| /* Loop autoparallelization. |
| Copyright (C) 2006-2021 Free Software Foundation, Inc. |
| Contributed by Sebastian Pop <pop@cri.ensmp.fr> |
| Zdenek Dvorak <dvorakz@suse.cz> and Razya Ladelsky <razya@il.ibm.com>. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "backend.h" |
| #include "tree.h" |
| #include "gimple.h" |
| #include "cfghooks.h" |
| #include "tree-pass.h" |
| #include "ssa.h" |
| #include "cgraph.h" |
| #include "gimple-pretty-print.h" |
| #include "fold-const.h" |
| #include "gimplify.h" |
| #include "gimple-iterator.h" |
| #include "gimplify-me.h" |
| #include "gimple-walk.h" |
| #include "stor-layout.h" |
| #include "tree-nested.h" |
| #include "tree-cfg.h" |
| #include "tree-ssa-loop-ivopts.h" |
| #include "tree-ssa-loop-manip.h" |
| #include "tree-ssa-loop-niter.h" |
| #include "tree-ssa-loop.h" |
| #include "tree-into-ssa.h" |
| #include "cfgloop.h" |
| #include "tree-scalar-evolution.h" |
| #include "langhooks.h" |
| #include "tree-vectorizer.h" |
| #include "tree-hasher.h" |
| #include "tree-parloops.h" |
| #include "omp-general.h" |
| #include "omp-low.h" |
| #include "tree-ssa.h" |
| #include "tree-ssa-alias.h" |
| #include "tree-eh.h" |
| #include "gomp-constants.h" |
| #include "tree-dfa.h" |
| #include "stringpool.h" |
| #include "attribs.h" |
| |
| /* This pass tries to distribute iterations of loops into several threads. |
| The implementation is straightforward -- for each loop we test whether its |
| iterations are independent, and if it is the case (and some additional |
| conditions regarding profitability and correctness are satisfied), we |
| add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion |
| machinery do its job. |
| |
| The most of the complexity is in bringing the code into shape expected |
| by the omp expanders: |
| -- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction |
| variable and that the exit test is at the start of the loop body |
| -- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable |
| variables by accesses through pointers, and breaking up ssa chains |
| by storing the values incoming to the parallelized loop to a structure |
| passed to the new function as an argument (something similar is done |
| in omp gimplification, unfortunately only a small part of the code |
| can be shared). |
| |
| TODO: |
| -- if there are several parallelizable loops in a function, it may be |
| possible to generate the threads just once (using synchronization to |
| ensure that cross-loop dependences are obeyed). |
| -- handling of common reduction patterns for outer loops. |
| |
| More info can also be found at http://gcc.gnu.org/wiki/AutoParInGCC */ |
| /* |
| Reduction handling: |
| currently we use code inspired by vect_force_simple_reduction to detect |
| reduction patterns. |
| The code transformation will be introduced by an example. |
| |
| |
| parloop |
| { |
| int sum=1; |
| |
| for (i = 0; i < N; i++) |
| { |
| x[i] = i + 3; |
| sum+=x[i]; |
| } |
| } |
| |
| gimple-like code: |
| header_bb: |
| |
| # sum_29 = PHI <sum_11(5), 1(3)> |
| # i_28 = PHI <i_12(5), 0(3)> |
| D.1795_8 = i_28 + 3; |
| x[i_28] = D.1795_8; |
| sum_11 = D.1795_8 + sum_29; |
| i_12 = i_28 + 1; |
| if (N_6(D) > i_12) |
| goto header_bb; |
| |
| |
| exit_bb: |
| |
| # sum_21 = PHI <sum_11(4)> |
| printf (&"%d"[0], sum_21); |
| |
| |
| after reduction transformation (only relevant parts): |
| |
| parloop |
| { |
| |
| .... |
| |
| |
| # Storing the initial value given by the user. # |
| |
| .paral_data_store.32.sum.27 = 1; |
| |
| #pragma omp parallel num_threads(4) |
| |
| #pragma omp for schedule(static) |
| |
| # The neutral element corresponding to the particular |
| reduction's operation, e.g. 0 for PLUS_EXPR, |
| 1 for MULT_EXPR, etc. replaces the user's initial value. # |
| |
| # sum.27_29 = PHI <sum.27_11, 0> |
| |
| sum.27_11 = D.1827_8 + sum.27_29; |
| |
| GIMPLE_OMP_CONTINUE |
| |
| # Adding this reduction phi is done at create_phi_for_local_result() # |
| # sum.27_56 = PHI <sum.27_11, 0> |
| GIMPLE_OMP_RETURN |
| |
| # Creating the atomic operation is done at |
| create_call_for_reduction_1() # |
| |
| #pragma omp atomic_load |
| D.1839_59 = *&.paral_data_load.33_51->reduction.23; |
| D.1840_60 = sum.27_56 + D.1839_59; |
| #pragma omp atomic_store (D.1840_60); |
| |
| GIMPLE_OMP_RETURN |
| |
| # collecting the result after the join of the threads is done at |
| create_loads_for_reductions(). |
| The value computed by the threads is loaded from the |
| shared struct. # |
| |
| |
| .paral_data_load.33_52 = &.paral_data_store.32; |
| sum_37 = .paral_data_load.33_52->sum.27; |
| sum_43 = D.1795_41 + sum_37; |
| |
| exit bb: |
| # sum_21 = PHI <sum_43, sum_26> |
| printf (&"%d"[0], sum_21); |
| |
| ... |
| |
| } |
| |
| */ |
| |
| /* Error reporting helper for parloops_is_simple_reduction below. GIMPLE |
| statement STMT is printed with a message MSG. */ |
| |
| static void |
| report_ploop_op (dump_flags_t msg_type, gimple *stmt, const char *msg) |
| { |
| dump_printf_loc (msg_type, vect_location, "%s%G", msg, stmt); |
| } |
| |
| /* DEF_STMT_INFO occurs in a loop that contains a potential reduction |
| operation. Return true if the results of DEF_STMT_INFO are something |
| that can be accumulated by such a reduction. */ |
| |
| static bool |
| parloops_valid_reduction_input_p (stmt_vec_info def_stmt_info) |
| { |
| return (is_gimple_assign (def_stmt_info->stmt) |
| || is_gimple_call (def_stmt_info->stmt) |
| || STMT_VINFO_DEF_TYPE (def_stmt_info) == vect_induction_def |
| || (gimple_code (def_stmt_info->stmt) == GIMPLE_PHI |
| && STMT_VINFO_DEF_TYPE (def_stmt_info) == vect_internal_def |
| && !is_loop_header_bb_p (gimple_bb (def_stmt_info->stmt)))); |
| } |
| |
| /* Detect SLP reduction of the form: |
| |
| #a1 = phi <a5, a0> |
| a2 = operation (a1) |
| a3 = operation (a2) |
| a4 = operation (a3) |
| a5 = operation (a4) |
| |
| #a = phi <a5> |
| |
| PHI is the reduction phi node (#a1 = phi <a5, a0> above) |
| FIRST_STMT is the first reduction stmt in the chain |
| (a2 = operation (a1)). |
| |
| Return TRUE if a reduction chain was detected. */ |
| |
| static bool |
| parloops_is_slp_reduction (loop_vec_info loop_info, gimple *phi, |
| gimple *first_stmt) |
| { |
| class loop *loop = (gimple_bb (phi))->loop_father; |
| class loop *vect_loop = LOOP_VINFO_LOOP (loop_info); |
| enum tree_code code; |
| gimple *loop_use_stmt = NULL; |
| stmt_vec_info use_stmt_info; |
| tree lhs; |
| imm_use_iterator imm_iter; |
| use_operand_p use_p; |
| int nloop_uses, size = 0, n_out_of_loop_uses; |
| bool found = false; |
| |
| if (loop != vect_loop) |
| return false; |
| |
| auto_vec<stmt_vec_info, 8> reduc_chain; |
| lhs = PHI_RESULT (phi); |
| code = gimple_assign_rhs_code (first_stmt); |
| while (1) |
| { |
| nloop_uses = 0; |
| n_out_of_loop_uses = 0; |
| FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs) |
| { |
| gimple *use_stmt = USE_STMT (use_p); |
| if (is_gimple_debug (use_stmt)) |
| continue; |
| |
| /* Check if we got back to the reduction phi. */ |
| if (use_stmt == phi) |
| { |
| loop_use_stmt = use_stmt; |
| found = true; |
| break; |
| } |
| |
| if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))) |
| { |
| loop_use_stmt = use_stmt; |
| nloop_uses++; |
| } |
| else |
| n_out_of_loop_uses++; |
| |
| /* There are can be either a single use in the loop or two uses in |
| phi nodes. */ |
| if (nloop_uses > 1 || (n_out_of_loop_uses && nloop_uses)) |
| return false; |
| } |
| |
| if (found) |
| break; |
| |
| /* We reached a statement with no loop uses. */ |
| if (nloop_uses == 0) |
| return false; |
| |
| /* This is a loop exit phi, and we haven't reached the reduction phi. */ |
| if (gimple_code (loop_use_stmt) == GIMPLE_PHI) |
| return false; |
| |
| if (!is_gimple_assign (loop_use_stmt) |
| || code != gimple_assign_rhs_code (loop_use_stmt) |
| || !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt))) |
| return false; |
| |
| /* Insert USE_STMT into reduction chain. */ |
| use_stmt_info = loop_info->lookup_stmt (loop_use_stmt); |
| reduc_chain.safe_push (use_stmt_info); |
| |
| lhs = gimple_assign_lhs (loop_use_stmt); |
| size++; |
| } |
| |
| if (!found || loop_use_stmt != phi || size < 2) |
| return false; |
| |
| /* Swap the operands, if needed, to make the reduction operand be the second |
| operand. */ |
| lhs = PHI_RESULT (phi); |
| for (unsigned i = 0; i < reduc_chain.length (); ++i) |
| { |
| gassign *next_stmt = as_a <gassign *> (reduc_chain[i]->stmt); |
| if (gimple_assign_rhs2 (next_stmt) == lhs) |
| { |
| tree op = gimple_assign_rhs1 (next_stmt); |
| stmt_vec_info def_stmt_info = loop_info->lookup_def (op); |
| |
| /* Check that the other def is either defined in the loop |
| ("vect_internal_def"), or it's an induction (defined by a |
| loop-header phi-node). */ |
| if (def_stmt_info |
| && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt_info->stmt)) |
| && parloops_valid_reduction_input_p (def_stmt_info)) |
| { |
| lhs = gimple_assign_lhs (next_stmt); |
| continue; |
| } |
| |
| return false; |
| } |
| else |
| { |
| tree op = gimple_assign_rhs2 (next_stmt); |
| stmt_vec_info def_stmt_info = loop_info->lookup_def (op); |
| |
| /* Check that the other def is either defined in the loop |
| ("vect_internal_def"), or it's an induction (defined by a |
| loop-header phi-node). */ |
| if (def_stmt_info |
| && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt_info->stmt)) |
| && parloops_valid_reduction_input_p (def_stmt_info)) |
| { |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, "swapping oprnds: %G", |
| next_stmt); |
| |
| swap_ssa_operands (next_stmt, |
| gimple_assign_rhs1_ptr (next_stmt), |
| gimple_assign_rhs2_ptr (next_stmt)); |
| update_stmt (next_stmt); |
| } |
| else |
| return false; |
| } |
| |
| lhs = gimple_assign_lhs (next_stmt); |
| } |
| |
| /* Build up the actual chain. */ |
| for (unsigned i = 0; i < reduc_chain.length () - 1; ++i) |
| { |
| REDUC_GROUP_FIRST_ELEMENT (reduc_chain[i]) = reduc_chain[0]; |
| REDUC_GROUP_NEXT_ELEMENT (reduc_chain[i]) = reduc_chain[i+1]; |
| } |
| REDUC_GROUP_FIRST_ELEMENT (reduc_chain.last ()) = reduc_chain[0]; |
| REDUC_GROUP_NEXT_ELEMENT (reduc_chain.last ()) = NULL; |
| |
| /* Save the chain for further analysis in SLP detection. */ |
| LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (reduc_chain[0]); |
| REDUC_GROUP_SIZE (reduc_chain[0]) = size; |
| |
| return true; |
| } |
| |
| /* Return true if we need an in-order reduction for operation CODE |
| on type TYPE. NEED_WRAPPING_INTEGRAL_OVERFLOW is true if integer |
| overflow must wrap. */ |
| |
| static bool |
| parloops_needs_fold_left_reduction_p (tree type, tree_code code, |
| bool need_wrapping_integral_overflow) |
| { |
| /* CHECKME: check for !flag_finite_math_only too? */ |
| if (SCALAR_FLOAT_TYPE_P (type)) |
| switch (code) |
| { |
| case MIN_EXPR: |
| case MAX_EXPR: |
| return false; |
| |
| default: |
| return !flag_associative_math; |
| } |
| |
| if (INTEGRAL_TYPE_P (type)) |
| { |
| if (!operation_no_trapping_overflow (type, code)) |
| return true; |
| if (need_wrapping_integral_overflow |
| && !TYPE_OVERFLOW_WRAPS (type) |
| && operation_can_overflow (code)) |
| return true; |
| return false; |
| } |
| |
| if (SAT_FIXED_POINT_TYPE_P (type)) |
| return true; |
| |
| return false; |
| } |
| |
| |
| /* Function parloops_is_simple_reduction |
| |
| (1) Detect a cross-iteration def-use cycle that represents a simple |
| reduction computation. We look for the following pattern: |
| |
| loop_header: |
| a1 = phi < a0, a2 > |
| a3 = ... |
| a2 = operation (a3, a1) |
| |
| or |
| |
| a3 = ... |
| loop_header: |
| a1 = phi < a0, a2 > |
| a2 = operation (a3, a1) |
| |
| such that: |
| 1. operation is commutative and associative and it is safe to |
| change the order of the computation |
| 2. no uses for a2 in the loop (a2 is used out of the loop) |
| 3. no uses of a1 in the loop besides the reduction operation |
| 4. no uses of a1 outside the loop. |
| |
| Conditions 1,4 are tested here. |
| Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized. |
| |
| (2) Detect a cross-iteration def-use cycle in nested loops, i.e., |
| nested cycles. |
| |
| (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double |
| reductions: |
| |
| a1 = phi < a0, a2 > |
| inner loop (def of a3) |
| a2 = phi < a3 > |
| |
| (4) Detect condition expressions, ie: |
| for (int i = 0; i < N; i++) |
| if (a[i] < val) |
| ret_val = a[i]; |
| |
| */ |
| |
| static stmt_vec_info |
| parloops_is_simple_reduction (loop_vec_info loop_info, stmt_vec_info phi_info, |
| bool *double_reduc, |
| bool need_wrapping_integral_overflow, |
