blob: a54f67045665851f0e102a7a5bacbd2a9a93342c [file] [log] [blame]
/* DDG - Data Dependence Graph implementation.
Copyright (C) 2004-2021 Free Software Foundation, Inc.
Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "df.h"
#include "insn-attr.h"
#include "sched-int.h"
#include "ddg.h"
#include "rtl-iter.h"
#ifdef INSN_SCHEDULING
/* Forward declarations. */
static void add_backarc_to_ddg (ddg_ptr, ddg_edge_ptr);
static void add_backarc_to_scc (ddg_scc_ptr, ddg_edge_ptr);
static void add_scc_to_ddg (ddg_all_sccs_ptr, ddg_scc_ptr);
static void create_ddg_dep_from_intra_loop_link (ddg_ptr, ddg_node_ptr,
ddg_node_ptr, dep_t);
static void create_ddg_dep_no_link (ddg_ptr, ddg_node_ptr, ddg_node_ptr,
dep_type, dep_data_type, int);
static ddg_edge_ptr create_ddg_edge (ddg_node_ptr, ddg_node_ptr, dep_type,
dep_data_type, int, int);
static void add_edge_to_ddg (ddg_ptr g, ddg_edge_ptr);
/* Auxiliary variable for mem_read_insn_p/mem_write_insn_p. */
static bool mem_ref_p;
/* Auxiliary function for mem_read_insn_p. */
static void
mark_mem_use (rtx *x, void *)
{
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, *x, NONCONST)
if (MEM_P (*iter))
{
mem_ref_p = true;
break;
}
}
/* Returns nonzero if INSN reads from memory. */
static bool
mem_read_insn_p (rtx_insn *insn)
{
mem_ref_p = false;
note_uses (&PATTERN (insn), mark_mem_use, NULL);
return mem_ref_p;
}
static void
mark_mem_store (rtx loc, const_rtx setter ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
{
if (MEM_P (loc))
mem_ref_p = true;
}
/* Returns nonzero if INSN writes to memory. */
static bool
mem_write_insn_p (rtx_insn *insn)
{
mem_ref_p = false;
note_stores (insn, mark_mem_store, NULL);
return mem_ref_p;
}
/* Returns nonzero if X has access to memory. */
static bool
rtx_mem_access_p (rtx x)
{
int i, j;
const char *fmt;
enum rtx_code code;
if (x == 0)
return false;
if (MEM_P (x))
return true;
code = GET_CODE (x);
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (rtx_mem_access_p (XEXP (x, i)))
return true;
}
else if (fmt[i] == 'E')
for (j = 0; j < XVECLEN (x, i); j++)
{
if (rtx_mem_access_p (XVECEXP (x, i, j)))
return true;
}
}
return false;
}
/* Returns nonzero if INSN reads to or writes from memory. */
static bool
mem_access_insn_p (rtx_insn *insn)
{
return rtx_mem_access_p (PATTERN (insn));
}
/* Return true if DEF_INSN contains address being auto-inc or auto-dec
which is used in USE_INSN. Otherwise return false. The result is
being used to decide whether to remove the edge between def_insn and
use_insn when -fmodulo-sched-allow-regmoves is set. This function
doesn't need to consider the specific address register; no reg_moves
will be allowed for any life range defined by def_insn and used
by use_insn, if use_insn uses an address register auto-inc'ed by
def_insn. */
bool
autoinc_var_is_used_p (rtx_insn *def_insn, rtx_insn *use_insn)
{
rtx note;
for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
if (REG_NOTE_KIND (note) == REG_INC
&& reg_referenced_p (XEXP (note, 0), PATTERN (use_insn)))
return true;
return false;
}
/* Return true if one of the definitions in INSN has MODE_CC. Otherwise
return false. */
static bool
def_has_ccmode_p (rtx_insn *insn)
{
df_ref def;
FOR_EACH_INSN_DEF (def, insn)
{
machine_mode mode = GET_MODE (DF_REF_REG (def));
if (GET_MODE_CLASS (mode) == MODE_CC)
return true;
}
return false;
}
/* Computes the dependence parameters (latency, distance etc.), creates
a ddg_edge and adds it to the given DDG. */
static void
create_ddg_dep_from_intra_loop_link (ddg_ptr g, ddg_node_ptr src_node,
ddg_node_ptr dest_node, dep_t link)
{
ddg_edge_ptr e;
int latency, distance = 0;
dep_type t = TRUE_DEP;
dep_data_type dt = (mem_access_insn_p (src_node->insn)
&& mem_access_insn_p (dest_node->insn) ? MEM_DEP
: REG_DEP);
gcc_assert (src_node->cuid < dest_node->cuid);
gcc_assert (link);
/* Note: REG_DEP_ANTI applies to MEM ANTI_DEP as well!! */
if (DEP_TYPE (link) == REG_DEP_ANTI)
t = ANTI_DEP;
else if (DEP_TYPE (link) == REG_DEP_OUTPUT)
t = OUTPUT_DEP;
/* We currently choose not to create certain anti-deps edges and
compensate for that by generating reg-moves based on the life-range
analysis. The anti-deps that will be deleted are the ones which
have true-deps edges in the opposite direction (in other words
the kernel has only one def of the relevant register).
