blob: 11cbc0c0b86b64c6a30486d1d59f1e1ff283fecb [file] [log] [blame]
//===-- tsan_clock.h --------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#ifndef TSAN_CLOCK_H
#define TSAN_CLOCK_H
#include "tsan_defs.h"
#include "tsan_dense_alloc.h"
namespace __tsan {
typedef DenseSlabAlloc<ClockBlock, 1 << 22, 1 << 10> ClockAlloc;
typedef DenseSlabAllocCache ClockCache;
// The clock that lives in sync variables (mutexes, atomics, etc).
class SyncClock {
public:
SyncClock();
~SyncClock();
uptr size() const;
// These are used only in tests.
u64 get(unsigned tid) const;
u64 get_clean(unsigned tid) const;
void Resize(ClockCache *c, uptr nclk);
void Reset(ClockCache *c);
void DebugDump(int(*printf)(const char *s, ...));
// Clock element iterator.
// Note: it iterates only over the table without regard to dirty entries.
class Iter {
public:
explicit Iter(SyncClock* parent);
Iter& operator++();
bool operator!=(const Iter& other);
ClockElem &operator*();
private:
SyncClock *parent_;
// [pos_, end_) is the current continuous range of clock elements.
ClockElem *pos_;
ClockElem *end_;
int block_; // Current number of second level block.
NOINLINE void Next();
};
Iter begin();
Iter end();
private:
friend class ThreadClock;
friend class Iter;
static const uptr kDirtyTids = 2;
struct Dirty {
u32 tid() const { return tid_ == kShortInvalidTid ? kInvalidTid : tid_; }
void set_tid(u32 tid) {
tid_ = tid == kInvalidTid ? kShortInvalidTid : tid;
}
u64 epoch : kClkBits;
private:
// Full kInvalidTid won't fit into Dirty::tid.
static const u64 kShortInvalidTid = (1ull << (64 - kClkBits)) - 1;
u64 tid_ : 64 - kClkBits; // kInvalidId if not active
};
static_assert(sizeof(Dirty) == 8, "Dirty is not 64bit");
unsigned release_store_tid_;
unsigned release_store_reused_;
Dirty dirty_[kDirtyTids];
// If size_ is 0, tab_ is nullptr.
// If size <= 64 (kClockCount), tab_ contains pointer to an array with
// 64 ClockElem's (ClockBlock::clock).
// Otherwise, tab_ points to an array with up to 127 u32 elements,
// each pointing to the second-level 512b block with 64 ClockElem's.
// Unused space in the first level ClockBlock is used to store additional
// clock elements.
// The last u32 element in the first level ClockBlock is always used as
// reference counter.
//
// See the following scheme for details.
// All memory blocks are 512 bytes (allocated from ClockAlloc).
// Clock (clk) elements are 64 bits.
// Idx and ref are 32 bits.
//
// tab_
// |
// \/
// +----------------------------------------------------+
// | clk128 | clk129 | ...unused... | idx1 | idx0 | ref |
// +----------------------------------------------------+
// | |
// | \/
// | +----------------+
// | | clk0 ... clk63 |
// | +----------------+
// \/
// +------------------+
// | clk64 ... clk127 |
// +------------------+
//
// Note: dirty entries, if active, always override what's stored in the clock.
ClockBlock *tab_;
u32 tab_idx_;
u16 size_;
u16 blocks_; // Number of second level blocks.
void Unshare(ClockCache *c);
bool IsShared() const;
bool Cachable() const;
void ResetImpl();
void FlushDirty();
uptr capacity() const;
u32 get_block(uptr bi) const;
void append_block(u32 idx);
ClockElem &elem(unsigned tid) const;
};
// The clock that lives in threads.
class ThreadClock {
public:
typedef DenseSlabAllocCache Cache;
explicit ThreadClock(unsigned tid, unsigned reused = 0);
u64 get(unsigned tid) const;
void set(ClockCache *c, unsigned tid, u64 v);
void set(u64 v);
void tick();
uptr size() const;
void acquire(ClockCache *c, SyncClock *src);
void releaseStoreAcquire(ClockCache *c, SyncClock *src);
void release(ClockCache *c, SyncClock *dst);
void acq_rel(ClockCache *c, SyncClock *dst);
void ReleaseStore(ClockCache *c, SyncClock *dst);
void ResetCached(ClockCache *c);
void NoteGlobalAcquire(u64 v);
void DebugReset();
void DebugDump(int(*printf)(const char *s, ...));
private:
static const uptr kDirtyTids = SyncClock::kDirtyTids;
// Index of the thread associated with he clock ("current thread").
const unsigned tid_;
const unsigned reused_; // tid_ reuse count.
// Current thread time when it acquired something from other threads.
u64 last_acquire_;
// Last time another thread has done a global acquire of this thread's clock.