| enum vect_reduction_type *v_reduc_type) |
| { |
| gphi *phi = as_a <gphi *> (phi_info->stmt); |
| class loop *loop = (gimple_bb (phi))->loop_father; |
| class loop *vect_loop = LOOP_VINFO_LOOP (loop_info); |
| bool nested_in_vect_loop = flow_loop_nested_p (vect_loop, loop); |
| gimple *phi_use_stmt = NULL; |
| enum tree_code orig_code, code; |
| tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE; |
| tree type; |
| tree name; |
| imm_use_iterator imm_iter; |
| use_operand_p use_p; |
| bool phi_def; |
| |
| *double_reduc = false; |
| *v_reduc_type = TREE_CODE_REDUCTION; |
| |
| tree phi_name = PHI_RESULT (phi); |
| /* ??? If there are no uses of the PHI result the inner loop reduction |
| won't be detected as possibly double-reduction by vectorizable_reduction |
| because that tries to walk the PHI arg from the preheader edge which |
| can be constant. See PR60382. */ |
| if (has_zero_uses (phi_name)) |
| return NULL; |
| unsigned nphi_def_loop_uses = 0; |
| FOR_EACH_IMM_USE_FAST (use_p, imm_iter, phi_name) |
| { |
| gimple *use_stmt = USE_STMT (use_p); |
| if (is_gimple_debug (use_stmt)) |
| continue; |
| |
| if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))) |
| { |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, |
| "intermediate value used outside loop.\n"); |
| |
| return NULL; |
| } |
| |
| nphi_def_loop_uses++; |
| phi_use_stmt = use_stmt; |
| } |
| |
| edge latch_e = loop_latch_edge (loop); |
| tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e); |
| if (TREE_CODE (loop_arg) != SSA_NAME) |
| { |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, |
| "reduction: not ssa_name: %T\n", loop_arg); |
| return NULL; |
| } |
| |
| stmt_vec_info def_stmt_info = loop_info->lookup_def (loop_arg); |
| if (!def_stmt_info |
| || !flow_bb_inside_loop_p (loop, gimple_bb (def_stmt_info->stmt))) |
| return NULL; |
| |
| if (gassign *def_stmt = dyn_cast <gassign *> (def_stmt_info->stmt)) |
| { |
| name = gimple_assign_lhs (def_stmt); |
| phi_def = false; |
| } |
| else if (gphi *def_stmt = dyn_cast <gphi *> (def_stmt_info->stmt)) |
| { |
| name = PHI_RESULT (def_stmt); |
| phi_def = true; |
| } |
| else |
| { |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, |
| "reduction: unhandled reduction operation: %G", |
| def_stmt_info->stmt); |
| return NULL; |
| } |
| |
| unsigned nlatch_def_loop_uses = 0; |
| auto_vec<gphi *, 3> lcphis; |
| bool inner_loop_of_double_reduc = false; |
| FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name) |
| { |
| gimple *use_stmt = USE_STMT (use_p); |
| if (is_gimple_debug (use_stmt)) |
| continue; |
| if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))) |
| nlatch_def_loop_uses++; |
| else |
| { |
| /* We can have more than one loop-closed PHI. */ |
| lcphis.safe_push (as_a <gphi *> (use_stmt)); |
| if (nested_in_vect_loop |
| && (STMT_VINFO_DEF_TYPE (loop_info->lookup_stmt (use_stmt)) |
| == vect_double_reduction_def)) |
| inner_loop_of_double_reduc = true; |
| } |
| } |
| |
| /* If this isn't a nested cycle or if the nested cycle reduction value |
| is used ouside of the inner loop we cannot handle uses of the reduction |
| value. */ |
| if ((!nested_in_vect_loop || inner_loop_of_double_reduc) |
| && (nlatch_def_loop_uses > 1 || nphi_def_loop_uses > 1)) |
| { |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, |
| "reduction used in loop.\n"); |
| return NULL; |
| } |
| |
| /* If DEF_STMT is a phi node itself, we expect it to have a single argument |
| defined in the inner loop. */ |
| if (phi_def) |
| { |
| gphi *def_stmt = as_a <gphi *> (def_stmt_info->stmt); |
| op1 = PHI_ARG_DEF (def_stmt, 0); |
| |
| if (gimple_phi_num_args (def_stmt) != 1 |
| || TREE_CODE (op1) != SSA_NAME) |
| { |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, |
| "unsupported phi node definition.\n"); |
| |
| return NULL; |
| } |
| |
| gimple *def1 = SSA_NAME_DEF_STMT (op1); |
| if (gimple_bb (def1) |
| && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt)) |
| && loop->inner |
| && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1)) |
| && is_gimple_assign (def1) |
| && is_a <gphi *> (phi_use_stmt) |
| && flow_bb_inside_loop_p (loop->inner, gimple_bb (phi_use_stmt))) |
| { |
| if (dump_enabled_p ()) |
| report_ploop_op (MSG_NOTE, def_stmt, |
| "detected double reduction: "); |
| |
| *double_reduc = true; |
| return def_stmt_info; |
| } |
| |
| return NULL; |
| } |
| |
| /* If we are vectorizing an inner reduction we are executing that |
| in the original order only in case we are not dealing with a |
| double reduction. */ |
| bool check_reduction = true; |
| if (flow_loop_nested_p (vect_loop, loop)) |
| { |
| gphi *lcphi; |
| unsigned i; |
| check_reduction = false; |
| FOR_EACH_VEC_ELT (lcphis, i, lcphi) |
| FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_phi_result (lcphi)) |
| { |
| gimple *use_stmt = USE_STMT (use_p); |
| if (is_gimple_debug (use_stmt)) |
| continue; |
| if (! flow_bb_inside_loop_p (vect_loop, gimple_bb (use_stmt))) |
| check_reduction = true; |
| } |
| } |
| |
| gassign *def_stmt = as_a <gassign *> (def_stmt_info->stmt); |
| code = orig_code = gimple_assign_rhs_code (def_stmt); |
| |
| if (nested_in_vect_loop && !check_reduction) |
| { |
| /* FIXME: Even for non-reductions code generation is funneled |
| through vectorizable_reduction for the stmt defining the |
| PHI latch value. So we have to artificially restrict ourselves |
| for the supported operations. */ |
| switch (get_gimple_rhs_class (code)) |
| { |
| case GIMPLE_BINARY_RHS: |
| case GIMPLE_TERNARY_RHS: |
| break; |
| default: |
| /* Not supported by vectorizable_reduction. */ |
| if (dump_enabled_p ()) |
| report_ploop_op (MSG_MISSED_OPTIMIZATION, def_stmt, |
| "nested cycle: not handled operation: "); |
| return NULL; |
| } |
| if (dump_enabled_p ()) |
| report_ploop_op (MSG_NOTE, def_stmt, "detected nested cycle: "); |
| return def_stmt_info; |
| } |
| |
| /* We can handle "res -= x[i]", which is non-associative by |
| simply rewriting this into "res += -x[i]". Avoid changing |
| gimple instruction for the first simple tests and only do this |
| if we're allowed to change code at all. */ |
| if (code == MINUS_EXPR && gimple_assign_rhs2 (def_stmt) != phi_name) |
| code = PLUS_EXPR; |
| |
| if (code == COND_EXPR) |
| { |
| if (! nested_in_vect_loop) |
| *v_reduc_type = COND_REDUCTION; |
| |
| op3 = gimple_assign_rhs1 (def_stmt); |
| if (COMPARISON_CLASS_P (op3)) |
| { |
| op4 = TREE_OPERAND (op3, 1); |
| op3 = TREE_OPERAND (op3, 0); |
| } |
| if (op3 == phi_name || op4 == phi_name) |
| { |
| if (dump_enabled_p ()) |
| report_ploop_op (MSG_MISSED_OPTIMIZATION, def_stmt, |
| "reduction: condition depends on previous" |
| " iteration: "); |
| return NULL; |
| } |
| |
| op1 = gimple_assign_rhs2 (def_stmt); |
| op2 = gimple_assign_rhs3 (def_stmt); |
| } |
| else if (!commutative_tree_code (code) || !associative_tree_code (code)) |
| { |
| if (dump_enabled_p ()) |
| report_ploop_op (MSG_MISSED_OPTIMIZATION, def_stmt, |
| "reduction: not commutative/associative: "); |
| return NULL; |
| } |
| else if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS) |
| { |
| op1 = gimple_assign_rhs1 (def_stmt); |
| op2 = gimple_assign_rhs2 (def_stmt); |
| } |
| else |
| { |
| if (dump_enabled_p ()) |
| report_ploop_op (MSG_MISSED_OPTIMIZATION, def_stmt, |
| "reduction: not handled operation: "); |
| return NULL; |
| } |
| |
| if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME) |
| { |
| if (dump_enabled_p ()) |
| report_ploop_op (MSG_MISSED_OPTIMIZATION, def_stmt, |
| "reduction: both uses not ssa_names: "); |
| |
| return NULL; |
| } |
| |
| type = TREE_TYPE (gimple_assign_lhs (def_stmt)); |
| if ((TREE_CODE (op1) == SSA_NAME |
| && !types_compatible_p (type,TREE_TYPE (op1))) |
| || (TREE_CODE (op2) == SSA_NAME |
| && !types_compatible_p (type, TREE_TYPE (op2))) |
| || (op3 && TREE_CODE (op3) == SSA_NAME |
| && !types_compatible_p (type, TREE_TYPE (op3))) |
| || (op4 && TREE_CODE (op4) == SSA_NAME |
| && !types_compatible_p (type, TREE_TYPE (op4)))) |
| { |
| if (dump_enabled_p ()) |
| { |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "reduction: multiple types: operation type: " |
| "%T, operands types: %T,%T", |
| type, TREE_TYPE (op1), TREE_TYPE (op2)); |
| if (op3) |
| dump_printf (MSG_NOTE, ",%T", TREE_TYPE (op3)); |
| |
| if (op4) |
| dump_printf (MSG_NOTE, ",%T", TREE_TYPE (op4)); |
| dump_printf (MSG_NOTE, "\n"); |
| } |
| |
| return NULL; |
| } |
| |
| /* Check whether it's ok to change the order of the computation. |
| Generally, when vectorizing a reduction we change the order of the |
| computation. This may change the behavior of the program in some |
| cases, so we need to check that this is ok. One exception is when |
| vectorizing an outer-loop: the inner-loop is executed sequentially, |
| and therefore vectorizing reductions in the inner-loop during |
| outer-loop vectorization is safe. */ |
| if (check_reduction |
| && *v_reduc_type == TREE_CODE_REDUCTION |
| && parloops_needs_fold_left_reduction_p (type, code, |
| need_wrapping_integral_overflow)) |
| *v_reduc_type = FOLD_LEFT_REDUCTION; |
| |
| /* Reduction is safe. We're dealing with one of the following: |
| 1) integer arithmetic and no trapv |
| 2) floating point arithmetic, and special flags permit this optimization |
| 3) nested cycle (i.e., outer loop vectorization). */ |
| stmt_vec_info def1_info = loop_info->lookup_def (op1); |
| stmt_vec_info def2_info = loop_info->lookup_def (op2); |
| if (code != COND_EXPR && !def1_info && !def2_info) |
| { |
| if (dump_enabled_p ()) |
| report_ploop_op (MSG_NOTE, def_stmt, |
| "reduction: no defs for operands: "); |
| return NULL; |
| } |
| |
| /* Check that one def is the reduction def, defined by PHI, |
| the other def is either defined in the loop ("vect_internal_def"), |
| or it's an induction (defined by a loop-header phi-node). */ |
| |
| if (def2_info |
| && def2_info->stmt == phi |
| && (code == COND_EXPR |
| || !def1_info |
| || !flow_bb_inside_loop_p (loop, gimple_bb (def1_info->stmt)) |
| || parloops_valid_reduction_input_p (def1_info))) |
| { |
| if (dump_enabled_p ()) |
| report_ploop_op (MSG_NOTE, def_stmt, "detected reduction: "); |
| return def_stmt_info; |
| } |
| |
| if (def1_info |
| && def1_info->stmt == phi |
| && (code == COND_EXPR |
| || !def2_info |
| || !flow_bb_inside_loop_p (loop, gimple_bb (def2_info->stmt)) |
| || parloops_valid_reduction_input_p (def2_info))) |
| { |
| if (! nested_in_vect_loop && orig_code != MINUS_EXPR) |
| { |
| /* Check if we can swap operands (just for simplicity - so that |
| the rest of the code can assume that the reduction variable |
| is always the last (second) argument). */ |
| if (code == COND_EXPR) |
| { |
| /* Swap cond_expr by inverting the condition. */ |
| tree cond_expr = gimple_assign_rhs1 (def_stmt); |
| enum tree_code invert_code = ERROR_MARK; |
| enum tree_code cond_code = TREE_CODE (cond_expr); |
| |
| if (TREE_CODE_CLASS (cond_code) == tcc_comparison) |
| { |
| bool honor_nans = HONOR_NANS (TREE_OPERAND (cond_expr, 0)); |
| invert_code = invert_tree_comparison (cond_code, honor_nans); |
| } |
| if (invert_code != ERROR_MARK) |
| { |
| TREE_SET_CODE (cond_expr, invert_code); |
| swap_ssa_operands (def_stmt, |
| gimple_assign_rhs2_ptr (def_stmt), |
| gimple_assign_rhs3_ptr (def_stmt)); |
| } |
| else |
| { |
| if (dump_enabled_p ()) |
| report_ploop_op (MSG_NOTE, def_stmt, |
| "detected reduction: cannot swap operands " |
| "for cond_expr"); |
| return NULL; |
| } |
| } |
| else |
| swap_ssa_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt), |
| gimple_assign_rhs2_ptr (def_stmt)); |
| |
| if (dump_enabled_p ()) |
| report_ploop_op (MSG_NOTE, def_stmt, |
| "detected reduction: need to swap operands: "); |
| } |
| else |
| { |
| if (dump_enabled_p ()) |
| report_ploop_op (MSG_NOTE, def_stmt, "detected reduction: "); |
| } |
| |
| return def_stmt_info; |
| } |
| |
| /* Try to find SLP reduction chain. */ |
| if (! nested_in_vect_loop |
| && code != COND_EXPR |
| && orig_code != MINUS_EXPR |
| && parloops_is_slp_reduction (loop_info, phi, def_stmt)) |
| { |
| if (dump_enabled_p ()) |
| report_ploop_op (MSG_NOTE, def_stmt, |
| "reduction: detected reduction chain: "); |
| |
| return def_stmt_info; |
| } |
| |
| /* Look for the expression computing loop_arg from loop PHI result. */ |
| if (check_reduction_path (vect_location, loop, phi, loop_arg, code)) |
| return def_stmt_info; |
| |
| if (dump_enabled_p ()) |
| { |
| report_ploop_op (MSG_MISSED_OPTIMIZATION, def_stmt, |
| "reduction: unknown pattern: "); |
| } |
| |
| return NULL; |
| } |
| |
| /* Wrapper around vect_is_simple_reduction, which will modify code |