If the address that is being auto-inc or auto-dec in DEST_NODE
is used in SRC_NODE then do not remove the edge to make sure
reg-moves will not be created for this address.
TODO: support the removal of all anti-deps edges, i.e. including those
whose register has multiple defs in the loop. */
if (flag_modulo_sched_allow_regmoves
&& (t == ANTI_DEP && dt == REG_DEP)
&& !def_has_ccmode_p (dest_node->insn)
&& !autoinc_var_is_used_p (dest_node->insn, src_node->insn))
{
rtx set;
set = single_set (dest_node->insn);
/* TODO: Handle registers that REG_P is not true for them, i.e.
subregs and special registers. */
if (set && REG_P (SET_DEST (set)))
{
int regno = REGNO (SET_DEST (set));
df_ref first_def;
class df_rd_bb_info *bb_info = DF_RD_BB_INFO (g->bb);
first_def = df_bb_regno_first_def_find (g->bb, regno);
gcc_assert (first_def);
if (bitmap_bit_p (&bb_info->gen, DF_REF_ID (first_def)))
return;
}
}
latency = dep_cost (link);
e = create_ddg_edge (src_node, dest_node, t, dt, latency, distance);
add_edge_to_ddg (g, e);
}
/* The same as the above function, but it doesn't require a link parameter. */
static void
create_ddg_dep_no_link (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to,
dep_type d_t, dep_data_type d_dt, int distance)
{
ddg_edge_ptr e;
int l;
enum reg_note dep_kind;
struct _dep _dep, *dep = &_dep;
if (d_t == ANTI_DEP)
dep_kind = REG_DEP_ANTI;
else if (d_t == OUTPUT_DEP)
dep_kind = REG_DEP_OUTPUT;
else
{
gcc_assert (d_t == TRUE_DEP);
dep_kind = REG_DEP_TRUE;
}
init_dep (dep, from->insn, to->insn, dep_kind);
l = dep_cost (dep);
e = create_ddg_edge (from, to, d_t, d_dt, l, distance);
if (distance > 0)
add_backarc_to_ddg (g, e);
else
add_edge_to_ddg (g, e);
}
/* Given a downwards exposed register def LAST_DEF (which is the last
definition of that register in the bb), add inter-loop true dependences
to all its uses in the next iteration, an output dependence to the
first def of the same register (possibly itself) in the next iteration
and anti-dependences from its uses in the current iteration to the
first definition in the next iteration. */
static void
add_cross_iteration_register_deps (ddg_ptr g, df_ref last_def)
{
struct df_link *r_use;
int has_use_in_bb_p = false;
int regno = DF_REF_REGNO (last_def);
ddg_node_ptr last_def_node = get_node_of_insn (g, DF_REF_INSN (last_def));
df_ref first_def = df_bb_regno_first_def_find (g->bb, regno);
ddg_node_ptr first_def_node = get_node_of_insn (g, DF_REF_INSN (first_def));
ddg_node_ptr use_node;
gcc_assert (last_def_node && first_def && first_def_node);
if (flag_checking && DF_REF_ID (last_def) != DF_REF_ID (first_def))
{
class df_rd_bb_info *bb_info = DF_RD_BB_INFO (g->bb);
gcc_assert (!bitmap_bit_p (&bb_info->gen, DF_REF_ID (first_def)));
}
/* Create inter-loop true dependences and anti dependences. */
for (r_use = DF_REF_CHAIN (last_def); r_use != NULL; r_use = r_use->next)
{
if (DF_REF_BB (r_use->ref) != g->bb)
continue;
gcc_assert (!DF_REF_IS_ARTIFICIAL (r_use->ref)
&& DF_REF_INSN_INFO (r_use->ref) != NULL);
rtx_insn *use_insn = DF_REF_INSN (r_use->ref);
if (DEBUG_INSN_P (use_insn))
continue;
/* ??? Do not handle uses with DF_REF_IN_NOTE notes. */
use_node = get_node_of_insn (g, use_insn);
gcc_assert (use_node);
has_use_in_bb_p = true;
if (use_node->cuid <= last_def_node->cuid)
{
/* Add true deps from last_def to it's uses in the next
iteration. Any such upwards exposed use appears before
the last_def def. */
create_ddg_dep_no_link (g, last_def_node, use_node,
TRUE_DEP, REG_DEP, 1);
}
else
{
/* Add anti deps from last_def's uses in the current iteration
to the first def in the next iteration. We do not add ANTI
dep when there is an intra-loop TRUE dep in the opposite
direction, but use regmoves to fix such disregarded ANTI
deps when broken. If the first_def reaches the USE then
there is such a dep.
