOfPowerOf5_32(mv, q); |
| } else if (acceptBounds) { |
| vmIsTrailingZeros = multipleOfPowerOf5_32(mm, q); |
| } else { |
| vp -= multipleOfPowerOf5_32(mp, q); |
| } |
| } |
| } else { |
| const uint32_t q = log10Pow5(-e2); |
| e10 = (int32_t) q + e2; |
| const int32_t i = -e2 - (int32_t) q; |
| const int32_t k = pow5bits(i) - FLOAT_POW5_BITCOUNT; |
| int32_t j = (int32_t) q - k; |
| vr = mulPow5divPow2(mv, (uint32_t) i, j); |
| vp = mulPow5divPow2(mp, (uint32_t) i, j); |
| vm = mulPow5divPow2(mm, (uint32_t) i, j); |
| #ifdef RYU_DEBUG |
| printf("%u * 5^%d / 10^%u\n", mv, -e2, q); |
| printf("%u %d %d %d\n", q, i, k, j); |
| printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm); |
| #endif |
| if (q != 0 && (vp - 1) / 10 <= vm / 10) { |
| j = (int32_t) q - 1 - (pow5bits(i + 1) - FLOAT_POW5_BITCOUNT); |
| lastRemovedDigit = (uint8_t) (mulPow5divPow2(mv, (uint32_t) (i + 1), j) % 10); |
| } |
| if (q <= 1) { |
| // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits. |
| // mv = 4 * m2, so it always has at least two trailing 0 bits. |
| vrIsTrailingZeros = true; |
| if (acceptBounds) { |
| // mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1. |
| vmIsTrailingZeros = mmShift == 1; |
| } else { |
| // mp = mv + 2, so it always has at least one trailing 0 bit. |
| --vp; |
| } |
| } else if (q < 31) { // TODO(ulfjack): Use a tighter bound here. |
| vrIsTrailingZeros = multipleOfPowerOf2_32(mv, q - 1); |
| #ifdef RYU_DEBUG |
| printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false"); |
| #endif |
| } |
| } |
| #ifdef RYU_DEBUG |
| printf("e10=%d\n", e10); |
| printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm); |
| printf("vm is trailing zeros=%s\n", vmIsTrailingZeros ? "true" : "false"); |
| printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false"); |
| #endif |
| |
| // Step 4: Find the shortest decimal representation in the interval of valid representations. |
| int32_t removed = 0; |
| uint32_t output; |
| if (vmIsTrailingZeros || vrIsTrailingZeros) { |
| // General case, which happens rarely (~4.0%). |
| while (vp / 10 > vm / 10) { |
| #ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=23106 |
| // The compiler does not realize that vm % 10 can be computed from vm / 10 |
| // as vm - (vm / 10) * 10. |
| vmIsTrailingZeros &= vm - (vm / 10) * 10 == 0; |
| #else |
| vmIsTrailingZeros &= vm % 10 == 0; |
| #endif |
| vrIsTrailingZeros &= lastRemovedDigit == 0; |
| lastRemovedDigit = (uint8_t) (vr % 10); |
| vr /= 10; |
| vp /= 10; |
| vm /= 10; |
| ++removed; |
| } |
| #ifdef RYU_DEBUG |
| printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm); |
| printf("d-10=%s\n", vmIsTrailingZeros ? "true" : "false"); |
| #endif |
| if (vmIsTrailingZeros) { |
| while (vm % 10 == 0) { |
| vrIsTrailingZeros &= lastRemovedDigit == 0; |
| lastRemovedDigit = (uint8_t) (vr % 10); |
| vr /= 10; |
| vp /= 10; |
| vm /= 10; |
| ++removed; |
| } |
| } |
| #ifdef RYU_DEBUG |
| printf("%u %d\n", vr, lastRemovedDigit); |
| printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false"); |
| #endif |
| if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0) { |
| // Round even if the exact number is .....50..0. |
| lastRemovedDigit = 4; |
| } |
| // We need to take vr + 1 if vr is outside bounds or we need to round up. |
| output = vr + ((vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5); |
| } else { |
| // Specialized for the common case (~96.0%). Percentages below are relative to this. |
| // Loop iterations below (approximately): |
| // 0: 13.6%, 1: 70.7%, 2: 14.1%, 3: 1.39%, 4: 0.14%, 5+: 0.01% |
| while (vp / 10 > vm / 10) { |
| lastRemovedDigit = (uint8_t) (vr % 10); |
| vr /= 10; |
| vp /= 10; |
| vm /= 10; |
| ++removed; |
| } |