| in-place if it enables detection of more reductions. Arguments |
| as there. */ |
| |
| stmt_vec_info |
| parloops_force_simple_reduction (loop_vec_info loop_info, stmt_vec_info phi_info, |
| bool *double_reduc, |
| bool need_wrapping_integral_overflow) |
| { |
| enum vect_reduction_type v_reduc_type; |
| stmt_vec_info def_info |
| = parloops_is_simple_reduction (loop_info, phi_info, double_reduc, |
| need_wrapping_integral_overflow, |
| &v_reduc_type); |
| if (def_info) |
| { |
| STMT_VINFO_REDUC_TYPE (phi_info) = v_reduc_type; |
| STMT_VINFO_REDUC_DEF (phi_info) = def_info; |
| STMT_VINFO_REDUC_TYPE (def_info) = v_reduc_type; |
| STMT_VINFO_REDUC_DEF (def_info) = phi_info; |
| } |
| return def_info; |
| } |
| |
| /* Minimal number of iterations of a loop that should be executed in each |
| thread. */ |
| #define MIN_PER_THREAD param_parloops_min_per_thread |
| |
| /* Element of the hashtable, representing a |
| reduction in the current loop. */ |
| struct reduction_info |
| { |
| gimple *reduc_stmt; /* reduction statement. */ |
| gimple *reduc_phi; /* The phi node defining the reduction. */ |
| enum tree_code reduction_code;/* code for the reduction operation. */ |
| unsigned reduc_version; /* SSA_NAME_VERSION of original reduc_phi |
| result. */ |
| gphi *keep_res; /* The PHI_RESULT of this phi is the resulting value |
| of the reduction variable when existing the loop. */ |
| tree initial_value; /* The initial value of the reduction var before entering the loop. */ |
| tree field; /* the name of the field in the parloop data structure intended for reduction. */ |
| tree reduc_addr; /* The address of the reduction variable for |
| openacc reductions. */ |
| tree init; /* reduction initialization value. */ |
| gphi *new_phi; /* (helper field) Newly created phi node whose result |
| will be passed to the atomic operation. Represents |
| the local result each thread computed for the reduction |
| operation. */ |
| }; |
| |
| /* Reduction info hashtable helpers. */ |
| |
| struct reduction_hasher : free_ptr_hash <reduction_info> |
| { |
| static inline hashval_t hash (const reduction_info *); |
| static inline bool equal (const reduction_info *, const reduction_info *); |
| }; |
| |
| /* Equality and hash functions for hashtab code. */ |
| |
| inline bool |
| reduction_hasher::equal (const reduction_info *a, const reduction_info *b) |
| { |
| return (a->reduc_phi == b->reduc_phi); |
| } |
| |
| inline hashval_t |
| reduction_hasher::hash (const reduction_info *a) |
| { |
| return a->reduc_version; |
| } |
| |
| typedef hash_table<reduction_hasher> reduction_info_table_type; |
| |
| |
| static struct reduction_info * |
| reduction_phi (reduction_info_table_type *reduction_list, gimple *phi) |
| { |
| struct reduction_info tmpred, *red; |
| |
| if (reduction_list->is_empty () || phi == NULL) |
| return NULL; |
| |
| if (gimple_uid (phi) == (unsigned int)-1 |
| || gimple_uid (phi) == 0) |
| return NULL; |
| |
| tmpred.reduc_phi = phi; |
| tmpred.reduc_version = gimple_uid (phi); |
| red = reduction_list->find (&tmpred); |
| gcc_assert (red == NULL || red->reduc_phi == phi); |
| |
| return red; |
| } |
| |
| /* Element of hashtable of names to copy. */ |
| |
| struct name_to_copy_elt |
| { |
| unsigned version; /* The version of the name to copy. */ |
| tree new_name; /* The new name used in the copy. */ |
| tree field; /* The field of the structure used to pass the |
| value. */ |
| }; |
| |
| /* Name copies hashtable helpers. */ |
| |
| struct name_to_copy_hasher : free_ptr_hash <name_to_copy_elt> |
| { |
| static inline hashval_t hash (const name_to_copy_elt *); |
| static inline bool equal (const name_to_copy_elt *, const name_to_copy_elt *); |
| }; |
| |
| /* Equality and hash functions for hashtab code. */ |
| |
| inline bool |
| name_to_copy_hasher::equal (const name_to_copy_elt *a, const name_to_copy_elt *b) |
| { |
| return a->version == b->version; |
| } |
| |
| inline hashval_t |
| name_to_copy_hasher::hash (const name_to_copy_elt *a) |
| { |
| return (hashval_t) a->version; |
| } |
| |
| typedef hash_table<name_to_copy_hasher> name_to_copy_table_type; |
| |
| /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE |
| matrix. Rather than use floats, we simply keep a single DENOMINATOR that |
| represents the denominator for every element in the matrix. */ |
| typedef struct lambda_trans_matrix_s |
| { |
| lambda_matrix matrix; |
| int rowsize; |
| int colsize; |
| int denominator; |
| } *lambda_trans_matrix; |
| #define LTM_MATRIX(T) ((T)->matrix) |
| #define LTM_ROWSIZE(T) ((T)->rowsize) |
| #define LTM_COLSIZE(T) ((T)->colsize) |
| #define LTM_DENOMINATOR(T) ((T)->denominator) |
| |
| /* Allocate a new transformation matrix. */ |
| |
| static lambda_trans_matrix |
| lambda_trans_matrix_new (int colsize, int rowsize, |
| struct obstack * lambda_obstack) |
| { |
| lambda_trans_matrix ret; |
| |
| ret = (lambda_trans_matrix) |
| obstack_alloc (lambda_obstack, sizeof (struct lambda_trans_matrix_s)); |
| LTM_MATRIX (ret) = lambda_matrix_new (rowsize, colsize, lambda_obstack); |
| LTM_ROWSIZE (ret) = rowsize; |
| LTM_COLSIZE (ret) = colsize; |
| LTM_DENOMINATOR (ret) = 1; |
| return ret; |
| } |
| |
| /* Multiply a vector VEC by a matrix MAT. |
| MAT is an M*N matrix, and VEC is a vector with length N. The result |
| is stored in DEST which must be a vector of length M. */ |
| |
| static void |
| lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n, |
| lambda_vector vec, lambda_vector dest) |
| { |
| int i, j; |
| |
| lambda_vector_clear (dest, m); |
| for (i = 0; i < m; i++) |
| for (j = 0; j < n; j++) |
| dest[i] += matrix[i][j] * vec[j]; |
| } |
| |
| /* Return true if TRANS is a legal transformation matrix that respects |
| the dependence vectors in DISTS and DIRS. The conservative answer |
| is false. |
| |
| "Wolfe proves that a unimodular transformation represented by the |
| matrix T is legal when applied to a loop nest with a set of |
| lexicographically non-negative distance vectors RDG if and only if |
| for each vector d in RDG, (T.d >= 0) is lexicographically positive. |
| i.e.: if and only if it transforms the lexicographically positive |
| distance vectors to lexicographically positive vectors. Note that |
| a unimodular matrix must transform the zero vector (and only it) to |
| the zero vector." S.Muchnick. */ |
| |
| static bool |
| lambda_transform_legal_p (lambda_trans_matrix trans, |
| int nb_loops, |
| vec<ddr_p> dependence_relations) |
| { |
| unsigned int i, j; |
| lambda_vector distres; |
| struct data_dependence_relation *ddr; |
| |
| gcc_assert (LTM_COLSIZE (trans) == nb_loops |
| && LTM_ROWSIZE (trans) == nb_loops); |
| |
| /* When there are no dependences, the transformation is correct. */ |
| if (dependence_relations.length () == 0) |
| return true; |
| |
| ddr = dependence_relations[0]; |
| if (ddr == NULL) |
| return true; |
| |
| /* When there is an unknown relation in the dependence_relations, we |
| know that it is no worth looking at this loop nest: give up. */ |
| if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know) |
| return false; |
| |
| distres = lambda_vector_new (nb_loops); |
| |
| /* For each distance vector in the dependence graph. */ |
| FOR_EACH_VEC_ELT (dependence_relations, i, ddr) |
| { |
| /* Don't care about relations for which we know that there is no |
| dependence, nor about read-read (aka. output-dependences): |
| these data accesses can happen in any order. */ |
| if (DDR_ARE_DEPENDENT (ddr) == chrec_known |
| || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr)))) |
| continue; |
| |
| /* Conservatively answer: "this transformation is not valid". */ |
| if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know) |
| return false; |
| |
| /* If the dependence could not be captured by a distance vector, |
| conservatively answer that the transform is not valid. */ |
| if (DDR_NUM_DIST_VECTS (ddr) == 0) |
| return false; |
| |
| /* Compute trans.dist_vect */ |
| for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++) |
| { |
| lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops, |
| DDR_DIST_VECT (ddr, j), distres); |
| |
| if (!lambda_vector_lexico_pos (distres, nb_loops)) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /* Data dependency analysis. Returns true if the iterations of LOOP |
| are independent on each other (that is, if we can execute them |
| in parallel). */ |
| |
| static bool |
| loop_parallel_p (class loop *loop, struct obstack * parloop_obstack) |
| { |
| vec<ddr_p> dependence_relations; |
| vec<data_reference_p> datarefs; |
| lambda_trans_matrix trans; |
| bool ret = false; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Considering loop %d\n", loop->num); |
| if (!loop->inner) |
| fprintf (dump_file, "loop is innermost\n"); |
| else |
| fprintf (dump_file, "loop NOT innermost\n"); |
| } |
| |
| /* Check for problems with dependences. If the loop can be reversed, |
| the iterations are independent. */ |
| auto_vec<loop_p, 3> loop_nest; |
| datarefs.create (10); |
| dependence_relations.create (100); |
| if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs, |
| &dependence_relations)) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, " FAILED: cannot analyze data dependencies\n"); |
| ret = false; |
| goto end; |
| } |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| dump_data_dependence_relations (dump_file, dependence_relations); |
| |
| trans = lambda_trans_matrix_new (1, 1, parloop_obstack); |
| LTM_MATRIX (trans)[0][0] = -1; |
| |
| if (lambda_transform_legal_p (trans, 1, dependence_relations)) |
| { |
| ret = true; |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, " SUCCESS: may be parallelized\n"); |
| } |
| else if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, |
| " FAILED: data dependencies exist across iterations\n"); |
| |
| end: |
| free_dependence_relations (dependence_relations); |
| free_data_refs (datarefs); |
| |
| return ret; |
| } |
| |
| /* Return true when LOOP contains basic blocks marked with the |
| BB_IRREDUCIBLE_LOOP flag. */ |
| |
| static inline bool |
| loop_has_blocks_with_irreducible_flag (class loop *loop) |
| { |
| unsigned i; |
| basic_block *bbs = get_loop_body_in_dom_order (loop); |
| bool res = true; |
| |
| for (i = 0; i < loop->num_nodes; i++) |
| if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP) |
| goto end; |
| |
| res = false; |
| end: |
| free (bbs); |
| return res; |
| } |
| |
| /* Assigns the address of OBJ in TYPE to an ssa name, and returns this name. |
| The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls |
| to their addresses that can be reused. The address of OBJ is known to |
| be invariant in the whole function. Other needed statements are placed |
| right before GSI. */ |
| |
| static tree |
| take_address_of (tree obj, tree type, edge entry, |
| int_tree_htab_type *decl_address, gimple_stmt_iterator *gsi) |
| { |
| int uid; |
| tree *var_p, name, addr; |
| gassign *stmt; |
| gimple_seq stmts; |
| |
| /* Since the address of OBJ is invariant, the trees may be shared. |
| Avoid rewriting unrelated parts of the code. */ |
| obj = unshare_expr (obj); |
| for (var_p = &obj; |
| handled_component_p (*var_p); |
| var_p = &TREE_OPERAND (*var_p, 0)) |
| continue; |
| |
| /* Canonicalize the access to base on a MEM_REF. */ |
| if (DECL_P (*var_p)) |
| *var_p = build_simple_mem_ref (build_fold_addr_expr (*var_p)); |
| |
| /* Assign a canonical SSA name to the address of the base decl used |
| in the address and share it for all accesses and addresses based |
| on it. */ |
| uid = DECL_UID (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0)); |
| int_tree_map elt; |
| elt.uid = uid; |
| int_tree_map *slot = decl_address->find_slot (elt, INSERT); |
| if (!slot->to) |
| { |
| if (gsi == NULL) |
| return NULL; |
| addr = TREE_OPERAND (*var_p, 0); |
| const char *obj_name |
| = get_name (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0)); |
| if (obj_name) |
| name = make_temp_ssa_name (TREE_TYPE (addr), NULL, obj_name); |
| else |
| name = make_ssa_name (TREE_TYPE (addr)); |
| stmt = gimple_build_assign (name, addr); |
| gsi_insert_on_edge_immediate (entry, stmt); |
| |
| slot->uid = uid; |
| slot->to = name; |
| } |
| else |
| name = slot->to; |
| |
| /* Express the address in terms of the canonical SSA name. */ |
| TREE_OPERAND (*var_p, 0) = name; |
| if (gsi == NULL) |
| return build_fold_addr_expr_with_type (obj, type); |
| |
| name = force_gimple_operand (build_addr (obj), |
| &stmts, true, NULL_TREE); |
| if (!gimple_seq_empty_p (stmts)) |
| gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); |
| |
| if (!useless_type_conversion_p (type, TREE_TYPE (name))) |
| { |
| name = force_gimple_operand (fold_convert (type, name), &stmts, true, |
| NULL_TREE); |
| if (!gimple_seq_empty_p (stmts)) |
| gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); |
| } |
| |
| return name; |
| } |
| |
| static tree |
| reduc_stmt_res (gimple *stmt) |
| { |
| return (gimple_code (stmt) == GIMPLE_PHI |
| ? gimple_phi_result (stmt) |
| : gimple_assign_lhs (stmt)); |
| } |
| |
| /* Callback for htab_traverse. Create the initialization statement |
| for reduction described in SLOT, and place it at the preheader of |
| the loop described in DATA. */ |
| |
| int |
| initialize_reductions (reduction_info **slot, class loop *loop) |
| { |
| tree init; |
| tree type, arg; |
| edge e; |
| |
| struct reduction_info *const reduc = *slot; |
| |
| /* Create initialization in preheader: |
| reduction_variable = initialization value of reduction. */ |
| |
| /* In the phi node at the header, replace the argument coming |
| from the preheader with the reduction initialization value. */ |
| |
| /* Initialize the reduction. */ |
| type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi)); |
| init = omp_reduction_init_op (gimple_location (reduc->reduc_stmt), |
| reduc->reduction_code, type); |
| reduc->init = init; |
| |
| /* Replace the argument representing the initialization value |
| with the initialization value for the reduction (neutral |
| element for the particular operation, e.g. 0 for PLUS_EXPR, |
| 1 for MULT_EXPR, etc). |
| Keep the old value in a new variable "reduction_initial", |
| that will be taken in consideration after the parallel |
| computing is done. */ |
| |
| e = loop_preheader_edge (loop); |
| arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e); |
| /* Create new variable to hold the initial value. */ |
| |
| SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE |
| (reduc->reduc_phi, loop_preheader_edge (loop)), init); |
| reduc->initial_value = arg; |
| return 1; |
| } |
| |
| struct elv_data |
| { |
| struct walk_stmt_info info; |
| edge entry; |
| int_tree_htab_type *decl_address; |
| gimple_stmt_iterator *gsi; |
| bool changed; |
| bool reset; |
| }; |
| |
| /* Eliminates references to local variables in *TP out of the single |
| entry single exit region starting at DTA->ENTRY. |
| DECL_ADDRESS contains addresses of the references that had their |
| address taken already. If the expression is changed, CHANGED is |
| set to true. Callback for walk_tree. */ |
| |
| static tree |
| eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data) |
| { |
| struct elv_data *const dta = (struct elv_data *) data; |
| tree t = *tp, var, addr, addr_type, type, obj; |
| |
| if (DECL_P (t)) |
| { |
| *walk_subtrees = 0; |
| |
| if (!SSA_VAR_P (t) || DECL_EXTERNAL (t)) |
| return NULL_TREE; |
| |
| type = TREE_TYPE (t); |
| addr_type = build_pointer_type (type); |
| addr = take_address_of (t, addr_type, dta->entry, dta->decl_address, |
| dta->gsi); |
| if (dta->gsi == NULL && addr == NULL_TREE) |
| { |
| dta->reset = true; |
| return NULL_TREE; |
| } |
| |
| *tp = build_simple_mem_ref (addr); |
| |
| dta->changed = true; |
| return NULL_TREE; |
| } |
| |
| if (TREE_CODE (t) == ADDR_EXPR) |
| { |
| /* ADDR_EXPR may appear in two contexts: |
| -- as a gimple operand, when the address taken is a function invariant |
| -- as gimple rhs, when the resulting address in not a function |
| invariant |
| We do not need to do anything special in the latter case (the base of |
| the memory reference whose address is taken may be replaced in the |
| DECL_P case). The former case is more complicated, as we need to |
| ensure that the new address is still a gimple operand. Thus, it |
| is not sufficient to replace just the base of the memory reference -- |
| we need to move the whole computation of the address out of the |
| loop. */ |
| if (!is_gimple_val (t)) |
| return NULL_TREE; |
| |
| *walk_subtrees = 0; |
| obj = TREE_OPERAND (t, 0); |
| var = get_base_address (obj); |
| if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var)) |
| return NULL_TREE; |
| |
| addr_type = TREE_TYPE (t); |
| addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address, |
| dta->gsi); |
| if (dta->gsi == NULL && addr == NULL_TREE) |
| { |
| dta->reset = true; |
| return NULL_TREE; |
| } |
| *tp = addr; |
| |
| dta->changed = true; |
| return NULL_TREE; |
| } |
| |
| if (!EXPR_P (t)) |
| *walk_subtrees = 0; |
| |
| return NULL_TREE; |
| } |
| |
| /* Moves the references to local variables in STMT at *GSI out of the single |
| entry single exit region starting at ENTRY. DECL_ADDRESS contains |
| addresses of the references that had their address taken |
| already. */ |
| |
| static void |
| eliminate_local_variables_stmt (edge entry, gimple_stmt_iterator *gsi, |
| int_tree_htab_type *decl_address) |
| { |
| struct elv_data dta; |
| gimple *stmt = gsi_stmt (*gsi); |
| |
| memset (&dta.info, '\0', sizeof (dta.info)); |
| dta.entry = entry; |
| dta.decl_address = decl_address; |
| dta.changed = false; |
| dta.reset = false; |
| |
| if (gimple_debug_bind_p (stmt)) |
| { |
| dta.gsi = NULL; |
| walk_tree (gimple_debug_bind_get_value_ptr (stmt), |
| eliminate_local_variables_1, &dta.info, NULL); |
| if (dta.reset) |
| { |
| gimple_debug_bind_reset_value (stmt); |
| dta.changed = true; |
| } |
| } |
| else if (gimple_clobber_p (stmt)) |
| { |
| unlink_stmt_vdef (stmt); |
| stmt = gimple_build_nop (); |
| gsi_replace (gsi, stmt, false); |
| dta.changed = true; |
| } |
| else |
| { |
| dta.gsi = gsi; |
| walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info); |
| } |
| |
| if (dta.changed) |
| update_stmt (stmt); |
| } |
| |
| /* Eliminates the references to local variables from the single entry |
| single exit region between the ENTRY and EXIT edges. |
| |
| This includes: |
| 1) Taking address of a local variable -- these are moved out of the |
| region (and temporary variable is created to hold the address if |
| necessary). |
| |
| 2) Dereferencing a local variable -- these are replaced with indirect |
| references. */ |
| |
| static void |
| eliminate_local_variables (edge entry, edge exit) |
| { |
| basic_block bb; |
| auto_vec<basic_block, 3> body; |
| unsigned i; |
| gimple_stmt_iterator gsi; |
| bool has_debug_stmt = false; |
| int_tree_htab_type decl_address (10); |
| basic_block entry_bb = entry->src; |
| basic_block exit_bb = exit->dest; |
| |
| gather_blocks_in_sese_region (entry_bb, exit_bb, &body); |
| |
| FOR_EACH_VEC_ELT (body, i, bb) |
| if (bb != entry_bb && bb != exit_bb) |
| { |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| if (is_gimple_debug (gsi_stmt (gsi))) |
| { |
| if (gimple_debug_bind_p (gsi_stmt (gsi))) |
| has_debug_stmt = true; |
| } |
| else |
| eliminate_local_variables_stmt (entry, &gsi, &decl_address); |
| } |
| |
| if (has_debug_stmt) |
| FOR_EACH_VEC_ELT (body, i, bb) |
| if (bb != entry_bb && bb != exit_bb) |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| if (gimple_debug_bind_p (gsi_stmt (gsi))) |
| eliminate_local_variables_stmt (entry, &gsi, &decl_address); |
| } |
| |
| /* Returns true if expression EXPR is not defined between ENTRY and |
| EXIT, i.e. if all its operands are defined outside of the region. */ |
| |
| static bool |
| expr_invariant_in_region_p (edge entry, edge exit, tree expr) |
| { |
| basic_block entry_bb = entry->src; |
| basic_block exit_bb = exit->dest; |
| basic_block def_bb; |
| |
| if (is_gimple_min_invariant (expr)) |
| return true; |
| |
| if (TREE_CODE (expr) == SSA_NAME) |
| { |
| def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr)); |
| if (def_bb |
| && dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb) |
| && !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb)) |
| return false; |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* If COPY_NAME_P is true, creates and returns a duplicate of NAME. |
| The copies are stored to NAME_COPIES, if NAME was already duplicated, |
| its duplicate stored in NAME_COPIES is returned. |
| |
| Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also |
| duplicated, storing the copies in DECL_COPIES. */ |
| |
| static tree |
| separate_decls_in_region_name (tree name, name_to_copy_table_type *name_copies, |
| int_tree_htab_type *decl_copies, |
| bool copy_name_p) |
| { |
| tree copy, var, var_copy; |
| unsigned idx, uid, nuid; |
| struct int_tree_map ielt; |
| struct name_to_copy_elt elt, *nelt; |
| name_to_copy_elt **slot; |
| int_tree_map *dslot; |
| |
| if (TREE_CODE (name) != SSA_NAME) |
| return name; |
| |
| idx = SSA_NAME_VERSION (name); |
| elt.version = idx; |
| slot = name_copies->find_slot_with_hash (&elt, idx, |
| copy_name_p ? INSERT : NO_INSERT); |
| if (slot && *slot) |
| return (*slot)->new_name; |
| |
| if (copy_name_p) |
| { |
| copy = duplicate_ssa_name (name, NULL); |
| nelt = XNEW (struct name_to_copy_elt); |
| nelt->version = idx; |
| nelt->new_name = copy; |
| nelt->field = NULL_TREE; |
| *slot = nelt; |
| } |
| else |
| { |
| gcc_assert (!slot); |
| copy = name; |
| } |
| |
| var = SSA_NAME_VAR (name); |
| if (!var) |
| return copy; |
| |
| uid = DECL_UID (var); |
| ielt.uid = uid; |
| dslot = decl_copies->find_slot_with_hash (ielt, uid, INSERT); |
| if (!dslot->to) |
| { |
| var_copy = create_tmp_var (TREE_TYPE (var), get_name (var)); |
| DECL_NOT_GIMPLE_REG_P (var_copy) = DECL_NOT_GIMPLE_REG_P (var); |
| dslot->uid = uid; |
| dslot->to = var_copy; |
| |
| /* Ensure that when we meet this decl next time, we won't duplicate |
| it again. */ |
| nuid = DECL_UID (var_copy); |
| ielt.uid = nuid; |
| dslot = decl_copies->find_slot_with_hash (ielt, nuid, INSERT); |
| gcc_assert (!dslot->to); |
| dslot->uid = nuid; |
| dslot->to = var_copy; |
| } |
| else |
| var_copy = dslot->to; |
| |
| replace_ssa_name_symbol (copy, var_copy); |
| return copy; |
| } |
| |
| /* Finds the ssa names used in STMT that are defined outside the |
| region between ENTRY and EXIT and replaces such ssa names with |
| their duplicates. The duplicates are stored to NAME_COPIES. Base |
| decls of all ssa names used in STMT (including those defined in |
| LOOP) are replaced with the new temporary variables; the |
| replacement decls are stored in DECL_COPIES. */ |
| |
| static void |
| separate_decls_in_region_stmt (edge entry, edge exit, gimple *stmt, |
| name_to_copy_table_type *name_copies, |
| int_tree_htab_type *decl_copies) |
| { |
| use_operand_p use; |
| def_operand_p def; |
| ssa_op_iter oi; |
| tree name, copy; |
| bool copy_name_p; |
| |
| FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF) |
| { |
| name = DEF_FROM_PTR (def); |
| gcc_assert (TREE_CODE (name) == SSA_NAME); |
| copy = separate_decls_in_region_name (name, name_copies, decl_copies, |
| false); |
| gcc_assert (copy == name); |
| } |
| |
| FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE) |
| { |
| name = USE_FROM_PTR (use); |
| if (TREE_CODE (name) != SSA_NAME) |
| continue; |
| |
| copy_name_p = expr_invariant_in_region_p (entry, exit, name); |
| copy = separate_decls_in_region_name (name, name_copies, decl_copies, |
| copy_name_p); |
| SET_USE (use, copy); |
| } |
| } |
| |
| /* Finds the ssa names used in STMT that are defined outside the |
| region between ENTRY and EXIT and replaces such ssa names with |
| their duplicates. The duplicates are stored to NAME_COPIES. Base |
| decls of all ssa names used in STMT (including those defined in |
| LOOP) are replaced with the new temporary variables; the |
| replacement decls are stored in DECL_COPIES. */ |
| |
| static bool |
| separate_decls_in_region_debug (gimple *stmt, |
| name_to_copy_table_type *name_copies, |
| int_tree_htab_type *decl_copies) |
| { |
| use_operand_p use; |
| ssa_op_iter oi; |
| tree var, name; |
| struct int_tree_map ielt; |
| struct name_to_copy_elt elt; |
| name_to_copy_elt **slot; |
| int_tree_map *dslot; |
| |
| if (gimple_debug_bind_p (stmt)) |
| var = gimple_debug_bind_get_var (stmt); |
| else if (gimple_debug_source_bind_p (stmt)) |
| var = gimple_debug_source_bind_get_var (stmt); |
| else |
| return true; |
| if (TREE_CODE (var) == DEBUG_EXPR_DECL || TREE_CODE (var) == LABEL_DECL) |
| return true; |
| gcc_assert (DECL_P (var) && SSA_VAR_P (var)); |
| ielt.uid = DECL_UID (var); |
| dslot = decl_copies->find_slot_with_hash (ielt, ielt.uid, NO_INSERT); |
| if (!dslot) |
| return true; |
| if (gimple_debug_bind_p (stmt)) |
| gimple_debug_bind_set_var (stmt, dslot->to); |
| else if (gimple_debug_source_bind_p (stmt)) |
| gimple_debug_source_bind_set_var (stmt, dslot->to); |
| |
| FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE) |