Always create the edge if the use node is a branch in
order to prevent the creation of reg-moves.
If the address that is being auto-inc or auto-dec in LAST_DEF
is used in USE_INSN then do not remove the edge to make sure
reg-moves will not be created for that address. */
if (DF_REF_ID (last_def) != DF_REF_ID (first_def)
|| !flag_modulo_sched_allow_regmoves
|| JUMP_P (use_node->insn)
|| autoinc_var_is_used_p (DF_REF_INSN (last_def), use_insn)
|| def_has_ccmode_p (DF_REF_INSN (last_def)))
create_ddg_dep_no_link (g, use_node, first_def_node, ANTI_DEP,
REG_DEP, 1);
}
}
/* Create an inter-loop output dependence between LAST_DEF (which is the
last def in its block, being downwards exposed) and the first def in
its block. Avoid creating a self output dependence. Avoid creating
an output dependence if there is a dependence path between the two
defs starting with a true dependence to a use which can be in the
next iteration; followed by an anti dependence of that use to the
first def (i.e. if there is a use between the two defs.) */
if (!has_use_in_bb_p && DF_REF_ID (last_def) != DF_REF_ID (first_def))
create_ddg_dep_no_link (g, last_def_node, first_def_node,
OUTPUT_DEP, REG_DEP, 1);
}
/* Build inter-loop dependencies, by looking at DF analysis backwards. */
static void
build_inter_loop_deps (ddg_ptr g)
{
unsigned rd_num;
class df_rd_bb_info *rd_bb_info;
bitmap_iterator bi;
rd_bb_info = DF_RD_BB_INFO (g->bb);
/* Find inter-loop register output, true and anti deps. */
EXECUTE_IF_SET_IN_BITMAP (&rd_bb_info->gen, 0, rd_num, bi)
{
df_ref rd = DF_DEFS_GET (rd_num);
add_cross_iteration_register_deps (g, rd);
}
}
/* Return true if two specified instructions have mem expr with conflict
alias sets. */
static bool
insns_may_alias_p (rtx_insn *insn1, rtx_insn *insn2)
{
subrtx_iterator::array_type array1;
subrtx_iterator::array_type array2;
FOR_EACH_SUBRTX (iter1, array1, PATTERN (insn1), NONCONST)
{
const_rtx x1 = *iter1;
if (MEM_P (x1))
FOR_EACH_SUBRTX (iter2, array2, PATTERN (insn2), NONCONST)
{
const_rtx x2 = *iter2;
if (MEM_P (x2) && may_alias_p (x2, x1))
return true;
}
}
return false;
}
/* Given two nodes, analyze their RTL insns and add intra-loop mem deps
to ddg G. */
static void
add_intra_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
{
if ((from->cuid == to->cuid)
|| !insns_may_alias_p (from->insn, to->insn))
/* Do not create edge if memory references have disjoint alias sets
or 'to' and 'from' are the same instruction. */
return;
if (mem_write_insn_p (from->insn))
{
if (mem_read_insn_p (to->insn))
create_ddg_dep_no_link (g, from, to, TRUE_DEP, MEM_DEP, 0);
else
create_ddg_dep_no_link (g, from, to, OUTPUT_DEP, MEM_DEP, 0);
}
else if (!mem_read_insn_p (to->insn))
create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 0);
}
/* Given two nodes, analyze their RTL insns and add inter-loop mem deps
to ddg G. */
static void
add_inter_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
{
if (!insns_may_alias_p (from->insn, to->insn))
/* Do not create edge if memory references have disjoint alias sets. */
return;
if (mem_write_insn_p (from->insn))
{
if (mem_read_insn_p (to->insn))
create_ddg_dep_no_link (g, from, to, TRUE_DEP, MEM_DEP, 1);
else if (from->cuid != to->cuid)
create_ddg_dep_no_link (g, from, to, OUTPUT_DEP, MEM_DEP, 1);
}
else
{
if (mem_read_insn_p (to->insn))
