blob: 7badab4280b7b30e1e01d6e6ad757a4c742f73cf [file] [log] [blame]
// Written in the D programming language.
/**
* Templates which extract information about types and symbols at compile time.
*
* $(SCRIPT inhibitQuickIndex = 1;)
*
* $(DIVC quickindex,
* $(BOOKTABLE ,
* $(TR $(TH Category) $(TH Templates))
* $(TR $(TD Symbol Name _traits) $(TD
* $(LREF fullyQualifiedName)
* $(LREF moduleName)
* $(LREF packageName)
* ))
* $(TR $(TD Function _traits) $(TD
* $(LREF isFunction)
* $(LREF arity)
* $(LREF functionAttributes)
* $(LREF hasFunctionAttributes)
* $(LREF functionLinkage)
* $(LREF FunctionTypeOf)
* $(LREF isSafe)
* $(LREF isUnsafe)
* $(LREF isFinal)
* $(LREF ParameterDefaults)
* $(LREF ParameterIdentifierTuple)
* $(LREF ParameterStorageClassTuple)
* $(LREF Parameters)
* $(LREF ReturnType)
* $(LREF SetFunctionAttributes)
* $(LREF variadicFunctionStyle)
* ))
* $(TR $(TD Aggregate Type _traits) $(TD
* $(LREF BaseClassesTuple)
* $(LREF BaseTypeTuple)
* $(LREF classInstanceAlignment)
* $(LREF EnumMembers)
* $(LREF FieldNameTuple)
* $(LREF Fields)
* $(LREF hasAliasing)
* $(LREF hasElaborateAssign)
* $(LREF hasElaborateCopyConstructor)
* $(LREF hasElaborateDestructor)
* $(LREF hasIndirections)
* $(LREF hasMember)
* $(LREF hasStaticMember)
* $(LREF hasNested)
* $(LREF hasUnsharedAliasing)
* $(LREF InterfacesTuple)
* $(LREF isInnerClass)
* $(LREF isNested)
* $(LREF MemberFunctionsTuple)
* $(LREF RepresentationTypeTuple)
* $(LREF TemplateArgsOf)
* $(LREF TemplateOf)
* $(LREF TransitiveBaseTypeTuple)
* ))
* $(TR $(TD Type Conversion) $(TD
* $(LREF CommonType)
* $(LREF ImplicitConversionTargets)
* $(LREF CopyTypeQualifiers)
* $(LREF CopyConstness)
* $(LREF isAssignable)
* $(LREF isCovariantWith)
* $(LREF isImplicitlyConvertible)
* ))
* $(TR $(TD SomethingTypeOf) $(TD
* $(LREF rvalueOf)
* $(LREF lvalueOf)
* $(LREF InoutOf)
* $(LREF ConstOf)
* $(LREF SharedOf)
* $(LREF SharedInoutOf)
* $(LREF SharedConstOf)
* $(LREF ImmutableOf)
* $(LREF QualifierOf)
* ))
* $(TR $(TD Categories of types) $(TD
* $(LREF allSameType)
* $(LREF ifTestable)
* $(LREF isType)
* $(LREF isAggregateType)
* $(LREF isArray)
* $(LREF isAssociativeArray)
* $(LREF isAutodecodableString)
* $(LREF isBasicType)
* $(LREF isBoolean)
* $(LREF isBuiltinType)
* $(LREF isCopyable)
* $(LREF isDynamicArray)
* $(LREF isEqualityComparable)
* $(LREF isFloatingPoint)
* $(LREF isIntegral)
* $(LREF isNarrowString)
* $(LREF isConvertibleToString)
* $(LREF isNumeric)
* $(LREF isOrderingComparable)
* $(LREF isPointer)
* $(LREF isScalarType)
* $(LREF isSigned)
* $(LREF isSIMDVector)
* $(LREF isSomeChar)
* $(LREF isSomeString)
* $(LREF isStaticArray)
* $(LREF isUnsigned)
* ))
* $(TR $(TD Type behaviours) $(TD
* $(LREF isAbstractClass)
* $(LREF isAbstractFunction)
* $(LREF isCallable)
* $(LREF isDelegate)
* $(LREF isExpressions)
* $(LREF isFinalClass)
* $(LREF isFinalFunction)
* $(LREF isFunctionPointer)
* $(LREF isInstanceOf)
* $(LREF isIterable)
* $(LREF isMutable)
* $(LREF isSomeFunction)
* $(LREF isTypeTuple)
* ))
* $(TR $(TD General Types) $(TD
* $(LREF ForeachType)
* $(LREF KeyType)
* $(LREF Largest)
* $(LREF mostNegative)
* $(LREF OriginalType)
* $(LREF PointerTarget)
* $(LREF Signed)
* $(LREF Unqual)
* $(LREF Unsigned)
* $(LREF ValueType)
* $(LREF Promoted)
* ))
* $(TR $(TD Misc) $(TD
* $(LREF mangledName)
* $(LREF Select)
* $(LREF select)
* ))
* $(TR $(TD User-Defined Attributes) $(TD
* $(LREF hasUDA)
* $(LREF getUDAs)
* $(LREF getSymbolsByUDA)
* ))
* )
* )
*
* Copyright: Copyright Digital Mars 2005 - 2009.
* License: $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0).
* Authors: $(HTTP digitalmars.com, Walter Bright),
* Tomasz Stachowiak ($(D isExpressions)),
* $(HTTP erdani.org, Andrei Alexandrescu),
* Shin Fujishiro,
* $(HTTP octarineparrot.com, Robert Clipsham),
* $(HTTP klickverbot.at, David Nadlinger),
* Kenji Hara,
* Shoichi Kato
* Source: $(PHOBOSSRC std/_traits.d)
*/
/* Copyright Digital Mars 2005 - 2009.
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*/
module std.traits;
import std.meta : AliasSeq, allSatisfy;
import std.functional : unaryFun;
// Legacy inheritance from std.typetuple
// See also: https://github.com/dlang/phobos/pull/5484#discussion_r122602797
import std.meta : staticMapMeta = staticMap;
// TODO: find a way to trigger deprecation warnings
//deprecated("staticMap is part of std.meta: Please import std.meta")
alias staticMap = staticMapMeta;
///////////////////////////////////////////////////////////////////////////////
// Functions
///////////////////////////////////////////////////////////////////////////////
// Petit demangler
// (this or similar thing will eventually go to std.demangle if necessary
// ctfe stuffs are available)
private
{
struct Demangle(T)
{
T value; // extracted information
string rest;
}
/* Demangles mstr as the storage class part of Argument. */
Demangle!uint demangleParameterStorageClass(string mstr)
{
uint pstc = 0; // parameter storage class
// Argument --> Argument2 | M Argument2
if (mstr.length > 0 && mstr[0] == 'M')
{
pstc |= ParameterStorageClass.scope_;
mstr = mstr[1 .. $];
}
// Argument2 --> Type | J Type | K Type | L Type
ParameterStorageClass stc2;
switch (mstr.length ? mstr[0] : char.init)
{
case 'J': stc2 = ParameterStorageClass.out_; break;
case 'K': stc2 = ParameterStorageClass.ref_; break;
case 'L': stc2 = ParameterStorageClass.lazy_; break;
case 'N': if (mstr.length >= 2 && mstr[1] == 'k')
stc2 = ParameterStorageClass.return_;
break;
default : break;
}
if (stc2 != ParameterStorageClass.init)
{
pstc |= stc2;
mstr = mstr[1 .. $];
if (stc2 & ParameterStorageClass.return_)
mstr = mstr[1 .. $];
}
return Demangle!uint(pstc, mstr);
}
/* Demangles mstr as FuncAttrs. */
Demangle!uint demangleFunctionAttributes(string mstr)
{
immutable LOOKUP_ATTRIBUTE =
[
'a': FunctionAttribute.pure_,
'b': FunctionAttribute.nothrow_,
'c': FunctionAttribute.ref_,
'd': FunctionAttribute.property,
'e': FunctionAttribute.trusted,
'f': FunctionAttribute.safe,
'i': FunctionAttribute.nogc,
'j': FunctionAttribute.return_,
'l': FunctionAttribute.scope_
];
uint atts = 0;
// FuncAttrs --> FuncAttr | FuncAttr FuncAttrs
// FuncAttr --> empty | Na | Nb | Nc | Nd | Ne | Nf | Ni | Nj
// except 'Ng' == inout, because it is a qualifier of function type
while (mstr.length >= 2 && mstr[0] == 'N' && mstr[1] != 'g' && mstr[1] != 'k')
{
if (FunctionAttribute att = LOOKUP_ATTRIBUTE[ mstr[1] ])
{
atts |= att;
mstr = mstr[2 .. $];
}
else assert(0);
}
return Demangle!uint(atts, mstr);
}
static if (is(ucent))
{
alias CentTypeList = AliasSeq!(cent, ucent);
alias SignedCentTypeList = AliasSeq!(cent);
alias UnsignedCentTypeList = AliasSeq!(ucent);
}
else
{
alias CentTypeList = AliasSeq!();
alias SignedCentTypeList = AliasSeq!();
alias UnsignedCentTypeList = AliasSeq!();
}
alias IntegralTypeList = AliasSeq!(byte, ubyte, short, ushort, int, uint, long, ulong, CentTypeList);
alias SignedIntTypeList = AliasSeq!(byte, short, int, long, SignedCentTypeList);
alias UnsignedIntTypeList = AliasSeq!(ubyte, ushort, uint, ulong, UnsignedCentTypeList);
alias FloatingPointTypeList = AliasSeq!(float, double, real);
alias ImaginaryTypeList = AliasSeq!(ifloat, idouble, ireal);
alias ComplexTypeList = AliasSeq!(cfloat, cdouble, creal);
alias NumericTypeList = AliasSeq!(IntegralTypeList, FloatingPointTypeList);
alias CharTypeList = AliasSeq!(char, wchar, dchar);
}
package
{
// Add the mutable qualifier to the given type T.
template MutableOf(T) { alias MutableOf = T ; }
}
/// Add the inout qualifier to the given type T.
template InoutOf(T) { alias InoutOf = inout(T) ; }
/// Add the const qualifier to the given type T.
template ConstOf(T) { alias ConstOf = const(T) ; }
/// Add the shared qualifier to the given type T.
template SharedOf(T) { alias SharedOf = shared(T) ; }
/// Add the shared and inout qualifiers to the given type T.
template SharedInoutOf(T) { alias SharedInoutOf = shared(inout(T)); }
/// Add the shared and const qualifiers to the given type T.
template SharedConstOf(T) { alias SharedConstOf = shared(const(T)); }
/// Add the immutable qualifier to the given type T.
template ImmutableOf(T) { alias ImmutableOf = immutable(T) ; }
@safe unittest
{
static assert(is( MutableOf!int == int));
static assert(is( InoutOf!int == inout int));
static assert(is( ConstOf!int == const int));
static assert(is( SharedOf!int == shared int));
static assert(is(SharedInoutOf!int == shared inout int));
static assert(is(SharedConstOf!int == shared const int));
static assert(is( ImmutableOf!int == immutable int));
}
/// Get qualifier template from the given type T
template QualifierOf(T)
{
static if (is(T == shared(const U), U)) alias QualifierOf = SharedConstOf;
else static if (is(T == const U , U)) alias QualifierOf = ConstOf;
else static if (is(T == shared(inout U), U)) alias QualifierOf = SharedInoutOf;
else static if (is(T == inout U , U)) alias QualifierOf = InoutOf;
else static if (is(T == immutable U , U)) alias QualifierOf = ImmutableOf;
else static if (is(T == shared U , U)) alias QualifierOf = SharedOf;
else alias QualifierOf = MutableOf;
}
@safe unittest
{
alias Qual1 = QualifierOf!( int); static assert(is(Qual1!long == long));
alias Qual2 = QualifierOf!( inout int); static assert(is(Qual2!long == inout long));
alias Qual3 = QualifierOf!( const int); static assert(is(Qual3!long == const long));
alias Qual4 = QualifierOf!(shared int); static assert(is(Qual4!long == shared long));
alias Qual5 = QualifierOf!(shared inout int); static assert(is(Qual5!long == shared inout long));
alias Qual6 = QualifierOf!(shared const int); static assert(is(Qual6!long == shared const long));
alias Qual7 = QualifierOf!( immutable int); static assert(is(Qual7!long == immutable long));
}
version (unittest)
{
alias TypeQualifierList = AliasSeq!(MutableOf, ConstOf, SharedOf, SharedConstOf, ImmutableOf);
struct SubTypeOf(T)
{
T val;
alias val this;
}
}
private alias parentOf(alias sym) = Identity!(__traits(parent, sym));
private alias parentOf(alias sym : T!Args, alias T, Args...) = Identity!(__traits(parent, T));
/**
* Get the full package name for the given symbol.
*/
template packageName(alias T)
{
import std.algorithm.searching : startsWith;
static if (__traits(compiles, parentOf!T))
enum parent = packageName!(parentOf!T);
else
enum string parent = null;
static if (T.stringof.startsWith("package "))
enum packageName = (parent.length ? parent ~ '.' : "") ~ T.stringof[8 .. $];
else static if (parent)
enum packageName = parent;
else
static assert(false, T.stringof ~ " has no parent");
}
///
@safe unittest
{
import std.traits;
static assert(packageName!packageName == "std");
}
@safe unittest
{
import std.array;
// Commented out because of dmd @@@BUG8922@@@
// static assert(packageName!std == "std"); // this package (currently: "std.std")
static assert(packageName!(std.traits) == "std"); // this module
static assert(packageName!packageName == "std"); // symbol in this module
static assert(packageName!(std.array) == "std"); // other module from same package
import core.sync.barrier; // local import
static assert(packageName!core == "core");
static assert(packageName!(core.sync) == "core.sync");
static assert(packageName!Barrier == "core.sync");
struct X12287(T) { T i; }
static assert(packageName!(X12287!int.i) == "std");
}
version (none) version (unittest) //Please uncomment me when changing packageName to test global imports
{
import core.sync.barrier; // global import
static assert(packageName!core == "core");
static assert(packageName!(core.sync) == "core.sync");
static assert(packageName!Barrier == "core.sync");
}
/**
* Get the module name (including package) for the given symbol.
*/
template moduleName(alias T)
{
import std.algorithm.searching : startsWith;
static assert(!T.stringof.startsWith("package "), "cannot get the module name for a package");
static if (T.stringof.startsWith("module "))
{
static if (__traits(compiles, packageName!T))
enum packagePrefix = packageName!T ~ '.';
else
enum packagePrefix = "";
enum moduleName = packagePrefix ~ T.stringof[7..$];
}
else
alias moduleName = moduleName!(parentOf!T); // If you use enum, it will cause compiler ICE
}
///
@safe unittest
{
import std.traits;
static assert(moduleName!moduleName == "std.traits");
}
@safe unittest
{
import std.array;
static assert(!__traits(compiles, moduleName!std));
static assert(moduleName!(std.traits) == "std.traits"); // this module
static assert(moduleName!moduleName == "std.traits"); // symbol in this module
static assert(moduleName!(std.array) == "std.array"); // other module
static assert(moduleName!(std.array.array) == "std.array"); // symbol in other module
import core.sync.barrier; // local import
static assert(!__traits(compiles, moduleName!(core.sync)));
static assert(moduleName!(core.sync.barrier) == "core.sync.barrier");
static assert(moduleName!Barrier == "core.sync.barrier");
struct X12287(T) { T i; }
static assert(moduleName!(X12287!int.i) == "std.traits");
}
version (none) version (unittest) //Please uncomment me when changing moduleName to test global imports
{
import core.sync.barrier; // global import
static assert(!__traits(compiles, moduleName!(core.sync)));
static assert(moduleName!(core.sync.barrier) == "core.sync.barrier");
static assert(moduleName!Barrier == "core.sync.barrier");
}
/***
* Get the fully qualified name of a type or a symbol. Can act as an intelligent type/symbol to string converter.
Example:
-----------------
module myModule;
struct MyStruct {}
static assert(fullyQualifiedName!(const MyStruct[]) == "const(myModule.MyStruct[])");
-----------------
*/
template fullyQualifiedName(T...)
if (T.length == 1)
{
static if (is(T))
enum fullyQualifiedName = fqnType!(T[0], false, false, false, false);
else
enum fullyQualifiedName = fqnSym!(T[0]);
}
///
@safe unittest
{
static assert(fullyQualifiedName!fullyQualifiedName == "std.traits.fullyQualifiedName");
}
version (unittest)
{
// Used for both fqnType and fqnSym unittests
private struct QualifiedNameTests
{
struct Inner
{
}
ref const(Inner[string]) func( ref Inner var1, lazy scope string var2 );
ref const(Inner[string]) retfunc( return ref Inner var1 );
Inner inoutFunc(inout Inner) inout;
shared(const(Inner[string])[]) data;
const Inner delegate(double, string) @safe nothrow deleg;
inout(int) delegate(inout int) inout inoutDeleg;
Inner function(out double, string) funcPtr;
extern(C) Inner function(double, string) cFuncPtr;
extern(C) void cVarArg(int, ...);
void dVarArg(...);
void dVarArg2(int, ...);
void typesafeVarArg(int[] ...);
Inner[] array;
Inner[16] sarray;
Inner[Inner] aarray;
const(Inner[const(Inner)]) qualAarray;
shared(immutable(Inner) delegate(ref double, scope string) const shared @trusted nothrow) attrDeleg;
struct Data(T) { int x; }
void tfunc(T...)(T args) {}
template Inst(alias A) { int x; }
class Test12309(T, int x, string s) {}
}
private enum QualifiedEnum
{
a = 42
}
}
private template fqnSym(alias T : X!A, alias X, A...)
{
template fqnTuple(T...)
{
static if (T.length == 0)
enum fqnTuple = "";
else static if (T.length == 1)
{
static if (isExpressionTuple!T)
enum fqnTuple = T[0].stringof;
else
enum fqnTuple = fullyQualifiedName!(T[0]);
}
else
enum fqnTuple = fqnTuple!(T[0]) ~ ", " ~ fqnTuple!(T[1 .. $]);
}
enum fqnSym =
fqnSym!(__traits(parent, X)) ~
'.' ~ __traits(identifier, X) ~ "!(" ~ fqnTuple!A ~ ")";
}
private template fqnSym(alias T)
{
static if (__traits(compiles, __traits(parent, T)) && !__traits(isSame, T, __traits(parent, T)))
enum parentPrefix = fqnSym!(__traits(parent, T)) ~ ".";
else
enum parentPrefix = null;
static string adjustIdent(string s)
{
import std.algorithm.searching : findSplit, skipOver;
if (s.skipOver("package ") || s.skipOver("module "))
return s;
return s.findSplit("(")[0];
}
enum fqnSym = parentPrefix ~ adjustIdent(__traits(identifier, T));
}
@safe unittest
{
alias fqn = fullyQualifiedName;
// Make sure those 2 are the same
static assert(fqnSym!fqn == fqn!fqn);
static assert(fqn!fqn == "std.traits.fullyQualifiedName");
alias qnTests = QualifiedNameTests;
enum prefix = "std.traits.QualifiedNameTests.";
static assert(fqn!(qnTests.Inner) == prefix ~ "Inner");
static assert(fqn!(qnTests.func) == prefix ~ "func");
static assert(fqn!(qnTests.Data!int) == prefix ~ "Data!(int)");
static assert(fqn!(qnTests.Data!int.x) == prefix ~ "Data!(int).x");
static assert(fqn!(qnTests.tfunc!(int[])) == prefix ~ "tfunc!(int[])");
static assert(fqn!(qnTests.Inst!(Object)) == prefix ~ "Inst!(object.Object)");
static assert(fqn!(qnTests.Inst!(Object).x) == prefix ~ "Inst!(object.Object).x");
static assert(fqn!(qnTests.Test12309!(int, 10, "str"))
== prefix ~ "Test12309!(int, 10, \"str\")");
import core.sync.barrier;
static assert(fqn!Barrier == "core.sync.barrier.Barrier");
}
@safe unittest
{
struct TemplatedStruct()
{
enum foo = 0;
}
alias TemplatedStructAlias = TemplatedStruct;
assert("TemplatedStruct.foo" == fullyQualifiedName!(TemplatedStructAlias!().foo));
}
private template fqnType(T,
bool alreadyConst, bool alreadyImmutable, bool alreadyShared, bool alreadyInout)
{
import std.format : format;
// Convenience tags
enum {
_const = 0,
_immutable = 1,
_shared = 2,
_inout = 3
}
alias qualifiers = AliasSeq!(is(T == const), is(T == immutable), is(T == shared), is(T == inout));
alias noQualifiers = AliasSeq!(false, false, false, false);
string storageClassesString(uint psc)() @property
{
alias PSC = ParameterStorageClass;
return format("%s%s%s%s%s",
psc & PSC.scope_ ? "scope " : "",
psc & PSC.return_ ? "return " : "",
psc & PSC.out_ ? "out " : "",
psc & PSC.ref_ ? "ref " : "",
psc & PSC.lazy_ ? "lazy " : ""
);
}
string parametersTypeString(T)() @property
{
alias parameters = Parameters!(T);
alias parameterStC = ParameterStorageClassTuple!(T);
enum variadic = variadicFunctionStyle!T;
static if (variadic == Variadic.no)
enum variadicStr = "";
else static if (variadic == Variadic.c)
enum variadicStr = ", ...";
else static if (variadic == Variadic.d)
enum variadicStr = parameters.length ? ", ..." : "...";
else static if (variadic == Variadic.typesafe)
enum variadicStr = " ...";
else
static assert(0, "New variadic style has been added, please update fullyQualifiedName implementation");
static if (parameters.length)
{
import std.algorithm.iteration : map;
import std.array : join;
import std.meta : staticMap;
import std.range : zip;
string result = join(
map!(a => format("%s%s", a[0], a[1]))(
zip([staticMap!(storageClassesString, parameterStC)],
[staticMap!(fullyQualifiedName, parameters)])
),
", "
);
return result ~= variadicStr;
}
else
return variadicStr;
}
string linkageString(T)() @property
{
enum linkage = functionLinkage!T;
if (linkage != "D")
return format("extern(%s) ", linkage);
else
return "";
}
string functionAttributeString(T)() @property
{
alias FA = FunctionAttribute;
enum attrs = functionAttributes!T;
static if (attrs == FA.none)
return "";
else
return format("%s%s%s%s%s%s%s%s",
attrs & FA.pure_ ? " pure" : "",
attrs & FA.nothrow_ ? " nothrow" : "",
attrs & FA.ref_ ? " ref" : "",
attrs & FA.property ? " @property" : "",
attrs & FA.trusted ? " @trusted" : "",
attrs & FA.safe ? " @safe" : "",
attrs & FA.nogc ? " @nogc" : "",
attrs & FA.return_ ? " return" : ""
);
}
string addQualifiers(string typeString,
bool addConst, bool addImmutable, bool addShared, bool addInout)
{
auto result = typeString;
if (addShared)
{
result = format("shared(%s)", result);
}
if (addConst || addImmutable || addInout)
{
result = format("%s(%s)",
addConst ? "const" :
addImmutable ? "immutable" : "inout",
result
);
}
return result;
}
// Convenience template to avoid copy-paste
template chain(string current)
{
enum chain = addQualifiers(current,
qualifiers[_const] && !alreadyConst,
qualifiers[_immutable] && !alreadyImmutable,
qualifiers[_shared] && !alreadyShared,
qualifiers[_inout] && !alreadyInout);
}
static if (is(T == string))
{
enum fqnType = "string";
}
else static if (is(T == wstring))
{
enum fqnType = "wstring";
}
else static if (is(T == dstring))
{
enum fqnType = "dstring";
}
else static if (isBasicType!T && !is(T == enum))
{
enum fqnType = chain!((Unqual!T).stringof);
}
else static if (isAggregateType!T || is(T == enum))
{
enum fqnType = chain!(fqnSym!T);
}
else static if (isStaticArray!T)
{
enum fqnType = chain!(
format("%s[%s]", fqnType!(typeof(T.init[0]), qualifiers), T.length)
);
}
else static if (isArray!T)
{
enum fqnType = chain!(
format("%s[]", fqnType!(typeof(T.init[0]), qualifiers))
);
}
else static if (isAssociativeArray!T)
{
enum fqnType = chain!(
format("%s[%s]", fqnType!(ValueType!T, qualifiers), fqnType!(KeyType!T, noQualifiers))
);
}
else static if (isSomeFunction!T)
{
static if (is(T F == delegate))
{
enum qualifierString = format("%s%s",
is(F == shared) ? " shared" : "",
is(F == inout) ? " inout" :
is(F == immutable) ? " immutable" :
is(F == const) ? " const" : ""
);
enum formatStr = "%s%s delegate(%s)%s%s";
enum fqnType = chain!(
format(formatStr, linkageString!T, fqnType!(ReturnType!T, noQualifiers),
parametersTypeString!(T), functionAttributeString!T, qualifierString)
);
}
else
{
static if (isFunctionPointer!T)
enum formatStr = "%s%s function(%s)%s";
else
enum formatStr = "%s%s(%s)%s";
enum fqnType = chain!(
format(formatStr, linkageString!T, fqnType!(ReturnType!T, noQualifiers),
parametersTypeString!(T), functionAttributeString!T)
);
}
}
else static if (isPointer!T)
{
enum fqnType = chain!(
format("%s*", fqnType!(PointerTarget!T, qualifiers))
);
}
else static if (is(T : __vector(V[N]), V, size_t N))
{
enum fqnType = chain!(
format("__vector(%s[%s])", fqnType!(V, qualifiers), N)
);
}
else
// In case something is forgotten
static assert(0, "Unrecognized type " ~ T.stringof ~ ", can't convert to fully qualified string");
}
@safe unittest
{
import std.format : format;
alias fqn = fullyQualifiedName;
// Verify those 2 are the same for simple case
alias Ambiguous = const(QualifiedNameTests.Inner);
static assert(fqn!Ambiguous == fqnType!(Ambiguous, false, false, false, false));
// Main tests
enum inner_name = "std.traits.QualifiedNameTests.Inner";
with (QualifiedNameTests)
{
// Special cases
static assert(fqn!(string) == "string");
static assert(fqn!(wstring) == "wstring");
static assert(fqn!(dstring) == "dstring");
static assert(fqn!(void) == "void");
static assert(fqn!(const(void)) == "const(void)");
static assert(fqn!(shared(void)) == "shared(void)");
static assert(fqn!(shared const(void)) == "const(shared(void))");
static assert(fqn!(shared inout(void)) == "inout(shared(void))");
static assert(fqn!(shared inout const(void)) == "const(shared(void))");
static assert(fqn!(inout(void)) == "inout(void)");
static assert(fqn!(inout const(void)) == "const(void)");
static assert(fqn!(immutable(void)) == "immutable(void)");
// Basic qualified name
static assert(fqn!(Inner) == inner_name);
static assert(fqn!(QualifiedEnum) == "std.traits.QualifiedEnum"); // type
static assert(fqn!(QualifiedEnum.a) == "std.traits.QualifiedEnum.a"); // symbol
// Array types
static assert(fqn!(typeof(array)) == format("%s[]", inner_name));
static assert(fqn!(typeof(sarray)) == format("%s[16]", inner_name));
static assert(fqn!(typeof(aarray)) == format("%s[%s]", inner_name, inner_name));
// qualified key for AA
static assert(fqn!(typeof(qualAarray)) == format("const(%s[const(%s)])", inner_name, inner_name));
// Qualified composed data types
static assert(fqn!(typeof(data)) == format("shared(const(%s[string])[])", inner_name));
// Function types + function attributes
static assert(fqn!(typeof(func)) == format("const(%s[string])(ref %s, scope lazy string) ref",
inner_name, inner_name));
static assert(fqn!(typeof(retfunc)) == format("const(%s[string])(return %s) ref", inner_name, inner_name));
static assert(fqn!(typeof(inoutFunc)) == format("inout(%s(inout(%s)))", inner_name, inner_name));
static assert(fqn!(typeof(deleg)) == format("const(%s delegate(double, string) nothrow @safe)", inner_name));
static assert(fqn!(typeof(inoutDeleg)) == "inout(int) delegate(inout(int)) inout");
static assert(fqn!(typeof(funcPtr)) == format("%s function(out double, string)", inner_name));
static assert(fqn!(typeof(cFuncPtr)) == format("extern(C) %s function(double, string)", inner_name));
// Delegate type with qualified function type
static assert(fqn!(typeof(attrDeleg)) == format("shared(immutable(%s) "~
"delegate(ref double, scope string) nothrow @trusted shared const)", inner_name));
// Variable argument function types
static assert(fqn!(typeof(cVarArg)) == "extern(C) void(int, ...)");
static assert(fqn!(typeof(dVarArg)) == "void(...)");
static assert(fqn!(typeof(dVarArg2)) == "void(int, ...)");
static assert(fqn!(typeof(typesafeVarArg)) == "void(int[] ...)");
// SIMD vector
static if (is(__vector(float[4])))
{
static assert(fqn!(__vector(float[4])) == "__vector(float[4])");
}
}
}
/***
* Get the type of the return value from a function,
* a pointer to function, a delegate, a struct
* with an opCall, a pointer to a struct with an opCall,
* or a class with an $(D opCall). Please note that $(D_KEYWORD ref)
* is not part of a type, but the attribute of the function
* (see template $(LREF functionAttributes)).
*/
template ReturnType(func...)
if (func.length == 1 && isCallable!func)
{
static if (is(FunctionTypeOf!func R == return))
alias ReturnType = R;
else
static assert(0, "argument has no return type");
}
///
@safe unittest
{
int foo();
ReturnType!foo x; // x is declared as int
}
@safe unittest
{
struct G
{
int opCall (int i) { return 1;}
}
alias ShouldBeInt = ReturnType!G;
static assert(is(ShouldBeInt == int));
G g;
static assert(is(ReturnType!g == int));
G* p;
alias pg = ReturnType!p;
static assert(is(pg == int));
class C
{
int opCall (int i) { return 1;}
}
static assert(is(ReturnType!C == int));
C c;
static assert(is(ReturnType!c == int));
class Test
{
int prop() @property { return 0; }
}
alias R_Test_prop = ReturnType!(Test.prop);
static assert(is(R_Test_prop == int));
alias R_dglit = ReturnType!((int a) { return a; });
static assert(is(R_dglit == int));
}
/***
Get, as a tuple, the types of the parameters to a function, a pointer
to function, a delegate, a struct with an $(D opCall), a pointer to a
struct with an $(D opCall), or a class with an $(D opCall).
*/
template Parameters(func...)
if (func.length == 1 && isCallable!func)
{
static if (is(FunctionTypeOf!func P == function))
alias Parameters = P;
else
static assert(0, "argument has no parameters");
}
///
@safe unittest
{
int foo(int, long);
void bar(Parameters!foo); // declares void bar(int, long);
void abc(Parameters!foo[1]); // declares void abc(long);
}
/**
* Alternate name for $(LREF Parameters), kept for legacy compatibility.