| { |
| name = USE_FROM_PTR (use); |
| if (TREE_CODE (name) != SSA_NAME) |
| continue; |
| |
| elt.version = SSA_NAME_VERSION (name); |
| slot = name_copies->find_slot_with_hash (&elt, elt.version, NO_INSERT); |
| if (!slot) |
| { |
| gimple_debug_bind_reset_value (stmt); |
| update_stmt (stmt); |
| break; |
| } |
| |
| SET_USE (use, (*slot)->new_name); |
| } |
| |
| return false; |
| } |
| |
| /* Callback for htab_traverse. Adds a field corresponding to the reduction |
| specified in SLOT. The type is passed in DATA. */ |
| |
| int |
| add_field_for_reduction (reduction_info **slot, tree type) |
| { |
| |
| struct reduction_info *const red = *slot; |
| tree var = reduc_stmt_res (red->reduc_stmt); |
| tree field = build_decl (gimple_location (red->reduc_stmt), FIELD_DECL, |
| SSA_NAME_IDENTIFIER (var), TREE_TYPE (var)); |
| |
| insert_field_into_struct (type, field); |
| |
| red->field = field; |
| |
| return 1; |
| } |
| |
| /* Callback for htab_traverse. Adds a field corresponding to a ssa name |
| described in SLOT. The type is passed in DATA. */ |
| |
| int |
| add_field_for_name (name_to_copy_elt **slot, tree type) |
| { |
| struct name_to_copy_elt *const elt = *slot; |
| tree name = ssa_name (elt->version); |
| tree field = build_decl (UNKNOWN_LOCATION, |
| FIELD_DECL, SSA_NAME_IDENTIFIER (name), |
| TREE_TYPE (name)); |
| |
| insert_field_into_struct (type, field); |
| elt->field = field; |
| |
| return 1; |
| } |
| |
| /* Callback for htab_traverse. A local result is the intermediate result |
| computed by a single |
| thread, or the initial value in case no iteration was executed. |
| This function creates a phi node reflecting these values. |
| The phi's result will be stored in NEW_PHI field of the |
| reduction's data structure. */ |
| |
| int |
| create_phi_for_local_result (reduction_info **slot, class loop *loop) |
| { |
| struct reduction_info *const reduc = *slot; |
| edge e; |
| gphi *new_phi; |
| basic_block store_bb, continue_bb; |
| tree local_res; |
| location_t locus; |
| |
| /* STORE_BB is the block where the phi |
| should be stored. It is the destination of the loop exit. |
| (Find the fallthru edge from GIMPLE_OMP_CONTINUE). */ |
| continue_bb = single_pred (loop->latch); |
| store_bb = FALLTHRU_EDGE (continue_bb)->dest; |
| |
| /* STORE_BB has two predecessors. One coming from the loop |
| (the reduction's result is computed at the loop), |
| and another coming from a block preceding the loop, |
| when no iterations |
| are executed (the initial value should be taken). */ |
| if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (continue_bb)) |
| e = EDGE_PRED (store_bb, 1); |
| else |
| e = EDGE_PRED (store_bb, 0); |
| tree lhs = reduc_stmt_res (reduc->reduc_stmt); |
| local_res = copy_ssa_name (lhs); |
| locus = gimple_location (reduc->reduc_stmt); |
| new_phi = create_phi_node (local_res, store_bb); |
| add_phi_arg (new_phi, reduc->init, e, locus); |
| add_phi_arg (new_phi, lhs, FALLTHRU_EDGE (continue_bb), locus); |
| reduc->new_phi = new_phi; |
| |
| return 1; |
| } |
| |
| struct clsn_data |
| { |
| tree store; |
| tree load; |
| |
| basic_block store_bb; |
| basic_block load_bb; |
| }; |
| |
| /* Callback for htab_traverse. Create an atomic instruction for the |
| reduction described in SLOT. |
| DATA annotates the place in memory the atomic operation relates to, |
| and the basic block it needs to be generated in. */ |
| |
| int |
| create_call_for_reduction_1 (reduction_info **slot, struct clsn_data *clsn_data) |
| { |
| struct reduction_info *const reduc = *slot; |
| gimple_stmt_iterator gsi; |
| tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi)); |
| tree load_struct; |
| basic_block bb; |
| basic_block new_bb; |
| edge e; |
| tree t, addr, ref, x; |
| tree tmp_load, name; |
| gimple *load; |
| |
| if (reduc->reduc_addr == NULL_TREE) |
| { |
| load_struct = build_simple_mem_ref (clsn_data->load); |
| t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE); |
| |
| addr = build_addr (t); |
| } |
| else |
| { |
| /* Set the address for the atomic store. */ |
| addr = reduc->reduc_addr; |
| |
| /* Remove the non-atomic store '*addr = sum'. */ |
| tree res = PHI_RESULT (reduc->keep_res); |
| use_operand_p use_p; |
| gimple *stmt; |
| bool single_use_p = single_imm_use (res, &use_p, &stmt); |
| gcc_assert (single_use_p); |
| replace_uses_by (gimple_vdef (stmt), |
| gimple_vuse (stmt)); |
| gimple_stmt_iterator gsi = gsi_for_stmt (stmt); |
| gsi_remove (&gsi, true); |
| } |
| |
| /* Create phi node. */ |
| bb = clsn_data->load_bb; |
| |
| gsi = gsi_last_bb (bb); |
| e = split_block (bb, gsi_stmt (gsi)); |
| new_bb = e->dest; |
| |
| tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr))); |
| tmp_load = make_ssa_name (tmp_load); |
| load = gimple_build_omp_atomic_load (tmp_load, addr, |
| OMP_MEMORY_ORDER_RELAXED); |
| SSA_NAME_DEF_STMT (tmp_load) = load; |
| gsi = gsi_start_bb (new_bb); |
| gsi_insert_after (&gsi, load, GSI_NEW_STMT); |
| |
| e = split_block (new_bb, load); |
| new_bb = e->dest; |
| gsi = gsi_start_bb (new_bb); |
| ref = tmp_load; |
| x = fold_build2 (reduc->reduction_code, |
| TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref, |
| PHI_RESULT (reduc->new_phi)); |
| |
| name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true, |
| GSI_CONTINUE_LINKING); |
| |
| gimple *store = gimple_build_omp_atomic_store (name, |
| OMP_MEMORY_ORDER_RELAXED); |
| gsi_insert_after (&gsi, store, GSI_NEW_STMT); |
| return 1; |
| } |
| |
| /* Create the atomic operation at the join point of the threads. |
| REDUCTION_LIST describes the reductions in the LOOP. |
| LD_ST_DATA describes the shared data structure where |
| shared data is stored in and loaded from. */ |
| static void |
| create_call_for_reduction (class loop *loop, |
| reduction_info_table_type *reduction_list, |
| struct clsn_data *ld_st_data) |
| { |
| reduction_list->traverse <class loop *, create_phi_for_local_result> (loop); |
| /* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */ |
| basic_block continue_bb = single_pred (loop->latch); |
| ld_st_data->load_bb = FALLTHRU_EDGE (continue_bb)->dest; |
| reduction_list |
| ->traverse <struct clsn_data *, create_call_for_reduction_1> (ld_st_data); |
| } |
| |
| /* Callback for htab_traverse. Loads the final reduction value at the |
| join point of all threads, and inserts it in the right place. */ |
| |
| int |
| create_loads_for_reductions (reduction_info **slot, struct clsn_data *clsn_data) |
| { |
| struct reduction_info *const red = *slot; |
| gimple *stmt; |
| gimple_stmt_iterator gsi; |
| tree type = TREE_TYPE (reduc_stmt_res (red->reduc_stmt)); |
| tree load_struct; |
| tree name; |
| tree x; |
| |
| /* If there's no exit phi, the result of the reduction is unused. */ |
| if (red->keep_res == NULL) |
| return 1; |
| |
| gsi = gsi_after_labels (clsn_data->load_bb); |
| load_struct = build_simple_mem_ref (clsn_data->load); |
| load_struct = build3 (COMPONENT_REF, type, load_struct, red->field, |
| NULL_TREE); |
| |
| x = load_struct; |
| name = PHI_RESULT (red->keep_res); |
| stmt = gimple_build_assign (name, x); |
| |
| gsi_insert_after (&gsi, stmt, GSI_NEW_STMT); |
| |
| for (gsi = gsi_start_phis (gimple_bb (red->keep_res)); |
| !gsi_end_p (gsi); gsi_next (&gsi)) |
| if (gsi_stmt (gsi) == red->keep_res) |
| { |
| remove_phi_node (&gsi, false); |
| return 1; |
| } |
| gcc_unreachable (); |
| } |
| |
| /* Load the reduction result that was stored in LD_ST_DATA. |
| REDUCTION_LIST describes the list of reductions that the |
| loads should be generated for. */ |
| static void |
| create_final_loads_for_reduction (reduction_info_table_type *reduction_list, |
| struct clsn_data *ld_st_data) |
| { |
| gimple_stmt_iterator gsi; |
| tree t; |
| gimple *stmt; |
| |
| gsi = gsi_after_labels (ld_st_data->load_bb); |
| t = build_fold_addr_expr (ld_st_data->store); |
| stmt = gimple_build_assign (ld_st_data->load, t); |
| |
| gsi_insert_before (&gsi, stmt, GSI_NEW_STMT); |
| |
| reduction_list |
| ->traverse <struct clsn_data *, create_loads_for_reductions> (ld_st_data); |
| |
| } |
| |
| /* Callback for htab_traverse. Store the neutral value for the |
| particular reduction's operation, e.g. 0 for PLUS_EXPR, |
| 1 for MULT_EXPR, etc. into the reduction field. |
| The reduction is specified in SLOT. The store information is |
| passed in DATA. */ |
| |
| int |
| create_stores_for_reduction (reduction_info **slot, struct clsn_data *clsn_data) |
| { |
| struct reduction_info *const red = *slot; |
| tree t; |
| gimple *stmt; |
| gimple_stmt_iterator gsi; |
| tree type = TREE_TYPE (reduc_stmt_res (red->reduc_stmt)); |
| |
| gsi = gsi_last_bb (clsn_data->store_bb); |
| t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE); |
| stmt = gimple_build_assign (t, red->initial_value); |
| gsi_insert_after (&gsi, stmt, GSI_NEW_STMT); |
| |
| return 1; |
| } |
| |
| /* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and |
| store to a field of STORE in STORE_BB for the ssa name and its duplicate |
| specified in SLOT. */ |
| |
| int |
| create_loads_and_stores_for_name (name_to_copy_elt **slot, |
| struct clsn_data *clsn_data) |
| { |
| struct name_to_copy_elt *const elt = *slot; |
| tree t; |
| gimple *stmt; |
| gimple_stmt_iterator gsi; |
| tree type = TREE_TYPE (elt->new_name); |
| tree load_struct; |
| |
| gsi = gsi_last_bb (clsn_data->store_bb); |
| t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE); |
| stmt = gimple_build_assign (t, ssa_name (elt->version)); |
| gsi_insert_after (&gsi, stmt, GSI_NEW_STMT); |
| |
| gsi = gsi_last_bb (clsn_data->load_bb); |
| load_struct = build_simple_mem_ref (clsn_data->load); |
| t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE); |
| stmt = gimple_build_assign (elt->new_name, t); |
| gsi_insert_after (&gsi, stmt, GSI_NEW_STMT); |
| |
| return 1; |
| } |
| |
| /* Moves all the variables used in LOOP and defined outside of it (including |
| the initial values of loop phi nodes, and *PER_THREAD if it is a ssa |
| name) to a structure created for this purpose. The code |
| |
| while (1) |
| { |
| use (a); |
| use (b); |
| } |
| |
| is transformed this way: |
| |
| bb0: |
| old.a = a; |
| old.b = b; |
| |
| bb1: |
| a' = new->a; |
| b' = new->b; |
| while (1) |
| { |
| use (a'); |
| use (b'); |
| } |
| |
| `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The |
| pointer `new' is intentionally not initialized (the loop will be split to a |
| separate function later, and `new' will be initialized from its arguments). |
| LD_ST_DATA holds information about the shared data structure used to pass |
| information among the threads. It is initialized here, and |
| gen_parallel_loop will pass it to create_call_for_reduction that |
| needs this information. REDUCTION_LIST describes the reductions |
| in LOOP. */ |
| |
| static void |
| separate_decls_in_region (edge entry, edge exit, |
| reduction_info_table_type *reduction_list, |
| tree *arg_struct, tree *new_arg_struct, |
| struct clsn_data *ld_st_data) |
| |
| { |
| basic_block bb1 = split_edge (entry); |
| basic_block bb0 = single_pred (bb1); |
| name_to_copy_table_type name_copies (10); |
| int_tree_htab_type decl_copies (10); |
| unsigned i; |
| tree type, type_name, nvar; |
| gimple_stmt_iterator gsi; |
| struct clsn_data clsn_data; |
| auto_vec<basic_block, 3> body; |
| basic_block bb; |
| basic_block entry_bb = bb1; |
| basic_block exit_bb = exit->dest; |
| bool has_debug_stmt = false; |
| |
| entry = single_succ_edge (entry_bb); |
| gather_blocks_in_sese_region (entry_bb, exit_bb, &body); |
| |
| FOR_EACH_VEC_ELT (body, i, bb) |
| { |
| if (bb != entry_bb && bb != exit_bb) |
| { |
| for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi), |
| &name_copies, &decl_copies); |
| |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| gimple *stmt = gsi_stmt (gsi); |
| |
| if (is_gimple_debug (stmt)) |
| has_debug_stmt = true; |
| else |
| separate_decls_in_region_stmt (entry, exit, stmt, |
| &name_copies, &decl_copies); |
| } |
| } |
| } |
| |
| /* Now process debug bind stmts. We must not create decls while |
| processing debug stmts, so we defer their processing so as to |
| make sure we will have debug info for as many variables as |
| possible (all of those that were dealt with in the loop above), |
| and discard those for which we know there's nothing we can |
| do. */ |
| if (has_debug_stmt) |
| FOR_EACH_VEC_ELT (body, i, bb) |
| if (bb != entry_bb && bb != exit_bb) |
| { |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);) |
| { |
| gimple *stmt = gsi_stmt (gsi); |
| |
| if (is_gimple_debug (stmt)) |
| { |