return;
else if (from->cuid != to->cuid)
{
create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 1);
create_ddg_dep_no_link (g, to, from, TRUE_DEP, MEM_DEP, 1);
}
}
}
/* Perform intra-block Data Dependency analysis and connect the nodes in
the DDG. We assume the loop has a single basic block. */
static void
build_intra_loop_deps (ddg_ptr g)
{
int i;
/* Hold the dependency analysis state during dependency calculations. */
class deps_desc tmp_deps;
rtx_insn *head, *tail;
/* Build the dependence information, using the sched_analyze function. */
init_deps_global ();
init_deps (&tmp_deps, false);
/* Do the intra-block data dependence analysis for the given block. */
get_ebb_head_tail (g->bb, g->bb, &head, &tail);
sched_analyze (&tmp_deps, head, tail);
/* Build intra-loop data dependencies using the scheduler dependency
analysis. */
for (i = 0; i < g->num_nodes; i++)
{
ddg_node_ptr dest_node = &g->nodes[i];
sd_iterator_def sd_it;
dep_t dep;
FOR_EACH_DEP (dest_node->insn, SD_LIST_BACK, sd_it, dep)
{
rtx_insn *src_insn = DEP_PRO (dep);
ddg_node_ptr src_node = get_node_of_insn (g, src_insn);
if (!src_node)
continue;
create_ddg_dep_from_intra_loop_link (g, src_node, dest_node, dep);
}
/* If this insn modifies memory, add an edge to all insns that access
memory. */
if (mem_access_insn_p (dest_node->insn))
{
int j;
for (j = 0; j <= i; j++)
{
ddg_node_ptr j_node = &g->nodes[j];
if (mem_access_insn_p (j_node->insn))
{
/* Don't bother calculating inter-loop dep if an intra-loop dep
already exists. */
if (! bitmap_bit_p (dest_node->successors, j))
add_inter_loop_mem_dep (g, dest_node, j_node);
/* If -fmodulo-sched-allow-regmoves
is set certain anti-dep edges are not created.
It might be that these anti-dep edges are on the
path from one memory instruction to another such that
removing these edges could cause a violation of the
memory dependencies. Thus we add intra edges between
every two memory instructions in this case. */
if (flag_modulo_sched_allow_regmoves
&& !bitmap_bit_p (dest_node->predecessors, j))
add_intra_loop_mem_dep (g, j_node, dest_node);
}
}
}
}
/* Free the INSN_LISTs. */
finish_deps_global ();
free_deps (&tmp_deps);
/* Free dependencies. */
sched_free_deps (head, tail, false);
}
/* Given a basic block, create its DDG and return a pointer to a variable
of ddg type that represents it.
Initialize the ddg structure fields to the appropriate values. */
ddg_ptr
create_ddg (basic_block bb, int closing_branch_deps)
{
ddg_ptr g;
rtx_insn *insn, *first_note;
int i, j;
int num_nodes = 0;
g = (ddg_ptr) xcalloc (1, sizeof (struct ddg));
g->bb = bb;
g->closing_branch_deps = closing_branch_deps;
/* Count the number of insns in the BB. */
for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
insn = NEXT_INSN (insn))
{
if (!INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE)
continue;
if (NONDEBUG_INSN_P (insn))
{
if (mem_read_insn_p (insn))
g->num_loads++;
if (mem_write_insn_p (insn))
g->num_stores++;
num_nodes++;
}
}
/* There is nothing to do for this BB. */
if (num_nodes <= 1)
{
free (g);
return NULL;
}
/* Allocate the nodes array, and initialize the nodes. */
g->num_nodes = num_nodes;
g->nodes = (ddg_node_ptr) xcalloc (num_nodes, sizeof (struct ddg_node));
g->closing_branch = NULL;
i = 0;
first_note = NULL;
for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