| #ifdef RYU_DEBUG |
| printf("%u %d\n", vr, lastRemovedDigit); |
| printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false"); |
| #endif |
| // We need to take vr + 1 if vr is outside bounds or we need to round up. |
| output = vr + (vr == vm || lastRemovedDigit >= 5); |
| } |
| const int32_t exp = e10 + removed; |
| |
| #ifdef RYU_DEBUG |
| printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm); |
| printf("O=%u\n", output); |
| printf("EXP=%d\n", exp); |
| #endif |
| |
| floating_decimal_32 fd; |
| fd.exponent = exp; |
| fd.mantissa = output; |
| fd.sign = ieeeSign; |
| return fd; |
| } |
| |
| static inline int to_chars(const floating_decimal_32 v, char* const result) { |
| // Step 5: Print the decimal representation. |
| int index = 0; |
| if (v.sign) { |
| result[index++] = '-'; |
| } |
| |
| uint32_t output = v.mantissa; |
| const uint32_t olength = decimalLength9(output); |
| |
| #ifdef RYU_DEBUG |
| printf("DIGITS=%u\n", v.mantissa); |
| printf("OLEN=%u\n", olength); |
| printf("EXP=%u\n", v.exponent + olength); |
| #endif |
| |
| // Print the decimal digits. |
| // The following code is equivalent to: |
| // for (uint32_t i = 0; i < olength - 1; ++i) { |
| // const uint32_t c = output % 10; output /= 10; |
| // result[index + olength - i] = (char) ('0' + c); |
| // } |
| // result[index] = '0' + output % 10; |
| uint32_t i = 0; |
| while (output >= 10000) { |
| #ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=38217 |
| const uint32_t c = output - 10000 * (output / 10000); |
| #else |
| const uint32_t c = output % 10000; |
| #endif |
| output /= 10000; |
| const uint32_t c0 = (c % 100) << 1; |
| const uint32_t c1 = (c / 100) << 1; |
| memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2); |
| memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2); |
| i += 4; |
| } |
| if (output >= 100) { |
| const uint32_t c = (output % 100) << 1; |
| output /= 100; |
| memcpy(result + index + olength - i - 1, DIGIT_TABLE + c, 2); |
| i += 2; |
| } |
| if (output >= 10) { |
| const uint32_t c = output << 1; |
| // We can't use memcpy here: the decimal dot goes between these two digits. |
| result[index + olength - i] = DIGIT_TABLE[c + 1]; |
| result[index] = DIGIT_TABLE[c]; |
| } else { |
| result[index] = (char) ('0' + output); |
| } |
| |
| // Print decimal point if needed. |
| if (olength > 1) { |
| result[index + 1] = '.'; |
| index += olength + 1; |
| } else { |
| ++index; |
| } |
| |
| // Print the exponent. |
| result[index++] = 'e'; |
| int32_t exp = v.exponent + (int32_t) olength - 1; |
| if (exp < 0) { |
| result[index++] = '-'; |
| exp = -exp; |
| } else { |
| result[index++] = '+'; |
| } |
| |
| memcpy(result + index, DIGIT_TABLE + 2 * exp, 2); |
| index += 2; |
| |
| return index; |
| } |
| |
| floating_decimal_32 floating_to_fd32(float f) { |
| // Step 1: Decode the floating-point number, and unify normalized and subnormal cases. |
| const uint32_t bits = float_to_bits(f); |
| |
| #ifdef RYU_DEBUG |
| printf("IN="); |
| for (int32_t bit = 31; bit >= 0; --bit) { |
| printf("%u", (bits >> bit) & 1); |
| } |
| printf("\n"); |
| #endif |
| |
| // Decode bits into sign, mantissa, and exponent. |
| const bool ieeeSign = ((bits >> (FLOAT_MANTISSA_BITS + FLOAT_EXPONENT_BITS)) & 1) != 0; |
| const uint32_t ieeeMantissa = bits & ((1u << FLOAT_MANTISSA_BITS) - 1); |
| const uint32_t ieeeExponent = (bits >> FLOAT_MANTISSA_BITS) & ((1u << FLOAT_EXPONENT_BITS) - 1); |
| |
| // Case distinction; exit early for the easy cases. |
| if (ieeeExponent == ((1u << FLOAT_EXPONENT_BITS) - 1u) || (ieeeExponent == 0 && ieeeMantissa == 0)) { |
| __builtin_abort(); |
| } |
| |
| const floating_decimal_32 v = f2d(ieeeMantissa, ieeeExponent, ieeeSign); |
| return v; |
| } |