| if (separate_decls_in_region_debug (stmt, &name_copies, |
| &decl_copies)) |
| { |
| gsi_remove (&gsi, true); |
| continue; |
| } |
| } |
| |
| gsi_next (&gsi); |
| } |
| } |
| |
| if (name_copies.is_empty () && reduction_list->is_empty ()) |
| { |
| /* It may happen that there is nothing to copy (if there are only |
| loop carried and external variables in the loop). */ |
| *arg_struct = NULL; |
| *new_arg_struct = NULL; |
| } |
| else |
| { |
| /* Create the type for the structure to store the ssa names to. */ |
| type = lang_hooks.types.make_type (RECORD_TYPE); |
| type_name = build_decl (UNKNOWN_LOCATION, |
| TYPE_DECL, create_tmp_var_name (".paral_data"), |
| type); |
| TYPE_NAME (type) = type_name; |
| |
| name_copies.traverse <tree, add_field_for_name> (type); |
| if (reduction_list && !reduction_list->is_empty ()) |
| { |
| /* Create the fields for reductions. */ |
| reduction_list->traverse <tree, add_field_for_reduction> (type); |
| } |
| layout_type (type); |
| |
| /* Create the loads and stores. */ |
| *arg_struct = create_tmp_var (type, ".paral_data_store"); |
| nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load"); |
| *new_arg_struct = make_ssa_name (nvar); |
| |
| ld_st_data->store = *arg_struct; |
| ld_st_data->load = *new_arg_struct; |
| ld_st_data->store_bb = bb0; |
| ld_st_data->load_bb = bb1; |
| |
| name_copies |
| .traverse <struct clsn_data *, create_loads_and_stores_for_name> |
| (ld_st_data); |
| |
| /* Load the calculation from memory (after the join of the threads). */ |
| |
| if (reduction_list && !reduction_list->is_empty ()) |
| { |
| reduction_list |
| ->traverse <struct clsn_data *, create_stores_for_reduction> |
| (ld_st_data); |
| clsn_data.load = make_ssa_name (nvar); |
| clsn_data.load_bb = exit->dest; |
| clsn_data.store = ld_st_data->store; |
| create_final_loads_for_reduction (reduction_list, &clsn_data); |
| } |
| } |
| } |
| |
| /* Returns true if FN was created to run in parallel. */ |
| |
| bool |
| parallelized_function_p (tree fndecl) |
| { |
| cgraph_node *node = cgraph_node::get (fndecl); |
| gcc_assert (node != NULL); |
| return node->parallelized_function; |
| } |
| |
| /* Creates and returns an empty function that will receive the body of |
| a parallelized loop. */ |
| |
| static tree |
| create_loop_fn (location_t loc) |
| { |
| char buf[100]; |
| char *tname; |
| tree decl, type, name, t; |
| struct function *act_cfun = cfun; |
| static unsigned loopfn_num; |
| |
| loc = LOCATION_LOCUS (loc); |
| snprintf (buf, 100, "%s.$loopfn", current_function_name ()); |
| ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++); |
| clean_symbol_name (tname); |
| name = get_identifier (tname); |
| type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE); |
| |
| decl = build_decl (loc, FUNCTION_DECL, name, type); |
| TREE_STATIC (decl) = 1; |
| TREE_USED (decl) = 1; |
| DECL_ARTIFICIAL (decl) = 1; |
| DECL_IGNORED_P (decl) = 0; |
| TREE_PUBLIC (decl) = 0; |
| DECL_UNINLINABLE (decl) = 1; |
| DECL_EXTERNAL (decl) = 0; |
| DECL_CONTEXT (decl) = NULL_TREE; |
| DECL_INITIAL (decl) = make_node (BLOCK); |
| BLOCK_SUPERCONTEXT (DECL_INITIAL (decl)) = decl; |
| |
| t = build_decl (loc, RESULT_DECL, NULL_TREE, void_type_node); |
| DECL_ARTIFICIAL (t) = 1; |
| DECL_IGNORED_P (t) = 1; |
| DECL_RESULT (decl) = t; |
| |
| t = build_decl (loc, PARM_DECL, get_identifier (".paral_data_param"), |
| ptr_type_node); |
| DECL_ARTIFICIAL (t) = 1; |
| DECL_ARG_TYPE (t) = ptr_type_node; |
| DECL_CONTEXT (t) = decl; |
| TREE_USED (t) = 1; |
| DECL_ARGUMENTS (decl) = t; |
| |
| allocate_struct_function (decl, false); |
| |
| /* The call to allocate_struct_function clobbers CFUN, so we need to restore |
| it. */ |
| set_cfun (act_cfun); |
| |
| return decl; |
| } |
| |
| /* Replace uses of NAME by VAL in block BB. */ |
| |
| static void |
| replace_uses_in_bb_by (tree name, tree val, basic_block bb) |
| { |
| gimple *use_stmt; |
| imm_use_iterator imm_iter; |
| |
| FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, name) |
| { |
| if (gimple_bb (use_stmt) != bb) |
| continue; |
| |
| use_operand_p use_p; |
| FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter) |
| SET_USE (use_p, val); |
| } |
| } |
| |
| /* Do transformation from: |
| |
| <bb preheader>: |
| ... |
| goto <bb header> |
| |
| <bb header>: |
| ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)> |
| sum_a = PHI <sum_init (preheader), sum_b (latch)> |
| ... |
| use (ivtmp_a) |
| ... |
| sum_b = sum_a + sum_update |
| ... |
| if (ivtmp_a < n) |
| goto <bb latch>; |
| else |
| goto <bb exit>; |
| |
| <bb latch>: |
| ivtmp_b = ivtmp_a + 1; |
| goto <bb header> |
| |
| <bb exit>: |
| sum_z = PHI <sum_b (cond[1]), ...> |
| |
| [1] Where <bb cond> is single_pred (bb latch); In the simplest case, |
| that's <bb header>. |
| |
| to: |
| |
| <bb preheader>: |
| ... |
| goto <bb newheader> |
| |
| <bb header>: |
| ivtmp_a = PHI <ivtmp_c (latch)> |
| sum_a = PHI <sum_c (latch)> |
| ... |
| use (ivtmp_a) |
| ... |
| sum_b = sum_a + sum_update |
| ... |
| goto <bb latch>; |
| |
| <bb newheader>: |
| ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)> |
| sum_c = PHI <sum_init (preheader), sum_b (latch)> |
| if (ivtmp_c < n + 1) |
| goto <bb header>; |
| else |
| goto <bb newexit>; |
| |
| <bb latch>: |
| ivtmp_b = ivtmp_a + 1; |
| goto <bb newheader> |
| |
| <bb newexit>: |
| sum_y = PHI <sum_c (newheader)> |
| |
| <bb exit>: |
| sum_z = PHI <sum_y (newexit), ...> |
| |
| |
| In unified diff format: |
| |
| <bb preheader>: |
| ... |
| - goto <bb header> |
| + goto <bb newheader> |
| |
| <bb header>: |
| - ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)> |
| - sum_a = PHI <sum_init (preheader), sum_b (latch)> |
| + ivtmp_a = PHI <ivtmp_c (latch)> |
| + sum_a = PHI <sum_c (latch)> |
| ... |
| use (ivtmp_a) |
| ... |
| sum_b = sum_a + sum_update |
| ... |
| - if (ivtmp_a < n) |
| - goto <bb latch>; |
| + goto <bb latch>; |
| + |
| + <bb newheader>: |
| + ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)> |
| + sum_c = PHI <sum_init (preheader), sum_b (latch)> |
| + if (ivtmp_c < n + 1) |
| + goto <bb header>; |
| else |
| goto <bb exit>; |
| |
| <bb latch>: |
| ivtmp_b = ivtmp_a + 1; |
| - goto <bb header> |
| + goto <bb newheader> |
| |
| + <bb newexit>: |
| + sum_y = PHI <sum_c (newheader)> |
| |
| <bb exit>: |
| - sum_z = PHI <sum_b (cond[1]), ...> |
| + sum_z = PHI <sum_y (newexit), ...> |
| |
| Note: the example does not show any virtual phis, but these are handled more |
| or less as reductions. |
| |
| |
| Moves the exit condition of LOOP to the beginning of its header. |
| REDUCTION_LIST describes the reductions in LOOP. BOUND is the new loop |
| bound. */ |
| |
| static void |
| transform_to_exit_first_loop_alt (class loop *loop, |
| reduction_info_table_type *reduction_list, |
| tree bound) |
| { |
| basic_block header = loop->header; |
| basic_block latch = loop->latch; |
| edge exit = single_dom_exit (loop); |
| basic_block exit_block = exit->dest; |
| gcond *cond_stmt = as_a <gcond *> (last_stmt (exit->src)); |
| tree control = gimple_cond_lhs (cond_stmt); |
| edge e; |
| |
| /* Rewriting virtuals into loop-closed ssa normal form makes this |
| transformation simpler. It also ensures that the virtuals are in |
| loop-closed ssa normal from after the transformation, which is required by |
| create_parallel_loop. */ |
| rewrite_virtuals_into_loop_closed_ssa (loop); |
| |
| /* Create the new_header block. */ |
| basic_block new_header = split_block_before_cond_jump (exit->src); |
| edge edge_at_split = single_pred_edge (new_header); |
| |
| /* Redirect entry edge to new_header. */ |
| edge entry = loop_preheader_edge (loop); |
| e = redirect_edge_and_branch (entry, new_header); |
| gcc_assert (e == entry); |
| |
| /* Redirect post_inc_edge to new_header. */ |
| edge post_inc_edge = single_succ_edge (latch); |
| e = redirect_edge_and_branch (post_inc_edge, new_header); |
| gcc_assert (e == post_inc_edge); |
| |
| /* Redirect post_cond_edge to header. */ |
| edge post_cond_edge = single_pred_edge (latch); |
| e = redirect_edge_and_branch (post_cond_edge, header); |
| gcc_assert (e == post_cond_edge); |
| |
| /* Redirect edge_at_split to latch. */ |
| e = redirect_edge_and_branch (edge_at_split, latch); |
| gcc_assert (e == edge_at_split); |
| |
| /* Set the new loop bound. */ |
| gimple_cond_set_rhs (cond_stmt, bound); |
| update_stmt (cond_stmt); |
| |
| /* Repair the ssa. */ |
| vec<edge_var_map> *v = redirect_edge_var_map_vector (post_inc_edge); |
| edge_var_map *vm; |
| gphi_iterator gsi; |
| int i; |
| for (gsi = gsi_start_phis (header), i = 0; |
| !gsi_end_p (gsi) && v->iterate (i, &vm); |
| gsi_next (&gsi), i++) |
| { |
| gphi *phi = gsi.phi (); |
| tree res_a = PHI_RESULT (phi); |
| |
| /* Create new phi. */ |
| tree res_c = copy_ssa_name (res_a, phi); |
| gphi *nphi = create_phi_node (res_c, new_header); |
| |
| /* Replace ivtmp_a with ivtmp_c in condition 'if (ivtmp_a < n)'. */ |
| replace_uses_in_bb_by (res_a, res_c, new_header); |
| |
| /* Replace ivtmp/sum_b with ivtmp/sum_c in header phi. */ |
| add_phi_arg (phi, res_c, post_cond_edge, UNKNOWN_LOCATION); |
| |
| /* Replace sum_b with sum_c in exit phi. */ |
| tree res_b = redirect_edge_var_map_def (vm); |
| replace_uses_in_bb_by (res_b, res_c, exit_block); |
| |
| struct reduction_info *red = reduction_phi (reduction_list, phi); |
| gcc_assert (virtual_operand_p (res_a) |
| || res_a == control |
| || red != NULL); |
| |
| if (red) |
| { |
| /* Register the new reduction phi. */ |
| red->reduc_phi = nphi; |
| gimple_set_uid (red->reduc_phi, red->reduc_version); |
| } |
| } |
| gcc_assert (gsi_end_p (gsi) && !v->iterate (i, &vm)); |
| |
| /* Set the preheader argument of the new phis to ivtmp/sum_init. */ |
| flush_pending_stmts (entry); |
| |
| /* Set the latch arguments of the new phis to ivtmp/sum_b. */ |
| flush_pending_stmts (post_inc_edge); |
| |
| |
| basic_block new_exit_block = NULL; |
| if (!single_pred_p (exit->dest)) |
| { |
| /* Create a new empty exit block, inbetween the new loop header and the |
| old exit block. The function separate_decls_in_region needs this block |
| to insert code that is active on loop exit, but not any other path. */ |
| new_exit_block = split_edge (exit); |
| } |
| |
| /* Insert and register the reduction exit phis. */ |
| for (gphi_iterator gsi = gsi_start_phis (exit_block); |
| !gsi_end_p (gsi); |
| gsi_next (&gsi)) |
| { |
| gphi *phi = gsi.phi (); |
| gphi *nphi = NULL; |
| tree res_z = PHI_RESULT (phi); |
| tree res_c; |
| |
| if (new_exit_block != NULL) |
| { |
| /* Now that we have a new exit block, duplicate the phi of the old |
| exit block in the new exit block to preserve loop-closed ssa. */ |
| edge succ_new_exit_block = single_succ_edge (new_exit_block); |
| edge pred_new_exit_block = single_pred_edge (new_exit_block); |
| tree res_y = copy_ssa_name (res_z, phi); |
| nphi = create_phi_node (res_y, new_exit_block); |
| res_c = PHI_ARG_DEF_FROM_EDGE (phi, succ_new_exit_block); |
| add_phi_arg (nphi, res_c, pred_new_exit_block, UNKNOWN_LOCATION); |
| add_phi_arg (phi, res_y, succ_new_exit_block, UNKNOWN_LOCATION); |
| } |
| else |
| res_c = PHI_ARG_DEF_FROM_EDGE (phi, exit); |
| |
| if (virtual_operand_p (res_z)) |
| continue; |
| |
| gimple *reduc_phi = SSA_NAME_DEF_STMT (res_c); |
| struct reduction_info *red = reduction_phi (reduction_list, reduc_phi); |
| if (red != NULL) |
| red->keep_res = (nphi != NULL |
| ? nphi |
| : phi); |
| } |
| |
| /* We're going to cancel the loop at the end of gen_parallel_loop, but until |
| then we're still using some fields, so only bother about fields that are |
| still used: header and latch. |
| The loop has a new header bb, so we update it. The latch bb stays the |
| same. */ |
| loop->header = new_header; |
| |
| /* Recalculate dominance info. */ |
| free_dominance_info (CDI_DOMINATORS); |
| calculate_dominance_info (CDI_DOMINATORS); |
| |
| checking_verify_ssa (true, true); |
| } |
| |
| /* Tries to moves the exit condition of LOOP to the beginning of its header |
| without duplication of the loop body. NIT is the number of iterations of the |
| loop. REDUCTION_LIST describes the reductions in LOOP. Return true if |
| transformation is successful. */ |
| |
| static bool |
| try_transform_to_exit_first_loop_alt (class loop *loop, |
| reduction_info_table_type *reduction_list, |
| tree nit) |
| { |
| /* Check whether the latch contains a single statement. */ |
| if (!gimple_seq_nondebug_singleton_p (bb_seq (loop->latch))) |
| return false; |
| |
| /* Check whether the latch contains no phis. */ |
| if (phi_nodes (loop->latch) != NULL) |
| return false; |