insn = NEXT_INSN (insn))
{
if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
continue;
if (!first_note && (INSN_P (insn) || NOTE_P (insn)))
first_note = insn;
if (!INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE)
continue;
if (JUMP_P (insn))
{
gcc_assert (!g->closing_branch);
g->closing_branch = &g->nodes[i];
}
if (NONDEBUG_INSN_P (insn))
{
g->nodes[i].cuid = i;
g->nodes[i].successors = sbitmap_alloc (num_nodes);
bitmap_clear (g->nodes[i].successors);
g->nodes[i].predecessors = sbitmap_alloc (num_nodes);
bitmap_clear (g->nodes[i].predecessors);
gcc_checking_assert (first_note);
g->nodes[i].first_note = first_note;
g->nodes[i].aux.count = -1;
g->nodes[i].max_dist = XCNEWVEC (int, num_nodes);
for (j = 0; j < num_nodes; j++)
g->nodes[i].max_dist[j] = -1;
g->nodes[i++].insn = insn;
}
first_note = NULL;
}
/* We must have found a branch in DDG. */
gcc_assert (g->closing_branch);
/* Build the data dependency graph. */
build_intra_loop_deps (g);
build_inter_loop_deps (g);
return g;
}
/* Free all the memory allocated for the DDG. */
void
free_ddg (ddg_ptr g)
{
int i;
if (!g)
return;
for (i = 0; i < g->num_nodes; i++)
{
ddg_edge_ptr e = g->nodes[i].out;
while (e)
{
ddg_edge_ptr next = e->next_out;
free (e);
e = next;
}
sbitmap_free (g->nodes[i].successors);
sbitmap_free (g->nodes[i].predecessors);
free (g->nodes[i].max_dist);
}
if (g->num_backarcs > 0)
free (g->backarcs);
free (g->nodes);
free (g);
}
void
print_ddg_edge (FILE *file, ddg_edge_ptr e)
{
char dep_c;
switch (e->type)
{
case OUTPUT_DEP :
dep_c = 'O';
break;
case ANTI_DEP :
dep_c = 'A';
break;
default:
dep_c = 'T';
}
fprintf (file, " [%d -(%c,%d,%d)-> %d] ", INSN_UID (e->src->insn),
dep_c, e->latency, e->distance, INSN_UID (e->dest->insn));
}
/* Print the DDG nodes with there in/out edges to the dump file. */
void
print_ddg (FILE *file, ddg_ptr g)
{
int i;
for (i = 0; i < g->num_nodes; i++)
{
ddg_edge_ptr e;
fprintf (file, "Node num: %d\n", g->nodes[i].cuid);
print_rtl_single (file, g->nodes[i].insn);
fprintf (file, "OUT ARCS: ");
for (e = g->nodes[i].out; e; e = e->next_out)
print_ddg_edge (file, e);
fprintf (file, "\nIN ARCS: ");
for (e = g->nodes[i].in; e; e = e->next_in)
print_ddg_edge (file, e);
fprintf (file, "\n");
}
}
/* Print the given DDG in VCG format. */
DEBUG_FUNCTION void
vcg_print_ddg (FILE *file, ddg_ptr g)
{
int src_cuid;
fprintf (file, "graph: {\n");
for (src_cuid = 0; src_cuid < g->num_nodes; src_cuid++)
{
ddg_edge_ptr e;
int src_uid = INSN_UID (g->nodes[src_cuid].insn);
fprintf (file, "node: {title: \"%d_%d\" info1: \"", src_cuid, src_uid);
print_rtl_single (file, g->nodes[src_cuid].insn);
fprintf (file, "\"}\n");
for (e = g->nodes[src_cuid].out; e; e = e->next_out)
{
int dst_uid = INSN_UID (e->dest->insn);
int dst_cuid = e->dest->cuid;
/* Give the backarcs a different color. */
if (e->distance > 0)
fprintf (file, "backedge: {color: red ");
else
fprintf (file, "edge: { ");
fprintf (file, "sourcename: \"%d_%d\" ", src_cuid, src_uid);
fprintf (file, "targetname: \"%d_%d\" ", dst_cuid, dst_uid);
fprintf (file, "label: \"%d_%d\"}\n", e->latency, e->distance);
}
}
fprintf (file, "}\n");
}
/* Dump the sccs in SCCS. */
void
print_sccs (FILE *file, ddg_all_sccs_ptr sccs, ddg_ptr g)
{
unsigned int u = 0;
sbitmap_iterator sbi;
int i;
if (!file)
return;
