blob: e3466d0da1de6207b8583f42aad412b2c2000dcc [file] [log] [blame]
/* { dg-require-effective-target section_anchors } */
/* { dg-additional-options "--param vect-max-peeling-for-alignment=0" } */
#include <stdarg.h>
#include "tree-vect.h"
#if VECTOR_BITS > 128
#define NINTS (VECTOR_BITS / 32)
#else
#define NINTS 4
#endif
#define N (NINTS * 8)
struct s{
int m;
int n[N][N][N];
};
struct s2{
int m;
int n[N-1][N-1][N-1];
};
struct test1{
struct s a; /* array a.n is unaligned */
int pad[NINTS - 2];
struct s e; /* array e.n is aligned */
};
struct test2{
struct s2 a;
int b;
int c;
struct s2 e;
};
struct test1 tmp1[4];
struct test2 tmp2[4];
int main1 ()
{
int i,j;
/* 1. unaligned */
for (i = 0; i < N; i++)
{
tmp1[2].a.n[1][2][i] = 5;
}
/* check results: */
for (i = 0; i <N; i++)
{
if (tmp1[2].a.n[1][2][i] != 5)
abort ();
}
/* 2. aligned */
for (i = NINTS - 1; i < N - 1; i++)
{
tmp1[2].a.n[1][2][i] = 6;
}
/* check results: */
for (i = NINTS - 1; i < N - 1; i++)
{
if (tmp1[2].a.n[1][2][i] != 6)
abort ();
}
/* 3. aligned */
for (i = 0; i < N; i++)
{
for (j = 0; j < N; j++)
{
tmp1[2].e.n[1][i][j] = 8;
}
}
/* check results: */
for (i = 0; i < N; i++)
{
for (j = 0; j < N; j++)
{
if (tmp1[2].e.n[1][i][j] != 8)
abort ();
}
}
/* 4. unaligned */
for (i = 0; i < N - NINTS; i++)
{
for (j = 0; j < N - NINTS; j++)
{
tmp2[2].e.n[1][i][j] = 8;
}
}
/* check results: */
for (i = 0; i < N - NINTS; i++)
{
for (j = 0; j < N - NINTS; j++)
{
if (tmp2[2].e.n[1][i][j] != 8)
abort ();
}
}
return 0;
}
int main (void)
{
check_vect ();
return main1 ();
}
/* { dg-final { scan-tree-dump-times "vectorized 4 loops" 1 "vect" { target vect_int } } } */
/* Alignment forced using versioning until the pass that increases alignment
is extended to handle structs. */
/* { dg-final { scan-tree-dump-times "Alignment of access forced using versioning" 4 "vect" { target {vect_int && {! vector_alignment_reachable} } } } } */