*/
alias ParameterTypeTuple = Parameters;
@safe unittest
{
int foo(int i, bool b) { return 0; }
static assert(is(ParameterTypeTuple!foo == AliasSeq!(int, bool)));
static assert(is(ParameterTypeTuple!(typeof(&foo)) == AliasSeq!(int, bool)));
struct S { real opCall(real r, int i) { return 0.0; } }
S s;
static assert(is(ParameterTypeTuple!S == AliasSeq!(real, int)));
static assert(is(ParameterTypeTuple!(S*) == AliasSeq!(real, int)));
static assert(is(ParameterTypeTuple!s == AliasSeq!(real, int)));
class Test
{
int prop() @property { return 0; }
}
alias P_Test_prop = ParameterTypeTuple!(Test.prop);
static assert(P_Test_prop.length == 0);
alias P_dglit = ParameterTypeTuple!((int a){});
static assert(P_dglit.length == 1);
static assert(is(P_dglit[0] == int));
}
/**
Returns the number of arguments of function $(D func).
arity is undefined for variadic functions.
*/
template arity(alias func)
if ( isCallable!func && variadicFunctionStyle!func == Variadic.no )
{
enum size_t arity = Parameters!func.length;
}
///
@safe unittest
{
void foo(){}
static assert(arity!foo == 0);
void bar(uint){}
static assert(arity!bar == 1);
void variadicFoo(uint...){}
static assert(!__traits(compiles, arity!variadicFoo));
}
/**
Get tuple, one per function parameter, of the storage classes of the parameters.
Params:
func = function symbol or type of function, delegate, or pointer to function
Returns:
A tuple of ParameterStorageClass bits
*/
enum ParameterStorageClass : uint
{
/**
* These flags can be bitwise OR-ed together to represent complex storage
* class.
*/
none = 0,
scope_ = 1, /// ditto
out_ = 2, /// ditto
ref_ = 4, /// ditto
lazy_ = 8, /// ditto
return_ = 0x10, /// ditto
}
/// ditto
template ParameterStorageClassTuple(func...)
if (func.length == 1 && isCallable!func)
{
alias Func = FunctionTypeOf!func;
static if (is(Func PT == __parameters))
{
template StorageClass(size_t i)
{
static if (i < PT.length)
{
alias StorageClass = AliasSeq!(
extractParameterStorageClassFlags!(__traits(getParameterStorageClasses, Func, i)),
StorageClass!(i + 1));
}
else
alias StorageClass = AliasSeq!();
}
alias ParameterStorageClassTuple = StorageClass!0;
}
else
{
static assert(0, func[0].stringof ~ " is not a function");
alias ParameterStorageClassTuple = AliasSeq!();
}
}
///
@safe unittest
{
alias STC = ParameterStorageClass; // shorten the enum name
void func(ref int ctx, out real result, real param)
{
}
alias pstc = ParameterStorageClassTuple!func;
static assert(pstc.length == 3); // three parameters
static assert(pstc[0] == STC.ref_);
static assert(pstc[1] == STC.out_);
static assert(pstc[2] == STC.none);
}
/*****************
* Convert string tuple Attribs to ParameterStorageClass bits
* Params:
* Attribs = string tuple
* Returns:
* ParameterStorageClass bits
*/
template extractParameterStorageClassFlags(Attribs...)
{
enum ParameterStorageClass extractParameterStorageClassFlags = ()
{
auto result = ParameterStorageClass.none;
static if (Attribs.length > 0)
{
foreach (attrib; [Attribs])
{
final switch (attrib) with (ParameterStorageClass)
{
case "scope": result |= scope_; break;
case "out": result |= out_; break;
case "ref": result |= ref_; break;
case "lazy": result |= lazy_; break;
case "return": result |= return_; break;
}
}
/* Mimic behavor of original version of ParameterStorageClassTuple()
* to avoid breaking existing code.
*/
if (result == (ParameterStorageClass.ref_ | ParameterStorageClass.return_))
result = ParameterStorageClass.return_;
}
return result;
}();
}
@safe unittest
{
alias STC = ParameterStorageClass;
void noparam() {}
static assert(ParameterStorageClassTuple!noparam.length == 0);
ref int test(scope int*, ref int, out int, lazy int, int, return ref int i) { return i; }
alias test_pstc = ParameterStorageClassTuple!test;
static assert(test_pstc.length == 6);
static assert(test_pstc[0] == STC.scope_);
static assert(test_pstc[1] == STC.ref_);
static assert(test_pstc[2] == STC.out_);
static assert(test_pstc[3] == STC.lazy_);
static assert(test_pstc[4] == STC.none);
static assert(test_pstc[5] == STC.return_);
interface Test
{
void test_const(int) const;
void test_sharedconst(int) shared const;
}
Test testi;
alias test_const_pstc = ParameterStorageClassTuple!(Test.test_const);
static assert(test_const_pstc.length == 1);
static assert(test_const_pstc[0] == STC.none);
alias test_sharedconst_pstc = ParameterStorageClassTuple!(testi.test_sharedconst);
static assert(test_sharedconst_pstc.length == 1);
static assert(test_sharedconst_pstc[0] == STC.none);
alias dglit_pstc = ParameterStorageClassTuple!((ref int a) {});
static assert(dglit_pstc.length == 1);
static assert(dglit_pstc[0] == STC.ref_);
// Bugzilla 9317
static inout(int) func(inout int param) { return param; }
static assert(ParameterStorageClassTuple!(typeof(func))[0] == STC.none);
}
@safe unittest
{
// Bugzilla 14253
static struct Foo {
ref Foo opAssign(ref Foo rhs) return { return this; }
}
alias tup = ParameterStorageClassTuple!(__traits(getOverloads, Foo, "opAssign")[0]);
}
/**
Get, as a tuple, the identifiers of the parameters to a function symbol.
*/
template ParameterIdentifierTuple(func...)
if (func.length == 1 && isCallable!func)
{
static if (is(FunctionTypeOf!func PT == __parameters))
{
template Get(size_t i)
{
static if (!isFunctionPointer!func && !isDelegate!func
// Unnamed parameters yield CT error.
&& is(typeof(__traits(identifier, PT[i .. i+1]))))
{
enum Get = __traits(identifier, PT[i .. i+1]);
}
else
{
enum Get = "";
}
}
}
else
{
static assert(0, func[0].stringof ~ "is not a function");
// Define dummy entities to avoid pointless errors
template Get(size_t i) { enum Get = ""; }
alias PT = AliasSeq!();
}
template Impl(size_t i = 0)
{
static if (i == PT.length)
alias Impl = AliasSeq!();
else
alias Impl = AliasSeq!(Get!i, Impl!(i+1));
}
alias ParameterIdentifierTuple = Impl!();
}
///
@safe unittest
{
int foo(int num, string name, int);
static assert([ParameterIdentifierTuple!foo] == ["num", "name", ""]);
}
@safe unittest
{
alias PIT = ParameterIdentifierTuple;
void bar(int num, string name, int[] array){}
static assert([PIT!bar] == ["num", "name", "array"]);
// might be changed in the future?
void function(int num, string name) fp;
static assert([PIT!fp] == ["", ""]);
// might be changed in the future?
void delegate(int num, string name, int[long] aa) dg;
static assert([PIT!dg] == ["", "", ""]);
interface Test
{
@property string getter();
@property void setter(int a);
Test method(int a, long b, string c);
}
static assert([PIT!(Test.getter)] == []);
static assert([PIT!(Test.setter)] == ["a"]);
static assert([PIT!(Test.method)] == ["a", "b", "c"]);
/+
// depends on internal
void baw(int, string, int[]){}
static assert([PIT!baw] == ["_param_0", "_param_1", "_param_2"]);
// depends on internal
void baz(AliasSeq!(int, string, int[]) args){}
static assert([PIT!baz] == ["_param_0", "_param_1", "_param_2"]);
+/
}
/**
Get, as a tuple, the default value of the parameters to a function symbol.
If a parameter doesn't have the default value, $(D void) is returned instead.
*/
template ParameterDefaults(func...)
if (func.length == 1 && isCallable!func)
{
alias param_names = ParameterIdentifierTuple!func;
static if (is(FunctionTypeOf!(func[0]) PT == __parameters))
{
template Get(size_t i)
{
// `PT[i .. i+1]` declares a parameter with an arbitrary name.
// To avoid a name clash, generate local names that are distinct
// from the parameter name, and mix them in.
enum name = param_names[i];
enum args = "args" ~ (name == "args" ? "_" : "");
enum val = "val" ~ (name == "val" ? "_" : "");
enum ptr = "ptr" ~ (name == "ptr" ? "_" : "");
mixin("
// workaround scope escape check, see
// https://issues.dlang.org/show_bug.cgi?id=16582
// should use return scope once available
enum get = (PT[i .. i+1] " ~ args ~ ") @trusted
{
// If the parameter is lazy, we force it to be evaluated
// like this.
auto " ~ val ~ " = " ~ args ~ "[0];
auto " ~ ptr ~ " = &" ~ val ~ ";
// workaround Bugzilla 16582
return *" ~ ptr ~ ";
};
");
static if (is(typeof(get())))
enum Get = get();
else
alias Get = void;
// If default arg doesn't exist, returns void instead.
}
}
else
{
static assert(0, func[0].stringof ~ "is not a function");
// Define dummy entities to avoid pointless errors
template Get(size_t i) { enum Get = ""; }
alias PT = AliasSeq!();
}
template Impl(size_t i = 0)
{
static if (i == PT.length)
alias Impl = AliasSeq!();
else
alias Impl = AliasSeq!(Get!i, Impl!(i+1));
}
alias ParameterDefaults = Impl!();
}
///
@safe unittest
{
int foo(int num, string name = "hello", int[] = [1,2,3], lazy int x = 0);
static assert(is(ParameterDefaults!foo[0] == void));
static assert( ParameterDefaults!foo[1] == "hello");
static assert( ParameterDefaults!foo[2] == [1,2,3]);
static assert( ParameterDefaults!foo[3] == 0);
}
@safe unittest // issue 17192
{
static void func(int i, int PT, int __pd_value, int __pd_val, int __args,
int name, int args, int val, int ptr, int args_, int val_, int ptr_)
{
}
alias Voids = ParameterDefaults!func;
static assert(Voids.length == 12);
foreach (V; Voids) static assert(is(V == void));
}
/**
* Alternate name for $(LREF ParameterDefaults), kept for legacy compatibility.
*/
alias ParameterDefaultValueTuple = ParameterDefaults;
@safe unittest
{
alias PDVT = ParameterDefaultValueTuple;
void bar(int n = 1, string s = "hello"){}
static assert(PDVT!bar.length == 2);
static assert(PDVT!bar[0] == 1);
static assert(PDVT!bar[1] == "hello");
static assert(is(typeof(PDVT!bar) == typeof(AliasSeq!(1, "hello"))));
void baz(int x, int n = 1, string s = "hello"){}
static assert(PDVT!baz.length == 3);
static assert(is(PDVT!baz[0] == void));
static assert( PDVT!baz[1] == 1);
static assert( PDVT!baz[2] == "hello");
static assert(is(typeof(PDVT!baz) == typeof(AliasSeq!(void, 1, "hello"))));
// bug 10800 - property functions return empty string
@property void foo(int x = 3) { }
static assert(PDVT!foo.length == 1);
static assert(PDVT!foo[0] == 3);
static assert(is(typeof(PDVT!foo) == typeof(AliasSeq!(3))));
struct Colour
{
ubyte a,r,g,b;
static immutable Colour white = Colour(255,255,255,255);
}
void bug8106(Colour c = Colour.white) {}
//pragma(msg, PDVT!bug8106);
static assert(PDVT!bug8106[0] == Colour.white);
void bug16582(scope int* val = null) {}
static assert(PDVT!bug16582[0] is null);
}
/**
Returns the FunctionAttribute mask for function $(D func).
See_Also:
$(LREF hasFunctionAttributes)
*/
enum FunctionAttribute : uint
{
/**
* These flags can be bitwise OR-ed together to represent a complex attribute.
*/
none = 0,
pure_ = 1 << 0, /// ditto
nothrow_ = 1 << 1, /// ditto
ref_ = 1 << 2, /// ditto
property = 1 << 3, /// ditto
trusted = 1 << 4, /// ditto
safe = 1 << 5, /// ditto
nogc = 1 << 6, /// ditto
system = 1 << 7, /// ditto
const_ = 1 << 8, /// ditto
immutable_ = 1 << 9, /// ditto
inout_ = 1 << 10, /// ditto
shared_ = 1 << 11, /// ditto
return_ = 1 << 12, /// ditto
scope_ = 1 << 13, /// ditto
}
/// ditto
template functionAttributes(func...)
if (func.length == 1 && isCallable!func)
{
// @bug: workaround for opCall
alias FuncSym = Select!(is(typeof(__traits(getFunctionAttributes, func))),
func, Unqual!(FunctionTypeOf!func));
enum FunctionAttribute functionAttributes =
extractAttribFlags!(__traits(getFunctionAttributes, FuncSym))();
}
///
@safe unittest
{
import std.traits : functionAttributes, FunctionAttribute;
alias FA = FunctionAttribute; // shorten the enum name
real func(real x) pure nothrow @safe
{
return x;
}
static assert(functionAttributes!func & FA.pure_);
static assert(functionAttributes!func & FA.safe);
static assert(!(functionAttributes!func & FA.trusted)); // not @trusted
}
@system unittest
{
alias FA = FunctionAttribute;
struct S
{
int noF() { return 0; }
int constF() const { return 0; }
int immutableF() immutable { return 0; }
int inoutF() inout { return 0; }
int sharedF() shared { return 0; }
int x;
ref int refF() return { return x; }
int propertyF() @property { return 0; }
int nothrowF() nothrow { return 0; }
int nogcF() @nogc { return 0; }
int systemF() @system { return 0; }
int trustedF() @trusted { return 0; }
int safeF() @safe { return 0; }
int pureF() pure { return 0; }
}
static assert(functionAttributes!(S.noF) == FA.system);
static assert(functionAttributes!(typeof(S.noF)) == FA.system);
static assert(functionAttributes!(S.constF) == (FA.const_ | FA.system));
static assert(functionAttributes!(typeof(S.constF)) == (FA.const_ | FA.system));
static assert(functionAttributes!(S.immutableF) == (FA.immutable_ | FA.system));
static assert(functionAttributes!(typeof(S.immutableF)) == (FA.immutable_ | FA.system));
static assert(functionAttributes!(S.inoutF) == (FA.inout_ | FA.system));
static assert(functionAttributes!(typeof(S.inoutF)) == (FA.inout_ | FA.system));
static assert(functionAttributes!(S.sharedF) == (FA.shared_ | FA.system));
static assert(functionAttributes!(typeof(S.sharedF)) == (FA.shared_ | FA.system));
static assert(functionAttributes!(S.refF) == (FA.ref_ | FA.system | FA.return_));
static assert(functionAttributes!(typeof(S.refF)) == (FA.ref_ | FA.system | FA.return_));
static assert(functionAttributes!(S.propertyF) == (FA.property | FA.system));
static assert(functionAttributes!(typeof(&S.propertyF)) == (FA.property | FA.system));
static assert(functionAttributes!(S.nothrowF) == (FA.nothrow_ | FA.system));
static assert(functionAttributes!(typeof(S.nothrowF)) == (FA.nothrow_ | FA.system));
static assert(functionAttributes!(S.nogcF) == (FA.nogc | FA.system));
static assert(functionAttributes!(typeof(S.nogcF)) == (FA.nogc | FA.system));
static assert(functionAttributes!(S.systemF) == FA.system);
static assert(functionAttributes!(typeof(S.systemF)) == FA.system);
static assert(functionAttributes!(S.trustedF) == FA.trusted);
static assert(functionAttributes!(typeof(S.trustedF)) == FA.trusted);
static assert(functionAttributes!(S.safeF) == FA.safe);
static assert(functionAttributes!(typeof(S.safeF)) == FA.safe);
static assert(functionAttributes!(S.pureF) == (FA.pure_ | FA.system));
static assert(functionAttributes!(typeof(S.pureF)) == (FA.pure_ | FA.system));
int pure_nothrow() nothrow pure;
void safe_nothrow() @safe nothrow;
static ref int static_ref_property() @property;
ref int ref_property() @property;
static assert(functionAttributes!(pure_nothrow) == (FA.pure_ | FA.nothrow_ | FA.system));
static assert(functionAttributes!(typeof(pure_nothrow)) == (FA.pure_ | FA.nothrow_ | FA.system));
static assert(functionAttributes!(safe_nothrow) == (FA.safe | FA.nothrow_));
static assert(functionAttributes!(typeof(safe_nothrow)) == (FA.safe | FA.nothrow_));
static assert(functionAttributes!(static_ref_property) == (FA.property | FA.ref_ | FA.system));
static assert(functionAttributes!(typeof(&static_ref_property)) == (FA.property | FA.ref_ | FA.system));
static assert(functionAttributes!(ref_property) == (FA.property | FA.ref_ | FA.system));
static assert(functionAttributes!(typeof(&ref_property)) == (FA.property | FA.ref_ | FA.system));
struct S2
{
int pure_const() const pure { return 0; }
int pure_sharedconst() const shared pure { return 0; }
}
static assert(functionAttributes!(S2.pure_const) == (FA.const_ | FA.pure_ | FA.system));
static assert(functionAttributes!(typeof(S2.pure_const)) == (FA.const_ | FA.pure_ | FA.system));
static assert(functionAttributes!(S2.pure_sharedconst) == (FA.const_ | FA.shared_ | FA.pure_ | FA.system));
static assert(functionAttributes!(typeof(S2.pure_sharedconst)) == (FA.const_ | FA.shared_ | FA.pure_ | FA.system));
static assert(functionAttributes!((int a) { }) == (FA.pure_ | FA.nothrow_ | FA.nogc | FA.safe));
static assert(functionAttributes!(typeof((int a) { })) == (FA.pure_ | FA.nothrow_ | FA.nogc | FA.safe));
auto safeDel = delegate() @safe { };
static assert(functionAttributes!(safeDel) == (FA.pure_ | FA.nothrow_ | FA.nogc | FA.safe));
static assert(functionAttributes!(typeof(safeDel)) == (FA.pure_ | FA.nothrow_ | FA.nogc | FA.safe));
auto trustedDel = delegate() @trusted { };
static assert(functionAttributes!(trustedDel) == (FA.pure_ | FA.nothrow_ | FA.nogc | FA.trusted));
static assert(functionAttributes!(typeof(trustedDel)) == (FA.pure_ | FA.nothrow_ | FA.nogc | FA.trusted));
auto systemDel = delegate() @system { };
static assert(functionAttributes!(systemDel) == (FA.pure_ | FA.nothrow_ | FA.nogc | FA.system));
static assert(functionAttributes!(typeof(systemDel)) == (FA.pure_ | FA.nothrow_ | FA.nogc | FA.system));
}
private FunctionAttribute extractAttribFlags(Attribs...)()
{
auto res = FunctionAttribute.none;
foreach (attrib; Attribs)
{
switch (attrib) with (FunctionAttribute)
{
case "pure": res |= pure_; break;
case "nothrow": res |= nothrow_; break;
case "ref": res |= ref_; break;
case "@property": res |= property; break;
case "@trusted": res |= trusted; break;
case "@safe": res |= safe; break;
case "@nogc": res |= nogc; break;
case "@system": res |= system; break;
case "const": res |= const_; break;
case "immutable": res |= immutable_; break;
case "inout": res |= inout_; break;
case "shared": res |= shared_; break;
case "return": res |= return_; break;
case "scope": res |= scope_; break;
default: assert(0, attrib);
}
}
return res;
}
/**
Checks whether a function has the given attributes attached.
Params:
args = Function to check, followed by a
variadic number of function attributes as strings
Returns:
`true`, if the function has the list of attributes attached and `false` otherwise.
See_Also:
$(LREF functionAttributes)
*/
template hasFunctionAttributes(args...)
if (args.length > 0 && isCallable!(args[0])
&& allSatisfy!(isSomeString, typeof(args[1 .. $])))
{
enum bool hasFunctionAttributes = {
import std.algorithm.searching : canFind;
import std.range : only;
enum funcAttribs = only(__traits(getFunctionAttributes, args[0]));
foreach (attribute; args[1 .. $])
{
if (!funcAttribs.canFind(attribute))
return false;
}
return true;
}();
}
///
@safe unittest
{
real func(real x) pure nothrow @safe;
static assert(hasFunctionAttributes!(func, "@safe", "pure"));
static assert(!hasFunctionAttributes!(func, "@trusted"));
// for templates attributes are automatically inferred
bool myFunc(T)(T b)
{
return !b;
}
static assert(hasFunctionAttributes!(myFunc!bool, "@safe", "pure", "@nogc", "nothrow"));
static assert(!hasFunctionAttributes!(myFunc!bool, "shared"));
}
@system unittest
{
struct S
{
int noF();
int constF() const;
int immutableF() immutable;
int inoutF() inout;
int sharedF() shared;
ref int refF() return;
int propertyF() @property;
int nothrowF() nothrow;
int nogcF() @nogc;
int systemF() @system;
int trustedF() @trusted;
int safeF() @safe;
int pureF() pure;
}
// true if no args passed
static assert(hasFunctionAttributes!(S.noF));
static assert(hasFunctionAttributes!(S.noF, "@system"));
static assert(hasFunctionAttributes!(typeof(S.noF), "@system"));
static assert(!hasFunctionAttributes!(S.noF, "@system", "pure"));
static assert(hasFunctionAttributes!(S.constF, "const", "@system"));
static assert(hasFunctionAttributes!(typeof(S.constF), "const", "@system"));
static assert(!hasFunctionAttributes!(S.constF, "const", "@system", "@nogc"));
static assert(hasFunctionAttributes!(S.immutableF, "immutable", "@system"));
static assert(hasFunctionAttributes!(typeof(S.immutableF), "immutable", "@system"));
static assert(!hasFunctionAttributes!(S.immutableF, "immutable", "@system", "pure"));
static assert(hasFunctionAttributes!(S.inoutF, "inout", "@system"));
static assert(hasFunctionAttributes!(typeof(S.inoutF), "inout", "@system"));
static assert(!hasFunctionAttributes!(S.inoutF, "inout", "@system", "pure"));
static assert(hasFunctionAttributes!(S.sharedF, "shared", "@system"));
static assert(hasFunctionAttributes!(typeof(S.sharedF), "shared", "@system"));
static assert(!hasFunctionAttributes!(S.sharedF, "shared", "@system", "@trusted"));
static assert(hasFunctionAttributes!(S.refF, "ref", "@system", "return"));
static assert(hasFunctionAttributes!(typeof(S.refF), "ref", "@system", "return"));
static assert(!hasFunctionAttributes!(S.refF, "ref", "@system", "return", "pure"));
static assert(hasFunctionAttributes!(S.propertyF, "@property", "@system"));
static assert(hasFunctionAttributes!(typeof(&S.propertyF), "@property", "@system"));
static assert(!hasFunctionAttributes!(S.propertyF, "@property", "@system", "ref"));
static assert(hasFunctionAttributes!(S.nothrowF, "nothrow", "@system"));
static assert(hasFunctionAttributes!(typeof(S.nothrowF), "nothrow", "@system"));
static assert(!hasFunctionAttributes!(S.nothrowF, "nothrow", "@system", "@trusted"));
static assert(hasFunctionAttributes!(S.nogcF, "@nogc", "@system"));
static assert(hasFunctionAttributes!(typeof(S.nogcF), "@nogc", "@system"));
static assert(!hasFunctionAttributes!(S.nogcF, "@nogc", "@system", "ref"));
static assert(hasFunctionAttributes!(S.systemF, "@system"));
static assert(hasFunctionAttributes!(typeof(S.systemF), "@system"));
static assert(!hasFunctionAttributes!(S.systemF, "@system", "ref"));
static assert(hasFunctionAttributes!(S.trustedF, "@trusted"));
static assert(hasFunctionAttributes!(typeof(S.trustedF), "@trusted"));
static assert(!hasFunctionAttributes!(S.trustedF, "@trusted", "@safe"));
static assert(hasFunctionAttributes!(S.safeF, "@safe"));
static assert(hasFunctionAttributes!(typeof(S.safeF), "@safe"));
static assert(!hasFunctionAttributes!(S.safeF, "@safe", "nothrow"));
static assert(hasFunctionAttributes!(S.pureF, "pure", "@system"));
static assert(hasFunctionAttributes!(typeof(S.pureF), "pure", "@system"));
static assert(!hasFunctionAttributes!(S.pureF, "pure", "@system", "ref"));
int pure_nothrow() nothrow pure { return 0; }
void safe_nothrow() @safe nothrow { }
static ref int static_ref_property() @property { return *(new int); }
ref int ref_property() @property { return *(new int); }
static assert(hasFunctionAttributes!(pure_nothrow, "pure", "nothrow", "@safe"));
static assert(hasFunctionAttributes!(typeof(pure_nothrow), "pure", "nothrow", "@safe"));
static assert(!hasFunctionAttributes!(pure_nothrow, "pure", "nothrow", "@safe", "@trusted"));
static assert(hasFunctionAttributes!(safe_nothrow, "@safe", "nothrow"));
static assert(hasFunctionAttributes!(typeof(safe_nothrow), "@safe", "nothrow"));
static assert(hasFunctionAttributes!(safe_nothrow, "@safe", "nothrow", "pure"));
static assert(!hasFunctionAttributes!(safe_nothrow, "@safe", "nothrow", "pure", "@trusted"));
static assert(hasFunctionAttributes!(static_ref_property, "@property", "ref", "@safe"));
static assert(hasFunctionAttributes!(typeof(&static_ref_property), "@property", "ref", "@safe"));
static assert(hasFunctionAttributes!(static_ref_property, "@property", "ref", "@safe", "nothrow"));
static assert(!hasFunctionAttributes!(static_ref_property, "@property", "ref", "@safe", "nothrow", "@nogc"));
static assert(hasFunctionAttributes!(ref_property, "@property", "ref", "@safe"));
static assert(hasFunctionAttributes!(typeof(&ref_property), "@property", "ref", "@safe"));
static assert(!hasFunctionAttributes!(ref_property, "@property", "ref", "@safe", "@nogc"));
struct S2
{
int pure_const() const pure { return 0; }
int pure_sharedconst() const shared pure { return 0; }
}
static assert(hasFunctionAttributes!(S2.pure_const, "const", "pure", "@system"));
static assert(hasFunctionAttributes!(typeof(S2.pure_const), "const", "pure", "@system"));
static assert(!hasFunctionAttributes!(S2.pure_const, "const", "pure", "@system", "ref"));
static assert(hasFunctionAttributes!(S2.pure_sharedconst, "const", "shared", "pure", "@system"));
static assert(hasFunctionAttributes!(typeof(S2.pure_sharedconst), "const", "shared", "pure", "@system"));
static assert(!hasFunctionAttributes!(S2.pure_sharedconst, "const", "shared", "pure", "@system", "@nogc"));
static assert(hasFunctionAttributes!((int a) { }, "pure", "nothrow", "@nogc", "@safe"));
static assert(hasFunctionAttributes!(typeof((int a) { }), "pure", "nothrow", "@nogc", "@safe"));
static assert(!hasFunctionAttributes!((int a) { }, "pure", "nothrow", "@nogc", "@safe", "ref"));
auto safeDel = delegate() @safe { };
static assert(hasFunctionAttributes!(safeDel, "pure", "nothrow", "@nogc", "@safe"));
static assert(hasFunctionAttributes!(typeof(safeDel), "pure", "nothrow", "@nogc", "@safe"));
static assert(!hasFunctionAttributes!(safeDel, "pure", "nothrow", "@nogc", "@safe", "@system"));
auto trustedDel = delegate() @trusted { };
static assert(hasFunctionAttributes!(trustedDel, "pure", "nothrow", "@nogc", "@trusted"));
static assert(hasFunctionAttributes!(typeof(trustedDel), "pure", "nothrow", "@nogc", "@trusted"));
static assert(!hasFunctionAttributes!(trustedDel, "pure", "nothrow", "@nogc", "@trusted", "ref"));
auto systemDel = delegate() @system { };
static assert(hasFunctionAttributes!(systemDel, "pure", "nothrow", "@nogc", "@system"));
static assert(hasFunctionAttributes!(typeof(systemDel), "pure", "nothrow", "@nogc", "@system"));
static assert(!hasFunctionAttributes!(systemDel, "pure", "nothrow", "@nogc", "@system", "@property"));
// call functions to make CodeCov happy
{
assert(pure_nothrow == 0);
safe_nothrow;
assert(static_ref_property == 0);
assert(ref_property == 0);
assert(S2().pure_const == 0);
assert((shared S2()).pure_sharedconst == 0);
cast(void) safeDel;
cast(void) trustedDel;
cast(void) systemDel;
}
}
/**
$(D true) if $(D func) is $(D @safe) or $(D @trusted).
*/
template isSafe(alias func)
if (isCallable!func)
{
enum isSafe = (functionAttributes!func & FunctionAttribute.safe) != 0 ||
(functionAttributes!func & FunctionAttribute.trusted) != 0;
}
///
@safe unittest
{
@safe int add(int a, int b) {return a+b;}
@trusted int sub(int a, int b) {return a-b;}
@system int mul(int a, int b) {return a*b;}
static assert( isSafe!add);
static assert( isSafe!sub);
static assert(!isSafe!mul);
}
@safe unittest
{
//Member functions
interface Set
{
int systemF() @system;
int trustedF() @trusted;
int safeF() @safe;
}
static assert( isSafe!(Set.safeF));
static assert( isSafe!(Set.trustedF));
static assert(!isSafe!(Set.systemF));
//Functions
@safe static safeFunc() {}
@trusted static trustedFunc() {}
@system static systemFunc() {}
static assert( isSafe!safeFunc);
static assert( isSafe!trustedFunc);
static assert(!isSafe!systemFunc);
//Delegates
auto safeDel = delegate() @safe {};
auto trustedDel = delegate() @trusted {};
auto systemDel = delegate() @system {};
static assert( isSafe!safeDel);
static assert( isSafe!trustedDel);
static assert(!isSafe!systemDel);
//Lambdas
static assert( isSafe!({safeDel();}));
static assert( isSafe!({trustedDel();}));
static assert(!isSafe!({systemDel();}));
//Static opCall
struct SafeStatic { @safe static SafeStatic opCall() { return SafeStatic.init; } }
struct TrustedStatic { @trusted static TrustedStatic opCall() { return TrustedStatic.init; } }
struct SystemStatic { @system static SystemStatic opCall() { return SystemStatic.init; } }
static assert( isSafe!(SafeStatic()));
static assert( isSafe!(TrustedStatic()));
static assert(!isSafe!(SystemStatic()));
//Non-static opCall
struct Safe { @safe Safe opCall() { return Safe.init; } }
struct Trusted { @trusted Trusted opCall() { return Trusted.init; } }
struct System { @system System opCall() { return System.init; } }
static assert( isSafe!(Safe.init()));
static assert( isSafe!(Trusted.init()));
static assert(!isSafe!(System.init()));
}
/**
$(D true) if $(D func) is $(D @system).