fprintf (file, "\n;; Number of SCC nodes - %d\n", sccs->num_sccs);
for (i = 0; i < sccs->num_sccs; i++)
{
fprintf (file, "SCC number: %d\n", i);
EXECUTE_IF_SET_IN_BITMAP (sccs->sccs[i]->nodes, 0, u, sbi)
{
fprintf (file, "insn num %d\n", u);
print_rtl_single (file, g->nodes[u].insn);
}
}
fprintf (file, "\n");
}
/* Create an edge and initialize it with given values. */
static ddg_edge_ptr
create_ddg_edge (ddg_node_ptr src, ddg_node_ptr dest,
dep_type t, dep_data_type dt, int l, int d)
{
ddg_edge_ptr e = (ddg_edge_ptr) xmalloc (sizeof (struct ddg_edge));
e->src = src;
e->dest = dest;
e->type = t;
e->data_type = dt;
e->latency = l;
e->distance = d;
e->next_in = e->next_out = NULL;
e->in_scc = false;
return e;
}
/* Add the given edge to the in/out linked lists of the DDG nodes. */
static void
add_edge_to_ddg (ddg_ptr g ATTRIBUTE_UNUSED, ddg_edge_ptr e)
{
ddg_node_ptr src = e->src;
ddg_node_ptr dest = e->dest;
/* Should have allocated the sbitmaps. */
gcc_assert (src->successors && dest->predecessors);
bitmap_set_bit (src->successors, dest->cuid);
bitmap_set_bit (dest->predecessors, src->cuid);
e->next_in = dest->in;
dest->in = e;
e->next_out = src->out;
src->out = e;
}
/* Algorithm for computing the recurrence_length of an scc. We assume at
for now that cycles in the data dependence graph contain a single backarc.
This simplifies the algorithm, and can be generalized later. */
static void
set_recurrence_length (ddg_scc_ptr scc)
{
int j;
int result = -1;
for (j = 0; j < scc->num_backarcs; j++)
{
ddg_edge_ptr backarc = scc->backarcs[j];
int distance = backarc->distance;
ddg_node_ptr src = backarc->dest;
ddg_node_ptr dest = backarc->src;
int length = src->max_dist[dest->cuid];
if (length < 0)
continue;
length += backarc->latency;
result = MAX (result, (length / distance));
}
scc->recurrence_length = result;
}
/* Create a new SCC given the set of its nodes. Compute its recurrence_length
and mark edges that belong to this scc. */
static ddg_scc_ptr
create_scc (ddg_ptr g, sbitmap nodes, int id)
{
ddg_scc_ptr scc;
unsigned int u = 0;
sbitmap_iterator sbi;
scc = (ddg_scc_ptr) xmalloc (sizeof (struct ddg_scc));
scc->backarcs = NULL;
scc->num_backarcs = 0;
scc->nodes = sbitmap_alloc (g->num_nodes);
bitmap_copy (scc->nodes, nodes);
/* Mark the backarcs that belong to this SCC. */
EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
{
ddg_edge_ptr e;
ddg_node_ptr n = &g->nodes[u];
gcc_assert (n->aux.count == -1);
n->aux.count = id;
for (e = n->out; e; e = e->next_out)
if (bitmap_bit_p (nodes, e->dest->cuid))
{
e->in_scc = true;
if (e->distance > 0)
add_backarc_to_scc (scc, e);
}
}
return scc;
}
/* Cleans the memory allocation of a given SCC. */
static void
free_scc (ddg_scc_ptr scc)
{
if (!scc)
return;
sbitmap_free (scc->nodes);
if (scc->num_backarcs > 0)
free (scc->backarcs);
free (scc);
}
/* Add a given edge known to be a backarc to the given DDG. */
static void
add_backarc_to_ddg (ddg_ptr g, ddg_edge_ptr e)
{
int size = (g->num_backarcs + 1) * sizeof (ddg_edge_ptr);
add_edge_to_ddg (g, e);
g->backarcs = (ddg_edge_ptr *) xrealloc (g->backarcs, size);
g->backarcs[g->num_backarcs++] = e;
}
/* Add backarc to an SCC. */
static void
add_backarc_to_scc (ddg_scc_ptr scc, ddg_edge_ptr e)
{
int size = (scc->num_backarcs + 1) * sizeof (ddg_edge_ptr);
scc->backarcs = (ddg_edge_ptr *) xrealloc (scc->backarcs, size);