// It helps to avoid problem described in:
// https://github.com/golang/go/issues/39186
// See test/tsan/java_finalizer2.cpp for a regression test.
// Note the failuire is _extremely_ hard to hit, so if you are trying
// to reproduce it, you may want to run something like:
// $ go get golang.org/x/tools/cmd/stress
// $ stress -p=64 ./a.out
//
// The crux of the problem is roughly as follows.
// A number of O(1) optimizations in the clocks algorithm assume proper
// transitive cumulative propagation of clock values. The AcquireGlobal
// operation may produce an inconsistent non-linearazable view of
// thread clocks. Namely, it may acquire a later value from a thread
// with a higher ID, but fail to acquire an earlier value from a thread
// with a lower ID. If a thread that executed AcquireGlobal then releases
// to a sync clock, it will spoil the sync clock with the inconsistent
// values. If another thread later releases to the sync clock, the optimized
// algorithm may break.
//
// The exact sequence of events that leads to the failure.
// - thread 1 executes AcquireGlobal
// - thread 1 acquires value 1 for thread 2
// - thread 2 increments clock to 2
// - thread 2 releases to sync object 1
// - thread 3 at time 1
// - thread 3 acquires from sync object 1
// - thread 3 increments clock to 2
// - thread 1 acquires value 2 for thread 3
// - thread 1 releases to sync object 2
// - sync object 2 clock has 1 for thread 2 and 2 for thread 3
// - thread 3 releases to sync object 2
// - thread 3 sees value 2 in the clock for itself
// and decides that it has already released to the clock
// and did not acquire anything from other threads after that
// (the last_acquire_ check in release operation)
// - thread 3 does not update the value for thread 2 in the clock from 1 to 2
// - thread 4 acquires from sync object 2
// - thread 4 detects a false race with thread 2
// as it should have been synchronized with thread 2 up to time 2,
// but because of the broken clock it is now synchronized only up to time 1
//
// The global_acquire_ value helps to prevent this scenario.
// Namely, thread 3 will not trust any own clock values up to global_acquire_
// for the purposes of the last_acquire_ optimization.
atomic_uint64_t global_acquire_;
// Cached SyncClock (without dirty entries and release_store_tid_).
// We reuse it for subsequent store-release operations without intervening
// acquire operations. Since it is shared (and thus constant), clock value
// for the current thread is then stored in dirty entries in the SyncClock.
// We host a reference to the table while it is cached here.
u32 cached_idx_;
u16 cached_size_;
u16 cached_blocks_;
// Number of active elements in the clk_ table (the rest is zeros).
uptr nclk_;
u64 clk_[kMaxTidInClock]; // Fixed size vector clock.
bool IsAlreadyAcquired(const SyncClock *src) const;
bool HasAcquiredAfterRelease(const SyncClock *dst) const;
void UpdateCurrentThread(ClockCache *c, SyncClock *dst) const;
};
ALWAYS_INLINE u64 ThreadClock::get(unsigned tid) const {
DCHECK_LT(tid, kMaxTidInClock);
return clk_[tid];
}
ALWAYS_INLINE void ThreadClock::set(u64 v) {
DCHECK_GE(v, clk_[tid_]);
clk_[tid_] = v;
}
ALWAYS_INLINE void ThreadClock::tick() {
clk_[tid_]++;
}
ALWAYS_INLINE uptr ThreadClock::size() const {
return nclk_;
}
ALWAYS_INLINE void ThreadClock::NoteGlobalAcquire(u64 v) {
// Here we rely on the fact that AcquireGlobal is protected by
// ThreadRegistryLock, thus only one thread at a time executes it
// and values passed to this function should not go backwards.
CHECK_LE(atomic_load_relaxed(&global_acquire_), v);
atomic_store_relaxed(&global_acquire_, v);
}
ALWAYS_INLINE SyncClock::Iter SyncClock::begin() {
return Iter(this);
}
ALWAYS_INLINE SyncClock::Iter SyncClock::end() {
return Iter(nullptr);
}
ALWAYS_INLINE uptr SyncClock::size() const {
return size_;
}
ALWAYS_INLINE SyncClock::Iter::Iter(SyncClock* parent)
: parent_(parent)
, pos_(nullptr)
, end_(nullptr)
, block_(-1) {
if (parent)
Next();
}
ALWAYS_INLINE SyncClock::Iter& SyncClock::Iter::operator++() {
pos_++;
if (UNLIKELY(pos_ >= end_))
Next();
return *this;
}
ALWAYS_INLINE bool SyncClock::Iter::operator!=(const SyncClock::Iter& other) {
return parent_ != other.parent_;
}
ALWAYS_INLINE ClockElem &SyncClock::Iter::operator*() {
return *pos_;
}
} // namespace __tsan
#endif // TSAN_CLOCK_H