*/
template isUnsafe(alias func)
{
enum isUnsafe = !isSafe!func;
}
///
@safe unittest
{
@safe int add(int a, int b) {return a+b;}
@trusted int sub(int a, int b) {return a-b;}
@system int mul(int a, int b) {return a*b;}
static assert(!isUnsafe!add);
static assert(!isUnsafe!sub);
static assert( isUnsafe!mul);
}
@safe unittest
{
//Member functions
interface Set
{
int systemF() @system;
int trustedF() @trusted;
int safeF() @safe;
}
static assert(!isUnsafe!(Set.safeF));
static assert(!isUnsafe!(Set.trustedF));
static assert( isUnsafe!(Set.systemF));
//Functions
@safe static safeFunc() {}
@trusted static trustedFunc() {}
@system static systemFunc() {}
static assert(!isUnsafe!safeFunc);
static assert(!isUnsafe!trustedFunc);
static assert( isUnsafe!systemFunc);
//Delegates
auto safeDel = delegate() @safe {};
auto trustedDel = delegate() @trusted {};
auto systemDel = delegate() @system {};
static assert(!isUnsafe!safeDel);
static assert(!isUnsafe!trustedDel);
static assert( isUnsafe!systemDel);
//Lambdas
static assert(!isUnsafe!({safeDel();}));
static assert(!isUnsafe!({trustedDel();}));
static assert( isUnsafe!({systemDel();}));
//Static opCall
struct SafeStatic { @safe static SafeStatic opCall() { return SafeStatic.init; } }
struct TrustedStatic { @trusted static TrustedStatic opCall() { return TrustedStatic.init; } }
struct SystemStatic { @system static SystemStatic opCall() { return SystemStatic.init; } }
static assert(!isUnsafe!(SafeStatic()));
static assert(!isUnsafe!(TrustedStatic()));
static assert( isUnsafe!(SystemStatic()));
//Non-static opCall
struct Safe { @safe Safe opCall() { return Safe.init; } }
struct Trusted { @trusted Trusted opCall() { return Trusted.init; } }
struct System { @system System opCall() { return System.init; } }
static assert(!isUnsafe!(Safe.init()));
static assert(!isUnsafe!(Trusted.init()));
static assert( isUnsafe!(System.init()));
}
/**
Determine the linkage attribute of the function.
Params:
func = the function symbol, or the type of a function, delegate, or pointer to function
Returns:
one of the strings "D", "C", "Windows", or "Objective-C"
*/
template functionLinkage(func...)
if (func.length == 1 && isCallable!func)
{
enum string functionLinkage = __traits(getLinkage, FunctionTypeOf!func);
}
///
@safe unittest
{
extern(D) void Dfunc() {}
extern(C) void Cfunc() {}
static assert(functionLinkage!Dfunc == "D");
static assert(functionLinkage!Cfunc == "C");
string a = functionLinkage!Dfunc;
assert(a == "D");
auto fp = &Cfunc;
string b = functionLinkage!fp;
assert(b == "C");
}
@safe unittest
{
interface Test
{
void const_func() const;
void sharedconst_func() shared const;
}
static assert(functionLinkage!(Test.const_func) == "D");
static assert(functionLinkage!(Test.sharedconst_func) == "D");
static assert(functionLinkage!((int a){}) == "D");
}
/**
Determines what kind of variadic parameters function has.
Params:
func = function symbol or type of function, delegate, or pointer to function
Returns:
enum Variadic
*/
enum Variadic
{
no, /// Function is not variadic.
c, /// Function is a _C-style variadic function, which uses
/// core.stdc.stdarg
/// Function is a _D-style variadic function, which uses
d, /// __argptr and __arguments.
typesafe, /// Function is a typesafe variadic function.
}
/// ditto
template variadicFunctionStyle(func...)
if (func.length == 1 && isCallable!func)
{
enum string varargs = __traits(getFunctionVariadicStyle, FunctionTypeOf!func);
enum Variadic variadicFunctionStyle =
(varargs == "stdarg") ? Variadic.c :
(varargs == "argptr") ? Variadic.d :
(varargs == "typesafe") ? Variadic.typesafe :
(varargs == "none") ? Variadic.no : Variadic.no;
}
///
@safe unittest
{
void func() {}
static assert(variadicFunctionStyle!func == Variadic.no);
extern(C) int printf(in char*, ...);
static assert(variadicFunctionStyle!printf == Variadic.c);
}
@safe unittest
{
import core.vararg;
extern(D) void novar() {}
extern(C) void cstyle(int, ...) {}
extern(D) void dstyle(...) {}
extern(D) void typesafe(int[]...) {}
static assert(variadicFunctionStyle!novar == Variadic.no);
static assert(variadicFunctionStyle!cstyle == Variadic.c);
static assert(variadicFunctionStyle!dstyle == Variadic.d);
static assert(variadicFunctionStyle!typesafe == Variadic.typesafe);
static assert(variadicFunctionStyle!((int[] a...) {}) == Variadic.typesafe);
}
/**
Get the function type from a callable object $(D func).
Using builtin $(D typeof) on a property function yields the types of the
property value, not of the property function itself. Still,
$(D FunctionTypeOf) is able to obtain function types of properties.
Note:
Do not confuse function types with function pointer types; function types are
usually used for compile-time reflection purposes.
*/
template FunctionTypeOf(func...)
if (func.length == 1 && isCallable!func)
{
static if (is(typeof(& func[0]) Fsym : Fsym*) && is(Fsym == function) || is(typeof(& func[0]) Fsym == delegate))
{
alias FunctionTypeOf = Fsym; // HIT: (nested) function symbol
}
else static if (is(typeof(& func[0].opCall) Fobj == delegate))
{
alias FunctionTypeOf = Fobj; // HIT: callable object
}
else static if (is(typeof(& func[0].opCall) Ftyp : Ftyp*) && is(Ftyp == function))
{
alias FunctionTypeOf = Ftyp; // HIT: callable type
}
else static if (is(func[0] T) || is(typeof(func[0]) T))
{
static if (is(T == function))
alias FunctionTypeOf = T; // HIT: function
else static if (is(T Fptr : Fptr*) && is(Fptr == function))
alias FunctionTypeOf = Fptr; // HIT: function pointer
else static if (is(T Fdlg == delegate))
alias FunctionTypeOf = Fdlg; // HIT: delegate
else
static assert(0);
}
else
static assert(0);
}
///
@safe unittest
{
class C
{
int value() @property { return 0; }
}
static assert(is( typeof(C.value) == int ));
static assert(is( FunctionTypeOf!(C.value) == function ));
}
@system unittest
{
int test(int a);
int propGet() @property;
int propSet(int a) @property;
int function(int) test_fp;
int delegate(int) test_dg;
static assert(is( typeof(test) == FunctionTypeOf!(typeof(test)) ));
static assert(is( typeof(test) == FunctionTypeOf!test ));
static assert(is( typeof(test) == FunctionTypeOf!test_fp ));
static assert(is( typeof(test) == FunctionTypeOf!test_dg ));
alias int GetterType() @property;
alias int SetterType(int) @property;
static assert(is( FunctionTypeOf!propGet == GetterType ));
static assert(is( FunctionTypeOf!propSet == SetterType ));
interface Prop { int prop() @property; }
Prop prop;
static assert(is( FunctionTypeOf!(Prop.prop) == GetterType ));
static assert(is( FunctionTypeOf!(prop.prop) == GetterType ));
class Callable { int opCall(int) { return 0; } }
auto call = new Callable;
static assert(is( FunctionTypeOf!call == typeof(test) ));
struct StaticCallable { static int opCall(int) { return 0; } }
StaticCallable stcall_val;
StaticCallable* stcall_ptr;
static assert(is( FunctionTypeOf!stcall_val == typeof(test) ));
static assert(is( FunctionTypeOf!stcall_ptr == typeof(test) ));
interface Overloads
{
void test(string);
real test(real);
int test(int);
int test() @property;
}
alias ov = AliasSeq!(__traits(getVirtualFunctions, Overloads, "test"));
alias F_ov0 = FunctionTypeOf!(ov[0]);
alias F_ov1 = FunctionTypeOf!(ov[1]);
alias F_ov2 = FunctionTypeOf!(ov[2]);
alias F_ov3 = FunctionTypeOf!(ov[3]);
static assert(is(F_ov0* == void function(string)));
static assert(is(F_ov1* == real function(real)));
static assert(is(F_ov2* == int function(int)));
static assert(is(F_ov3* == int function() @property));
alias F_dglit = FunctionTypeOf!((int a){ return a; });
static assert(is(F_dglit* : int function(int)));
}
/**
* Constructs a new function or delegate type with the same basic signature
* as the given one, but different attributes (including linkage).
*
* This is especially useful for adding/removing attributes to/from types in
* generic code, where the actual type name cannot be spelt out.
*
* Params:
* T = The base type.
* linkage = The desired linkage of the result type.
* attrs = The desired $(LREF FunctionAttribute)s of the result type.
*/
template SetFunctionAttributes(T, string linkage, uint attrs)
if (isFunctionPointer!T || isDelegate!T)
{
mixin({
import std.algorithm.searching : canFind;
static assert(!(attrs & FunctionAttribute.trusted) ||
!(attrs & FunctionAttribute.safe),
"Cannot have a function/delegate that is both trusted and safe.");
static immutable linkages = ["D", "C", "Windows", "C++", "System"];
static assert(canFind(linkages, linkage), "Invalid linkage '" ~
linkage ~ "', must be one of " ~ linkages.stringof ~ ".");
string result = "alias ";
static if (linkage != "D")
result ~= "extern(" ~ linkage ~ ") ";
static if (attrs & FunctionAttribute.ref_)
result ~= "ref ";
result ~= "ReturnType!T";
static if (isDelegate!T)
result ~= " delegate";
else
result ~= " function";
result ~= "(";
static if (Parameters!T.length > 0)
result ~= "Parameters!T";
enum varStyle = variadicFunctionStyle!T;
static if (varStyle == Variadic.c)
result ~= ", ...";
else static if (varStyle == Variadic.d)
result ~= "...";
else static if (varStyle == Variadic.typesafe)
result ~= "...";
result ~= ")";
static if (attrs & FunctionAttribute.pure_)
result ~= " pure";
static if (attrs & FunctionAttribute.nothrow_)
result ~= " nothrow";
static if (attrs & FunctionAttribute.property)
result ~= " @property";
static if (attrs & FunctionAttribute.trusted)
result ~= " @trusted";
static if (attrs & FunctionAttribute.safe)
result ~= " @safe";
static if (attrs & FunctionAttribute.nogc)
result ~= " @nogc";
static if (attrs & FunctionAttribute.system)
result ~= " @system";
static if (attrs & FunctionAttribute.const_)
result ~= " const";
static if (attrs & FunctionAttribute.immutable_)
result ~= " immutable";
static if (attrs & FunctionAttribute.inout_)
result ~= " inout";
static if (attrs & FunctionAttribute.shared_)
result ~= " shared";
static if (attrs & FunctionAttribute.return_)
result ~= " return";
result ~= " SetFunctionAttributes;";
return result;
}());
}
/// Ditto
template SetFunctionAttributes(T, string linkage, uint attrs)
if (is(T == function))
{
// To avoid a lot of syntactic headaches, we just use the above version to
// operate on the corresponding function pointer type and then remove the
// indirection again.
alias SetFunctionAttributes = FunctionTypeOf!(SetFunctionAttributes!(T*, linkage, attrs));
}
///
@safe unittest
{
alias ExternC(T) = SetFunctionAttributes!(T, "C", functionAttributes!T);
auto assumePure(T)(T t)
if (isFunctionPointer!T || isDelegate!T)
{
enum attrs = functionAttributes!T | FunctionAttribute.pure_;
return cast(SetFunctionAttributes!(T, functionLinkage!T, attrs)) t;
}
}
version (unittest)
{
// Some function types to test.
int sc(scope int, ref int, out int, lazy int, int);
extern(System) int novar();
extern(C) int cstyle(int, ...);
extern(D) int dstyle(...);
extern(D) int typesafe(int[]...);
}
@safe unittest
{
import std.algorithm.iteration : reduce;
alias FA = FunctionAttribute;
foreach (BaseT; AliasSeq!(typeof(&sc), typeof(&novar), typeof(&cstyle),
typeof(&dstyle), typeof(&typesafe)))
{
foreach (T; AliasSeq!(BaseT, FunctionTypeOf!BaseT))
(){ // avoid slow optimizations for large functions @@@BUG@@@ 2396
enum linkage = functionLinkage!T;
enum attrs = functionAttributes!T;
static assert(is(SetFunctionAttributes!(T, linkage, attrs) == T),
"Identity check failed for: " ~ T.stringof);
// Check that all linkage types work (D-style variadics require D linkage).
static if (variadicFunctionStyle!T != Variadic.d)
{
foreach (newLinkage; AliasSeq!("D", "C", "Windows", "C++"))
{
alias New = SetFunctionAttributes!(T, newLinkage, attrs);
static assert(functionLinkage!New == newLinkage,
"Linkage test failed for: " ~ T.stringof ~ ", " ~ newLinkage ~
" (got " ~ New.stringof ~ ")");
}
}
// Add @safe.
alias T1 = SetFunctionAttributes!(T, functionLinkage!T, FA.safe);
static assert(functionAttributes!T1 == FA.safe);
// Add all known attributes, excluding conflicting ones.
enum allAttrs = reduce!"a | b"([EnumMembers!FA])
& ~FA.safe & ~FA.property & ~FA.const_ & ~FA.immutable_ & ~FA.inout_
& ~FA.shared_ & ~FA.system & ~FA.return_ & ~FA.scope_;
alias T2 = SetFunctionAttributes!(T1, functionLinkage!T, allAttrs);
static assert(functionAttributes!T2 == allAttrs);
// Strip all attributes again.
alias T3 = SetFunctionAttributes!(T2, functionLinkage!T, FA.none);
static assert(is(T3 == T));
}();
}
}
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
// Aggregate Types
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
/**
Determines whether `T` is a class nested inside another class
and that `T.outer` is the implicit reference to the outer class
(i.e. `outer` has not been used as a field or method name)
Params:
T = type to test
Returns:
`true` if `T` is a class nested inside another, with the conditions described above;
`false` otherwise
*/
template isInnerClass(T)
if (is(T == class))
{
import std.meta : staticIndexOf;
static if (is(typeof(T.outer)))
enum isInnerClass = __traits(isSame, typeof(T.outer), __traits(parent, T))
&& (staticIndexOf!(__traits(allMembers, T), "outer") == -1);
else
enum isInnerClass = false;
}
///
@safe unittest
{
class C
{
int outer;
}
static assert(!isInnerClass!C);
class Outer1
{
class Inner1 { }
class Inner2
{
int outer;
}
}
static assert(isInnerClass!(Outer1.Inner1));
static assert(!isInnerClass!(Outer1.Inner2));
static class Outer2
{
static class Inner
{
int outer;
}
}
static assert(!isInnerClass!(Outer2.Inner));
}
/**
Determines whether $(D T) has its own context pointer.
$(D T) must be either $(D class), $(D struct), or $(D union).
*/
template isNested(T)
if (is(T == class) || is(T == struct) || is(T == union))
{
enum isNested = __traits(isNested, T);
}
///
@safe unittest
{
static struct S { }
static assert(!isNested!S);
int i;
struct NestedStruct { void f() { ++i; } }
static assert(isNested!NestedStruct);
}
/**
Determines whether $(D T) or any of its representation types
have a context pointer.
*/
template hasNested(T)
{
import std.meta : anySatisfy, Filter;
static if (isStaticArray!T && T.length)
enum hasNested = hasNested!(typeof(T.init[0]));
else static if (is(T == class) || is(T == struct) || is(T == union))
{
// prevent infinite recursion for class with member of same type
enum notSame(U) = !is(Unqual!T == Unqual!U);
enum hasNested = isNested!T ||
anySatisfy!(.hasNested, Filter!(notSame, Fields!T));
}
else
enum hasNested = false;
}
///
@safe unittest
{
static struct S { }
int i;
struct NS { void f() { ++i; } }
static assert(!hasNested!(S[2]));
static assert(hasNested!(NS[2]));
}
@safe unittest
{
static assert(!__traits(compiles, isNested!int));
static assert(!hasNested!int);
static struct StaticStruct { }
static assert(!isNested!StaticStruct);
static assert(!hasNested!StaticStruct);
int i;
struct NestedStruct { void f() { ++i; } }
static assert( isNested!NestedStruct);
static assert( hasNested!NestedStruct);
static assert( isNested!(immutable NestedStruct));
static assert( hasNested!(immutable NestedStruct));
static assert(!__traits(compiles, isNested!(NestedStruct[1])));
static assert( hasNested!(NestedStruct[1]));
static assert(!hasNested!(NestedStruct[0]));
struct S1 { NestedStruct nested; }
static assert(!isNested!S1);
static assert( hasNested!S1);
static struct S2 { NestedStruct nested; }
static assert(!isNested!S2);
static assert( hasNested!S2);
static struct S3 { NestedStruct[0] nested; }
static assert(!isNested!S3);
static assert(!hasNested!S3);
static union U { NestedStruct nested; }
static assert(!isNested!U);
static assert( hasNested!U);
static class StaticClass { }
static assert(!isNested!StaticClass);
static assert(!hasNested!StaticClass);
class NestedClass { void f() { ++i; } }
static assert( isNested!NestedClass);
static assert( hasNested!NestedClass);
static assert( isNested!(immutable NestedClass));
static assert( hasNested!(immutable NestedClass));
static assert(!__traits(compiles, isNested!(NestedClass[1])));
static assert( hasNested!(NestedClass[1]));
static assert(!hasNested!(NestedClass[0]));
static class A
{
A a;
}
static assert(!hasNested!A);
}
/***
* Get as a tuple the types of the fields of a struct, class, or union.
* This consists of the fields that take up memory space,
* excluding the hidden fields like the virtual function
* table pointer or a context pointer for nested types.
* If $(D T) isn't a struct, class, or union returns a tuple
* with one element $(D T).
*/
template Fields(T)
{
static if (is(T == struct) || is(T == union))
alias Fields = typeof(T.tupleof[0 .. $ - isNested!T]);
else static if (is(T == class))
alias Fields = typeof(T.tupleof);
else
alias Fields = AliasSeq!T;
}
///
@safe unittest
{
struct S { int x; float y; }
static assert(is(Fields!S == AliasSeq!(int, float)));
}
/**
* Alternate name for $(LREF Fields), kept for legacy compatibility.
*/
alias FieldTypeTuple = Fields;
@safe unittest
{
static assert(is(FieldTypeTuple!int == AliasSeq!int));
static struct StaticStruct1 { }
static assert(is(FieldTypeTuple!StaticStruct1 == AliasSeq!()));
static struct StaticStruct2 { int a, b; }
static assert(is(FieldTypeTuple!StaticStruct2 == AliasSeq!(int, int)));
int i;
struct NestedStruct1 { void f() { ++i; } }
static assert(is(FieldTypeTuple!NestedStruct1 == AliasSeq!()));
struct NestedStruct2 { int a; void f() { ++i; } }
static assert(is(FieldTypeTuple!NestedStruct2 == AliasSeq!int));
class NestedClass { int a; void f() { ++i; } }
static assert(is(FieldTypeTuple!NestedClass == AliasSeq!int));
}
//Required for FieldNameTuple
private enum NameOf(alias T) = T.stringof;
/**
* Get as an expression tuple the names of the fields of a struct, class, or
* union. This consists of the fields that take up memory space, excluding the
* hidden fields like the virtual function table pointer or a context pointer
* for nested types. If $(D T) isn't a struct, class, or union returns an
* expression tuple with an empty string.
*/
template FieldNameTuple(T)
{
import std.meta : staticMap;
static if (is(T == struct) || is(T == union))
alias FieldNameTuple = staticMap!(NameOf, T.tupleof[0 .. $ - isNested!T]);
else static if (is(T == class))
alias FieldNameTuple = staticMap!(NameOf, T.tupleof);
else
alias FieldNameTuple = AliasSeq!"";
}
///
@safe unittest
{
struct S { int x; float y; }
static assert(FieldNameTuple!S == AliasSeq!("x", "y"));
static assert(FieldNameTuple!int == AliasSeq!"");
}
@safe unittest
{
static assert(FieldNameTuple!int == AliasSeq!"");
static struct StaticStruct1 { }
static assert(is(FieldNameTuple!StaticStruct1 == AliasSeq!()));
static struct StaticStruct2 { int a, b; }
static assert(FieldNameTuple!StaticStruct2 == AliasSeq!("a", "b"));
int i;
struct NestedStruct1 { void f() { ++i; } }
static assert(is(FieldNameTuple!NestedStruct1 == AliasSeq!()));
struct NestedStruct2 { int a; void f() { ++i; } }
static assert(FieldNameTuple!NestedStruct2 == AliasSeq!"a");
class NestedClass { int a; void f() { ++i; } }
static assert(FieldNameTuple!NestedClass == AliasSeq!"a");
}
/***
Get the primitive types of the fields of a struct or class, in
topological order.
*/
template RepresentationTypeTuple(T)
{
template Impl(T...)
{
static if (T.length == 0)
{
alias Impl = AliasSeq!();
}
else
{
import std.typecons : Rebindable;
static if (is(T[0] R: Rebindable!R))
{
alias Impl = Impl!(Impl!R, T[1 .. $]);
}
else static if (is(T[0] == struct) || is(T[0] == union))
{
// @@@BUG@@@ this should work
//alias .RepresentationTypes!(T[0].tupleof)
// RepresentationTypes;
alias Impl = Impl!(FieldTypeTuple!(T[0]), T[1 .. $]);
}
else
{
alias Impl = AliasSeq!(T[0], Impl!(T[1 .. $]));
}
}
}
static if (is(T == struct) || is(T == union) || is(T == class))
{
alias RepresentationTypeTuple = Impl!(FieldTypeTuple!T);
}
else
{
alias RepresentationTypeTuple = Impl!T;
}
}
///
@safe unittest
{
struct S1 { int a; float b; }
struct S2 { char[] a; union { S1 b; S1 * c; } }
alias R = RepresentationTypeTuple!S2;
assert(R.length == 4
&& is(R[0] == char[]) && is(R[1] == int)
&& is(R[2] == float) && is(R[3] == S1*));
}
@safe unittest
{
alias S1 = RepresentationTypeTuple!int;
static assert(is(S1 == AliasSeq!int));
struct S2 { int a; }
struct S3 { int a; char b; }
struct S4 { S1 a; int b; S3 c; }
static assert(is(RepresentationTypeTuple!S2 == AliasSeq!int));
static assert(is(RepresentationTypeTuple!S3 == AliasSeq!(int, char)));
static assert(is(RepresentationTypeTuple!S4 == AliasSeq!(int, int, int, char)));
struct S11 { int a; float b; }
struct S21 { char[] a; union { S11 b; S11 * c; } }
alias R = RepresentationTypeTuple!S21;
assert(R.length == 4
&& is(R[0] == char[]) && is(R[1] == int)
&& is(R[2] == float) && is(R[3] == S11*));
class C { int a; float b; }
alias R1 = RepresentationTypeTuple!C;
static assert(R1.length == 2 && is(R1[0] == int) && is(R1[1] == float));
/* Issue 6642 */
import std.typecons : Rebindable;
struct S5 { int a; Rebindable!(immutable Object) b; }
alias R2 = RepresentationTypeTuple!S5;
static assert(R2.length == 2 && is(R2[0] == int) && is(R2[1] == immutable(Object)));
}
/*
Statically evaluates to $(D true) if and only if $(D T)'s
representation contains at least one field of pointer or array type.
Members of class types are not considered raw pointers. Pointers to
immutable objects are not considered raw aliasing.
*/
private template hasRawAliasing(T...)
{
template Impl(T...)
{
static if (T.length == 0)
{
enum Impl = false;
}
else
{
static if (is(T[0] foo : U*, U) && !isFunctionPointer!(T[0]))
enum has = !is(U == immutable);
else static if (is(T[0] foo : U[], U) && !isStaticArray!(T[0]))
enum has = !is(U == immutable);
else static if (isAssociativeArray!(T[0]))
enum has = !is(T[0] == immutable);
else
enum has = false;
enum Impl = has || Impl!(T[1 .. $]);
}
}
enum hasRawAliasing = Impl!(RepresentationTypeTuple!T);
}
///
@safe unittest
{
// simple types
static assert(!hasRawAliasing!int);
static assert( hasRawAliasing!(char*));
// references aren't raw pointers
static assert(!hasRawAliasing!Object);
// built-in arrays do contain raw pointers
static assert( hasRawAliasing!(int[]));
// aggregate of simple types
struct S1 { int a; double b; }
static assert(!hasRawAliasing!S1);
// indirect aggregation
struct S2 { S1 a; double b; }
static assert(!hasRawAliasing!S2);
}
@safe unittest
{
// struct with a pointer member
struct S3 { int a; double * b; }
static assert( hasRawAliasing!S3);
// struct with an indirect pointer member
struct S4 { S3 a; double b; }
static assert( hasRawAliasing!S4);
struct S5 { int a; Object z; int c; }
static assert( hasRawAliasing!S3);
static assert( hasRawAliasing!S4);
static assert(!hasRawAliasing!S5);
union S6 { int a; int b; }
union S7 { int a; int * b; }
static assert(!hasRawAliasing!S6);
static assert( hasRawAliasing!S7);
static assert(!hasRawAliasing!(void delegate()));
static assert(!hasRawAliasing!(void delegate() const));
static assert(!hasRawAliasing!(void delegate() immutable));
static assert(!hasRawAliasing!(void delegate() shared));
static assert(!hasRawAliasing!(void delegate() shared const));
static assert(!hasRawAliasing!(const(void delegate())));
static assert(!hasRawAliasing!(immutable(void delegate())));
struct S8 { void delegate() a; int b; Object c; }
class S12 { typeof(S8.tupleof) a; }
class S13 { typeof(S8.tupleof) a; int* b; }
static assert(!hasRawAliasing!S8);
static assert(!hasRawAliasing!S12);
static assert( hasRawAliasing!S13);
enum S9 { a }
static assert(!hasRawAliasing!S9);
// indirect members
struct S10 { S7 a; int b; }
struct S11 { S6 a; int b; }
static assert( hasRawAliasing!S10);
static assert(!hasRawAliasing!S11);
static assert( hasRawAliasing!(int[string]));
static assert(!hasRawAliasing!(immutable(int[string])));
}
/*
Statically evaluates to $(D true) if and only if $(D T)'s
representation contains at least one non-shared field of pointer or
array type. Members of class types are not considered raw pointers.
Pointers to immutable objects are not considered raw aliasing.
*/
private template hasRawUnsharedAliasing(T...)
{
template Impl(T...)
{
static if (T.length == 0)
{
enum Impl = false;
}
else
{
static if (is(T[0] foo : U*, U) && !isFunctionPointer!(T[0]))
enum has = !is(U == immutable) && !is(U == shared);
else static if (is(T[0] foo : U[], U) && !isStaticArray!(T[0]))
enum has = !is(U == immutable) && !is(U == shared);
else static if (isAssociativeArray!(T[0]))
enum has = !is(T[0] == immutable) && !is(T[0] == shared);
else
enum has = false;
enum Impl = has || Impl!(T[1 .. $]);
}
}
enum hasRawUnsharedAliasing = Impl!(RepresentationTypeTuple!T);
}
///
@safe unittest
{
// simple types
static assert(!hasRawUnsharedAliasing!int);
static assert( hasRawUnsharedAliasing!(char*));
static assert(!hasRawUnsharedAliasing!(shared char*));
// references aren't raw pointers
static assert(!hasRawUnsharedAliasing!Object);
// built-in arrays do contain raw pointers
static assert( hasRawUnsharedAliasing!(int[]));
static assert(!hasRawUnsharedAliasing!(shared int[]));
// aggregate of simple types
struct S1 { int a; double b; }
static assert(!hasRawUnsharedAliasing!S1);
// indirect aggregation
struct S2 { S1 a; double b; }
static assert(!hasRawUnsharedAliasing!S2);
// struct with a pointer member
struct S3 { int a; double * b; }
static assert( hasRawUnsharedAliasing!S3);
struct S4 { int a; shared double * b; }
static assert(!hasRawUnsharedAliasing!S4);
}
@safe unittest
{
// struct with a pointer member
struct S3 { int a; double * b; }
static assert( hasRawUnsharedAliasing!S3);
struct S4 { int a; shared double * b; }
static assert(!hasRawUnsharedAliasing!S4);
// struct with an indirect pointer member
struct S5 { S3 a; double b; }
static assert( hasRawUnsharedAliasing!S5);
struct S6 { S4 a; double b; }
static assert(!hasRawUnsharedAliasing!S6);
struct S7 { int a; Object z; int c; }
static assert( hasRawUnsharedAliasing!S5);
static assert(!hasRawUnsharedAliasing!S6);
static assert(!hasRawUnsharedAliasing!S7);
union S8 { int a; int b; }
union S9 { int a; int* b; }
union S10 { int a; shared int* b; }
static assert(!hasRawUnsharedAliasing!S8);
static assert( hasRawUnsharedAliasing!S9);
static assert(!hasRawUnsharedAliasing!S10);
static assert(!hasRawUnsharedAliasing!(void delegate()));
static assert(!hasRawUnsharedAliasing!(void delegate() const));
static assert(!hasRawUnsharedAliasing!(void delegate() immutable));
static assert(!hasRawUnsharedAliasing!(void delegate() shared));
static assert(!hasRawUnsharedAliasing!(void delegate() shared const));
static assert(!hasRawUnsharedAliasing!(const(void delegate())));
static assert(!hasRawUnsharedAliasing!(const(void delegate() const)));
static assert(!hasRawUnsharedAliasing!(const(void delegate() immutable)));
static assert(!hasRawUnsharedAliasing!(const(void delegate() shared)));
static assert(!hasRawUnsharedAliasing!(const(void delegate() shared const)));
static assert(!hasRawUnsharedAliasing!(immutable(void delegate())));
static assert(!hasRawUnsharedAliasing!(immutable(void delegate() const)));
static assert(!hasRawUnsharedAliasing!(immutable(void delegate() immutable)));
static assert(!hasRawUnsharedAliasing!(immutable(void delegate() shared)));
static assert(!hasRawUnsharedAliasing!(immutable(void delegate() shared const)));
static assert(!hasRawUnsharedAliasing!(shared(void delegate())));
static assert(!hasRawUnsharedAliasing!(shared(void delegate() const)));
static assert(!hasRawUnsharedAliasing!(shared(void delegate() immutable)));
static assert(!hasRawUnsharedAliasing!(shared(void delegate() shared)));
static assert(!hasRawUnsharedAliasing!(shared(void delegate() shared const)));
static assert(!hasRawUnsharedAliasing!(shared(const(void delegate()))));
static assert(!hasRawUnsharedAliasing!(shared(const(void delegate() const))));
static assert(!hasRawUnsharedAliasing!(shared(const(void delegate() immutable))));
static assert(!hasRawUnsharedAliasing!(shared(const(void delegate() shared))));
static assert(!hasRawUnsharedAliasing!(shared(const(void delegate() shared const))));
static assert(!hasRawUnsharedAliasing!(void function()));
enum S13 { a }
static assert(!hasRawUnsharedAliasing!S13);
// indirect members
struct S14 { S9 a; int b; }
struct S15 { S10 a; int b; }
struct S16 { S6 a; int b; }
static assert( hasRawUnsharedAliasing!S14);
static assert(!hasRawUnsharedAliasing!S15);
static assert(!hasRawUnsharedAliasing!S16);
static assert( hasRawUnsharedAliasing!(int[string]));
static assert(!hasRawUnsharedAliasing!(shared(int[string])));
static assert(!hasRawUnsharedAliasing!(immutable(int[string])));
struct S17
{
void delegate() shared a;
void delegate() immutable b;
void delegate() shared const c;
shared(void delegate()) d;
shared(void delegate() shared) e;
shared(void delegate() immutable) f;
shared(void delegate() shared const) g;
immutable(void delegate()) h;
immutable(void delegate() shared) i;
immutable(void delegate() immutable) j;
immutable(void delegate() shared const) k;
shared(const(void delegate())) l;
shared(const(void delegate() shared)) m;
shared(const(void delegate() immutable)) n;
shared(const(void delegate() shared const)) o;
}
struct S18 { typeof(S17.tupleof) a; void delegate() p; }
struct S19 { typeof(S17.tupleof) a; Object p; }
struct S20 { typeof(S17.tupleof) a; int* p; }
class S21 { typeof(S17.tupleof) a; }
class S22 { typeof(S17.tupleof) a; void delegate() p; }
class S23 { typeof(S17.tupleof) a; Object p; }
class S24 { typeof(S17.tupleof) a; int* p; }
static assert(!hasRawUnsharedAliasing!S17);
static assert(!hasRawUnsharedAliasing!(immutable(S17)));
static assert(!hasRawUnsharedAliasing!(shared(S17)));
static assert(!hasRawUnsharedAliasing!S18);
static assert(!hasRawUnsharedAliasing!(immutable(S18)));
static assert(!hasRawUnsharedAliasing!(shared(S18)));
static assert(!hasRawUnsharedAliasing!S19);
static assert(!hasRawUnsharedAliasing!(immutable(S19)));
static assert(!hasRawUnsharedAliasing!(shared(S19)));
static assert( hasRawUnsharedAliasing!S20);
static assert(!hasRawUnsharedAliasing!(immutable(S20)));
static assert(!hasRawUnsharedAliasing!(shared(S20)));
static assert(!hasRawUnsharedAliasing!S21);
static assert(!hasRawUnsharedAliasing!(immutable(S21)));
static assert(!hasRawUnsharedAliasing!(shared(S21)));
static assert(!hasRawUnsharedAliasing!S22);
static assert(!hasRawUnsharedAliasing!(immutable(S22)));
static assert(!hasRawUnsharedAliasing!(shared(S22)));
static assert(!hasRawUnsharedAliasing!S23);
static assert(!hasRawUnsharedAliasing!(immutable(S23)));
static assert(!hasRawUnsharedAliasing!(shared(S23)));
static assert( hasRawUnsharedAliasing!S24);
static assert(!hasRawUnsharedAliasing!(immutable(S24)));
static assert(!hasRawUnsharedAliasing!(shared(S24)));
struct S25 {}
class S26 {}
interface S27 {}
union S28 {}
static assert(!hasRawUnsharedAliasing!S25);
static assert(!hasRawUnsharedAliasing!S26);
static assert(!hasRawUnsharedAliasing!S27);
static assert(!hasRawUnsharedAliasing!S28);
}
/*
Statically evaluates to $(D true) if and only if $(D T)'s
representation includes at least one non-immutable object reference.