scc->backarcs[scc->num_backarcs++] = e;
}
/* Add the given SCC to the DDG. */
static void
add_scc_to_ddg (ddg_all_sccs_ptr g, ddg_scc_ptr scc)
{
int size = (g->num_sccs + 1) * sizeof (ddg_scc_ptr);
g->sccs = (ddg_scc_ptr *) xrealloc (g->sccs, size);
g->sccs[g->num_sccs++] = scc;
}
/* Given the instruction INSN return the node that represents it. */
ddg_node_ptr
get_node_of_insn (ddg_ptr g, rtx_insn *insn)
{
int i;
for (i = 0; i < g->num_nodes; i++)
if (insn == g->nodes[i].insn)
return &g->nodes[i];
return NULL;
}
/* Given a set OPS of nodes in the DDG, find the set of their successors
which are not in OPS, and set their bits in SUCC. Bits corresponding to
OPS are cleared from SUCC. Leaves the other bits in SUCC unchanged. */
void
find_successors (sbitmap succ, ddg_ptr g, sbitmap ops)
{
unsigned int i = 0;
sbitmap_iterator sbi;
EXECUTE_IF_SET_IN_BITMAP (ops, 0, i, sbi)
{
const sbitmap node_succ = NODE_SUCCESSORS (&g->nodes[i]);
bitmap_ior (succ, succ, node_succ);
};
/* We want those that are not in ops. */
bitmap_and_compl (succ, succ, ops);
}
/* Given a set OPS of nodes in the DDG, find the set of their predecessors
which are not in OPS, and set their bits in PREDS. Bits corresponding to
OPS are cleared from PREDS. Leaves the other bits in PREDS unchanged. */
void
find_predecessors (sbitmap preds, ddg_ptr g, sbitmap ops)
{
unsigned int i = 0;
sbitmap_iterator sbi;
EXECUTE_IF_SET_IN_BITMAP (ops, 0, i, sbi)
{
const sbitmap node_preds = NODE_PREDECESSORS (&g->nodes[i]);
bitmap_ior (preds, preds, node_preds);
};
/* We want those that are not in ops. */
bitmap_and_compl (preds, preds, ops);
}
/* Compare function to be passed to qsort to order the backarcs in descending
recMII order. */
static int
compare_sccs (const void *s1, const void *s2)
{
const int rec_l1 = (*(const ddg_scc_ptr *)s1)->recurrence_length;
const int rec_l2 = (*(const ddg_scc_ptr *)s2)->recurrence_length;
return ((rec_l2 > rec_l1) - (rec_l2 < rec_l1));
}
/* Order the backarcs in descending recMII order using compare_sccs. */
static void
order_sccs (ddg_all_sccs_ptr g)
{
qsort (g->sccs, g->num_sccs, sizeof (ddg_scc_ptr),
(int (*) (const void *, const void *)) compare_sccs);
}
/* Check that every node in SCCS belongs to exactly one strongly connected
component and that no element of SCCS is empty. */
static void
check_sccs (ddg_all_sccs_ptr sccs, int num_nodes)
{
int i = 0;
auto_sbitmap tmp (num_nodes);
bitmap_clear (tmp);
for (i = 0; i < sccs->num_sccs; i++)
{
gcc_assert (!bitmap_empty_p (sccs->sccs[i]->nodes));
/* Verify that every node in sccs is in exactly one strongly
connected component. */
gcc_assert (!bitmap_intersect_p (tmp, sccs->sccs[i]->nodes));
bitmap_ior (tmp, tmp, sccs->sccs[i]->nodes);
}
}
/* Perform the Strongly Connected Components decomposing algorithm on the
DDG and return DDG_ALL_SCCS structure that contains them. */
ddg_all_sccs_ptr
create_ddg_all_sccs (ddg_ptr g)
{
int i, j, k, scc, way;
int num_nodes = g->num_nodes;
auto_sbitmap from (num_nodes);
auto_sbitmap to (num_nodes);
auto_sbitmap scc_nodes (num_nodes);
ddg_all_sccs_ptr sccs = (ddg_all_sccs_ptr)
xmalloc (sizeof (struct ddg_all_sccs));
sccs->ddg = g;
sccs->sccs = NULL;
sccs->num_sccs = 0;
for (i = 0; i < g->num_backarcs; i++)
{
ddg_scc_ptr scc;
ddg_edge_ptr backarc = g->backarcs[i];