| |
| /* Check whether the latch contains the loop iv increment. */ |
| edge back = single_succ_edge (loop->latch); |
| edge exit = single_dom_exit (loop); |
| gcond *cond_stmt = as_a <gcond *> (last_stmt (exit->src)); |
| tree control = gimple_cond_lhs (cond_stmt); |
| gphi *phi = as_a <gphi *> (SSA_NAME_DEF_STMT (control)); |
| tree inc_res = gimple_phi_arg_def (phi, back->dest_idx); |
| if (gimple_bb (SSA_NAME_DEF_STMT (inc_res)) != loop->latch) |
| return false; |
| |
| /* Check whether there's no code between the loop condition and the latch. */ |
| if (!single_pred_p (loop->latch) |
| || single_pred (loop->latch) != exit->src) |
| return false; |
| |
| tree alt_bound = NULL_TREE; |
| tree nit_type = TREE_TYPE (nit); |
| |
| /* Figure out whether nit + 1 overflows. */ |
| if (TREE_CODE (nit) == INTEGER_CST) |
| { |
| if (!tree_int_cst_equal (nit, TYPE_MAX_VALUE (nit_type))) |
| { |
| alt_bound = fold_build2_loc (UNKNOWN_LOCATION, PLUS_EXPR, nit_type, |
| nit, build_one_cst (nit_type)); |
| |
| gcc_assert (TREE_CODE (alt_bound) == INTEGER_CST); |
| transform_to_exit_first_loop_alt (loop, reduction_list, alt_bound); |
| return true; |
| } |
| else |
| { |
| /* Todo: Figure out if we can trigger this, if it's worth to handle |
| optimally, and if we can handle it optimally. */ |
| return false; |
| } |
| } |
| |
| gcc_assert (TREE_CODE (nit) == SSA_NAME); |
| |
| /* Variable nit is the loop bound as returned by canonicalize_loop_ivs, for an |
| iv with base 0 and step 1 that is incremented in the latch, like this: |
| |
| <bb header>: |
| # iv_1 = PHI <0 (preheader), iv_2 (latch)> |
| ... |
| if (iv_1 < nit) |
| goto <bb latch>; |
| else |
| goto <bb exit>; |
| |
| <bb latch>: |
| iv_2 = iv_1 + 1; |
| goto <bb header>; |
| |
| The range of iv_1 is [0, nit]. The latch edge is taken for |
| iv_1 == [0, nit - 1] and the exit edge is taken for iv_1 == nit. So the |
| number of latch executions is equal to nit. |
| |
| The function max_loop_iterations gives us the maximum number of latch |
| executions, so it gives us the maximum value of nit. */ |
| widest_int nit_max; |
| if (!max_loop_iterations (loop, &nit_max)) |
| return false; |
| |
| /* Check if nit + 1 overflows. */ |
| widest_int type_max = wi::to_widest (TYPE_MAX_VALUE (nit_type)); |
| if (nit_max >= type_max) |
| return false; |
| |
| gimple *def = SSA_NAME_DEF_STMT (nit); |
| |
| /* Try to find nit + 1, in the form of n in an assignment nit = n - 1. */ |
| if (def |
| && is_gimple_assign (def) |
| && gimple_assign_rhs_code (def) == PLUS_EXPR) |
| { |
| tree op1 = gimple_assign_rhs1 (def); |
| tree op2 = gimple_assign_rhs2 (def); |
| if (integer_minus_onep (op1)) |
| alt_bound = op2; |
| else if (integer_minus_onep (op2)) |
| alt_bound = op1; |
| } |
| |
| /* If not found, insert nit + 1. */ |
| if (alt_bound == NULL_TREE) |
| { |
| alt_bound = fold_build2 (PLUS_EXPR, nit_type, nit, |
| build_int_cst_type (nit_type, 1)); |
| |
| gimple_stmt_iterator gsi = gsi_last_bb (loop_preheader_edge (loop)->src); |
| |
| alt_bound |
| = force_gimple_operand_gsi (&gsi, alt_bound, true, NULL_TREE, false, |
| GSI_CONTINUE_LINKING); |
| } |
| |
| transform_to_exit_first_loop_alt (loop, reduction_list, alt_bound); |
| return true; |
| } |
| |
| /* Moves the exit condition of LOOP to the beginning of its header. NIT is the |
| number of iterations of the loop. REDUCTION_LIST describes the reductions in |
| LOOP. */ |
| |
| static void |
| transform_to_exit_first_loop (class loop *loop, |
| reduction_info_table_type *reduction_list, |
| tree nit) |
| { |
| basic_block *bbs, *nbbs, ex_bb, orig_header; |
| unsigned n; |
| bool ok; |
| edge exit = single_dom_exit (loop), hpred; |
| tree control, control_name, res, t; |
| gphi *phi, *nphi; |
| gassign *stmt; |
| gcond *cond_stmt, *cond_nit; |
| tree nit_1; |
| |
| split_block_after_labels (loop->header); |
| orig_header = single_succ (loop->header); |
| hpred = single_succ_edge (loop->header); |
| |
| cond_stmt = as_a <gcond *> (last_stmt (exit->src)); |
| control = gimple_cond_lhs (cond_stmt); |
| gcc_assert (gimple_cond_rhs (cond_stmt) == nit); |
| |
| /* Make sure that we have phi nodes on exit for all loop header phis |
| (create_parallel_loop requires that). */ |
| for (gphi_iterator gsi = gsi_start_phis (loop->header); |
| !gsi_end_p (gsi); |
| gsi_next (&gsi)) |
| { |
| phi = gsi.phi (); |
| res = PHI_RESULT (phi); |
| t = copy_ssa_name (res, phi); |
| SET_PHI_RESULT (phi, t); |
| nphi = create_phi_node (res, orig_header); |
| add_phi_arg (nphi, t, hpred, UNKNOWN_LOCATION); |
| |
| if (res == control) |
| { |
| gimple_cond_set_lhs (cond_stmt, t); |
| update_stmt (cond_stmt); |
| control = t; |
| } |
| } |
| |
| bbs = get_loop_body_in_dom_order (loop); |
| |
| for (n = 0; bbs[n] != exit->src; n++) |
| continue; |
| nbbs = XNEWVEC (basic_block, n); |
| ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit, |
| bbs + 1, n, nbbs); |
| gcc_assert (ok); |
| free (bbs); |
| ex_bb = nbbs[0]; |
| free (nbbs); |
| |
| /* Other than reductions, the only gimple reg that should be copied |
| out of the loop is the control variable. */ |
| exit = single_dom_exit (loop); |
| control_name = NULL_TREE; |
| for (gphi_iterator gsi = gsi_start_phis (ex_bb); |
| !gsi_end_p (gsi); ) |
| { |
| phi = gsi.phi (); |
| res = PHI_RESULT (phi); |
| if (virtual_operand_p (res)) |
| { |
| gsi_next (&gsi); |
| continue; |
| } |
| |
| /* Check if it is a part of reduction. If it is, |
| keep the phi at the reduction's keep_res field. The |
| PHI_RESULT of this phi is the resulting value of the reduction |
| variable when exiting the loop. */ |
| |
| if (!reduction_list->is_empty ()) |
| { |
| struct reduction_info *red; |
| |
| tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit); |
| red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val)); |
| if (red) |
| { |
| red->keep_res = phi; |
| gsi_next (&gsi); |
| continue; |
| } |
| } |
| gcc_assert (control_name == NULL_TREE |
| && SSA_NAME_VAR (res) == SSA_NAME_VAR (control)); |
| control_name = res; |
| remove_phi_node (&gsi, false); |
| } |
| gcc_assert (control_name != NULL_TREE); |
| |
| /* Initialize the control variable to number of iterations |
| according to the rhs of the exit condition. */ |
| gimple_stmt_iterator gsi = gsi_after_labels (ex_bb); |
| cond_nit = as_a <gcond *> (last_stmt (exit->src)); |
| nit_1 = gimple_cond_rhs (cond_nit); |
| nit_1 = force_gimple_operand_gsi (&gsi, |
| fold_convert (TREE_TYPE (control_name), nit_1), |
| false, NULL_TREE, false, GSI_SAME_STMT); |
| stmt = gimple_build_assign (control_name, nit_1); |
| gsi_insert_before (&gsi, stmt, GSI_NEW_STMT); |
| } |
| |
| /* Create the parallel constructs for LOOP as described in gen_parallel_loop. |
| LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL. |
| NEW_DATA is the variable that should be initialized from the argument |
| of LOOP_FN. N_THREADS is the requested number of threads, which can be 0 if |
| that number is to be determined later. */ |
| |
| static void |
| create_parallel_loop (class loop *loop, tree loop_fn, tree data, |
| tree new_data, unsigned n_threads, location_t loc, |
| bool oacc_kernels_p) |
| { |
| gimple_stmt_iterator gsi; |
| basic_block for_bb, ex_bb, continue_bb; |
| tree t, param; |
| gomp_parallel *omp_par_stmt; |
| gimple *omp_return_stmt1, *omp_return_stmt2; |
| gimple *phi; |
| gcond *cond_stmt; |
| gomp_for *for_stmt; |
| gomp_continue *omp_cont_stmt; |
| tree cvar, cvar_init, initvar, cvar_next, cvar_base, type; |
| edge exit, nexit, guard, end, e; |
| |
| if (oacc_kernels_p) |
| { |
| gcc_checking_assert (lookup_attribute ("oacc kernels", |
| DECL_ATTRIBUTES (cfun->decl))); |
| /* Indicate to later processing that this is a parallelized OpenACC |
| kernels construct. */ |
| DECL_ATTRIBUTES (cfun->decl) |
| = tree_cons (get_identifier ("oacc kernels parallelized"), |
| NULL_TREE, DECL_ATTRIBUTES (cfun->decl)); |
| } |
| else |
| { |
| /* Prepare the GIMPLE_OMP_PARALLEL statement. */ |
| |
| basic_block bb = loop_preheader_edge (loop)->src; |
| basic_block paral_bb = single_pred (bb); |
| gsi = gsi_last_bb (paral_bb); |
| |
| gcc_checking_assert (n_threads != 0); |
| t = build_omp_clause (loc, OMP_CLAUSE_NUM_THREADS); |
| OMP_CLAUSE_NUM_THREADS_EXPR (t) |
| = build_int_cst (integer_type_node, n_threads); |
| omp_par_stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data); |
| gimple_set_location (omp_par_stmt, loc); |
| |
| gsi_insert_after (&gsi, omp_par_stmt, GSI_NEW_STMT); |
| |
| /* Initialize NEW_DATA. */ |
| if (data) |
| { |
| gassign *assign_stmt; |
| |
| gsi = gsi_after_labels (bb); |
| |
| param = make_ssa_name (DECL_ARGUMENTS (loop_fn)); |
| assign_stmt = gimple_build_assign (param, build_fold_addr_expr (data)); |
| gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT); |
| |
| assign_stmt = gimple_build_assign (new_data, |
| fold_convert (TREE_TYPE (new_data), param)); |
| gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT); |
| } |
| |
| /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */ |
| bb = split_loop_exit_edge (single_dom_exit (loop)); |
| gsi = gsi_last_bb (bb); |
| omp_return_stmt1 = gimple_build_omp_return (false); |
| gimple_set_location (omp_return_stmt1, loc); |
| gsi_insert_after (&gsi, omp_return_stmt1, GSI_NEW_STMT); |
| } |
| |
| /* Extract data for GIMPLE_OMP_FOR. */ |
| gcc_assert (loop->header == single_dom_exit (loop)->src); |
| cond_stmt = as_a <gcond *> (last_stmt (loop->header)); |
| |
| cvar = gimple_cond_lhs (cond_stmt); |
| cvar_base = SSA_NAME_VAR (cvar); |
| phi = SSA_NAME_DEF_STMT (cvar); |
| cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop)); |
| initvar = copy_ssa_name (cvar); |
| SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)), |
| initvar); |
| cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop)); |
| |
| gsi = gsi_last_nondebug_bb (loop->latch); |
| gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next)); |
| gsi_remove (&gsi, true); |
| |
| /* Prepare cfg. */ |
| for_bb = split_edge (loop_preheader_edge (loop)); |
| ex_bb = split_loop_exit_edge (single_dom_exit (loop)); |
| extract_true_false_edges_from_block (loop->header, &nexit, &exit); |
| gcc_assert (exit == single_dom_exit (loop)); |
| |
| guard = make_edge (for_bb, ex_bb, 0); |
| /* FIXME: What is the probability? */ |
| guard->probability = profile_probability::guessed_never (); |
| /* Split the latch edge, so LOOPS_HAVE_SIMPLE_LATCHES is still valid. */ |
| loop->latch = split_edge (single_succ_edge (loop->latch)); |
| single_pred_edge (loop->latch)->flags = 0; |
| end = make_single_succ_edge (single_pred (loop->latch), ex_bb, EDGE_FALLTHRU); |
| rescan_loop_exit (end, true, false); |
| |
| for (gphi_iterator gpi = gsi_start_phis (ex_bb); |
| !gsi_end_p (gpi); gsi_next (&gpi)) |
| { |
| location_t locus; |
| gphi *phi = gpi.phi (); |
| tree def = PHI_ARG_DEF_FROM_EDGE (phi, exit); |
| gimple *def_stmt = SSA_NAME_DEF_STMT (def); |
| |
| /* If the exit phi is not connected to a header phi in the same loop, this |
| value is not modified in the loop, and we're done with this phi. */ |
| if (!(gimple_code (def_stmt) == GIMPLE_PHI |
| && gimple_bb (def_stmt) == loop->header)) |
| { |
| locus = gimple_phi_arg_location_from_edge (phi, exit); |
| add_phi_arg (phi, def, guard, locus); |
| add_phi_arg (phi, def, end, locus); |
| continue; |
| } |
| |
| gphi *stmt = as_a <gphi *> (def_stmt); |
| def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop)); |
| locus = gimple_phi_arg_location_from_edge (stmt, |
| loop_preheader_edge (loop)); |
| add_phi_arg (phi, def, guard, locus); |
| |
| def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop)); |
| locus = gimple_phi_arg_location_from_edge (stmt, loop_latch_edge (loop)); |
| add_phi_arg (phi, def, end, locus); |
| } |
| e = redirect_edge_and_branch (exit, nexit->dest); |
| PENDING_STMT (e) = NULL; |
| |
| /* Emit GIMPLE_OMP_FOR. */ |
| if (oacc_kernels_p) |
| /* Parallelized OpenACC kernels constructs use gang parallelism. See also |
| omp-offload.c:execute_oacc_loop_designation. */ |
| t = build_omp_clause (loc, OMP_CLAUSE_GANG); |
| else |
| { |
| t = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE); |
| int chunk_size = param_parloops_chunk_size; |
| switch (param_parloops_schedule) |
| { |
| case PARLOOPS_SCHEDULE_STATIC: |
| OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC; |
| break; |
| case PARLOOPS_SCHEDULE_DYNAMIC: |
| OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_DYNAMIC; |
| break; |
| case PARLOOPS_SCHEDULE_GUIDED: |
| OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_GUIDED; |
| break; |
| case PARLOOPS_SCHEDULE_AUTO: |
| OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_AUTO; |
| chunk_size = 0; |
| break; |
| case PARLOOPS_SCHEDULE_RUNTIME: |
| OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_RUNTIME; |
| chunk_size = 0; |
| break; |
| default: |
| gcc_unreachable (); |
| } |
| if (chunk_size != 0) |
| OMP_CLAUSE_SCHEDULE_CHUNK_EXPR (t) |
| = build_int_cst (integer_type_node, chunk_size); |
| } |
| |
| for_stmt = gimple_build_omp_for (NULL, |
| (oacc_kernels_p |
| ? GF_OMP_FOR_KIND_OACC_LOOP |
| : GF_OMP_FOR_KIND_FOR), |
| t, 1, NULL); |
| |
| gimple_cond_set_lhs (cond_stmt, cvar_base); |
| type = TREE_TYPE (cvar); |
| gimple_set_location (for_stmt, loc); |
| gimple_omp_for_set_index (for_stmt, 0, initvar); |
| gimple_omp_for_set_initial (for_stmt, 0, cvar_init); |
| gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt)); |
| gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt)); |
| gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type, |
| cvar_base, |
| build_int_cst (type, 1))); |
| |
| gsi = gsi_last_bb (for_bb); |
| gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT); |
| SSA_NAME_DEF_STMT (initvar) = for_stmt; |
| |
| /* Emit GIMPLE_OMP_CONTINUE. */ |
| continue_bb = single_pred (loop->latch); |
| gsi = gsi_last_bb (continue_bb); |
| omp_cont_stmt = gimple_build_omp_continue (cvar_next, cvar); |
| gimple_set_location (omp_cont_stmt, loc); |
| gsi_insert_after (&gsi, omp_cont_stmt, GSI_NEW_STMT); |
| SSA_NAME_DEF_STMT (cvar_next) = omp_cont_stmt; |
| |
| /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */ |
| gsi = gsi_last_bb (ex_bb); |
| omp_return_stmt2 = gimple_build_omp_return (true); |
| gimple_set_location (omp_return_stmt2, loc); |
| gsi_insert_after (&gsi, omp_return_stmt2, GSI_NEW_STMT); |
| |
| /* After the above dom info is hosed. Re-compute it. */ |
| free_dominance_info (CDI_DOMINATORS); |
| calculate_dominance_info (CDI_DOMINATORS); |
| } |
| |
| /* Return number of phis in bb. If COUNT_VIRTUAL_P is false, don't count the |
| virtual phi. */ |
| |
| static unsigned int |
| num_phis (basic_block bb, bool count_virtual_p) |
| { |
| unsigned int nr_phis = 0; |
| gphi_iterator gsi; |
| for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| if (!count_virtual_p && virtual_operand_p (PHI_RESULT (gsi.phi ()))) |
| continue; |
| |
| nr_phis++; |
| } |
| |
| return nr_phis; |
| } |
| |
| /* Generates code to execute the iterations of LOOP in N_THREADS |
| threads in parallel, which can be 0 if that number is to be determined |
| later. |
| |
| NITER describes number of iterations of LOOP. |
| REDUCTION_LIST describes the reductions existent in the LOOP. */ |
| |
| static void |
| gen_parallel_loop (class loop *loop, |
| reduction_info_table_type *reduction_list, |
| unsigned n_threads, class tree_niter_desc *niter, |
| bool oacc_kernels_p) |
| { |
| tree many_iterations_cond, type, nit; |
| tree arg_struct, new_arg_struct; |
| gimple_seq stmts; |
| edge entry, exit; |
| struct clsn_data clsn_data; |
| location_t loc; |
| gimple *cond_stmt; |
| unsigned int m_p_thread=2; |
| |
| /* From |
| |
| --------------------------------------------------------------------- |
| loop |
| { |
| IV = phi (INIT, IV + STEP) |
| BODY1; |
| if (COND) |
| break; |
| BODY2; |
| } |
| --------------------------------------------------------------------- |
| |
| with # of iterations NITER (possibly with MAY_BE_ZERO assumption), |
| we generate the following code: |
| |
| --------------------------------------------------------------------- |
| |
| if (MAY_BE_ZERO |
| || NITER < MIN_PER_THREAD * N_THREADS) |
| goto original; |
| |
| BODY1; |
| store all local loop-invariant variables used in body of the loop to DATA. |
| GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA); |
| load the variables from DATA. |
| GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static)) |
| BODY2; |
| BODY1; |
| GIMPLE_OMP_CONTINUE; |
| GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR |
| GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL |
| goto end; |
| |
| original: |
| loop |
| { |
| IV = phi (INIT, IV + STEP) |
| BODY1; |
| if (COND) |
| break; |
| BODY2; |
| } |
| |
| end: |
| |
| */ |
| |
| /* Create two versions of the loop -- in the old one, we know that the |
| number of iterations is large enough, and we will transform it into the |
| loop that will be split to loop_fn, the new one will be used for the |
| remaining iterations. */ |
| |
| /* We should compute a better number-of-iterations value for outer loops. |
| That is, if we have |
| |
| for (i = 0; i < n; ++i) |
| for (j = 0; j < m; ++j) |
| ... |
| |
| we should compute nit = n * m, not nit = n. |
| Also may_be_zero handling would need to be adjusted. */ |
| |
| type = TREE_TYPE (niter->niter); |
| nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true, |
| NULL_TREE); |
| if (stmts) |
| gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts); |
| |
| if (!oacc_kernels_p) |
| { |
| if (loop->inner) |
| m_p_thread=2; |
| else |
| m_p_thread=MIN_PER_THREAD; |
| |
| gcc_checking_assert (n_threads != 0); |
| many_iterations_cond = |
| fold_build2 (GE_EXPR, boolean_type_node, |
| nit, build_int_cst (type, m_p_thread * n_threads - 1)); |
| |
| many_iterations_cond |
| = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, |
| invert_truthvalue (unshare_expr (niter->may_be_zero)), |
| many_iterations_cond); |
| many_iterations_cond |
| = force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE); |
| if (stmts) |
| gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts); |
| if (!is_gimple_condexpr (many_iterations_cond)) |
| { |
| many_iterations_cond |
| = force_gimple_operand (many_iterations_cond, &stmts, |
| true, NULL_TREE); |
| if (stmts) |
| gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), |
| stmts); |
| } |
| |
| initialize_original_copy_tables (); |
| |
| /* We assume that the loop usually iterates a lot. */ |
| loop_version (loop, many_iterations_cond, NULL, |
| profile_probability::likely (), |
| profile_probability::unlikely (), |
| profile_probability::likely (), |
| profile_probability::unlikely (), true); |
| update_ssa (TODO_update_ssa); |
| free_original_copy_tables (); |
| } |
| |
| /* Base all the induction variables in LOOP on a single control one. */ |
| canonicalize_loop_ivs (loop, &nit, true); |
| if (num_phis (loop->header, false) != reduction_list->elements () + 1) |
| { |
| /* The call to canonicalize_loop_ivs above failed to "base all the |
| induction variables in LOOP on a single control one". Do damage |
| control. */ |
| basic_block preheader = loop_preheader_edge (loop)->src; |
| basic_block cond_bb = single_pred (preheader); |
| gcond *cond = as_a <gcond *> (gsi_stmt (gsi_last_bb (cond_bb))); |
| gimple_cond_make_true (cond); |
| update_stmt (cond); |
| /* We've gotten rid of the duplicate loop created by loop_version, but |
| we can't undo whatever canonicalize_loop_ivs has done. |
| TODO: Fix this properly by ensuring that the call to |
| canonicalize_loop_ivs succeeds. */ |
| if (dump_file |
| && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "canonicalize_loop_ivs failed for loop %d," |
| " aborting transformation\n", loop->num); |
| return; |
| } |
| |
| /* Ensure that the exit condition is the first statement in the loop. |
| The common case is that latch of the loop is empty (apart from the |
| increment) and immediately follows the loop exit test. Attempt to move the |
| entry of the loop directly before the exit check and increase the number of |
| iterations of the loop by one. */ |
| if (try_transform_to_exit_first_loop_alt (loop, reduction_list, nit)) |
| { |
| if (dump_file |
| && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, |
| "alternative exit-first loop transform succeeded" |
| " for loop %d\n", loop->num); |
| } |
| else |
| { |
| if (oacc_kernels_p) |
| n_threads = 1; |
| |
| /* Fall back on the method that handles more cases, but duplicates the |
| loop body: move the exit condition of LOOP to the beginning of its |
| header, and duplicate the part of the last iteration that gets disabled |
| to the exit of the loop. */ |
| transform_to_exit_first_loop (loop, reduction_list, nit); |
| } |
| |
| /* Generate initializations for reductions. */ |
| if (!reduction_list->is_empty ()) |
| reduction_list->traverse <class loop *, initialize_reductions> (loop); |
| |
| /* Eliminate the references to local variables from the loop. */ |
| gcc_assert (single_exit (loop)); |
| entry = loop_preheader_edge (loop); |
| exit = single_dom_exit (loop); |
| |
| /* This rewrites the body in terms of new variables. This has already |
| been done for oacc_kernels_p in pass_lower_omp/lower_omp (). */ |
| if (!oacc_kernels_p) |
| { |
| eliminate_local_variables (entry, exit); |
| /* In the old loop, move all variables non-local to the loop to a |
| structure and back, and create separate decls for the variables used in |
| loop. */ |
| separate_decls_in_region (entry, exit, reduction_list, &arg_struct, |
| &new_arg_struct, &clsn_data); |
| } |
| else |
| { |
| arg_struct = NULL_TREE; |
| new_arg_struct = NULL_TREE; |
| clsn_data.load = NULL_TREE; |
| clsn_data.load_bb = exit->dest; |
| clsn_data.store = NULL_TREE; |
| clsn_data.store_bb = NULL; |
| } |
| |
| /* Create the parallel constructs. */ |
| loc = UNKNOWN_LOCATION; |
| cond_stmt = last_stmt (loop->header); |
| if (cond_stmt) |
| loc = gimple_location (cond_stmt); |
| create_parallel_loop (loop, create_loop_fn (loc), arg_struct, new_arg_struct, |
| n_threads, loc, oacc_kernels_p); |
| if (!reduction_list->is_empty ()) |
| create_call_for_reduction (loop, reduction_list, &clsn_data); |
| |
| scev_reset (); |
| |
| /* Free loop bound estimations that could contain references to |
| removed statements. */ |
| free_numbers_of_iterations_estimates (cfun); |
| } |
| |
| /* Returns true when LOOP contains vector phi nodes. */ |
| |
| static bool |
| loop_has_vector_phi_nodes (class loop *loop ATTRIBUTE_UNUSED) |
| { |
| unsigned i; |
| basic_block *bbs = get_loop_body_in_dom_order (loop); |
| gphi_iterator gsi; |
| bool res = true; |
| |
| for (i = 0; i < loop->num_nodes; i++) |
| for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi)) |
| if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi.phi ()))) == VECTOR_TYPE) |
| goto end; |
| |
| res = false; |
| end: |
| free (bbs); |
| return res; |
| } |
| |
| /* Create a reduction_info struct, initialize it with REDUC_STMT |
| and PHI, insert it to the REDUCTION_LIST. */ |
| |
| static void |
| build_new_reduction (reduction_info_table_type *reduction_list, |
| gimple *reduc_stmt, gphi *phi) |
| { |
| reduction_info **slot; |
| struct reduction_info *new_reduction; |
| enum tree_code reduction_code; |
| |
| gcc_assert (reduc_stmt); |
| |
| if (gimple_code (reduc_stmt) == GIMPLE_PHI) |
| { |
| tree op1 = PHI_ARG_DEF (reduc_stmt, 0); |
| gimple *def1 = SSA_NAME_DEF_STMT (op1); |
| reduction_code = gimple_assign_rhs_code (def1); |
| } |
| else |
| reduction_code = gimple_assign_rhs_code (reduc_stmt); |
| /* Check for OpenMP supported reduction. */ |
| switch (reduction_code) |
| { |
| case PLUS_EXPR: |
| case MULT_EXPR: |
| case MAX_EXPR: |
| case MIN_EXPR: |
| case BIT_IOR_EXPR: |
| case BIT_XOR_EXPR: |
| case BIT_AND_EXPR: |
| case TRUTH_OR_EXPR: |
| case TRUTH_XOR_EXPR: |
| case TRUTH_AND_EXPR: |
| break; |
| default: |
| return; |
| } |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, |
| "Detected reduction. reduction stmt is:\n"); |
| print_gimple_stmt (dump_file, reduc_stmt, 0); |
| fprintf (dump_file, "\n"); |
| } |
| |
| new_reduction = XCNEW (struct reduction_info); |
| |
| new_reduction->reduc_stmt = reduc_stmt; |
| new_reduction->reduc_phi = phi; |
| new_reduction->reduc_version = SSA_NAME_VERSION (gimple_phi_result (phi)); |
| new_reduction->reduction_code = reduction_code; |
| slot = reduction_list->find_slot (new_reduction, INSERT); |
| *slot = new_reduction; |
| } |
| |
| /* Callback for htab_traverse. Sets gimple_uid of reduc_phi stmts. */ |
| |
| int |
| set_reduc_phi_uids (reduction_info **slot, void *data ATTRIBUTE_UNUSED) |
| { |
| struct reduction_info *const red = *slot; |
| gimple_set_uid (red->reduc_phi, red->reduc_version); |
| return 1; |
| } |
| |
| /* Return true if the type of reduction performed by STMT_INFO is suitable |
| for this pass. */ |
| |
| static bool |
| valid_reduction_p (stmt_vec_info stmt_info) |
| { |
| /* Parallelization would reassociate the operation, which isn't |
| allowed for in-order reductions. */ |
| vect_reduction_type reduc_type = STMT_VINFO_REDUC_TYPE (stmt_info); |
| return reduc_type != FOLD_LEFT_REDUCTION; |
| } |
|