*/
private template hasObjects(T...)
{
static if (T.length == 0)
{
enum hasObjects = false;
}
else static if (is(T[0] == struct))
{
enum hasObjects = hasObjects!(
RepresentationTypeTuple!(T[0]), T[1 .. $]);
}
else
{
enum hasObjects = ((is(T[0] == class) || is(T[0] == interface))
&& !is(T[0] == immutable)) || hasObjects!(T[1 .. $]);
}
}
/*
Statically evaluates to $(D true) if and only if $(D T)'s
representation includes at least one non-immutable non-shared object
reference.
*/
private template hasUnsharedObjects(T...)
{
static if (T.length == 0)
{
enum hasUnsharedObjects = false;
}
else static if (is(T[0] == struct))
{
enum hasUnsharedObjects = hasUnsharedObjects!(
RepresentationTypeTuple!(T[0]), T[1 .. $]);
}
else
{
enum hasUnsharedObjects = ((is(T[0] == class) || is(T[0] == interface)) &&
!is(T[0] == immutable) && !is(T[0] == shared)) ||
hasUnsharedObjects!(T[1 .. $]);
}
}
/**
Returns $(D true) if and only if $(D T)'s representation includes at
least one of the following: $(OL $(LI a raw pointer $(D U*) and $(D U)
is not immutable;) $(LI an array $(D U[]) and $(D U) is not
immutable;) $(LI a reference to a class or interface type $(D C) and $(D C) is
not immutable.) $(LI an associative array that is not immutable.)
$(LI a delegate.))
*/
template hasAliasing(T...)
{
import std.meta : anySatisfy;
import std.typecons : Rebindable;
static if (T.length && is(T[0] : Rebindable!R, R))
{
enum hasAliasing = hasAliasing!(R, T[1 .. $]);
}
else
{
template isAliasingDelegate(T)
{
enum isAliasingDelegate = isDelegate!T
&& !is(T == immutable)
&& !is(FunctionTypeOf!T == immutable);
}
enum hasAliasing = hasRawAliasing!T || hasObjects!T ||
anySatisfy!(isAliasingDelegate, T, RepresentationTypeTuple!T);
}
}
///
@safe unittest
{
struct S1 { int a; Object b; }
struct S2 { string a; }
struct S3 { int a; immutable Object b; }
struct S4 { float[3] vals; }
static assert( hasAliasing!S1);
static assert(!hasAliasing!S2);
static assert(!hasAliasing!S3);
static assert(!hasAliasing!S4);
}
@safe unittest
{
static assert( hasAliasing!(uint[uint]));
static assert(!hasAliasing!(immutable(uint[uint])));
static assert( hasAliasing!(void delegate()));
static assert( hasAliasing!(void delegate() const));
static assert(!hasAliasing!(void delegate() immutable));
static assert( hasAliasing!(void delegate() shared));
static assert( hasAliasing!(void delegate() shared const));
static assert( hasAliasing!(const(void delegate())));
static assert( hasAliasing!(const(void delegate() const)));
static assert(!hasAliasing!(const(void delegate() immutable)));
static assert( hasAliasing!(const(void delegate() shared)));
static assert( hasAliasing!(const(void delegate() shared const)));
static assert(!hasAliasing!(immutable(void delegate())));
static assert(!hasAliasing!(immutable(void delegate() const)));
static assert(!hasAliasing!(immutable(void delegate() immutable)));
static assert(!hasAliasing!(immutable(void delegate() shared)));
static assert(!hasAliasing!(immutable(void delegate() shared const)));
static assert( hasAliasing!(shared(const(void delegate()))));
static assert( hasAliasing!(shared(const(void delegate() const))));
static assert(!hasAliasing!(shared(const(void delegate() immutable))));
static assert( hasAliasing!(shared(const(void delegate() shared))));
static assert( hasAliasing!(shared(const(void delegate() shared const))));
static assert(!hasAliasing!(void function()));
interface I;
static assert( hasAliasing!I);
import std.typecons : Rebindable;
static assert( hasAliasing!(Rebindable!(const Object)));
static assert(!hasAliasing!(Rebindable!(immutable Object)));
static assert( hasAliasing!(Rebindable!(shared Object)));
static assert( hasAliasing!(Rebindable!Object));
struct S5
{
void delegate() immutable b;
shared(void delegate() immutable) f;
immutable(void delegate() immutable) j;
shared(const(void delegate() immutable)) n;
}
struct S6 { typeof(S5.tupleof) a; void delegate() p; }
static assert(!hasAliasing!S5);
static assert( hasAliasing!S6);
struct S7 { void delegate() a; int b; Object c; }
class S8 { int a; int b; }
class S9 { typeof(S8.tupleof) a; }
class S10 { typeof(S8.tupleof) a; int* b; }
static assert( hasAliasing!S7);
static assert( hasAliasing!S8);
static assert( hasAliasing!S9);
static assert( hasAliasing!S10);
struct S11 {}
class S12 {}
interface S13 {}
union S14 {}
static assert(!hasAliasing!S11);
static assert( hasAliasing!S12);
static assert( hasAliasing!S13);
static assert(!hasAliasing!S14);
}
/**
Returns $(D true) if and only if $(D T)'s representation includes at
least one of the following: $(OL $(LI a raw pointer $(D U*);) $(LI an
array $(D U[]);) $(LI a reference to a class type $(D C).)
$(LI an associative array.) $(LI a delegate.))
*/
template hasIndirections(T)
{
import std.meta : anySatisfy;
static if (is(T == struct) || is(T == union))
enum hasIndirections = anySatisfy!(.hasIndirections, FieldTypeTuple!T);
else static if (isStaticArray!T && is(T : E[N], E, size_t N))
enum hasIndirections = is(E == void) ? true : hasIndirections!E;
else static if (isFunctionPointer!T)
enum hasIndirections = false;
else
enum hasIndirections = isPointer!T || isDelegate!T || isDynamicArray!T ||
isAssociativeArray!T || is (T == class) || is(T == interface);
}
///
@safe unittest
{
static assert( hasIndirections!(int[string]));
static assert( hasIndirections!(void delegate()));
static assert( hasIndirections!(void delegate() immutable));
static assert( hasIndirections!(immutable(void delegate())));
static assert( hasIndirections!(immutable(void delegate() immutable)));
static assert(!hasIndirections!(void function()));
static assert( hasIndirections!(void*[1]));
static assert(!hasIndirections!(byte[1]));
}
@safe unittest
{
// void static array hides actual type of bits, so "may have indirections".
static assert( hasIndirections!(void[1]));
interface I {}
struct S1 {}
struct S2 { int a; }
struct S3 { int a; int b; }
struct S4 { int a; int* b; }
struct S5 { int a; Object b; }
struct S6 { int a; string b; }
struct S7 { int a; immutable Object b; }
struct S8 { int a; immutable I b; }
struct S9 { int a; void delegate() b; }
struct S10 { int a; immutable(void delegate()) b; }
struct S11 { int a; void delegate() immutable b; }
struct S12 { int a; immutable(void delegate() immutable) b; }
class S13 {}
class S14 { int a; }
class S15 { int a; int b; }
class S16 { int a; Object b; }
class S17 { string a; }
class S18 { int a; immutable Object b; }
class S19 { int a; immutable(void delegate() immutable) b; }
union S20 {}
union S21 { int a; }
union S22 { int a; int b; }
union S23 { int a; Object b; }
union S24 { string a; }
union S25 { int a; immutable Object b; }
union S26 { int a; immutable(void delegate() immutable) b; }
static assert( hasIndirections!I);
static assert(!hasIndirections!S1);
static assert(!hasIndirections!S2);
static assert(!hasIndirections!S3);
static assert( hasIndirections!S4);
static assert( hasIndirections!S5);
static assert( hasIndirections!S6);
static assert( hasIndirections!S7);
static assert( hasIndirections!S8);
static assert( hasIndirections!S9);
static assert( hasIndirections!S10);
static assert( hasIndirections!S12);
static assert( hasIndirections!S13);
static assert( hasIndirections!S14);
static assert( hasIndirections!S15);
static assert( hasIndirections!S16);
static assert( hasIndirections!S17);
static assert( hasIndirections!S18);
static assert( hasIndirections!S19);
static assert(!hasIndirections!S20);
static assert(!hasIndirections!S21);
static assert(!hasIndirections!S22);
static assert( hasIndirections!S23);
static assert( hasIndirections!S24);
static assert( hasIndirections!S25);
static assert( hasIndirections!S26);
}
@safe unittest //12000
{
static struct S(T)
{
static assert(hasIndirections!T);
}
static class A(T)
{
S!A a;
}
A!int dummy;
}
/**
Returns $(D true) if and only if $(D T)'s representation includes at
least one of the following: $(OL $(LI a raw pointer $(D U*) and $(D U)
is not immutable or shared;) $(LI an array $(D U[]) and $(D U) is not
immutable or shared;) $(LI a reference to a class type $(D C) and
$(D C) is not immutable or shared.) $(LI an associative array that is not
immutable or shared.) $(LI a delegate that is not shared.))
*/
template hasUnsharedAliasing(T...)
{
import std.meta : anySatisfy;
import std.typecons : Rebindable;
static if (!T.length)
{
enum hasUnsharedAliasing = false;
}
else static if (is(T[0] R: Rebindable!R))
{
enum hasUnsharedAliasing = hasUnsharedAliasing!R;
}
else
{
template unsharedDelegate(T)
{
enum bool unsharedDelegate = isDelegate!T
&& !is(T == shared)
&& !is(T == shared)
&& !is(T == immutable)
&& !is(FunctionTypeOf!T == shared)
&& !is(FunctionTypeOf!T == immutable);
}
enum hasUnsharedAliasing =
hasRawUnsharedAliasing!(T[0]) ||
anySatisfy!(unsharedDelegate, RepresentationTypeTuple!(T[0])) ||
hasUnsharedObjects!(T[0]) ||
hasUnsharedAliasing!(T[1..$]);
}
}
///
@safe unittest
{
struct S1 { int a; Object b; }
struct S2 { string a; }
struct S3 { int a; immutable Object b; }
static assert( hasUnsharedAliasing!S1);
static assert(!hasUnsharedAliasing!S2);
static assert(!hasUnsharedAliasing!S3);
struct S4 { int a; shared Object b; }
struct S5 { char[] a; }
struct S6 { shared char[] b; }
struct S7 { float[3] vals; }
static assert(!hasUnsharedAliasing!S4);
static assert( hasUnsharedAliasing!S5);
static assert(!hasUnsharedAliasing!S6);
static assert(!hasUnsharedAliasing!S7);
}
@safe unittest
{
/* Issue 6642 */
import std.typecons : Rebindable;
struct S8 { int a; Rebindable!(immutable Object) b; }
static assert(!hasUnsharedAliasing!S8);
static assert( hasUnsharedAliasing!(uint[uint]));
static assert( hasUnsharedAliasing!(void delegate()));
static assert( hasUnsharedAliasing!(void delegate() const));
static assert(!hasUnsharedAliasing!(void delegate() immutable));
static assert(!hasUnsharedAliasing!(void delegate() shared));
static assert(!hasUnsharedAliasing!(void delegate() shared const));
}
@safe unittest
{
import std.typecons : Rebindable;
static assert( hasUnsharedAliasing!(const(void delegate())));
static assert( hasUnsharedAliasing!(const(void delegate() const)));
static assert(!hasUnsharedAliasing!(const(void delegate() immutable)));
static assert(!hasUnsharedAliasing!(const(void delegate() shared)));
static assert(!hasUnsharedAliasing!(const(void delegate() shared const)));
static assert(!hasUnsharedAliasing!(immutable(void delegate())));
static assert(!hasUnsharedAliasing!(immutable(void delegate() const)));
static assert(!hasUnsharedAliasing!(immutable(void delegate() immutable)));
static assert(!hasUnsharedAliasing!(immutable(void delegate() shared)));
static assert(!hasUnsharedAliasing!(immutable(void delegate() shared const)));
static assert(!hasUnsharedAliasing!(shared(void delegate())));
static assert(!hasUnsharedAliasing!(shared(void delegate() const)));
static assert(!hasUnsharedAliasing!(shared(void delegate() immutable)));
static assert(!hasUnsharedAliasing!(shared(void delegate() shared)));
static assert(!hasUnsharedAliasing!(shared(void delegate() shared const)));
static assert(!hasUnsharedAliasing!(shared(const(void delegate()))));
static assert(!hasUnsharedAliasing!(shared(const(void delegate() const))));
static assert(!hasUnsharedAliasing!(shared(const(void delegate() immutable))));
static assert(!hasUnsharedAliasing!(shared(const(void delegate() shared))));
static assert(!hasUnsharedAliasing!(shared(const(void delegate() shared const))));
static assert(!hasUnsharedAliasing!(void function()));
interface I {}
static assert(hasUnsharedAliasing!I);
static assert( hasUnsharedAliasing!(Rebindable!(const Object)));
static assert(!hasUnsharedAliasing!(Rebindable!(immutable Object)));
static assert(!hasUnsharedAliasing!(Rebindable!(shared Object)));
static assert( hasUnsharedAliasing!(Rebindable!Object));
/* Issue 6979 */
static assert(!hasUnsharedAliasing!(int, shared(int)*));
static assert( hasUnsharedAliasing!(int, int*));
static assert( hasUnsharedAliasing!(int, const(int)[]));
static assert( hasUnsharedAliasing!(int, shared(int)*, Rebindable!Object));
static assert(!hasUnsharedAliasing!(shared(int)*, Rebindable!(shared Object)));
static assert(!hasUnsharedAliasing!());
struct S9
{
void delegate() shared a;
void delegate() immutable b;
void delegate() shared const c;
shared(void delegate()) d;
shared(void delegate() shared) e;
shared(void delegate() immutable) f;
shared(void delegate() shared const) g;
immutable(void delegate()) h;
immutable(void delegate() shared) i;
immutable(void delegate() immutable) j;
immutable(void delegate() shared const) k;
shared(const(void delegate())) l;
shared(const(void delegate() shared)) m;
shared(const(void delegate() immutable)) n;
shared(const(void delegate() shared const)) o;
}
struct S10 { typeof(S9.tupleof) a; void delegate() p; }
struct S11 { typeof(S9.tupleof) a; Object p; }
struct S12 { typeof(S9.tupleof) a; int* p; }
class S13 { typeof(S9.tupleof) a; }
class S14 { typeof(S9.tupleof) a; void delegate() p; }
class S15 { typeof(S9.tupleof) a; Object p; }
class S16 { typeof(S9.tupleof) a; int* p; }
static assert(!hasUnsharedAliasing!S9);
static assert(!hasUnsharedAliasing!(immutable(S9)));
static assert(!hasUnsharedAliasing!(shared(S9)));
static assert( hasUnsharedAliasing!S10);
static assert(!hasUnsharedAliasing!(immutable(S10)));
static assert(!hasUnsharedAliasing!(shared(S10)));
static assert( hasUnsharedAliasing!S11);
static assert(!hasUnsharedAliasing!(immutable(S11)));
static assert(!hasUnsharedAliasing!(shared(S11)));
static assert( hasUnsharedAliasing!S12);
static assert(!hasUnsharedAliasing!(immutable(S12)));
static assert(!hasUnsharedAliasing!(shared(S12)));
static assert( hasUnsharedAliasing!S13);
static assert(!hasUnsharedAliasing!(immutable(S13)));
static assert(!hasUnsharedAliasing!(shared(S13)));
static assert( hasUnsharedAliasing!S14);
static assert(!hasUnsharedAliasing!(immutable(S14)));
static assert(!hasUnsharedAliasing!(shared(S14)));
static assert( hasUnsharedAliasing!S15);
static assert(!hasUnsharedAliasing!(immutable(S15)));
static assert(!hasUnsharedAliasing!(shared(S15)));
static assert( hasUnsharedAliasing!S16);
static assert(!hasUnsharedAliasing!(immutable(S16)));
static assert(!hasUnsharedAliasing!(shared(S16)));
struct S17 {}
class S18 {}
interface S19 {}
union S20 {}
static assert(!hasUnsharedAliasing!S17);
static assert( hasUnsharedAliasing!S18);
static assert( hasUnsharedAliasing!S19);
static assert(!hasUnsharedAliasing!S20);
}
/**
True if $(D S) or any type embedded directly in the representation of $(D S)
defines an elaborate copy constructor. Elaborate copy constructors are
introduced by defining $(D this(this)) for a $(D struct).
Classes and unions never have elaborate copy constructors.
*/
template hasElaborateCopyConstructor(S)
{
import std.meta : anySatisfy;
static if (isStaticArray!S && S.length)
{
enum bool hasElaborateCopyConstructor = hasElaborateCopyConstructor!(typeof(S.init[0]));
}
else static if (is(S == struct))
{
enum hasElaborateCopyConstructor = hasMember!(S, "__postblit")
|| anySatisfy!(.hasElaborateCopyConstructor, FieldTypeTuple!S);
}
else
{
enum bool hasElaborateCopyConstructor = false;
}
}
///
@safe unittest
{
static assert(!hasElaborateCopyConstructor!int);
static struct S1 { }
static struct S2 { this(this) {} }
static struct S3 { S2 field; }
static struct S4 { S3[1] field; }
static struct S5 { S3[] field; }
static struct S6 { S3[0] field; }
static struct S7 { @disable this(); S3 field; }
static assert(!hasElaborateCopyConstructor!S1);
static assert( hasElaborateCopyConstructor!S2);
static assert( hasElaborateCopyConstructor!(immutable S2));
static assert( hasElaborateCopyConstructor!S3);
static assert( hasElaborateCopyConstructor!(S3[1]));
static assert(!hasElaborateCopyConstructor!(S3[0]));
static assert( hasElaborateCopyConstructor!S4);
static assert(!hasElaborateCopyConstructor!S5);
static assert(!hasElaborateCopyConstructor!S6);
static assert( hasElaborateCopyConstructor!S7);
}
/**
True if $(D S) or any type directly embedded in the representation of $(D S)
defines an elaborate assignment. Elaborate assignments are introduced by
defining $(D opAssign(typeof(this))) or $(D opAssign(ref typeof(this)))
for a $(D struct) or when there is a compiler-generated $(D opAssign).
A type $(D S) gets compiler-generated $(D opAssign) in case it has
an elaborate copy constructor or elaborate destructor.
Classes and unions never have elaborate assignments.
Note: Structs with (possibly nested) postblit operator(s) will have a
hidden yet elaborate compiler generated assignment operator (unless
explicitly disabled).
*/
template hasElaborateAssign(S)
{
import std.meta : anySatisfy;
static if (isStaticArray!S && S.length)
{
enum bool hasElaborateAssign = hasElaborateAssign!(typeof(S.init[0]));
}
else static if (is(S == struct))
{
enum hasElaborateAssign = is(typeof(S.init.opAssign(rvalueOf!S))) ||
is(typeof(S.init.opAssign(lvalueOf!S))) ||
anySatisfy!(.hasElaborateAssign, FieldTypeTuple!S);
}
else
{
enum bool hasElaborateAssign = false;
}
}
///
@safe unittest
{
static assert(!hasElaborateAssign!int);
static struct S { void opAssign(S) {} }
static assert( hasElaborateAssign!S);
static assert(!hasElaborateAssign!(const(S)));
static struct S1 { void opAssign(ref S1) {} }
static struct S2 { void opAssign(int) {} }
static struct S3 { S s; }
static assert( hasElaborateAssign!S1);
static assert(!hasElaborateAssign!S2);
static assert( hasElaborateAssign!S3);
static assert( hasElaborateAssign!(S3[1]));
static assert(!hasElaborateAssign!(S3[0]));
}
@safe unittest
{
static struct S { void opAssign(S) {} }
static struct S4
{
void opAssign(U)(U u) {}
@disable void opAssign(U)(ref U u);
}
static assert( hasElaborateAssign!S4);
static struct S41
{
void opAssign(U)(ref U u) {}
@disable void opAssign(U)(U u);
}
static assert( hasElaborateAssign!S41);
static struct S5 { @disable this(); this(int n){ s = S(); } S s; }
static assert( hasElaborateAssign!S5);
static struct S6 { this(this) {} }
static struct S7 { this(this) {} @disable void opAssign(S7); }
static struct S8 { this(this) {} @disable void opAssign(S8); void opAssign(int) {} }
static struct S9 { this(this) {} void opAssign(int) {} }
static struct S10 { ~this() { } }
static assert( hasElaborateAssign!S6);
static assert(!hasElaborateAssign!S7);
static assert(!hasElaborateAssign!S8);
static assert( hasElaborateAssign!S9);
static assert( hasElaborateAssign!S10);
static struct SS6 { S6 s; }
static struct SS7 { S7 s; }
static struct SS8 { S8 s; }
static struct SS9 { S9 s; }
static assert( hasElaborateAssign!SS6);
static assert(!hasElaborateAssign!SS7);
static assert(!hasElaborateAssign!SS8);
static assert( hasElaborateAssign!SS9);
}
/**
True if $(D S) or any type directly embedded in the representation
of $(D S) defines an elaborate destructor. Elaborate destructors
are introduced by defining $(D ~this()) for a $(D
struct).
Classes and unions never have elaborate destructors, even
though classes may define $(D ~this()).
*/
template hasElaborateDestructor(S)
{
import std.meta : anySatisfy;
static if (isStaticArray!S && S.length)
{
enum bool hasElaborateDestructor = hasElaborateDestructor!(typeof(S.init[0]));
}
else static if (is(S == struct))
{
enum hasElaborateDestructor = hasMember!(S, "__dtor")
|| anySatisfy!(.hasElaborateDestructor, FieldTypeTuple!S);
}
else
{
enum bool hasElaborateDestructor = false;
}
}
///
@safe unittest
{
static assert(!hasElaborateDestructor!int);
static struct S1 { }
static struct S2 { ~this() {} }
static struct S3 { S2 field; }
static struct S4 { S3[1] field; }
static struct S5 { S3[] field; }
static struct S6 { S3[0] field; }
static struct S7 { @disable this(); S3 field; }
static assert(!hasElaborateDestructor!S1);
static assert( hasElaborateDestructor!S2);
static assert( hasElaborateDestructor!(immutable S2));
static assert( hasElaborateDestructor!S3);
static assert( hasElaborateDestructor!(S3[1]));
static assert(!hasElaborateDestructor!(S3[0]));
static assert( hasElaborateDestructor!S4);
static assert(!hasElaborateDestructor!S5);
static assert(!hasElaborateDestructor!S6);
static assert( hasElaborateDestructor!S7);
}
package alias Identity(alias A) = A;
/**
Yields $(D true) if and only if $(D T) is an aggregate that defines
a symbol called $(D name).
*/
enum hasMember(T, string name) = __traits(hasMember, T, name);
///
@safe unittest
{
static assert(!hasMember!(int, "blah"));
struct S1 { int blah; }
struct S2 { int blah(){ return 0; } }
class C1 { int blah; }
class C2 { int blah(){ return 0; } }
static assert(hasMember!(S1, "blah"));
static assert(hasMember!(S2, "blah"));
static assert(hasMember!(C1, "blah"));
static assert(hasMember!(C2, "blah"));
}
@safe unittest
{
// 8321
struct S {
int x;
void f(){}
void t()(){}
template T(){}
}
struct R1(T) {
T t;
alias t this;
}
struct R2(T) {
T t;
@property ref inout(T) payload() inout { return t; }
alias t this;
}
static assert(hasMember!(S, "x"));
static assert(hasMember!(S, "f"));
static assert(hasMember!(S, "t"));
static assert(hasMember!(S, "T"));
static assert(hasMember!(R1!S, "x"));
static assert(hasMember!(R1!S, "f"));
static assert(hasMember!(R1!S, "t"));
static assert(hasMember!(R1!S, "T"));
static assert(hasMember!(R2!S, "x"));
static assert(hasMember!(R2!S, "f"));
static assert(hasMember!(R2!S, "t"));
static assert(hasMember!(R2!S, "T"));
}
@safe unittest
{
static struct S
{
void opDispatch(string n, A)(A dummy) {}
}
static assert(hasMember!(S, "foo"));
}
/**
* Whether the symbol represented by the string, member, exists and is a static member of T.
*
* Params:
* T = Type containing symbol $(D member).
* member = Name of symbol to test that resides in $(D T).
*
* Returns:
* $(D true) iff $(D member) exists and is static.
*/
template hasStaticMember(T, string member)
{
static if (__traits(hasMember, T, member))
{
import std.meta : Alias;
alias sym = Alias!(__traits(getMember, T, member));
static if (__traits(getOverloads, T, member).length == 0)
enum bool hasStaticMember = __traits(compiles, &sym);
else
enum bool hasStaticMember = __traits(isStaticFunction, sym);
}
else
{
enum bool hasStaticMember = false;
}
}
///
@safe unittest
{
static struct S
{
static void sf() {}
void f() {}
static int si;
int i;
}
static assert( hasStaticMember!(S, "sf"));
static assert(!hasStaticMember!(S, "f"));
static assert( hasStaticMember!(S, "si"));
static assert(!hasStaticMember!(S, "i"));
static assert(!hasStaticMember!(S, "hello"));
}
@safe unittest
{
static struct S
{
enum X = 10;
enum Y
{
i = 10
}
struct S {}
class C {}
static int sx = 0;
__gshared int gx = 0;
Y y;
static Y sy;
static void f();
static void f2() pure nothrow @nogc @safe;
shared void g();
static void function() fp;
__gshared void function() gfp;
void function() fpm;
void delegate() dm;
static void delegate() sd;
void m();
void m2() const pure nothrow @nogc @safe;
inout(int) iom() inout;
static inout(int) iosf(inout int x);
@property int p();
static @property int sp();
}
static class C
{
enum X = 10;
enum Y
{
i = 10
}
struct S {}
class C {}
static int sx = 0;
__gshared int gx = 0;
Y y;
static Y sy;
static void f();
static void f2() pure nothrow @nogc @safe;
shared void g() { }
static void function() fp;
__gshared void function() gfp;
void function() fpm;
void delegate() dm;
static void delegate() sd;
void m() {}
final void m2() const pure nothrow @nogc @safe;
inout(int) iom() inout { return 10; }
static inout(int) iosf(inout int x);
@property int p() { return 10; }
static @property int sp();
}
static assert(!hasStaticMember!(S, "X"));
static assert(!hasStaticMember!(S, "Y"));
static assert(!hasStaticMember!(S, "Y.i"));
static assert(!hasStaticMember!(S, "S"));
static assert(!hasStaticMember!(S, "C"));
static assert( hasStaticMember!(S, "sx"));
static assert( hasStaticMember!(S, "gx"));
static assert(!hasStaticMember!(S, "y"));
static assert( hasStaticMember!(S, "sy"));
static assert( hasStaticMember!(S, "f"));
static assert( hasStaticMember!(S, "f2"));
static assert(!hasStaticMember!(S, "dm"));
static assert( hasStaticMember!(S, "sd"));
static assert(!hasStaticMember!(S, "g"));
static assert( hasStaticMember!(S, "fp"));
static assert( hasStaticMember!(S, "gfp"));
static assert(!hasStaticMember!(S, "fpm"));
static assert(!hasStaticMember!(S, "m"));
static assert(!hasStaticMember!(S, "m2"));
static assert(!hasStaticMember!(S, "iom"));
static assert( hasStaticMember!(S, "iosf"));
static assert(!hasStaticMember!(S, "p"));
static assert( hasStaticMember!(S, "sp"));
static assert(!hasStaticMember!(C, "X"));
static assert(!hasStaticMember!(C, "Y"));
static assert(!hasStaticMember!(C, "Y.i"));
static assert(!hasStaticMember!(C, "S"));
static assert(!hasStaticMember!(C, "C"));
static assert( hasStaticMember!(C, "sx"));
static assert( hasStaticMember!(C, "gx"));
static assert(!hasStaticMember!(C, "y"));
static assert( hasStaticMember!(C, "sy"));
static assert( hasStaticMember!(C, "f"));
static assert( hasStaticMember!(C, "f2"));
static assert(!hasStaticMember!(S, "dm"));
static assert( hasStaticMember!(S, "sd"));
static assert(!hasStaticMember!(C, "g"));
static assert( hasStaticMember!(C, "fp"));
static assert( hasStaticMember!(C, "gfp"));
static assert(!hasStaticMember!(C, "fpm"));
static assert(!hasStaticMember!(C, "m"));
static assert(!hasStaticMember!(C, "m2"));
static assert(!hasStaticMember!(C, "iom"));
static assert( hasStaticMember!(C, "iosf"));
static assert(!hasStaticMember!(C, "p"));
static assert( hasStaticMember!(C, "sp"));
}
/**
Retrieves the members of an enumerated type $(D enum E).