ddg_node_ptr src = backarc->src;
ddg_node_ptr dest = backarc->dest;
/* If the backarc already belongs to an SCC, continue. */
if (backarc->in_scc)
continue;
bitmap_clear (scc_nodes);
bitmap_clear (from);
bitmap_clear (to);
bitmap_set_bit (from, dest->cuid);
bitmap_set_bit (to, src->cuid);
if (find_nodes_on_paths (scc_nodes, g, from, to))
{
scc = create_scc (g, scc_nodes, sccs->num_sccs);
add_scc_to_ddg (sccs, scc);
}
}
/* Init max_dist arrays for Floyd–Warshall-like
longest patch calculation algorithm. */
for (k = 0; k < num_nodes; k++)
{
ddg_edge_ptr e;
ddg_node_ptr n = &g->nodes[k];
if (n->aux.count == -1)
continue;
n->max_dist[k] = 0;
for (e = n->out; e; e = e->next_out)
if (e->distance == 0 && g->nodes[e->dest->cuid].aux.count == n->aux.count)
n->max_dist[e->dest->cuid] = e->latency;
}
/* Run main Floid-Warshall loop. We use only non-backarc edges
inside each scc. */
for (k = 0; k < num_nodes; k++)
{
scc = g->nodes[k].aux.count;
if (scc != -1)
{
for (i = 0; i < num_nodes; i++)
if (g->nodes[i].aux.count == scc)
for (j = 0; j < num_nodes; j++)
if (g->nodes[j].aux.count == scc
&& g->nodes[i].max_dist[k] >= 0
&& g->nodes[k].max_dist[j] >= 0)
{
way = g->nodes[i].max_dist[k] + g->nodes[k].max_dist[j];
if (g->nodes[i].max_dist[j] < way)
g->nodes[i].max_dist[j] = way;
}
}
}
/* Calculate recurrence_length using max_dist info. */
for (i = 0; i < sccs->num_sccs; i++)
set_recurrence_length (sccs->sccs[i]);
order_sccs (sccs);
if (flag_checking)
check_sccs (sccs, num_nodes);
return sccs;
}
/* Frees the memory allocated for all SCCs of the DDG, but keeps the DDG. */
void
free_ddg_all_sccs (ddg_all_sccs_ptr all_sccs)
{
int i;
if (!all_sccs)
return;
for (i = 0; i < all_sccs->num_sccs; i++)
free_scc (all_sccs->sccs[i]);
free (all_sccs->sccs);
free (all_sccs);
}
/* Given FROM - a bitmap of source nodes - and TO - a bitmap of destination
nodes - find all nodes that lie on paths from FROM to TO (not excluding
nodes from FROM and TO). Return nonzero if nodes exist. */
int
find_nodes_on_paths (sbitmap result, ddg_ptr g, sbitmap from, sbitmap to)
{
int change;
unsigned int u = 0;
int num_nodes = g->num_nodes;
sbitmap_iterator sbi;
auto_sbitmap workset (num_nodes);
auto_sbitmap reachable_from (num_nodes);
auto_sbitmap reach_to (num_nodes);
auto_sbitmap tmp (num_nodes);
bitmap_copy (reachable_from, from);
bitmap_copy (tmp, from);
change = 1;
while (change)
{
change = 0;
bitmap_copy (workset, tmp);
bitmap_clear (tmp);
EXECUTE_IF_SET_IN_BITMAP (workset, 0, u, sbi)
{
ddg_edge_ptr e;
ddg_node_ptr u_node = &g->nodes[u];
for (e = u_node->out; e != (ddg_edge_ptr) 0; e = e->next_out)
{
ddg_node_ptr v_node = e->dest;
int v = v_node->cuid;
if (!bitmap_bit_p (reachable_from, v))
{
bitmap_set_bit (reachable_from, v);
bitmap_set_bit (tmp, v);
change = 1;
}
}
}
}
bitmap_copy (reach_to, to);
bitmap_copy (tmp, to);
change = 1;
while (change)
{
change = 0;
bitmap_copy (workset, tmp);
bitmap_clear (tmp);
EXECUTE_IF_SET_IN_BITMAP (workset, 0, u, sbi)
{
ddg_edge_ptr e;
ddg_node_ptr u_node = &g->nodes[u];
for (e = u_node->in; e != (ddg_edge_ptr) 0; e = e->next_in)
{
ddg_node_ptr v_node = e->src;
int v = v_node->cuid;
if (!bitmap_bit_p (reach_to, v))
{
bitmap_set_bit (reach_to, v);
bitmap_set_bit (tmp, v);
change = 1;
}
}
}
}
return bitmap_and (result, reachable_from, reach_to);
}
#endif /* INSN_SCHEDULING */