Params:
E = An enumerated type. $(D E) may have duplicated values.
Returns:
Static tuple composed of the members of the enumerated type $(D E).
The members are arranged in the same order as declared in $(D E).
Note:
An enum can have multiple members which have the same value. If you want
to use EnumMembers to e.g. generate switch cases at compile-time,
you should use the $(REF NoDuplicates, std,meta) template to avoid
generating duplicate switch cases.
Note:
Returned values are strictly typed with $(D E). Thus, the following code
does not work without the explicit cast:
--------------------
enum E : int { a, b, c }
int[] abc = cast(int[]) [ EnumMembers!E ];
--------------------
Cast is not necessary if the type of the variable is inferred. See the
example below.
Example:
Creating an array of enumerated values:
--------------------
enum Sqrts : real
{
one = 1,
two = 1.41421,
three = 1.73205,
}
auto sqrts = [ EnumMembers!Sqrts ];
assert(sqrts == [ Sqrts.one, Sqrts.two, Sqrts.three ]);
--------------------
A generic function $(D rank(v)) in the following example uses this
template for finding a member $(D e) in an enumerated type $(D E).
--------------------
// Returns i if e is the i-th enumerator of E.
size_t rank(E)(E e)
if (is(E == enum))
{
foreach (i, member; EnumMembers!E)
{
if (e == member)
return i;
}
assert(0, "Not an enum member");
}
enum Mode
{
read = 1,
write = 2,
map = 4,
}
assert(rank(Mode.read ) == 0);
assert(rank(Mode.write) == 1);
assert(rank(Mode.map ) == 2);
--------------------
*/
template EnumMembers(E)
if (is(E == enum))
{
import std.meta : AliasSeq;
// Supply the specified identifier to an constant value.
template WithIdentifier(string ident)
{
static if (ident == "Symbolize")
{
template Symbolize(alias value)
{
enum Symbolize = value;
}
}
else
{
mixin("template Symbolize(alias "~ ident ~")"
~"{"
~"alias Symbolize = "~ ident ~";"
~"}");
}
}
template EnumSpecificMembers(names...)
{
static if (names.length == 1)
{
alias EnumSpecificMembers = AliasSeq!(WithIdentifier!(names[0])
.Symbolize!(__traits(getMember, E, names[0])));
}
else static if (names.length > 0)
{
alias EnumSpecificMembers =
AliasSeq!(
WithIdentifier!(names[0])
.Symbolize!(__traits(getMember, E, names[0])),
EnumSpecificMembers!(names[1 .. $/2]),
EnumSpecificMembers!(names[$/2..$])
);
}
else
{
alias EnumSpecificMembers = AliasSeq!();
}
}
alias EnumMembers = EnumSpecificMembers!(__traits(allMembers, E));
}
@safe unittest
{
enum A { a }
static assert([ EnumMembers!A ] == [ A.a ]);
enum B { a, b, c, d, e }
static assert([ EnumMembers!B ] == [ B.a, B.b, B.c, B.d, B.e ]);
}
@safe unittest // typed enums
{
enum A : string { a = "alpha", b = "beta" }
static assert([ EnumMembers!A ] == [ A.a, A.b ]);
static struct S
{
int value;
int opCmp(S rhs) const nothrow { return value - rhs.value; }
}
enum B : S { a = S(1), b = S(2), c = S(3) }
static assert([ EnumMembers!B ] == [ B.a, B.b, B.c ]);
}
@safe unittest // duplicated values
{
enum A
{
a = 0, b = 0,
c = 1, d = 1, e
}
static assert([ EnumMembers!A ] == [ A.a, A.b, A.c, A.d, A.e ]);
}
@safe unittest // Bugzilla 14561: huge enums
{
string genEnum()
{
string result = "enum TLAs {";
foreach (c0; '0'..'2'+1)
foreach (c1; '0'..'9'+1)
foreach (c2; '0'..'9'+1)
foreach (c3; '0'..'9'+1)
{
result ~= '_';
result ~= c0;
result ~= c1;
result ~= c2;
result ~= c3;
result ~= ',';
}
result ~= '}';
return result;
}
mixin(genEnum);
static assert(EnumMembers!TLAs[0] == TLAs._0000);
static assert(EnumMembers!TLAs[$-1] == TLAs._2999);
}
@safe unittest
{
enum E { member, a = 0, b = 0 }
static assert(__traits(identifier, EnumMembers!E[0]) == "member");
static assert(__traits(identifier, EnumMembers!E[1]) == "a");
static assert(__traits(identifier, EnumMembers!E[2]) == "b");
}
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
// Classes and Interfaces
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
/***
* Get a $(D_PARAM AliasSeq) of the base class and base interfaces of
* this class or interface. $(D_PARAM BaseTypeTuple!Object) returns
* the empty type tuple.
*/
template BaseTypeTuple(A)
{
static if (is(A P == super))
alias BaseTypeTuple = P;
else
static assert(0, "argument is not a class or interface");
}
///
@safe unittest
{
interface I1 { }
interface I2 { }
interface I12 : I1, I2 { }
static assert(is(BaseTypeTuple!I12 == AliasSeq!(I1, I2)));
interface I3 : I1 { }
interface I123 : I1, I2, I3 { }
static assert(is(BaseTypeTuple!I123 == AliasSeq!(I1, I2, I3)));
}
@safe unittest
{
interface I1 { }
interface I2 { }
class A { }
class C : A, I1, I2 { }
alias TL = BaseTypeTuple!C;
assert(TL.length == 3);
assert(is (TL[0] == A));
assert(is (TL[1] == I1));
assert(is (TL[2] == I2));
assert(BaseTypeTuple!Object.length == 0);
}
/**
* Get a $(D_PARAM AliasSeq) of $(I all) base classes of this class,
* in decreasing order. Interfaces are not included. $(D_PARAM
* BaseClassesTuple!Object) yields the empty type tuple.
*/
template BaseClassesTuple(T)
if (is(T == class))
{
static if (is(T == Object))
{
alias BaseClassesTuple = AliasSeq!();
}
else static if (is(BaseTypeTuple!T[0] == Object))
{
alias BaseClassesTuple = AliasSeq!Object;
}
else
{
alias BaseClassesTuple =
AliasSeq!(BaseTypeTuple!T[0],
BaseClassesTuple!(BaseTypeTuple!T[0]));
}
}
///
@safe unittest
{
class C1 { }
class C2 : C1 { }
class C3 : C2 { }
static assert(!BaseClassesTuple!Object.length);
static assert(is(BaseClassesTuple!C1 == AliasSeq!(Object)));
static assert(is(BaseClassesTuple!C2 == AliasSeq!(C1, Object)));
static assert(is(BaseClassesTuple!C3 == AliasSeq!(C2, C1, Object)));
}
@safe unittest
{
struct S { }
static assert(!__traits(compiles, BaseClassesTuple!S));
interface I { }
static assert(!__traits(compiles, BaseClassesTuple!I));
class C4 : I { }
class C5 : C4, I { }
static assert(is(BaseClassesTuple!C5 == AliasSeq!(C4, Object)));
}
/**
* Get a $(D_PARAM AliasSeq) of $(I all) interfaces directly or
* indirectly inherited by this class or interface. Interfaces do not
* repeat if multiply implemented. $(D_PARAM InterfacesTuple!Object)
* yields the empty type tuple.
*/
template InterfacesTuple(T)
{
import std.meta : NoDuplicates;
template Flatten(H, T...)
{
static if (T.length)
{
alias Flatten = AliasSeq!(Flatten!H, Flatten!T);
}
else
{
static if (is(H == interface))
alias Flatten = AliasSeq!(H, InterfacesTuple!H);
else
alias Flatten = InterfacesTuple!H;
}
}
static if (is(T S == super) && S.length)
alias InterfacesTuple = NoDuplicates!(Flatten!S);
else
alias InterfacesTuple = AliasSeq!();
}
@safe unittest
{
// doc example
interface I1 {}
interface I2 {}
class A : I1, I2 { }
class B : A, I1 { }
class C : B { }
alias TL = InterfacesTuple!C;
static assert(is(TL[0] == I1) && is(TL[1] == I2));
}
@safe unittest
{
interface Iaa {}
interface Iab {}
interface Iba {}
interface Ibb {}
interface Ia : Iaa, Iab {}
interface Ib : Iba, Ibb {}
interface I : Ia, Ib {}
interface J {}
class B2 : J {}
class C2 : B2, Ia, Ib {}
static assert(is(InterfacesTuple!I ==
AliasSeq!(Ia, Iaa, Iab, Ib, Iba, Ibb)));
static assert(is(InterfacesTuple!C2 ==
AliasSeq!(J, Ia, Iaa, Iab, Ib, Iba, Ibb)));
}
/**
* Get a $(D_PARAM AliasSeq) of $(I all) base classes of $(D_PARAM
* T), in decreasing order, followed by $(D_PARAM T)'s
* interfaces. $(D_PARAM TransitiveBaseTypeTuple!Object) yields the
* empty type tuple.
*/
template TransitiveBaseTypeTuple(T)
{
static if (is(T == Object))
alias TransitiveBaseTypeTuple = AliasSeq!();
else
alias TransitiveBaseTypeTuple =
AliasSeq!(BaseClassesTuple!T, InterfacesTuple!T);
}
///
@safe unittest
{
interface J1 {}
interface J2 {}
class B1 {}
class B2 : B1, J1, J2 {}
class B3 : B2, J1 {}
alias TL = TransitiveBaseTypeTuple!B3;
assert(TL.length == 5);
assert(is (TL[0] == B2));
assert(is (TL[1] == B1));
assert(is (TL[2] == Object));
assert(is (TL[3] == J1));
assert(is (TL[4] == J2));
assert(TransitiveBaseTypeTuple!Object.length == 0);
}
/**
Returns a tuple of non-static functions with the name $(D name) declared in the
class or interface $(D C). Covariant duplicates are shrunk into the most
derived one.
*/
template MemberFunctionsTuple(C, string name)
if (is(C == class) || is(C == interface))
{
static if (__traits(hasMember, C, name))
{
/*
* First, collect all overloads in the class hierarchy.
*/
template CollectOverloads(Node)
{
static if (__traits(hasMember, Node, name) && __traits(compiles, __traits(getMember, Node, name)))
{
// Get all overloads in sight (not hidden).
alias inSight = AliasSeq!(__traits(getVirtualFunctions, Node, name));
// And collect all overloads in ancestor classes to reveal hidden
// methods. The result may contain duplicates.
template walkThru(Parents...)
{
static if (Parents.length > 0)
alias walkThru = AliasSeq!(
CollectOverloads!(Parents[0]),
walkThru!(Parents[1 .. $])
);
else
alias walkThru = AliasSeq!();
}
static if (is(Node Parents == super))
alias CollectOverloads = AliasSeq!(inSight, walkThru!Parents);
else
alias CollectOverloads = AliasSeq!inSight;
}
else
alias CollectOverloads = AliasSeq!(); // no overloads in this hierarchy
}
// duplicates in this tuple will be removed by shrink()
alias overloads = CollectOverloads!C;
// shrinkOne!args[0] = the most derived one in the covariant siblings of target
// shrinkOne!args[1..$] = non-covariant others
template shrinkOne(/+ alias target, rest... +/ args...)
{
import std.meta : AliasSeq;
alias target = args[0 .. 1]; // prevent property functions from being evaluated
alias rest = args[1 .. $];
static if (rest.length > 0)
{
alias Target = FunctionTypeOf!target;
alias Rest0 = FunctionTypeOf!(rest[0]);
static if (isCovariantWith!(Target, Rest0) && isCovariantWith!(Rest0, Target))
{
// One of these overrides the other. Choose the one from the most derived parent.
static if (is(AliasSeq!(__traits(parent, target))[0] : AliasSeq!(__traits(parent, rest[0]))[0]))
alias shrinkOne = shrinkOne!(target, rest[1 .. $]);
else
alias shrinkOne = shrinkOne!(rest[0], rest[1 .. $]);
}
else static if (isCovariantWith!(Target, Rest0))
// target overrides rest[0] -- erase rest[0].
alias shrinkOne = shrinkOne!(target, rest[1 .. $]);
else static if (isCovariantWith!(Rest0, Target))
// rest[0] overrides target -- erase target.
alias shrinkOne = shrinkOne!(rest[0], rest[1 .. $]);
else
// target and rest[0] are distinct.
alias shrinkOne = AliasSeq!(
shrinkOne!(target, rest[1 .. $]),
rest[0] // keep
);
}
else
alias shrinkOne = AliasSeq!target; // done
}
/*
* Now shrink covariant overloads into one.
*/
template shrink(overloads...)
{
static if (overloads.length > 0)
{
alias temp = shrinkOne!overloads;
alias shrink = AliasSeq!(temp[0], shrink!(temp[1 .. $]));
}
else
alias shrink = AliasSeq!(); // done
}
// done.
alias MemberFunctionsTuple = shrink!overloads;
}
else
alias MemberFunctionsTuple = AliasSeq!();
}
///
@safe unittest
{
interface I { I foo(); }
class B
{
real foo(real v) { return v; }
}
class C : B, I
{
override C foo() { return this; } // covariant overriding of I.foo()
}
alias foos = MemberFunctionsTuple!(C, "foo");
static assert(foos.length == 2);
static assert(__traits(isSame, foos[0], C.foo));
static assert(__traits(isSame, foos[1], B.foo));
}
@safe unittest // Issue 15920
{
import std.meta : AliasSeq;
class A
{
void f(){}
void f(int){}
}
class B : A
{
override void f(){}
override void f(int){}
}
alias fs = MemberFunctionsTuple!(B, "f");
alias bfs = AliasSeq!(__traits(getOverloads, B, "f"));
assert(__traits(isSame, fs[0], bfs[0]) || __traits(isSame, fs[0], bfs[1]));
assert(__traits(isSame, fs[1], bfs[0]) || __traits(isSame, fs[1], bfs[1]));
}
@safe unittest
{
interface I { I test(); }
interface J : I { J test(); }
interface K { K test(int); }
class B : I, K
{
K test(int) { return this; }
B test() { return this; }
static void test(string) { }
}
class C : B, J
{
override C test() { return this; }
}
alias test =MemberFunctionsTuple!(C, "test");
static assert(test.length == 2);
static assert(is(FunctionTypeOf!(test[0]) == FunctionTypeOf!(C.test)));
static assert(is(FunctionTypeOf!(test[1]) == FunctionTypeOf!(K.test)));
alias noexist = MemberFunctionsTuple!(C, "noexist");
static assert(noexist.length == 0);
interface L { int prop() @property; }
alias prop = MemberFunctionsTuple!(L, "prop");
static assert(prop.length == 1);
interface Test_I
{
void foo();
void foo(int);
void foo(int, int);
}
interface Test : Test_I {}
alias Test_foo = MemberFunctionsTuple!(Test, "foo");
static assert(Test_foo.length == 3);
static assert(is(typeof(&Test_foo[0]) == void function()));
static assert(is(typeof(&Test_foo[2]) == void function(int)));
static assert(is(typeof(&Test_foo[1]) == void function(int, int)));
}
/**
Returns an alias to the template that $(D T) is an instance of.
*/
template TemplateOf(alias T : Base!Args, alias Base, Args...)
{
alias TemplateOf = Base;
}
/// ditto
template TemplateOf(T : Base!Args, alias Base, Args...)
{
alias TemplateOf = Base;
}
///
@safe unittest
{
struct Foo(T, U) {}
static assert(__traits(isSame, TemplateOf!(Foo!(int, real)), Foo));
}
@safe unittest
{
template Foo1(A) {}
template Foo2(A, B) {}
template Foo3(alias A) {}
template Foo4(string A) {}
struct Foo5(A) {}
struct Foo6(A, B) {}
struct Foo7(alias A) {}
template Foo8(A) { template Foo9(B) {} }
template Foo10() {}
static assert(__traits(isSame, TemplateOf!(Foo1!(int)), Foo1));
static assert(__traits(isSame, TemplateOf!(Foo2!(int, int)), Foo2));
static assert(__traits(isSame, TemplateOf!(Foo3!(123)), Foo3));
static assert(__traits(isSame, TemplateOf!(Foo4!("123")), Foo4));
static assert(__traits(isSame, TemplateOf!(Foo5!(int)), Foo5));
static assert(__traits(isSame, TemplateOf!(Foo6!(int, int)), Foo6));
static assert(__traits(isSame, TemplateOf!(Foo7!(123)), Foo7));
static assert(__traits(isSame, TemplateOf!(Foo8!(int).Foo9!(real)), Foo8!(int).Foo9));
static assert(__traits(isSame, TemplateOf!(Foo10!()), Foo10));
}
/**
Returns a $(D AliasSeq) of the template arguments used to instantiate $(D T).
*/
template TemplateArgsOf(alias T : Base!Args, alias Base, Args...)
{
alias TemplateArgsOf = Args;
}
/// ditto
template TemplateArgsOf(T : Base!Args, alias Base, Args...)
{
alias TemplateArgsOf = Args;
}
///
@safe unittest
{
struct Foo(T, U) {}
static assert(is(TemplateArgsOf!(Foo!(int, real)) == AliasSeq!(int, real)));
}
@safe unittest
{
template Foo1(A) {}
template Foo2(A, B) {}
template Foo3(alias A) {}
template Foo4(string A) {}
struct Foo5(A) {}
struct Foo6(A, B) {}
struct Foo7(alias A) {}
template Foo8(A) { template Foo9(B) {} }
template Foo10() {}
enum x = 123;
enum y = "123";
static assert(is(TemplateArgsOf!(Foo1!(int)) == AliasSeq!(int)));
static assert(is(TemplateArgsOf!(Foo2!(int, int)) == AliasSeq!(int, int)));
static assert(__traits(isSame, TemplateArgsOf!(Foo3!(x)), AliasSeq!(x)));
static assert(TemplateArgsOf!(Foo4!(y)) == AliasSeq!(y));
static assert(is(TemplateArgsOf!(Foo5!(int)) == AliasSeq!(int)));
static assert(is(TemplateArgsOf!(Foo6!(int, int)) == AliasSeq!(int, int)));
static assert(__traits(isSame, TemplateArgsOf!(Foo7!(x)), AliasSeq!(x)));
static assert(is(TemplateArgsOf!(Foo8!(int).Foo9!(real)) == AliasSeq!(real)));
static assert(is(TemplateArgsOf!(Foo10!()) == AliasSeq!()));
}
private template maxAlignment(U...) if (isTypeTuple!U)
{
import std.meta : staticMap;
static if (U.length == 0)
static assert(0);
else static if (U.length == 1)
enum maxAlignment = U[0].alignof;
else
{
import std.algorithm.comparison : max;
enum maxAlignment = max(staticMap!(.maxAlignment, U));
}
}
/**
Returns class instance alignment.
*/
template classInstanceAlignment(T) if (is(T == class))
{
alias classInstanceAlignment = maxAlignment!(void*, typeof(T.tupleof));
}
///
@safe unittest
{
class A { byte b; }
class B { long l; }
// As class instance always has a hidden pointer
static assert(classInstanceAlignment!A == (void*).alignof);
static assert(classInstanceAlignment!B == long.alignof);
}
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
// Type Conversion
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
/**
Get the type that all types can be implicitly converted to. Useful
e.g. in figuring out an array type from a bunch of initializing
values. Returns $(D_PARAM void) if passed an empty list, or if the
types have no common type.
*/
template CommonType(T...)
{
static if (!T.length)
{
alias CommonType = void;
}
else static if (T.length == 1)
{
static if (is(typeof(T[0])))
{
alias CommonType = typeof(T[0]);
}
else
{
alias CommonType = T[0];
}
}
else static if (is(typeof(true ? T[0].init : T[1].init) U))
{
alias CommonType = CommonType!(U, T[2 .. $]);
}
else
alias CommonType = void;
}
///
@safe unittest
{
alias X = CommonType!(int, long, short);
assert(is(X == long));
alias Y = CommonType!(int, char[], short);
assert(is(Y == void));
}
@safe unittest
{
static assert(is(CommonType!(3) == int));
static assert(is(CommonType!(double, 4, float) == double));
static assert(is(CommonType!(string, char[]) == const(char)[]));
static assert(is(CommonType!(3, 3U) == uint));
}
/**
* Returns a tuple with all possible target types of an implicit
* conversion of a value of type $(D_PARAM T).
*
* Important note:
*
* The possible targets are computed more conservatively than the D
* 2.005 compiler does, eliminating all dangerous conversions. For
* example, $(D_PARAM ImplicitConversionTargets!double) does not
* include $(D_PARAM float).
*/
template ImplicitConversionTargets(T)
{
static if (is(T == bool))
alias ImplicitConversionTargets =
AliasSeq!(byte, ubyte, short, ushort, int, uint, long, ulong, CentTypeList,
float, double, real, char, wchar, dchar);
else static if (is(T == byte))
alias ImplicitConversionTargets =
AliasSeq!(short, ushort, int, uint, long, ulong, CentTypeList,
float, double, real, char, wchar, dchar);
else static if (is(T == ubyte))
alias ImplicitConversionTargets =
AliasSeq!(short, ushort, int, uint, long, ulong, CentTypeList,
float, double, real, char, wchar, dchar);
else static if (is(T == short))
alias ImplicitConversionTargets =
AliasSeq!(int, uint, long, ulong, CentTypeList, float, double, real);
else static if (is(T == ushort))
alias ImplicitConversionTargets =
AliasSeq!(int, uint, long, ulong, CentTypeList, float, double, real);
else static if (is(T == int))
alias ImplicitConversionTargets =
AliasSeq!(long, ulong, CentTypeList, float, double, real);
else static if (is(T == uint))
alias ImplicitConversionTargets =
AliasSeq!(long, ulong, CentTypeList, float, double, real);
else static if (is(T == long))
alias ImplicitConversionTargets = AliasSeq!(float, double, real);
else static if (is(T == ulong))
alias ImplicitConversionTargets = AliasSeq!(float, double, real);
else static if (is(cent) && is(T == cent))
alias ImplicitConversionTargets = AliasSeq!(float, double, real);
else static if (is(ucent) && is(T == ucent))
alias ImplicitConversionTargets = AliasSeq!(float, double, real);
else static if (is(T == float))
alias ImplicitConversionTargets = AliasSeq!(double, real);
else static if (is(T == double))
alias ImplicitConversionTargets = AliasSeq!real;
else static if (is(T == char))
alias ImplicitConversionTargets =
AliasSeq!(wchar, dchar, byte, ubyte, short, ushort,
int, uint, long, ulong, CentTypeList, float, double, real);
else static if (is(T == wchar))
alias ImplicitConversionTargets =
AliasSeq!(dchar, short, ushort, int, uint, long, ulong, CentTypeList,
float, double, real);
else static if (is(T == dchar))
alias ImplicitConversionTargets =
AliasSeq!(int, uint, long, ulong, CentTypeList, float, double, real);
else static if (is(T : typeof(null)))
alias ImplicitConversionTargets = AliasSeq!(typeof(null));
else static if (is(T : Object))
alias ImplicitConversionTargets = TransitiveBaseTypeTuple!(T);
else static if (isDynamicArray!T && !is(typeof(T.init[0]) == const))
alias ImplicitConversionTargets =
AliasSeq!(const(Unqual!(typeof(T.init[0])))[]);
else static if (is(T : void*))
alias ImplicitConversionTargets = AliasSeq!(void*);
else
alias ImplicitConversionTargets = AliasSeq!();
}
@safe unittest
{
static assert(is(ImplicitConversionTargets!(double)[0] == real));
static assert(is(ImplicitConversionTargets!(string)[0] == const(char)[]));
}
/**
Is $(D From) implicitly convertible to $(D To)?
*/
template isImplicitlyConvertible(From, To)
{
enum bool isImplicitlyConvertible = is(typeof({
void fun(ref From v)
{
void gun(To) {}
gun(v);
}
}));
}
///
@safe unittest
{
static assert( isImplicitlyConvertible!(immutable(char), char));
static assert( isImplicitlyConvertible!(const(char), char));
static assert( isImplicitlyConvertible!(char, wchar));
static assert(!isImplicitlyConvertible!(wchar, char));
static assert(!isImplicitlyConvertible!(const(ushort), ubyte));
static assert(!isImplicitlyConvertible!(const(uint), ubyte));
static assert(!isImplicitlyConvertible!(const(ulong), ubyte));
static assert(!isImplicitlyConvertible!(const(char)[], string));
static assert( isImplicitlyConvertible!(string, const(char)[]));
}
/**
Returns $(D true) iff a value of type $(D Rhs) can be assigned to a variable of
type $(D Lhs).
$(D isAssignable) returns whether both an lvalue and rvalue can be assigned.
If you omit $(D Rhs), $(D isAssignable) will check identity assignable of $(D Lhs).
*/
enum isAssignable(Lhs, Rhs = Lhs) = isRvalueAssignable!(Lhs, Rhs) && isLvalueAssignable!(Lhs, Rhs);
///
@safe unittest
{
static assert( isAssignable!(long, int));
static assert(!isAssignable!(int, long));
static assert( isAssignable!(const(char)[], string));
static assert(!isAssignable!(string, char[]));
// int is assignable to int
static assert( isAssignable!int);
// immutable int is not assignable to immutable int
static assert(!isAssignable!(immutable int));
}
// ditto
private enum isRvalueAssignable(Lhs, Rhs = Lhs) = __traits(compiles, lvalueOf!Lhs = rvalueOf!Rhs);
// ditto
private enum isLvalueAssignable(Lhs, Rhs = Lhs) = __traits(compiles, lvalueOf!Lhs = lvalueOf!Rhs);
@safe unittest
{
static assert(!isAssignable!(immutable int, int));
static assert( isAssignable!(int, immutable int));
static assert(!isAssignable!(inout int, int));
static assert( isAssignable!(int, inout int));
static assert(!isAssignable!(inout int));
static assert( isAssignable!(shared int, int));
static assert( isAssignable!(int, shared int));
static assert( isAssignable!(shared int));
static assert( isAssignable!(void[1], void[1]));
struct S { @disable this(); this(int n){} }
static assert( isAssignable!(S, S));
struct S2 { this(int n){} }
static assert( isAssignable!(S2, S2));
static assert(!isAssignable!(S2, int));
struct S3 { @disable void opAssign(); }
static assert( isAssignable!(S3, S3));
struct S3X { @disable void opAssign(S3X); }
static assert(!isAssignable!(S3X, S3X));
struct S4 { void opAssign(int); }
static assert( isAssignable!(S4, S4));
static assert( isAssignable!(S4, int));
static assert( isAssignable!(S4, immutable int));
struct S5 { @disable this(); @disable this(this); }
struct S6 { void opAssign(in ref S5); }
static assert(!isAssignable!(S6, S5));
static assert(!isRvalueAssignable!(S6, S5));
static assert( isLvalueAssignable!(S6, S5));
static assert( isLvalueAssignable!(S6, immutable S5));
}
// Equivalent with TypeStruct::isAssignable in compiler code.
package template isBlitAssignable(T)
{
static if (is(OriginalType!T U) && !is(T == U))
{
enum isBlitAssignable = isBlitAssignable!U;
}
else static if (isStaticArray!T && is(T == E[n], E, size_t n))
// Workaround for issue 11499 : isStaticArray!T should not be necessary.
{
enum isBlitAssignable = isBlitAssignable!E;
}
else static if (is(T == struct) || is(T == union))
{
enum isBlitAssignable = isMutable!T &&
{
size_t offset = 0;
bool assignable = true;
foreach (i, F; FieldTypeTuple!T)
{
static if (i == 0)
{
}
else
{
if (T.tupleof[i].offsetof == offset)
{
if (assignable)
continue;
}
else
{
if (!assignable)
return false;
}
}
assignable = isBlitAssignable!(typeof(T.tupleof[i]));
offset = T.tupleof[i].offsetof;
}
return assignable;
}();
}
else
enum isBlitAssignable = isMutable!T;
}
@safe unittest
{
static assert( isBlitAssignable!int);
static assert(!isBlitAssignable!(const int));
class C{ const int i; }
static assert( isBlitAssignable!C);
struct S1{ int i; }
struct S2{ const int i; }
static assert( isBlitAssignable!S1);
static assert(!isBlitAssignable!S2);
struct S3X { union { int x; int y; } }
struct S3Y { union { int x; const int y; } }
struct S3Z { union { const int x; const int y; } }
static assert( isBlitAssignable!(S3X));
static assert( isBlitAssignable!(S3Y));
static assert(!isBlitAssignable!(S3Z));
static assert(!isBlitAssignable!(const S3X));
static assert(!isBlitAssignable!(inout S3Y));
static assert(!isBlitAssignable!(immutable S3Z));
static assert( isBlitAssignable!(S3X[3]));
static assert( isBlitAssignable!(S3Y[3]));
static assert(!isBlitAssignable!(S3Z[3]));
enum ES3X : S3X { a = S3X() }
enum ES3Y : S3Y { a = S3Y() }
enum ES3Z : S3Z { a = S3Z() }
static assert( isBlitAssignable!(ES3X));
static assert( isBlitAssignable!(ES3Y));
static assert(!isBlitAssignable!(ES3Z));
static assert(!isBlitAssignable!(const ES3X));
static assert(!isBlitAssignable!(inout ES3Y));
static assert(!isBlitAssignable!(immutable ES3Z));
static assert( isBlitAssignable!(ES3X[3]));
static assert( isBlitAssignable!(ES3Y[3]));
static assert(!isBlitAssignable!(ES3Z[3]));
union U1X { int x; int y; }
union U1Y { int x; const int y; }
union U1Z { const int x; const int y; }
static assert( isBlitAssignable!(U1X));
static assert( isBlitAssignable!(U1Y));
static assert(!isBlitAssignable!(U1Z));
static assert(!isBlitAssignable!(const U1X));
static assert(!isBlitAssignable!(inout U1Y));
static assert(!isBlitAssignable!(immutable U1Z));
static assert( isBlitAssignable!(U1X[3]));
static assert( isBlitAssignable!(U1Y[3]));
static assert(!isBlitAssignable!(U1Z[3]));
enum EU1X : U1X { a = U1X() }
enum EU1Y : U1Y { a = U1Y() }
enum EU1Z : U1Z { a = U1Z() }
static assert( isBlitAssignable!(EU1X));
static assert( isBlitAssignable!(EU1Y));
static assert(!isBlitAssignable!(EU1Z));
static assert(!isBlitAssignable!(const EU1X));
static assert(!isBlitAssignable!(inout EU1Y));
static assert(!isBlitAssignable!(immutable EU1Z));
static assert( isBlitAssignable!(EU1X[3]));
static assert( isBlitAssignable!(EU1Y[3]));
static assert(!isBlitAssignable!(EU1Z[3]));
struct SA
{
@property int[3] foo() { return [1,2,3]; }
alias foo this;
const int x; // SA is not blit assignable
}
static assert(!isStaticArray!SA);
static assert(!isBlitAssignable!(SA[3]));
}
/*
Works like $(D isImplicitlyConvertible), except this cares only about storage
classes of the arguments.
*/
private template isStorageClassImplicitlyConvertible(From, To)
{
alias Pointify(T) = void*;
enum isStorageClassImplicitlyConvertible = isImplicitlyConvertible!(
ModifyTypePreservingTQ!(Pointify, From),
ModifyTypePreservingTQ!(Pointify, To) );
}
@safe unittest
{
static assert( isStorageClassImplicitlyConvertible!( int, const int));
static assert( isStorageClassImplicitlyConvertible!(immutable int, const int));
static assert(!isStorageClassImplicitlyConvertible!(const int, int));
static assert(!isStorageClassImplicitlyConvertible!(const int, immutable int));
static assert(!isStorageClassImplicitlyConvertible!(int, shared int));
static assert(!isStorageClassImplicitlyConvertible!(shared int, int));
}
/**
Determines whether the function type $(D F) is covariant with $(D G), i.e.,
functions of the type $(D F) can override ones of the type $(D G).
*/
template isCovariantWith(F, G)
if (is(F == function) && is(G == function))
{
static if (is(F : G))
enum isCovariantWith = true;
else
{
alias Upr = F;
alias Lwr = G;
/*
* Check for calling convention: require exact match.
*/
template checkLinkage()
{
enum ok = functionLinkage!Upr == functionLinkage!Lwr;
}
/*
* Check for variadic parameter: require exact match.
*/
template checkVariadicity()
{
enum ok = variadicFunctionStyle!Upr == variadicFunctionStyle!Lwr;
}
/*
* Check for function storage class:
* - overrider can have narrower storage class than base
*/
template checkSTC()
{
// Note the order of arguments. The convertion order Lwr -> Upr is
// correct since Upr should be semantically 'narrower' than Lwr.
enum ok = isStorageClassImplicitlyConvertible!(Lwr, Upr);
}
/*
* Check for function attributes:
* - require exact match for ref and @property
* - overrider can add pure and nothrow, but can't remove them
* - @safe and @trusted are covariant with each other, unremovable
*/
template checkAttributes()
{
alias FA = FunctionAttribute;
enum uprAtts = functionAttributes!Upr;
enum lwrAtts = functionAttributes!Lwr;
//
enum wantExact = FA.ref_ | FA.property;
enum safety = FA.safe | FA.trusted;
enum ok =
( (uprAtts & wantExact) == (lwrAtts & wantExact)) &&
( (uprAtts & FA.pure_ ) >= (lwrAtts & FA.pure_ )) &&
( (uprAtts & FA.nothrow_) >= (lwrAtts & FA.nothrow_)) &&
(!!(uprAtts & safety ) >= !!(lwrAtts & safety )) ;
}
/*
* Check for return type: usual implicit convertion.
*/
template checkReturnType()
{
enum ok = is(ReturnType!Upr : ReturnType!Lwr);
}
/*
* Check for parameters:
* - require exact match for types (cf. bugzilla 3075)
* - require exact match for in, out, ref and lazy
* - overrider can add scope, but can't remove
*/
template checkParameters()
{
alias STC = ParameterStorageClass;
alias UprParams = Parameters!Upr;
alias LwrParams = Parameters!Lwr;
alias UprPSTCs = ParameterStorageClassTuple!Upr;
alias LwrPSTCs = ParameterStorageClassTuple!Lwr;
//
template checkNext(size_t i)
{
static if (i < UprParams.length)
{
enum uprStc = UprPSTCs[i];
enum lwrStc = LwrPSTCs[i];
//
enum wantExact = STC.out_ | STC.ref_ | STC.lazy_ | STC.return_;
enum ok =
((uprStc & wantExact ) == (lwrStc & wantExact )) &&
((uprStc & STC.scope_) >= (lwrStc & STC.scope_)) &&
checkNext!(i + 1).ok;
}
else
enum ok = true; // done
}
static if (UprParams.length == LwrParams.length)
enum ok = is(UprParams == LwrParams) && checkNext!(0).ok;
else
enum ok = false;
}
/* run all the checks */
enum isCovariantWith =
checkLinkage !().ok &&
checkVariadicity!().ok &&
checkSTC !().ok &&
checkAttributes !().ok &&
checkReturnType !().ok &&
checkParameters !().ok ;
}
}
///
@safe unittest
{
interface I { I clone(); }
interface J { J clone(); }
class C : I
{
override C clone() // covariant overriding of I.clone()
{
return new C;
}
}
// C.clone() can override I.clone(), indeed.
static assert(isCovariantWith!(typeof(C.clone), typeof(I.clone)));
// C.clone() can't override J.clone(); the return type C is not implicitly
// convertible to J.
static assert(!isCovariantWith!(typeof(C.clone), typeof(J.clone)));
}
@safe unittest
{
enum bool isCovariantWith(alias f, alias g) = .isCovariantWith!(typeof(f), typeof(g));
// covariant return type
interface I {}
interface J : I {}
interface BaseA { const(I) test(int); }
interface DerivA_1 : BaseA { override const(J) test(int); }
interface DerivA_2 : BaseA { override J test(int); }
static assert( isCovariantWith!(DerivA_1.test, BaseA.test));
static assert( isCovariantWith!(DerivA_2.test, BaseA.test));
static assert(!isCovariantWith!(BaseA.test, DerivA_1.test));
static assert(!isCovariantWith!(BaseA.test, DerivA_2.test));
static assert( isCovariantWith!(BaseA.test, BaseA.test));
static assert( isCovariantWith!(DerivA_1.test, DerivA_1.test));
static assert( isCovariantWith!(DerivA_2.test, DerivA_2.test));
// scope parameter
interface BaseB { void test( int*, int*); }
interface DerivB_1 : BaseB { override void test(scope int*, int*); }
interface DerivB_2 : BaseB { override void test( int*, scope int*); }
interface DerivB_3 : BaseB { override void test(scope int*, scope int*); }
static assert( isCovariantWith!(DerivB_1.test, BaseB.test));
static assert( isCovariantWith!(DerivB_2.test, BaseB.test));
static assert( isCovariantWith!(DerivB_3.test, BaseB.test));
static assert(!isCovariantWith!(BaseB.test, DerivB_1.test));
static assert(!isCovariantWith!(BaseB.test, DerivB_2.test));
static assert(!isCovariantWith!(BaseB.test, DerivB_3.test));
// function storage class
interface BaseC { void test() ; }
interface DerivC_1 : BaseC { override void test() const; }
static assert( isCovariantWith!(DerivC_1.test, BaseC.test));
static assert(!isCovariantWith!(BaseC.test, DerivC_1.test));
// increasing safety
interface BaseE { void test() ; }
interface DerivE_1 : BaseE { override void test() @safe ; }
interface DerivE_2 : BaseE { override void test() @trusted; }
static assert( isCovariantWith!(DerivE_1.test, BaseE.test));
static assert( isCovariantWith!(DerivE_2.test, BaseE.test));
static assert(!isCovariantWith!(BaseE.test, DerivE_1.test));
static assert(!isCovariantWith!(BaseE.test, DerivE_2.test));
// @safe and @trusted
interface BaseF
{
void test1() @safe;
void test2() @trusted;
}
interface DerivF : BaseF
{
override void test1() @trusted;
override void test2() @safe;
}
static assert( isCovariantWith!(DerivF.test1, BaseF.test1));
static assert( isCovariantWith!(DerivF.test2, BaseF.test2));
}
// Needed for rvalueOf/lvalueOf because "inout on return means
// inout must be on a parameter as well"
private struct __InoutWorkaroundStruct{}
/**
Creates an lvalue or rvalue of type $(D T) for $(D typeof(...)) and
$(D __traits(compiles, ...)) purposes. No actual value is returned.
Note: Trying to use returned value will result in a
"Symbol Undefined" error at link time.
Example:
---
// Note that `f` doesn't have to be implemented
// as is isn't called.
int f(int);
bool f(ref int);
static assert(is(typeof(f(rvalueOf!int)) == int));
static assert(is(typeof(f(lvalueOf!int)) == bool));
int i = rvalueOf!int; // error, no actual value is returned
---
*/
@property T rvalueOf(T)(inout __InoutWorkaroundStruct = __InoutWorkaroundStruct.init);
/// ditto
@property ref T lvalueOf(T)(inout __InoutWorkaroundStruct = __InoutWorkaroundStruct.init);
// Note: unittest can't be used as an example here as function overloads
// aren't allowed inside functions.
@system unittest
{
void needLvalue(T)(ref T);
static struct S { }
int i;
struct Nested { void f() { ++i; } }
foreach (T; AliasSeq!(int, immutable int, inout int, string, S, Nested, Object))
{
static assert(!__traits(compiles, needLvalue(rvalueOf!T)));
static assert( __traits(compiles, needLvalue(lvalueOf!T)));
static assert(is(typeof(rvalueOf!T) == T));
static assert(is(typeof(lvalueOf!T) == T));
}
static assert(!__traits(compiles, rvalueOf!int = 1));
static assert( __traits(compiles, lvalueOf!byte = 127));
static assert(!__traits(compiles, lvalueOf!byte = 128));
}
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
// SomethingTypeOf
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
private template AliasThisTypeOf(T) if (isAggregateType!T)
{
alias members = AliasSeq!(__traits(getAliasThis, T));
static if (members.length == 1)
{
alias AliasThisTypeOf = typeof(__traits(getMember, T.init, members[0]));
}
else
static assert(0, T.stringof~" does not have alias this type");
}
/*
*/
template BooleanTypeOf(T)
{
static if (is(AliasThisTypeOf!T AT) && !is(AT[] == AT))
alias X = BooleanTypeOf!AT;
else
alias X = OriginalType!T;
static if (is(Unqual!X == bool))
{
alias BooleanTypeOf = X;
}
else
static assert(0, T.stringof~" is not boolean type");
}
@safe unittest
{
// unexpected failure, maybe dmd type-merging bug
foreach (T; AliasSeq!bool)
foreach (Q; TypeQualifierList)
{
static assert( is(Q!T == BooleanTypeOf!( Q!T )));
static assert( is(Q!T == BooleanTypeOf!( SubTypeOf!(Q!T) )));
}
foreach (T; AliasSeq!(void, NumericTypeList, ImaginaryTypeList, ComplexTypeList, CharTypeList))
foreach (Q; TypeQualifierList)
{
static assert(!is(BooleanTypeOf!( Q!T )), Q!T.stringof);
static assert(!is(BooleanTypeOf!( SubTypeOf!(Q!T) )));
}
}
@safe unittest
{
struct B
{
bool val;
alias val this;
}
struct S
{
B b;
alias b this;
}
static assert(is(BooleanTypeOf!B == bool));
static assert(is(BooleanTypeOf!S == bool));
}
/*
*/
template IntegralTypeOf(T)
{
import std.meta : staticIndexOf;
static if (is(AliasThisTypeOf!T AT) && !is(AT[] == AT))
alias X = IntegralTypeOf!AT;
else
alias X = OriginalType!T;
static if (staticIndexOf!(Unqual!X, IntegralTypeList) >= 0)
{
alias IntegralTypeOf = X;
}
else
static assert(0, T.stringof~" is not an integral type");
}
@safe unittest
{
foreach (T; IntegralTypeList)
foreach (Q; TypeQualifierList)
{
static assert( is(Q!T == IntegralTypeOf!( Q!T )));
static assert( is(Q!T == IntegralTypeOf!( SubTypeOf!(Q!T) )));
}
foreach (T; AliasSeq!(void, bool, FloatingPointTypeList, ImaginaryTypeList, ComplexTypeList, CharTypeList))
foreach (Q; TypeQualifierList)
{
static assert(!is(IntegralTypeOf!( Q!T )));
static assert(!is(IntegralTypeOf!( SubTypeOf!(Q!T) )));
}
}
/*
*/
template FloatingPointTypeOf(T)
{
import std.meta : staticIndexOf;
static if (is(AliasThisTypeOf!T AT) && !is(AT[] == AT))
alias X = FloatingPointTypeOf!AT;
else
alias X = OriginalType!T;
static if (staticIndexOf!(Unqual!X, FloatingPointTypeList) >= 0)
{
alias FloatingPointTypeOf = X;
}
else
static assert(0, T.stringof~" is not a floating point type");
}
@safe unittest
{
foreach (T; FloatingPointTypeList)
foreach (Q; TypeQualifierList)
{
static assert( is(Q!T == FloatingPointTypeOf!( Q!T )));
static assert( is(Q!T == FloatingPointTypeOf!( SubTypeOf!(Q!T) )));
}
foreach (T; AliasSeq!(void, bool, IntegralTypeList, ImaginaryTypeList, ComplexTypeList, CharTypeList))
foreach (Q; TypeQualifierList)
{
static assert(!is(FloatingPointTypeOf!( Q!T )));
static assert(!is(FloatingPointTypeOf!( SubTypeOf!(Q!T) )));
}
}
/*
*/
template NumericTypeOf(T)
{
static if (is(IntegralTypeOf!T X) || is(FloatingPointTypeOf!T X))
{
alias NumericTypeOf = X;
}
else
static assert(0, T.stringof~" is not a numeric type");
}
@safe unittest
{
foreach (T; NumericTypeList)
foreach (Q; TypeQualifierList)
{
static assert( is(Q!T == NumericTypeOf!( Q!T )));
static assert( is(Q!T == NumericTypeOf!( SubTypeOf!(Q!T) )));
}
foreach (T; AliasSeq!(void, bool, CharTypeList, ImaginaryTypeList, ComplexTypeList))
foreach (Q; TypeQualifierList)
{
static assert(!is(NumericTypeOf!( Q!T )));
static assert(!is(NumericTypeOf!( SubTypeOf!(Q!T) )));
}
}
/*
*/
template UnsignedTypeOf(T)
{
import std.meta : staticIndexOf;
static if (is(IntegralTypeOf!T X) &&
staticIndexOf!(Unqual!X, UnsignedIntTypeList) >= 0)
alias UnsignedTypeOf = X;
else
static assert(0, T.stringof~" is not an unsigned type.");
}
/*
*/
template SignedTypeOf(T)
{
import std.meta : staticIndexOf;
static if (is(IntegralTypeOf!T X) &&
staticIndexOf!(Unqual!X, SignedIntTypeList) >= 0)
alias SignedTypeOf = X;
else static if (is(FloatingPointTypeOf!T X))
alias SignedTypeOf = X;
else
static assert(0, T.stringof~" is not an signed type.");
}
/*
*/
template CharTypeOf(T)
{
import std.meta : staticIndexOf;
static if (is(AliasThisTypeOf!T AT) && !is(AT[] == AT))
alias X = CharTypeOf!AT;
else
alias X = OriginalType!T;
static if (staticIndexOf!(Unqual!X, CharTypeList) >= 0)
{
alias CharTypeOf = X;
}
else
static assert(0, T.stringof~" is not a character type");
}
@safe unittest
{
foreach (T; CharTypeList)
foreach (Q; TypeQualifierList)
{
static assert( is(CharTypeOf!( Q!T )));
static assert( is(CharTypeOf!( SubTypeOf!(Q!T) )));
}
foreach (T; AliasSeq!(void, bool, NumericTypeList, ImaginaryTypeList, ComplexTypeList))
foreach (Q; TypeQualifierList)
{
static assert(!is(CharTypeOf!( Q!T )));
static assert(!is(CharTypeOf!( SubTypeOf!(Q!T) )));
}
foreach (T; AliasSeq!(string, wstring, dstring, char[4]))
foreach (Q; TypeQualifierList)
{
static assert(!is(CharTypeOf!( Q!T )));
static assert(!is(CharTypeOf!( SubTypeOf!(Q!T) )));
}
}
/*
*/
template StaticArrayTypeOf(T)
{
static if (is(AliasThisTypeOf!T AT) && !is(AT[] == AT))
alias X = StaticArrayTypeOf!AT;
else
alias X = OriginalType!T;
static if (is(X : E[n], E, size_t n))
alias StaticArrayTypeOf = X;
else
static assert(0, T.stringof~" is not a static array type");
}
@safe unittest
{
foreach (T; AliasSeq!(bool, NumericTypeList, ImaginaryTypeList, ComplexTypeList))
foreach (Q; AliasSeq!(TypeQualifierList, InoutOf, SharedInoutOf))
{
static assert(is( Q!( T[1] ) == StaticArrayTypeOf!( Q!( T[1] ) ) ));
foreach (P; TypeQualifierList)
{ // SubTypeOf cannot have inout type
static assert(is( Q!(P!(T[1])) == StaticArrayTypeOf!( Q!(SubTypeOf!(P!(T[1]))) ) ));
}
}
foreach (T; AliasSeq!void)
foreach (Q; AliasSeq!TypeQualifierList)
{
static assert(is( StaticArrayTypeOf!( Q!(void[1]) ) == Q!(void[1]) ));
}
}
/*
*/
template DynamicArrayTypeOf(T)
{
static if (is(AliasThisTypeOf!T AT) && !is(AT[] == AT))
alias X = DynamicArrayTypeOf!AT;
else
alias X = OriginalType!T;
static if (is(Unqual!X : E[], E) && !is(typeof({ enum n = X.length; })))
{
alias DynamicArrayTypeOf = X;
}
else
static assert(0, T.stringof~" is not a dynamic array");
}
@safe unittest
{
foreach (T; AliasSeq!(/*void, */bool, NumericTypeList, ImaginaryTypeList, ComplexTypeList))
foreach (Q; AliasSeq!(TypeQualifierList, InoutOf, SharedInoutOf))
{
static assert(is( Q!T[] == DynamicArrayTypeOf!( Q!T[] ) ));
static assert(is( Q!(T[]) == DynamicArrayTypeOf!( Q!(T[]) ) ));
foreach (P; AliasSeq!(MutableOf, ConstOf, ImmutableOf))
{
static assert(is( Q!(P!T[]) == DynamicArrayTypeOf!( Q!(SubTypeOf!(P!T[])) ) ));
static assert(is( Q!(P!(T[])) == DynamicArrayTypeOf!( Q!(SubTypeOf!(P!(T[]))) ) ));
}
}
static assert(!is(DynamicArrayTypeOf!(int[3])));
static assert(!is(DynamicArrayTypeOf!(void[3])));
static assert(!is(DynamicArrayTypeOf!(typeof(null))));
}
/*
*/
template ArrayTypeOf(T)
{
static if (is(StaticArrayTypeOf!T X) || is(DynamicArrayTypeOf!T X))
{
alias ArrayTypeOf = X;
}
else
static assert(0, T.stringof~" is not an array type");
}
/*
Always returns the Dynamic Array version.
*/
template StringTypeOf(T)
{
static if (is(T == typeof(null)))
{
// It is impossible to determine exact string type from typeof(null) -
// it means that StringTypeOf!(typeof(null)) is undefined.
// Then this behavior is convenient for template constraint.
static assert(0, T.stringof~" is not a string type");
}
else static if (is(T : const char[]) || is(T : const wchar[]) || is(T : const dchar[]))
{
static if (is(T : U[], U))
alias StringTypeOf = U[];
else
static assert(0);
}
else
static assert(0, T.stringof~" is not a string type");
}
@safe unittest
{
foreach (T; CharTypeList)
foreach (Q; AliasSeq!(MutableOf, ConstOf, ImmutableOf, InoutOf))
{
static assert(is(Q!T[] == StringTypeOf!( Q!T[] )));
static if (!__traits(isSame, Q, InoutOf))
{
static assert(is(Q!T[] == StringTypeOf!( SubTypeOf!(Q!T[]) )));
alias Str = Q!T[];
class C(S) { S val; alias val this; }
static assert(is(StringTypeOf!(C!Str) == Str));
}
}
foreach (T; CharTypeList)
foreach (Q; AliasSeq!(SharedOf, SharedConstOf, SharedInoutOf))
{
static assert(!is(StringTypeOf!( Q!T[] )));
}
}
@safe unittest
{
static assert(is(StringTypeOf!(char[4]) == char[]));
}
/*
*/
template AssocArrayTypeOf(T)
{
static if (is(AliasThisTypeOf!T AT) && !is(AT[] == AT))
alias X = AssocArrayTypeOf!AT;
else
alias X = OriginalType!T;
static if (is(Unqual!X : V[K], K, V))
{
alias AssocArrayTypeOf = X;
}
else
static assert(0, T.stringof~" is not an associative array type");
}
@safe unittest
{
foreach (T; AliasSeq!(int/*bool, CharTypeList, NumericTypeList, ImaginaryTypeList, ComplexTypeList*/))
foreach (P; AliasSeq!(TypeQualifierList, InoutOf, SharedInoutOf))
foreach (Q; AliasSeq!(TypeQualifierList, InoutOf, SharedInoutOf))
foreach (R; AliasSeq!(TypeQualifierList, InoutOf, SharedInoutOf))
{
static assert(is( P!(Q!T[R!T]) == AssocArrayTypeOf!( P!(Q!T[R!T]) ) ));
}
foreach (T; AliasSeq!(int/*bool, CharTypeList, NumericTypeList, ImaginaryTypeList, ComplexTypeList*/))
foreach (O; AliasSeq!(TypeQualifierList, InoutOf, SharedInoutOf))
foreach (P; AliasSeq!TypeQualifierList)
foreach (Q; AliasSeq!TypeQualifierList)
foreach (R; AliasSeq!TypeQualifierList)
{
static assert(is( O!(P!(Q!T[R!T])) == AssocArrayTypeOf!( O!(SubTypeOf!(P!(Q!T[R!T]))) ) ));
}
}
/*
*/
template BuiltinTypeOf(T)
{
static if (is(T : void)) alias BuiltinTypeOf = void;
else static if (is(BooleanTypeOf!T X)) alias BuiltinTypeOf = X;
else static if (is(IntegralTypeOf!T X)) alias BuiltinTypeOf = X;
else static if (is(FloatingPointTypeOf!T X))alias BuiltinTypeOf = X;
else static if (is(T : const(ireal))) alias BuiltinTypeOf = ireal; //TODO
else static if (is(T : const(creal))) alias BuiltinTypeOf = creal; //TODO
else static if (is(CharTypeOf!T X)) alias BuiltinTypeOf = X;
else static if (is(ArrayTypeOf!T X)) alias BuiltinTypeOf = X;
else static if (is(AssocArrayTypeOf!T X)) alias BuiltinTypeOf = X;
else static assert(0);
}
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
// isSomething
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
/**
* Detect whether $(D T) is a built-in boolean type.
*/
enum bool isBoolean(T) = is(BooleanTypeOf!T) && !isAggregateType!T;
///
@safe unittest
{
static assert( isBoolean!bool);
enum EB : bool { a = true }
static assert( isBoolean!EB);
static assert(!isBoolean!(SubTypeOf!bool));
}
@safe unittest
{
static struct S(T)
{
T t;
alias t this;
}
static assert(!isIntegral!(S!bool));
}
/**
* Detect whether $(D T) is a built-in integral type. Types $(D bool),
* $(D char), $(D wchar), and $(D dchar) are not considered integral.
*/
enum bool isIntegral(T) = is(IntegralTypeOf!T) && !isAggregateType!T;
///
@safe unittest
{
static assert(
isIntegral!byte &&
isIntegral!short &&
isIntegral!int &&
isIntegral!long &&
isIntegral!(const(long)) &&
isIntegral!(immutable(long))
);
static assert(
!isIntegral!bool &&
!isIntegral!char &&
!isIntegral!double
);
// types which act as integral values do not pass
struct S
{
int val;
alias val this;
}
static assert(!isIntegral!S);
}
@safe unittest
{
foreach (T; IntegralTypeList)
{
foreach (Q; TypeQualifierList)
{
static assert( isIntegral!(Q!T));
static assert(!isIntegral!(SubTypeOf!(Q!T)));
}
}
static assert(!isIntegral!float);
enum EU : uint { a = 0, b = 1, c = 2 } // base type is unsigned
enum EI : int { a = -1, b = 0, c = 1 } // base type is signed (bug 7909)
static assert(isIntegral!EU && isUnsigned!EU && !isSigned!EU);
static assert(isIntegral!EI && !isUnsigned!EI && isSigned!EI);
}
/**
* Detect whether $(D T) is a built-in floating point type.
*/
enum bool isFloatingPoint(T) = __traits(isFloating, T) && !(is(Unqual!T == cfloat) ||
is(Unqual!T == cdouble) ||
is(Unqual!T == creal) ||
is(Unqual!T == ifloat) ||
is(Unqual!T == idouble) ||
is(Unqual!T == ireal));
///
@safe unittest
{
static assert(
isFloatingPoint!float &&
isFloatingPoint!double &&
isFloatingPoint!real &&
isFloatingPoint!(const(real)) &&
isFloatingPoint!(immutable(real))
);
static assert(!isFloatingPoint!int);
// complex and imaginary numbers do not pass
static assert(
!isFloatingPoint!cfloat &&
!isFloatingPoint!ifloat
);
// types which act as floating point values do not pass
struct S
{
float val;
alias val this;
}
static assert(!isFloatingPoint!S);
}
@safe unittest
{
enum EF : real { a = 1.414, b = 1.732, c = 2.236 }
foreach (T; AliasSeq!(FloatingPointTypeList, EF))
{
foreach (Q; TypeQualifierList)
{
static assert( isFloatingPoint!(Q!T));
static assert(!isFloatingPoint!(SubTypeOf!(Q!T)));
}
}
foreach (T; IntegralTypeList)
{
foreach (Q; TypeQualifierList)
{
static assert(!isFloatingPoint!(Q!T));
}
}
}
// https://issues.dlang.org/show_bug.cgi?id=17195
@safe unittest
{
static assert(!isFloatingPoint!cfloat);
static assert(!isFloatingPoint!cdouble);
static assert(!isFloatingPoint!creal);
static assert(!isFloatingPoint!ifloat);
static assert(!isFloatingPoint!idouble);
static assert(!isFloatingPoint!ireal);
}
/**
* Detect whether $(D T) is a built-in numeric type (integral or floating
* point).
*/
enum bool isNumeric(T) = __traits(isArithmetic, T) && !(is(Unqual!T == bool) ||
is(Unqual!T == char) ||
is(Unqual!T == wchar) ||
is(Unqual!T == dchar));
///
@safe unittest
{
static assert(
isNumeric!byte &&
isNumeric!short &&
isNumeric!int &&
isNumeric!long &&
isNumeric!float &&
isNumeric!double &&
isNumeric!real &&
isNumeric!(const(real)) &&
isNumeric!(immutable(real))
);
static assert(
!isNumeric!void &&
!isNumeric!bool &&
!isNumeric!char &&
!isNumeric!wchar &&
!isNumeric!dchar
);
// types which act as numeric values do not pass
struct S
{
int val;
alias val this;
}
static assert(!isIntegral!S);
}
@safe unittest
{
foreach (T; AliasSeq!(NumericTypeList))
{
foreach (Q; TypeQualifierList)
{
static assert( isNumeric!(Q!T));
static assert(!isNumeric!(SubTypeOf!(Q!T)));
}
}
static struct S(T)
{
T t;
alias t this;
}
static assert(!isNumeric!(S!int));
}
/**
* Detect whether $(D T) is a scalar type (a built-in numeric, character or
* boolean type).
*/
enum bool isScalarType(T) = is(T : real) && !isAggregateType!T;
///
@safe unittest
{
static assert(!isScalarType!void);
static assert( isScalarType!(immutable(byte)));
static assert( isScalarType!(immutable(ushort)));
static assert( isScalarType!(immutable(int)));
static assert( isScalarType!(ulong));
static assert( isScalarType!(shared(float)));
static assert( isScalarType!(shared(const bool)));
static assert( isScalarType!(const(char)));
static assert( isScalarType!(wchar));
static assert( isScalarType!(const(dchar)));
static assert( isScalarType!(const(double)));
static assert( isScalarType!(const(real)));
}
@safe unittest
{
static struct S(T)
{
T t;
alias t this;
}
static assert(!isScalarType!(S!int));
}
/**
* Detect whether $(D T) is a basic type (scalar type or void).
*/
enum bool isBasicType(T) = isScalarType!T || is(Unqual!T == void);
///
@safe unittest
{
static assert(isBasicType!void);
static assert(isBasicType!(const(void)));
static assert(isBasicType!(shared(void)));
static assert(isBasicType!(immutable(void)));
static assert(isBasicType!(shared const(void)));
static assert(isBasicType!(shared inout(void)));
static assert(isBasicType!(shared inout const(void)));
static assert(isBasicType!(inout(void)));
static assert(isBasicType!(inout const(void)));
static assert(isBasicType!(immutable(int)));
static assert(isBasicType!(shared(float)));
static assert(isBasicType!(shared(const bool)));
static assert(isBasicType!(const(dchar)));
}
/**
* Detect whether $(D T) is a built-in unsigned numeric type.
*/
enum bool isUnsigned(T) = __traits(isUnsigned, T) && !(is(Unqual!T == char) ||
is(Unqual!T == wchar) ||
is(Unqual!T == dchar) ||
is(Unqual!T == bool));
///
@safe unittest
{
static assert(
isUnsigned!uint &&
isUnsigned!ulong
);
static assert(
!isUnsigned!char &&
!isUnsigned!int &&
!isUnsigned!long &&
!isUnsigned!char &&
!isUnsigned!wchar &&
!isUnsigned!dchar
);
}
@safe unittest
{
foreach (T; AliasSeq!(UnsignedIntTypeList))
{
foreach (Q; TypeQualifierList)
{
static assert( isUnsigned!(Q!T));
static assert(!isUnsigned!(SubTypeOf!(Q!T)));
}
}
static struct S(T)
{
T t;
alias t this;
}
static assert(!isUnsigned!(S!uint));
}
/**
* Detect whether $(D T) is a built-in signed numeric type.
*/
enum bool isSigned(T) = __traits(isArithmetic, T) && !__traits(isUnsigned, T);
///
@safe unittest
{
static assert(
isSigned!int &&
isSigned!long
);
static assert(
!isSigned!uint &&
!isSigned!ulong
);
}
@safe unittest
{
enum E { e1 = 0 }
static assert(isSigned!E);
enum Eubyte : ubyte { e1 = 0 }
static assert(!isSigned!Eubyte);
foreach (T; AliasSeq!(SignedIntTypeList))
{
foreach (Q; TypeQualifierList)
{
static assert( isSigned!(Q!T));
static assert(!isSigned!(SubTypeOf!(Q!T)));
}
}
static struct S(T)
{
T t;
alias t this;
}
static assert(!isSigned!(S!uint));
}
// https://issues.dlang.org/show_bug.cgi?id=17196
@safe unittest
{
static assert(isUnsigned!bool == false);
static assert(isSigned!bool == false);
}
/**
* Detect whether $(D T) is one of the built-in character types.
*
* The built-in char types are any of $(D char), $(D wchar) or $(D dchar), with
* or without qualifiers.
*/
enum bool isSomeChar(T) = is(CharTypeOf!T) && !isAggregateType!T;
///
@safe unittest
{
//Char types
static assert( isSomeChar!char);
static assert( isSomeChar!wchar);
static assert( isSomeChar!dchar);
static assert( isSomeChar!(typeof('c')));
static assert( isSomeChar!(immutable char));
static assert( isSomeChar!(const dchar));
//Non char types
static assert(!isSomeChar!int);
static assert(!isSomeChar!byte);
static assert(!isSomeChar!string);
static assert(!isSomeChar!wstring);
static assert(!isSomeChar!dstring);
static assert(!isSomeChar!(char[4]));
}
@safe unittest
{
enum EC : char { a = 'x', b = 'y' }
foreach (T; AliasSeq!(CharTypeList, EC))
{
foreach (Q; TypeQualifierList)
{
static assert( isSomeChar!( Q!T ));
static assert(!isSomeChar!( SubTypeOf!(Q!T) ));
}
}
// alias-this types are not allowed
static struct S(T)
{
T t;
alias t this;
}
static assert(!isSomeChar!(S!char));
}
/**
Detect whether $(D T) is one of the built-in string types.
The built-in string types are $(D Char[]), where $(D Char) is any of $(D char),
$(D wchar) or $(D dchar), with or without qualifiers.
Static arrays of characters (like $(D char[80])) are not considered
built-in string types.
*/
enum bool isSomeString(T) = is(StringTypeOf!T) && !isAggregateType!T && !isStaticArray!T;
///
@safe unittest
{
//String types
static assert( isSomeString!string);
static assert( isSomeString!(wchar[]));
static assert( isSomeString!(dchar[]));
static assert( isSomeString!(typeof("aaa")));
static assert( isSomeString!(const(char)[]));
enum ES : string { a = "aaa", b = "bbb" }
static assert( isSomeString!ES);
//Non string types
static assert(!isSomeString!int);
static assert(!isSomeString!(int[]));
static assert(!isSomeString!(byte[]));
static assert(!isSomeString!(typeof(null)));
static assert(!isSomeString!(char[4]));
}
@safe unittest
{
foreach (T; AliasSeq!(char[], dchar[], string, wstring, dstring))
{
static assert( isSomeString!( T ));
static assert(!isSomeString!(SubTypeOf!(T)));
}
}
/**
* Detect whether type $(D T) is a narrow string.
*
* All arrays that use char, wchar, and their qualified versions are narrow
* strings. (Those include string and wstring).
*/
enum bool isNarrowString(T) = (is(T : const char[]) || is(T : const wchar[])) && !isAggregateType!T && !isStaticArray!T;
///
@safe unittest
{
static assert(isNarrowString!string);
static assert(isNarrowString!wstring);
static assert(isNarrowString!(char[]));
static assert(isNarrowString!(wchar[]));
static assert(!isNarrowString!dstring);
static assert(!isNarrowString!(dchar[]));
}
@safe unittest
{
foreach (T; AliasSeq!(char[], string, wstring))
{
foreach (Q; AliasSeq!(MutableOf, ConstOf, ImmutableOf)/*TypeQualifierList*/)
{
static assert( isNarrowString!( Q!T ));
static assert(!isNarrowString!( SubTypeOf!(Q!T) ));
}
}
foreach (T; AliasSeq!(int, int[], byte[], dchar[], dstring, char[4]))
{
foreach (Q; TypeQualifierList)
{
static assert(!isNarrowString!( Q!T ));
static assert(!isNarrowString!( SubTypeOf!(Q!T) ));
}
}
}
/**
* Detects whether `T` is a comparable type. Basic types and structs and
* classes that implement opCmp are ordering comparable.
*/
enum bool isOrderingComparable(T) = ifTestable!(T, unaryFun!"a < a");
///
@safe unittest
{
static assert(isOrderingComparable!int);
static assert(isOrderingComparable!string);
static assert(!isOrderingComparable!creal);
static struct Foo {}
static assert(!isOrderingComparable!Foo);
static struct Bar
{
int a;
auto opCmp(Bar b1) const { return a - b1.a; }
}
Bar b1 = Bar(5);
Bar b2 = Bar(7);
assert(isOrderingComparable!Bar && b2 > b1);
}
/// ditto
enum bool isEqualityComparable(T) = ifTestable!(T, unaryFun!"a == a");
@safe unittest
{
static assert(isEqualityComparable!int);
static assert(isEqualityComparable!string);
static assert(isEqualityComparable!creal);
static assert(!isEqualityComparable!void);
struct Foo {}
static assert(isEqualityComparable!Foo);
struct Bar
{
int a;
auto opEquals(Bar b1) const { return a == b1.a; }
}
Bar b1 = Bar(5);
Bar b2 = Bar(5);
Bar b3 = Bar(7);
static assert(isEqualityComparable!Bar);
assert(b1 == b2);
assert(b1 != b3);
}
/**
* Detect whether $(D T) is a struct, static array, or enum that is implicitly
* convertible to a string.
*/
template isConvertibleToString(T)
{
enum isConvertibleToString =
(isAggregateType!T || isStaticArray!T || is(T == enum))
&& is(StringTypeOf!T);
}
///
@safe unittest
{
static struct AliasedString
{
string s;
alias s this;
}
enum StringEnum { a = "foo" }
assert(!isConvertibleToString!string);
assert(isConvertibleToString!AliasedString);
assert(isConvertibleToString!StringEnum);
assert(isConvertibleToString!(char[25]));
assert(!isConvertibleToString!(char[]));
}
@safe unittest // Bugzilla 16573
{
enum I : int { foo = 1 }
enum S : string { foo = "foo" }
assert(!isConvertibleToString!I);
assert(isConvertibleToString!S);
}
package template convertToString(T)
{
static if (isConvertibleToString!T)
alias convertToString = StringTypeOf!T;
else
alias convertToString = T;
}
/**
* Detect whether type $(D T) is a string that will be autodecoded.
*
* All arrays that use char, wchar, and their qualified versions are narrow
* strings. (Those include string and wstring).
* Aggregates that implicitly cast to narrow strings are included.
*
* Params:
* T = type to be tested
*
* Returns:
* true if T represents a string that is subject to autodecoding
*
* See Also:
* $(LREF isNarrowString)
*/
enum bool isAutodecodableString(T) = (is(T : const char[]) || is(T : const wchar[])) && !isStaticArray!T;
///
@safe unittest
{
static struct Stringish
{
string s;
alias s this;
}
assert(isAutodecodableString!wstring);
assert(isAutodecodableString!Stringish);
assert(!isAutodecodableString!dstring);
}
/**
* Detect whether type $(D T) is a static array.
*/
enum bool isStaticArray(T) = __traits(isStaticArray, T);
///
@safe unittest
{
static assert( isStaticArray!(int[3]));
static assert( isStaticArray!(const(int)[5]));
static assert( isStaticArray!(const(int)[][5]));
static assert(!isStaticArray!(const(int)[]));
static assert(!isStaticArray!(immutable(int)[]));
static assert(!isStaticArray!(const(int)[4][]));
static assert(!isStaticArray!(int[]));
static assert(!isStaticArray!(int[char]));
static assert(!isStaticArray!(int[1][]));
static assert(!isStaticArray!(int[int]));
static assert(!isStaticArray!int);
}
@safe unittest
{
foreach (T; AliasSeq!(int[51], int[][2],
char[][int][11], immutable char[13u],
const(real)[1], const(real)[1][1], void[0]))
{
foreach (Q; TypeQualifierList)
{
static assert( isStaticArray!( Q!T ));
static assert(!isStaticArray!( SubTypeOf!(Q!T) ));
}
}
//enum ESA : int[1] { a = [1], b = [2] }
//static assert( isStaticArray!ESA);
}
/**
* Detect whether type $(D T) is a dynamic array.
*/
enum bool isDynamicArray(T) = is(DynamicArrayTypeOf!T) && !isAggregateType!T;
///
@safe unittest
{
static assert( isDynamicArray!(int[]));
static assert( isDynamicArray!(string));
static assert( isDynamicArray!(long[3][]));
static assert(!isDynamicArray!(int[5]));
static assert(!isDynamicArray!(typeof(null)));
}
@safe unittest
{
import std.meta : AliasSeq;
foreach (T; AliasSeq!(int[], char[], string, long[3][], double[string][]))
{
foreach (Q; TypeQualifierList)
{
static assert( isDynamicArray!( Q!T ));
static assert(!isDynamicArray!( SubTypeOf!(Q!T) ));
}
}
}
/**
* Detect whether type $(D T) is an array (static or dynamic; for associative
* arrays see $(LREF isAssociativeArray)).
*/
enum bool isArray(T) = isStaticArray!T || isDynamicArray!T;
///
@safe unittest
{
static assert( isArray!(int[]));
static assert( isArray!(int[5]));
static assert( isArray!(string));
static assert(!isArray!uint);
static assert(!isArray!(uint[uint]));
static assert(!isArray!(typeof(null)));
}
@safe unittest
{
import std.meta : AliasSeq;
foreach (T; AliasSeq!(int[], int[5], void[]))
{
foreach (Q; TypeQualifierList)
{
static assert( isArray!(Q!T));
static assert(!isArray!(SubTypeOf!(Q!T)));
}
}
}
/**
* Detect whether $(D T) is an associative array type
*/
enum bool isAssociativeArray(T) = __traits(isAssociativeArray, T);
@safe unittest
{
struct Foo
{
@property uint[] keys() { return null; }
@property uint[] values() { return null; }
}
foreach (T; AliasSeq!(int[int], int[string], immutable(char[5])[int]))
{
foreach (Q; TypeQualifierList)
{
static assert( isAssociativeArray!(Q!T));
static assert(!isAssociativeArray!(SubTypeOf!(Q!T)));
}
}
static assert(!isAssociativeArray!Foo);
static assert(!isAssociativeArray!int);
static assert(!isAssociativeArray!(int[]));
static assert(!isAssociativeArray!(typeof(null)));
//enum EAA : int[int] { a = [1:1], b = [2:2] }
//static assert( isAssociativeArray!EAA);
}
/**
* Detect whether type $(D T) is a builtin type.
*/
enum bool isBuiltinType(T) = is(BuiltinTypeOf!T) && !isAggregateType!T;
///
@safe unittest
{
class C;
union U;
struct S;
interface I;
static assert( isBuiltinType!void);
static assert( isBuiltinType!string);
static assert( isBuiltinType!(int[]));
static assert( isBuiltinType!(C[string]));
static assert(!isBuiltinType!C);
static assert(!isBuiltinType!U);
static assert(!isBuiltinType!S);
static assert(!isBuiltinType!I);
static assert(!isBuiltinType!(void delegate(int)));
}
/**
* Detect whether type $(D T) is a SIMD vector type.
*/
enum bool isSIMDVector(T) = is(T : __vector(V[N]), V, size_t N);
@safe unittest
{
static if (is(__vector(float[4])))
{
alias SimdVec = __vector(float[4]);
static assert(isSIMDVector!(__vector(float[4])));
static assert(isSIMDVector!SimdVec);
}
static assert(!isSIMDVector!uint);
static assert(!isSIMDVector!(float[4]));
}
/**
* Detect whether type $(D T) is a pointer.
*/
enum bool isPointer(T) = is(T == U*, U) && !isAggregateType!T;
@safe unittest
{
foreach (T; AliasSeq!(int*, void*, char[]*))
{
foreach (Q; TypeQualifierList)
{
static assert( isPointer!(Q!T));
static assert(!isPointer!(SubTypeOf!(Q!T)));
}
}
static assert(!isPointer!uint);
static assert(!isPointer!(uint[uint]));
static assert(!isPointer!(char[]));
static assert(!isPointer!(typeof(null)));
}
/**
Returns the target type of a pointer.
*/
alias PointerTarget(T : T*) = T;
///
@safe unittest
{
static assert(is(PointerTarget!(int*) == int));
static assert(is(PointerTarget!(void*) == void));
}
/**
* Detect whether type $(D T) is an aggregate type.
*/
enum bool isAggregateType(T) = is(T == struct) || is(T == union) ||
is(T == class) || is(T == interface);
///
@safe unittest
{
class C;
union U;
struct S;
interface I;
static assert( isAggregateType!C);
static assert( isAggregateType!U);
static assert( isAggregateType!S);
static assert( isAggregateType!I);
static assert(!isAggregateType!void);
static assert(!isAggregateType!string);
static assert(!isAggregateType!(int[]));
static assert(!isAggregateType!(C[string]));
static assert(!isAggregateType!(void delegate(int)));
}
/**
* Returns $(D true) if T can be iterated over using a $(D foreach) loop with
* a single loop variable of automatically inferred type, regardless of how
* the $(D foreach) loop is implemented. This includes ranges, structs/classes
* that define $(D opApply) with a single loop variable, and builtin dynamic,
* static and associative arrays.
*/
enum bool isIterable(T) = is(typeof({ foreach (elem; T.init) {} }));
///
@safe unittest
{
struct OpApply
{
int opApply(scope int delegate(ref uint) dg) { assert(0); }
}
struct Range
{
@property uint front() { assert(0); }
void popFront() { assert(0); }
enum bool empty = false;
}
static assert( isIterable!(uint[]));
static assert( isIterable!OpApply);
static assert( isIterable!(uint[string]));
static assert( isIterable!Range);
static assert(!isIterable!uint);
}
/**
* Returns true if T is not const or immutable. Note that isMutable is true for
* string, or immutable(char)[], because the 'head' is mutable.
*/
enum bool isMutable(T) = !is(T == const) && !is(T == immutable) && !is(T == inout);
///
@safe unittest
{
static assert( isMutable!int);
static assert( isMutable!string);
static assert( isMutable!(shared int));
static assert( isMutable!(shared const(int)[]));
static assert(!isMutable!(const int));
static assert(!isMutable!(inout int));
static assert(!isMutable!(shared(const int)));
static assert(!isMutable!(shared(inout int)));
static assert(!isMutable!(immutable string));
}
/**
* Returns true if T is an instance of the template S.
*/
enum bool isInstanceOf(alias S, T) = is(T == S!Args, Args...);
/// ditto
template isInstanceOf(alias S, alias T)
{
enum impl(alias T : S!Args, Args...) = true;
enum impl(alias T) = false;
enum isInstanceOf = impl!T;
}
///
@safe unittest
{
static struct Foo(T...) { }
static struct Bar(T...) { }
static struct Doo(T) { }
static struct ABC(int x) { }
static void fun(T)() { }
template templ(T) { }
static assert(isInstanceOf!(Foo, Foo!int));
static assert(!isInstanceOf!(Foo, Bar!int));
static assert(!isInstanceOf!(Foo, int));
static assert(isInstanceOf!(Doo, Doo!int));
static assert(isInstanceOf!(ABC, ABC!1));
static assert(!isInstanceOf!(Foo, Foo));
static assert(isInstanceOf!(fun, fun!int));
static assert(isInstanceOf!(templ, templ!int));
}
@safe unittest
{
static void fun1(T)() { }
static void fun2(T)() { }
template templ1(T) { }
template templ2(T) { }
static assert(!isInstanceOf!(fun1, fun2!int));
static assert(!isInstanceOf!(templ1, templ2!int));
}
/**
* Check whether the tuple T is an expression tuple.
* An expression tuple only contains expressions.
*
* See_Also: $(LREF isTypeTuple).
*/
template isExpressions(T ...)
{
static if (T.length >= 2)
enum bool isExpressions =
isExpressions!(T[0 .. $/2]) &&
isExpressions!(T[$/2 .. $]);
else static if (T.length == 1)
enum bool isExpressions =
!is(T[0]) && __traits(compiles, { auto ex = T[0]; });
else
enum bool isExpressions = true; // default
}
///
@safe unittest
{
static assert(isExpressions!(1, 2.0, "a"));
static assert(!isExpressions!(int, double, string));
static assert(!isExpressions!(int, 2.0, "a"));
}
/**
* Alternate name for $(LREF isExpressions), kept for legacy compatibility.
*/
alias isExpressionTuple = isExpressions;
@safe unittest
{
void foo();
static int bar() { return 42; }
immutable aa = [ 1: -1 ];
alias myint = int;
static assert( isExpressionTuple!(42));
static assert( isExpressionTuple!aa);
static assert( isExpressionTuple!("cattywampus", 2.7, aa));
static assert( isExpressionTuple!(bar()));
static assert(!isExpressionTuple!isExpressionTuple);
static assert(!isExpressionTuple!foo);
static assert(!isExpressionTuple!( (a) { } ));
static assert(!isExpressionTuple!int);
static assert(!isExpressionTuple!myint);
}
/**
* Check whether the tuple $(D T) is a type tuple.
* A type tuple only contains types.
*
* See_Also: $(LREF isExpressions).
*/
template isTypeTuple(T...)
{
static if (T.length >= 2)
enum bool isTypeTuple = isTypeTuple!(T[0 .. $/2]) && isTypeTuple!(T[$/2 .. $]);
else static if (T.length == 1)
enum bool isTypeTuple = is(T[0]);
else
enum bool isTypeTuple = true; // default
}
///
@safe unittest
{
static assert(isTypeTuple!(int, float, string));
static assert(!isTypeTuple!(1, 2.0, "a"));
static assert(!isTypeTuple!(1, double, string));
}
@safe unittest
{
class C {}
void func(int) {}
auto c = new C;
enum CONST = 42;
static assert( isTypeTuple!int);
static assert( isTypeTuple!string);
static assert( isTypeTuple!C);
static assert( isTypeTuple!(typeof(func)));
static assert( isTypeTuple!(int, char, double));
static assert(!isTypeTuple!c);
static assert(!isTypeTuple!isTypeTuple);
static assert(!isTypeTuple!CONST);
}
/**
Detect whether symbol or type $(D T) is a function pointer.
*/
template isFunctionPointer(T...)
if (T.length == 1)
{
static if (is(T[0] U) || is(typeof(T[0]) U))
{
static if (is(U F : F*) && is(F == function))
enum bool isFunctionPointer = true;
else
enum bool isFunctionPointer = false;
}
else
enum bool isFunctionPointer = false;
}
///
@safe unittest
{
static void foo() {}
void bar() {}
auto fpfoo = &foo;
static assert( isFunctionPointer!fpfoo);
static assert( isFunctionPointer!(void function()));
auto dgbar = &bar;
static assert(!isFunctionPointer!dgbar);
static assert(!isFunctionPointer!(void delegate()));
static assert(!isFunctionPointer!foo);
static assert(!isFunctionPointer!bar);
static assert( isFunctionPointer!((int a) {}));
}
/**
Detect whether symbol or type $(D T) is a delegate.
*/
template isDelegate(T...)
if (T.length == 1)
{
static if (is(typeof(& T[0]) U : U*) && is(typeof(& T[0]) U == delegate))
{
// T is a (nested) function symbol.
enum bool isDelegate = true;
}
else static if (is(T[0] W) || is(typeof(T[0]) W))
{
// T is an expression or a type. Take the type of it and examine.
enum bool isDelegate = is(W == delegate);
}
else
enum bool isDelegate = false;
}
///
@safe unittest
{
static void sfunc() { }
int x;
void func() { x++; }
int delegate() dg;
assert(isDelegate!dg);
assert(isDelegate!(int delegate()));
assert(isDelegate!(typeof(&func)));
int function() fp;
assert(!isDelegate!fp);
assert(!isDelegate!(int function()));
assert(!isDelegate!(typeof(&sfunc)));
}
/**
Detect whether symbol or type $(D T) is a function, a function pointer or a delegate.
*/
template isSomeFunction(T...)
if (T.length == 1)
{
static if (is(typeof(& T[0]) U : U*) && is(U == function) || is(typeof(& T[0]) U == delegate))
{
// T is a (nested) function symbol.
enum bool isSomeFunction = true;
}
else static if (is(T[0] W) || is(typeof(T[0]) W))
{
// T is an expression or a type. Take the type of it and examine.
static if (is(W F : F*) && is(F == function))
enum bool isSomeFunction = true; // function pointer
else
enum bool isSomeFunction = is(W == function) || is(W == delegate);
}
else
enum bool isSomeFunction = false;
}
@safe unittest
{
static real func(ref int) { return 0; }
static void prop() @property { }
void nestedFunc() { }
void nestedProp() @property { }
class C
{
real method(ref int) { return 0; }
real prop() @property { return 0; }
}
auto c = new C;
auto fp = &func;
auto dg = &c.method;
real val;
static assert( isSomeFunction!func);
static assert( isSomeFunction!prop);
static assert( isSomeFunction!nestedFunc);
static assert( isSomeFunction!nestedProp);
static assert( isSomeFunction!(C.method));
static assert( isSomeFunction!(C.prop));
static assert( isSomeFunction!(c.prop));
static assert( isSomeFunction!(c.prop));
static assert( isSomeFunction!fp);
static assert( isSomeFunction!dg);
static assert( isSomeFunction!(typeof(func)));
static assert( isSomeFunction!(real function(ref int)));
static assert( isSomeFunction!(real delegate(ref int)));
static assert( isSomeFunction!((int a) { return a; }));
static assert(!isSomeFunction!int);
static assert(!isSomeFunction!val);
static assert(!isSomeFunction!isSomeFunction);
}
/**
Detect whether $(D T) is a callable object, which can be called with the
function call operator $(D $(LPAREN)...$(RPAREN)).
*/
template isCallable(T...)
if (T.length == 1)
{
static if (is(typeof(& T[0].opCall) == delegate))
// T is a object which has a member function opCall().
enum bool isCallable = true;
else static if (is(typeof(& T[0].opCall) V : V*) && is(V == function))
// T is a type which has a static member function opCall().
enum bool isCallable = true;
else
enum bool isCallable = isSomeFunction!T;
}
///
@safe unittest
{
interface I { real value() @property; }
struct S { static int opCall(int) { return 0; } }
class C { int opCall(int) { return 0; } }
auto c = new C;
static assert( isCallable!c);
static assert( isCallable!S);
static assert( isCallable!(c.opCall));
static assert( isCallable!(I.value));
static assert( isCallable!((int a) { return a; }));
static assert(!isCallable!I);
}
/**
* Detect whether $(D T) is an abstract function.
*/
template isAbstractFunction(T...)
if (T.length == 1)
{
enum bool isAbstractFunction = __traits(isAbstractFunction, T[0]);
}
@safe unittest
{
struct S { void foo() { } }
class C { void foo() { } }
class AC { abstract void foo(); }
static assert(!isAbstractFunction!(int));
static assert(!isAbstractFunction!(S.foo));
static assert(!isAbstractFunction!(C.foo));
static assert( isAbstractFunction!(AC.foo));
}
/**
* Detect whether $(D T) is a final function.
*/
template isFinalFunction(T...)
if (T.length == 1)
{
enum bool isFinalFunction = __traits(isFinalFunction, T[0]);
}
///
@safe unittest
{
struct S { void bar() { } }
final class FC { void foo(); }
class C
{
void bar() { }
final void foo();
}
static assert(!isFinalFunction!(int));
static assert(!isFinalFunction!(S.bar));
static assert( isFinalFunction!(FC.foo));
static assert(!isFinalFunction!(C.bar));
static assert( isFinalFunction!(C.foo));
}
/**
Determines whether function $(D f) requires a context pointer.
*/
template isNestedFunction(alias f)
{
enum isNestedFunction = __traits(isNested, f);
}
@safe unittest
{
static void f() { }
void g() { }
static assert(!isNestedFunction!f);
static assert( isNestedFunction!g);
}
/**
* Detect whether $(D T) is an abstract class.
*/
template isAbstractClass(T...)
if (T.length == 1)
{
enum bool isAbstractClass = __traits(isAbstractClass, T[0]);
}
///
@safe unittest
{
struct S { }
class C { }
abstract class AC { }
static assert(!isAbstractClass!S);
static assert(!isAbstractClass!C);
static assert( isAbstractClass!AC);
C c;
static assert(!isAbstractClass!c);
AC ac;
static assert( isAbstractClass!ac);
}
/**
* Detect whether $(D T) is a final class.
*/
template isFinalClass(T...)
if (T.length == 1)
{
enum bool isFinalClass = __traits(isFinalClass, T[0]);
}
///
@safe unittest
{
class C { }
abstract class AC { }
final class FC1 : C { }
final class FC2 { }
static assert(!isFinalClass!C);
static assert(!isFinalClass!AC);
static assert( isFinalClass!FC1);
static assert( isFinalClass!FC2);
C c;
static assert(!isFinalClass!c);
FC1 fc1;
static assert( isFinalClass!fc1);
}
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
// General Types
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
/**
Removes all qualifiers, if any, from type $(D T).
*/
template Unqual(T)
{
version (none) // Error: recursive alias declaration @@@BUG1308@@@
{
static if (is(T U == const U)) alias Unqual = Unqual!U;
else static if (is(T U == immutable U)) alias Unqual = Unqual!U;
else static if (is(T U == inout U)) alias Unqual = Unqual!U;
else static if (is(T U == shared U)) alias Unqual = Unqual!U;
else alias Unqual = T;
}
else // workaround
{
static if (is(T U == immutable U)) alias Unqual = U;
else static if (is(T U == shared inout const U)) alias Unqual = U;
else static if (is(T U == shared inout U)) alias Unqual = U;
else static if (is(T U == shared const U)) alias Unqual = U;
else static if (is(T U == shared U)) alias Unqual = U;
else static if (is(T U == inout const U)) alias Unqual = U;
else static if (is(T U == inout U)) alias Unqual = U;
else static if (is(T U == const U)) alias Unqual = U;
else alias Unqual = T;
}
}
///
@safe unittest
{
static assert(is(Unqual!int == int));
static assert(is(Unqual!(const int) == int));
static assert(is(Unqual!(immutable int) == int));
static assert(is(Unqual!(shared int) == int));
static assert(is(Unqual!(shared(const int)) == int));
}
@safe unittest
{
static assert(is(Unqual!( int) == int));
static assert(is(Unqual!( const int) == int));
static assert(is(Unqual!( inout int) == int));
static assert(is(Unqual!( inout const int) == int));
static assert(is(Unqual!(shared int) == int));
static assert(is(Unqual!(shared const int) == int));
static assert(is(Unqual!(shared inout int) == int));
static assert(is(Unqual!(shared inout const int) == int));
static assert(is(Unqual!( immutable int) == int));
alias ImmIntArr = immutable(int[]);
static assert(is(Unqual!ImmIntArr == immutable(int)[]));
}
// [For internal use]
package template ModifyTypePreservingTQ(alias Modifier, T)
{
static if (is(T U == immutable U)) alias ModifyTypePreservingTQ = immutable Modifier!U;
else static if (is(T U == shared inout const U)) alias ModifyTypePreservingTQ = shared inout const Modifier!U;
else static if (is(T U == shared inout U)) alias ModifyTypePreservingTQ = shared inout Modifier!U;
else static if (is(T U == shared const U)) alias ModifyTypePreservingTQ = shared const Modifier!U;
else static if (is(T U == shared U)) alias ModifyTypePreservingTQ = shared Modifier!U;
else static if (is(T U == inout const U)) alias ModifyTypePreservingTQ = inout const Modifier!U;
else static if (is(T U == inout U)) alias ModifyTypePreservingTQ = inout Modifier!U;
else static if (is(T U == const U)) alias ModifyTypePreservingTQ = const Modifier!U;
else alias ModifyTypePreservingTQ = Modifier!T;
}
@safe unittest
{
alias Intify(T) = int;
static assert(is(ModifyTypePreservingTQ!(Intify, real) == int));
static assert(is(ModifyTypePreservingTQ!(Intify, const real) == const int));
static assert(is(ModifyTypePreservingTQ!(Intify, inout real) == inout int));
static assert(is(ModifyTypePreservingTQ!(Intify, inout const real) == inout const int));
static assert(is(ModifyTypePreservingTQ!(Intify, shared real) == shared int));
static assert(is(ModifyTypePreservingTQ!(Intify, shared const real) == shared const int));
static assert(is(ModifyTypePreservingTQ!(Intify, shared inout real) == shared inout int));
static assert(is(ModifyTypePreservingTQ!(Intify, shared inout const real) == shared inout const int));
static assert(is(ModifyTypePreservingTQ!(Intify, immutable real) == immutable int));
}
/**
* Copies type qualifiers from $(D FromType) to $(D ToType).
*
* Supported type qualifiers:
* $(UL
* $(LI $(D const))
* $(LI $(D inout))
* $(LI $(D immutable))
* $(LI $(D shared))
* )
*/
template CopyTypeQualifiers(FromType, ToType)
{
alias T(U) = ToType;
alias CopyTypeQualifiers = ModifyTypePreservingTQ!(T, FromType);
}
///
@safe unittest
{
static assert(is(CopyTypeQualifiers!(inout const real, int) == inout const int));
}
@safe unittest
{
static assert(is(CopyTypeQualifiers!( real, int) == int));
static assert(is(CopyTypeQualifiers!( const real, int) == const int));
static assert(is(CopyTypeQualifiers!( inout real, int) == inout int));
static assert(is(CopyTypeQualifiers!( inout const real, int) == inout const int));
static assert(is(CopyTypeQualifiers!(shared real, int) == shared int));
static assert(is(CopyTypeQualifiers!(shared const real, int) == shared const int));
static assert(is(CopyTypeQualifiers!(shared inout real, int) == shared inout int));
static assert(is(CopyTypeQualifiers!(shared inout const real, int) == shared inout const int));
static assert(is(CopyTypeQualifiers!( immutable real, int) == immutable int));
}
/**
Returns the type of `Target` with the "constness" of `Source`. A type's $(B constness)
refers to whether it is `const`, `immutable`, or `inout`. If `source` has no constness, the
returned type will be the same as `Target`.
*/
template CopyConstness(FromType, ToType)
{
alias Unshared(T) = T;
alias Unshared(T: shared U, U) = U;
alias CopyConstness = Unshared!(CopyTypeQualifiers!(FromType, ToType));
}
///
@safe unittest
{
const(int) i;
CopyConstness!(typeof(i), float) f;
assert( is(typeof(f) == const float));
CopyConstness!(char, uint) u;
assert( is(typeof(u) == uint));
//The 'shared' qualifier will not be copied
assert(!is(CopyConstness!(shared bool, int) == shared int));
//But the constness will be
assert( is(CopyConstness!(shared const real, double) == const double));
//Careful, const(int)[] is a mutable array of const(int)
alias MutT = CopyConstness!(const(int)[], int);
assert(!is(MutT == const(int)));
//Okay, const(int[]) applies to array and contained ints
alias CstT = CopyConstness!(const(int[]), int);
assert( is(CstT == const(int)));
}
@safe unittest
{
struct Test
{
void method1() {}
void method2() const {}
void method3() immutable {}
}
assert(is(CopyConstness!(typeof(Test.method1), real) == real));
assert(is(CopyConstness!(typeof(Test.method2), byte) == const(byte)));
assert(is(CopyConstness!(typeof(Test.method3), string) == immutable(string)));
}
@safe unittest
{
assert(is(CopyConstness!(inout(int)[], int[]) == int[]));
assert(is(CopyConstness!(inout(int[]), int[]) == inout(int[])));
}
@safe unittest
{
static assert(is(CopyConstness!( int, real) == real));
static assert(is(CopyConstness!(const int, real) == const real));
static assert(is(CopyConstness!(inout int, real) == inout real));
static assert(is(CopyConstness!(inout const int, real) == inout const real));
static assert(is(CopyConstness!(shared int, real) == real));
static assert(is(CopyConstness!(shared const int, real) == const real));
static assert(is(CopyConstness!(shared inout int, real) == inout real));
static assert(is(CopyConstness!(shared inout const int, real) == inout const real));
static assert(is(CopyConstness!(immutable int, real) == immutable real));
}
/**
Returns the inferred type of the loop variable when a variable of type T
is iterated over using a $(D foreach) loop with a single loop variable and
automatically inferred return type. Note that this may not be the same as
$(D std.range.ElementType!Range) in the case of narrow strings, or if T
has both opApply and a range interface.
*/
template ForeachType(T)
{
alias ForeachType = ReturnType!(typeof(
(inout int x = 0)
{
foreach (elem; T.init)
{
return elem;
}
assert(0);
}));
}
///
@safe unittest
{
static assert(is(ForeachType!(uint[]) == uint));
static assert(is(ForeachType!string == immutable(char)));
static assert(is(ForeachType!(string[string]) == string));
static assert(is(ForeachType!(inout(int)[]) == inout(int)));
}
/**
* Strips off all $(D enum)s from type $(D T).
*/
template OriginalType(T)
{
template Impl(T)
{
static if (is(T U == enum)) alias Impl = OriginalType!U;
else alias Impl = T;
}
alias OriginalType = ModifyTypePreservingTQ!(Impl, T);
}
///
@safe unittest
{
enum E : real { a }
enum F : E { a = E.a }
alias G = const(F);
static assert(is(OriginalType!E == real));
static assert(is(OriginalType!F == real));
static assert(is(OriginalType!G == const real));
}
/**
* Get the Key type of an Associative Array.
*/
alias KeyType(V : V[K], K) = K;
///
@safe unittest
{
import std.traits;
alias Hash = int[string];
static assert(is(KeyType!Hash == string));
static assert(is(ValueType!Hash == int));
KeyType!Hash str = "a"; // str is declared as string
ValueType!Hash num = 1; // num is declared as int
}
/**
* Get the Value type of an Associative Array.
*/
alias ValueType(V : V[K], K) = V;
///
@safe unittest
{
import std.traits;
alias Hash = int[string];
static assert(is(KeyType!Hash == string));
static assert(is(ValueType!Hash == int));
KeyType!Hash str = "a"; // str is declared as string
ValueType!Hash num = 1; // num is declared as int
}
/**
* Returns the corresponding unsigned type for T. T must be a numeric
* integral type, otherwise a compile-time error occurs.
*/
template Unsigned(T)
{
template Impl(T)
{
static if (is(T : __vector(V[N]), V, size_t N))
alias Impl = __vector(Impl!V[N]);
else static if (isUnsigned!T)
alias Impl = T;
else static if (isSigned!T && !isFloatingPoint!T)
{
static if (is(T == byte )) alias Impl = ubyte;
static if (is(T == short)) alias Impl = ushort;
static if (is(T == int )) alias Impl = uint;
static if (is(T == long )) alias Impl = ulong;
static if (is(ucent) && is(T == cent )) alias Impl = ucent;
}
else
static assert(false, "Type " ~ T.stringof ~
" does not have an Unsigned counterpart");
}
alias Unsigned = ModifyTypePreservingTQ!(Impl, OriginalType!T);
}
@safe unittest
{
alias U1 = Unsigned!int;
alias U2 = Unsigned!(const(int));
alias U3 = Unsigned!(immutable(int));
static assert(is(U1 == uint));
static assert(is(U2 == const(uint)));
static assert(is(U3 == immutable(uint)));
static if (is(__vector(int[4])) && is(__vector(uint[4])))
{
alias UV1 = Unsigned!(__vector(int[4]));
alias UV2 = Unsigned!(const(__vector(int[4])));
static assert(is(UV1 == __vector(uint[4])));
static assert(is(UV2 == const(__vector(uint[4]))));
}
//struct S {}
//alias U2 = Unsigned!S;
//alias U3 = Unsigned!double;
static if (is(ucent))
{
alias U4 = Unsigned!cent;
alias U5 = Unsigned!(const(cent));
alias U6 = Unsigned!(immutable(cent));
static assert(is(U4 == ucent));
static assert(is(U5 == const(ucent)));
static assert(is(U6 == immutable(ucent)));
}
}
/**
Returns the largest type, i.e. T such that T.sizeof is the largest. If more
than one type is of the same size, the leftmost argument of these in will be
returned.
*/
template Largest(T...) if (T.length >= 1)
{
static if (T.length == 1)
{
alias Largest = T[0];
}
else static if (T.length == 2)
{
static if (T[0].sizeof >= T[1].sizeof)
{
alias Largest = T[0];
}
else
{
alias Largest = T[1];
}
}
else
{
alias Largest = Largest!(Largest!(T[0 .. $/2]), Largest!(T[$/2 .. $]));
}
}
///
@safe unittest
{
static assert(is(Largest!(uint, ubyte, ushort, real) == real));
static assert(is(Largest!(ulong, double) == ulong));
static assert(is(Largest!(double, ulong) == double));
static assert(is(Largest!(uint, byte, double, short) == double));
static if (is(ucent))
static assert(is(Largest!(uint, ubyte, ucent, ushort) == ucent));
}
/**
Returns the corresponding signed type for T. T must be a numeric integral type,
otherwise a compile-time error occurs.
*/
template Signed(T)
{
template Impl(T)
{
static if (is(T : __vector(V[N]), V, size_t N))
alias Impl = __vector(Impl!V[N]);
else static if (isSigned!T)
alias Impl = T;
else static if (isUnsigned!T)
{
static if (is(T == ubyte )) alias Impl = byte;
static if (is(T == ushort)) alias Impl = short;
static if (is(T == uint )) alias Impl = int;
static if (is(T == ulong )) alias Impl = long;
static if (is(ucent) && is(T == ucent )) alias Impl = cent;
}
else
static assert(false, "Type " ~ T.stringof ~
" does not have an Signed counterpart");
}
alias Signed = ModifyTypePreservingTQ!(Impl, OriginalType!T);
}
///
@safe unittest
{
alias S1 = Signed!uint;
static assert(is(S1 == int));
alias S2 = Signed!(const(uint));
static assert(is(S2 == const(int)));
alias S3 = Signed!(immutable(uint));
static assert(is(S3 == immutable(int)));
static if (is(ucent))
{
alias S4 = Signed!ucent;
static assert(is(S4 == cent));
}
}
@safe unittest
{
static assert(is(Signed!float == float));
static if (is(__vector(int[4])) && is(__vector(uint[4])))
{
alias SV1 = Signed!(__vector(uint[4]));
alias SV2 = Signed!(const(__vector(uint[4])));
static assert(is(SV1 == __vector(int[4])));
static assert(is(SV2 == const(__vector(int[4]))));
}
}
/**
Returns the most negative value of the numeric type T.
*/
template mostNegative(T)
if (isNumeric!T || isSomeChar!T || isBoolean!T)
{
static if (is(typeof(T.min_normal)))
enum mostNegative = -T.max;
else static if (T.min == 0)
enum byte mostNegative = 0;
else
enum mostNegative = T.min;
}
///
@safe unittest
{
static assert(mostNegative!float == -float.max);
static assert(mostNegative!double == -double.max);
static assert(mostNegative!real == -real.max);
static assert(mostNegative!bool == false);
}
///
@safe unittest
{
foreach (T; AliasSeq!(bool, byte, short, int, long))
static assert(mostNegative!T == T.min);
foreach (T; AliasSeq!(ubyte, ushort, uint, ulong, char, wchar, dchar))
static assert(mostNegative!T == 0);
}
/**
Get the type that a scalar type `T` will $(LINK2 $(ROOT_DIR)spec/type.html#integer-promotions, promote)
to in multi-term arithmetic expressions.
*/
template Promoted(T)
if (isScalarType!T)
{
alias Promoted = CopyTypeQualifiers!(T, typeof(T.init + T.init));
}
///
@safe unittest
{
ubyte a = 3, b = 5;
static assert(is(typeof(a * b) == Promoted!ubyte));
static assert(is(Promoted!ubyte == int));
static assert(is(Promoted!(shared(bool)) == shared(int)));
static assert(is(Promoted!(const(int)) == const(int)));
static assert(is(Promoted!double == double));
}
@safe unittest
{
// promote to int:
foreach (T; AliasSeq!(bool, byte, ubyte, short, ushort, char, wchar))
{
static assert(is(Promoted!T == int));
static assert(is(Promoted!(shared(const T)) == shared(const int)));
}
// already promoted:
foreach (T; AliasSeq!(int, uint, long, ulong, float, double, real))
{
static assert(is(Promoted!T == T));
static assert(is(Promoted!(immutable(T)) == immutable(T)));
}
}
//:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
// Misc.
//:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::://
/**
Returns the mangled name of symbol or type $(D sth).
$(D mangledName) is the same as builtin $(D .mangleof) property, but
might be more convenient in generic code, e.g. as a template argument
when invoking staticMap.
*/
template mangledName(sth...)
if (sth.length == 1)
{
enum string mangledName = sth[0].mangleof;
}
///
@safe unittest
{
alias TL = staticMap!(mangledName, int, const int, immutable int);
static assert(TL == AliasSeq!("i", "xi", "yi"));
}
version (unittest) void freeFunc(string);
@safe unittest
{
class C { int value() @property { return 0; } }
static assert(mangledName!int == int.mangleof);
static assert(mangledName!C == C.mangleof);
static assert(mangledName!(C.value) == C.value.mangleof);
static assert(mangledName!(C.value)[$ - 12 .. $] == "5valueMFNdZi");
static assert(mangledName!mangledName == "3std6traits11mangledName");
static assert(mangledName!freeFunc == "_D3std6traits8freeFuncFAyaZv");
int x;
static if (is(typeof({ return x; }) : int delegate() pure)) // issue 9148
static assert(mangledName!((int a) { return a+x; }) == "DFNaNbNiNfiZi"); // pure nothrow @safe @nogc
else
static assert(mangledName!((int a) { return a+x; }) == "DFNbNiNfiZi"); // nothrow @safe @nnogc
}
@system unittest
{
// @system due to demangle
// Test for bug 5718
import std.demangle : demangle;
int foo;
auto foo_demangled = demangle(mangledName!foo);
assert(foo_demangled[0 .. 4] == "int " && foo_demangled[$-3 .. $] == "foo",
foo_demangled);
void bar();
auto bar_demangled = demangle(mangledName!bar);
assert(bar_demangled[0 .. 5] == "void " && bar_demangled[$-5 .. $] == "bar()");
}
// XXX Select & select should go to another module. (functional or algorithm?)
/**
Aliases itself to $(D T[0]) if the boolean $(D condition) is $(D true)
and to $(D T[1]) otherwise.
*/
template Select(bool condition, T...) if (T.length == 2)
{
import std.meta : Alias;
alias Select = Alias!(T[!condition]);
}
///
@safe unittest
{
// can select types
static assert(is(Select!(true, int, long) == int));
static assert(is(Select!(false, int, long) == long));
static struct Foo {}
static assert(is(Select!(false, const(int), const(Foo)) == const(Foo)));
// can select symbols
int a = 1;
int b = 2;
alias selA = Select!(true, a, b);
alias selB = Select!(false, a, b);
assert(selA == 1);
assert(selB == 2);
// can select (compile-time) expressions
enum val = Select!(false, -4, 9 - 6);
static assert(val == 3);
}
/**
If $(D cond) is $(D true), returns $(D a) without evaluating $(D
b). Otherwise, returns $(D b) without evaluating $(D a).
*/
A select(bool cond : true, A, B)(A a, lazy B b) { return a; }
/// Ditto
B select(bool cond : false, A, B)(lazy A a, B b) { return b; }
@safe unittest
{
real pleasecallme() { return 0; }
int dontcallme() { assert(0); }
auto a = select!true(pleasecallme(), dontcallme());
auto b = select!false(dontcallme(), pleasecallme());
static assert(is(typeof(a) == real));
static assert(is(typeof(b) == real));
}
/++
Determine if a symbol has a given
$(DDSUBLINK spec/attribute, uda, user-defined attribute).
See_Also:
$(LREF getUDAs)
+/
template hasUDA(alias symbol, alias attribute)
{
enum hasUDA = getUDAs!(symbol, attribute).length != 0;
}
///
@safe unittest
{
enum E;
struct S {}
@("alpha") int a;
static assert(hasUDA!(a, "alpha"));
static assert(!hasUDA!(a, S));
static assert(!hasUDA!(a, E));
@(E) int b;
static assert(!hasUDA!(b, "alpha"));
static assert(!hasUDA!(b, S));
static assert(hasUDA!(b, E));
@E int c;
static assert(!hasUDA!(c, "alpha"));
static assert(!hasUDA!(c, S));
static assert(hasUDA!(c, E));
@(S, E) int d;
static assert(!hasUDA!(d, "alpha"));
static assert(hasUDA!(d, S));
static assert(hasUDA!(d, E));
@S int e;
static assert(!hasUDA!(e, "alpha"));
static assert(hasUDA!(e, S));
static assert(!hasUDA!(e, S()));
static assert(!hasUDA!(e, E));
@S() int f;
static assert(!hasUDA!(f, "alpha"));
static assert(hasUDA!(f, S));
static assert(hasUDA!(f, S()));
static assert(!hasUDA!(f, E));
@(S, E, "alpha") int g;
static assert(hasUDA!(g, "alpha"));
static assert(hasUDA!(g, S));
static assert(hasUDA!(g, E));
@(100) int h;
static assert(hasUDA!(h, 100));
struct Named { string name; }
@Named("abc") int i;
static assert(hasUDA!(i, Named));
static assert(hasUDA!(i, Named("abc")));
static assert(!hasUDA!(i, Named("def")));
struct AttrT(T)
{
string name;
T value;
}
@AttrT!int("answer", 42) int j;
static assert(hasUDA!(j, AttrT));
static assert(hasUDA!(j, AttrT!int));
static assert(!hasUDA!(j, AttrT!string));
@AttrT!string("hello", "world") int k;
static assert(hasUDA!(k, AttrT));
static assert(!hasUDA!(k, AttrT!int));
static assert(hasUDA!(k, AttrT!string));
struct FuncAttr(alias f) { alias func = f; }
static int fourtyTwo() { return 42; }
static size_t getLen(string s) { return s.length; }
@FuncAttr!getLen int l;
static assert(hasUDA!(l, FuncAttr));
static assert(!hasUDA!(l, FuncAttr!fourtyTwo));
static assert(hasUDA!(l, FuncAttr!getLen));
static assert(!hasUDA!(l, FuncAttr!fourtyTwo()));
static assert(!hasUDA!(l, FuncAttr!getLen()));
@FuncAttr!getLen() int m;
static assert(hasUDA!(m, FuncAttr));
static assert(!hasUDA!(m, FuncAttr!fourtyTwo));
static assert(hasUDA!(m, FuncAttr!getLen));
static assert(!hasUDA!(m, FuncAttr!fourtyTwo()));
static assert(hasUDA!(m, FuncAttr!getLen()));
}
/++
Gets the matching $(DDSUBLINK spec/attribute, uda, user-defined attributes)
from the given symbol.
If the UDA is a type, then any UDAs of the same type on the symbol will
match. If the UDA is a template for a type, then any UDA which is an
instantiation of that template will match. And if the UDA is a value,
then any UDAs on the symbol which are equal to that value will match.
See_Also:
$(LREF hasUDA)
+/
template getUDAs(alias symbol, alias attribute)
{
import std.meta : Filter;
template isDesiredUDA(alias toCheck)
{
static if (is(typeof(attribute)) && !__traits(isTemplate, attribute))
{
static if (__traits(compiles, toCheck == attribute))
enum isDesiredUDA = toCheck == attribute;
else
enum isDesiredUDA = false;
}
else static if (is(typeof(toCheck)))
{
static if (__traits(isTemplate, attribute))
enum isDesiredUDA = isInstanceOf!(attribute, typeof(toCheck));
else
enum isDesiredUDA = is(typeof(toCheck) == attribute);
}
else static if (__traits(isTemplate, attribute))
enum isDesiredUDA = isInstanceOf!(attribute, toCheck);
else
enum isDesiredUDA = is(toCheck == attribute);
}
alias getUDAs = Filter!(isDesiredUDA, __traits(getAttributes, symbol));
}
///
@safe unittest
{
struct Attr
{
string name;
int value;
}
@Attr("Answer", 42) int a;
static assert(getUDAs!(a, Attr).length == 1);
static assert(getUDAs!(a, Attr)[0].name == "Answer");
static assert(getUDAs!(a, Attr)[0].value == 42);
@(Attr("Answer", 42), "string", 9999) int b;
static assert(getUDAs!(b, Attr).length == 1);
static assert(getUDAs!(b, Attr)[0].name == "Answer");
static assert(getUDAs!(b, Attr)[0].value == 42);
@Attr("Answer", 42) @Attr("Pi", 3) int c;
static assert(getUDAs!(c, Attr).length == 2);
static assert(getUDAs!(c, Attr)[0].name == "Answer");
static assert(getUDAs!(c, Attr)[0].value == 42);
static assert(getUDAs!(c, Attr)[1].name == "Pi");
static assert(getUDAs!(c, Attr)[1].value == 3);
static assert(getUDAs!(c, Attr("Answer", 42)).length == 1);
static assert(getUDAs!(c, Attr("Answer", 42))[0].name == "Answer");
static assert(getUDAs!(c, Attr("Answer", 42))[0].value == 42);
static assert(getUDAs!(c, Attr("Answer", 99)).length == 0);
struct AttrT(T)
{
string name;
T value;
}
@AttrT!uint("Answer", 42) @AttrT!int("Pi", 3) @AttrT int d;
static assert(getUDAs!(d, AttrT).length == 2);
static assert(getUDAs!(d, AttrT)[0].name == "Answer");
static assert(getUDAs!(d, AttrT)[0].value == 42);
static assert(getUDAs!(d, AttrT)[1].name == "Pi");
static assert(getUDAs!(d, AttrT)[1].value == 3);
static assert(getUDAs!(d, AttrT!uint).length == 1);
static assert(getUDAs!(d, AttrT!uint)[0].name == "Answer");
static assert(getUDAs!(d, AttrT!uint)[0].value == 42);
static assert(getUDAs!(d, AttrT!int).length == 1);
static assert(getUDAs!(d, AttrT!int)[0].name == "Pi");
static assert(getUDAs!(d, AttrT!int)[0].value == 3);
struct SimpleAttr {}
@SimpleAttr int e;
static assert(getUDAs!(e, SimpleAttr).length == 1);
static assert(is(getUDAs!(e, SimpleAttr)[0] == SimpleAttr));
@SimpleAttr() int f;
static assert(getUDAs!(f, SimpleAttr).length == 1);
static assert(is(typeof(getUDAs!(f, SimpleAttr)[0]) == SimpleAttr));
struct FuncAttr(alias f) { alias func = f; }
static int add42(int v) { return v + 42; }
static string concat(string l, string r) { return l ~ r; }
@FuncAttr!add42 int g;
static assert(getUDAs!(g, FuncAttr).length == 1);
static assert(getUDAs!(g, FuncAttr)[0].func(5) == 47);
static assert(getUDAs!(g, FuncAttr!add42).length == 1);
static assert(getUDAs!(g, FuncAttr!add42)[0].func(5) == 47);
static assert(getUDAs!(g, FuncAttr!add42()).length == 0);
static assert(getUDAs!(g, FuncAttr!concat).length == 0);
static assert(getUDAs!(g, FuncAttr!concat()).length == 0);
@FuncAttr!add42() int h;
static assert(getUDAs!(h, FuncAttr).length == 1);
static assert(getUDAs!(h, FuncAttr)[0].func(5) == 47);
static assert(getUDAs!(h, FuncAttr!add42).length == 1);
static assert(getUDAs!(h, FuncAttr!add42)[0].func(5) == 47);
static assert(getUDAs!(h, FuncAttr!add42()).length == 1);
static assert(getUDAs!(h, FuncAttr!add42())[0].func(5) == 47);
static assert(getUDAs!(h, FuncAttr!concat).length == 0);
static assert(getUDAs!(h, FuncAttr!concat()).length == 0);
@("alpha") @(42) int i;
static assert(getUDAs!(i, "alpha").length == 1);
static assert(getUDAs!(i, "alpha")[0] == "alpha");
static assert(getUDAs!(i, 42).length == 1);
static assert(getUDAs!(i, 42)[0] == 42);
static assert(getUDAs!(i, 'c').length == 0);
}
/**
* Gets all symbols within `symbol` that have the given user-defined attribute.
* This is not recursive; it will not search for symbols within symbols such as
* nested structs or unions.
*/
template getSymbolsByUDA(alias symbol, alias attribute)
{
import std.format : format;
import std.meta : AliasSeq, Filter;
// translate a list of strings into symbols. mixing in the entire alias
// avoids trying to access the symbol, which could cause a privacy violation
template toSymbols(names...)
{
static if (names.length == 0)
alias toSymbols = AliasSeq!();
else
mixin("alias toSymbols = AliasSeq!(symbol.%s, toSymbols!(names[1..$]));"
.format(names[0]));
}
// filtering inaccessible members
enum isAccessibleMember(string name) = __traits(compiles, __traits(getMember, symbol, name));
alias accessibleMembers = Filter!(isAccessibleMember, __traits(allMembers, symbol));
// filtering not compiled members such as alias of basic types
enum hasSpecificUDA(string name) = mixin("hasUDA!(symbol." ~ name ~ ", attribute)");
enum isCorrectMember(string name) = __traits(compiles, hasSpecificUDA!(name));
alias correctMembers = Filter!(isCorrectMember, accessibleMembers);
alias membersWithUDA = toSymbols!(Filter!(hasSpecificUDA, correctMembers));
// if the symbol itself has the UDA, tack it on to the front of the list
static if (hasUDA!(symbol, attribute))
alias getSymbolsByUDA = AliasSeq!(symbol, membersWithUDA);
else
alias getSymbolsByUDA = membersWithUDA;
}
///
@safe unittest
{
enum Attr;
static struct A
{
@Attr int a;
int b;
@Attr void doStuff() {}
void doOtherStuff() {}
static struct Inner
{
// Not found by getSymbolsByUDA
@Attr int c;
}
}
// Finds both variables and functions with the attribute, but
// doesn't include the variables and functions without it.
static assert(getSymbolsByUDA!(A, Attr).length == 2);
// Can access attributes on the symbols returned by getSymbolsByUDA.
static assert(hasUDA!(getSymbolsByUDA!(A, Attr)[0], Attr));
static assert(hasUDA!(getSymbolsByUDA!(A, Attr)[1], Attr));
static struct UDA { string name; }
static struct B
{
@UDA("X")
int x;
@UDA("Y")
int y;
@(100)
int z;
}
// Finds both UDA attributes.
static assert(getSymbolsByUDA!(B, UDA).length == 2);
// Finds one `100` attribute.
static assert(getSymbolsByUDA!(B, 100).length == 1);
// Can get the value of the UDA from the return value
static assert(getUDAs!(getSymbolsByUDA!(B, UDA)[0], UDA)[0].name == "X");
@UDA("A")
static struct C
{
@UDA("B")
int d;
}
// Also checks the symbol itself
static assert(getSymbolsByUDA!(C, UDA).length == 2);
static assert(getSymbolsByUDA!(C, UDA)[0].stringof == "C");
static assert(getSymbolsByUDA!(C, UDA)[1].stringof == "d");
static struct D
{
int x;
}
//Finds nothing if there is no member with specific UDA
static assert(getSymbolsByUDA!(D,UDA).length == 0);
}
// #15335: getSymbolsByUDA fails if type has private members
@safe unittest
{
// HasPrivateMembers has, well, private members, one of which has a UDA.
import std.internal.test.uda : Attr, HasPrivateMembers;
// Trying access to private member from another file therefore we do not have access
// for this otherwise we get deprecation warning - not visible from module
static assert(getSymbolsByUDA!(HasPrivateMembers, Attr).length == 1);
static assert(hasUDA!(getSymbolsByUDA!(HasPrivateMembers, Attr)[0], Attr));
}
///
@safe unittest
{
enum Attr;
struct A
{
alias int INT;
alias void function(INT) SomeFunction;
@Attr int a;
int b;
@Attr private int c;
private int d;
}
// Here everything is fine, we have access to private member c
static assert(getSymbolsByUDA!(A, Attr).length == 2);
static assert(hasUDA!(getSymbolsByUDA!(A, Attr)[0], Attr));
static assert(hasUDA!(getSymbolsByUDA!(A, Attr)[1], Attr));
}
// #16387: getSymbolsByUDA works with structs but fails with classes
@safe unittest
{
enum Attr;
class A
{
@Attr uint a;
}
alias res = getSymbolsByUDA!(A, Attr);
static assert(res.length == 1);
static assert(res[0].stringof == "a");
}
/**
Returns: $(D true) iff all types $(D T) are the same.
*/
template allSameType(T...)
{
static if (T.length <= 1)
{
enum bool allSameType = true;
}
else
{
enum bool allSameType = is(T[0] == T[1]) && allSameType!(T[1..$]);
}
}
///
@safe unittest
{
static assert(allSameType!(int, int));
static assert(allSameType!(int, int, int));
static assert(allSameType!(float, float, float));
static assert(!allSameType!(int, double));
static assert(!allSameType!(int, float, double));
static assert(!allSameType!(int, float, double, real));
static assert(!allSameType!(short, int, float, double, real));
}
/**
Returns: $(D true) iff the type $(D T) can be tested in an $(D
if)-expression, that is if $(D if (pred(T.init)) {}) is compilable.
*/
enum ifTestable(T, alias pred = a => a) = __traits(compiles, { if (pred(T.init)) {} });
@safe unittest
{
import std.meta : AliasSeq, allSatisfy;
static assert(allSatisfy!(ifTestable, AliasSeq!(bool, int, float, double, string)));
struct BoolWrapper { bool value; }
static assert(!ifTestable!(bool, a => BoolWrapper(a)));
}
/**
* Detect whether `X` is a type. Analogous to `is(X)`. This is useful when used
* in conjunction with other templates, e.g. `allSatisfy!(isType, X)`.
*
* Returns:
* `true` if `X` is a type, `false` otherwise
*/
template isType(X...) if (X.length == 1)
{
enum isType = is(X[0]);
}
///
@safe unittest
{
struct S {
template Test() {}
}
class C {}
interface I {}
union U {}
static assert(isType!int);
static assert(isType!string);
static assert(isType!(int[int]));
static assert(isType!S);
static assert(isType!C);
static assert(isType!I);
static assert(isType!U);
int n;
void func(){}
static assert(!isType!n);
static assert(!isType!func);
static assert(!isType!(S.Test));
static assert(!isType!(S.Test!()));
}
/**
* Detect whether symbol or type `X` is a function. This is different that finding
* if a symbol is callable or satisfying `is(X == function)`, it finds
* specifically if the symbol represents a normal function declaration, i.e.
* not a delegate or a function pointer.
*
* Returns:
* `true` if `X` is a function, `false` otherwise
*
* See_Also:
* Use $(LREF isFunctionPointer) or $(LREF isDelegate) for detecting those types
* respectively.
*/
template isFunction(X...) if (X.length == 1)
{
static if (is(typeof(&X[0]) U : U*) && is(U == function) ||
is(typeof(&X[0]) U == delegate))
{
// x is a (nested) function symbol.
enum isFunction = true;
}
else static if (is(X[0] T))
{
// x is a type. Take the type of it and examine.
enum isFunction = is(T == function);
}
else
enum isFunction = false;
}
///
@safe unittest
{
static void func(){}
static assert(isFunction!func);
struct S
{
void func(){}
}
static assert(isFunction!(S.func));
}
/**
* Detect whether `X` is a final method or class.
*
* Returns:
* `true` if `X` is final, `false` otherwise
*/
template isFinal(X...) if (X.length == 1)
{
static if (is(X[0] == class))
enum isFinal = __traits(isFinalClass, X[0]);
else static if (isFunction!X)
enum isFinal = __traits(isFinalFunction, X[0]);
else
enum isFinal = false;
}
///
@safe unittest
{
class C
{
void nf() {}
static void sf() {}
final void ff() {}
}
final class FC { }
static assert(!isFinal!(C));
static assert( isFinal!(FC));
static assert(!isFinal!(C.nf));
static assert(!isFinal!(C.sf));
static assert( isFinal!(C.ff));
}
/++
+ Determines whether the type `S` can be copied.
+ If a type cannot be copied, then code such as `MyStruct x; auto y = x;` will fail to compile.
+ Copying for structs can be disabled by using `@disable this(this)`.
+
+ Params:
+ S = The type to check.
+
+ Returns:
+ `true` if `S` can be copied. `false` otherwise.
+ ++/
enum isCopyable(S) = is(typeof(
{ S foo = S.init; S copy = foo; }
));
///
@safe unittest
{
struct S1 {} // Fine. Can be copied
struct S2 { this(this) {}} // Fine. Can be copied
struct S3 {@disable this(this) {}} // Not fine. Copying is disabled.
struct S4 {S3 s;} // Not fine. A field has copying disabled.
class C1 {}
static assert( isCopyable!S1);
static assert( isCopyable!S2);
static assert(!isCopyable!S3);
static assert(!isCopyable!S4);
static assert(isCopyable!C1);
static assert(isCopyable!int);
static assert(isCopyable!(int[]));
}