| /* Copyright (C) 2007-2017 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| Under Section 7 of GPL version 3, you are granted additional |
| permissions described in the GCC Runtime Library Exception, version |
| 3.1, as published by the Free Software Foundation. |
| |
| You should have received a copy of the GNU General Public License and |
| a copy of the GCC Runtime Library Exception along with this program; |
| see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "bid_internal.h" |
| |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64dq_add (UINT64 * pres, UINT64 * px, UINT128 * py |
| _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| #if !DECIMAL_GLOBAL_ROUNDING |
| unsigned int rnd_mode = *prnd_mode; |
| #endif |
| #else |
| UINT64 |
| bid64dq_add (UINT64 x, UINT128 y |
| _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| #endif |
| UINT64 res = 0xbaddbaddbaddbaddull; |
| UINT128 x1; |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| bid64_to_bid128 (&x1, &x _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG); |
| bid64qq_add (&res, &x1, py |
| _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG |
| _EXC_INFO_ARG); |
| #else |
| x1 = bid64_to_bid128 (x _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG); |
| res = bid64qq_add (x1, y |
| _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG |
| _EXC_INFO_ARG); |
| #endif |
| BID_RETURN (res); |
| } |
| |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64qd_add (UINT64 * pres, UINT128 * px, UINT64 * py |
| _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT64 y = *py; |
| #if !DECIMAL_GLOBAL_ROUNDING |
| unsigned int rnd_mode = *prnd_mode; |
| #endif |
| #else |
| UINT64 |
| bid64qd_add (UINT128 x, UINT64 y |
| _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| #endif |
| UINT64 res = 0xbaddbaddbaddbaddull; |
| UINT128 y1; |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| bid64_to_bid128 (&y1, &y _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG); |
| bid64qq_add (&res, px, &y1 |
| _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG |
| _EXC_INFO_ARG); |
| #else |
| y1 = bid64_to_bid128 (y _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG); |
| res = bid64qq_add (x, y1 |
| _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG |
| _EXC_INFO_ARG); |
| #endif |
| BID_RETURN (res); |
| } |
| |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64qq_add (UINT64 * pres, UINT128 * px, UINT128 * py |
| _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT128 x = *px, y = *py; |
| #if !DECIMAL_GLOBAL_ROUNDING |
| unsigned int rnd_mode = *prnd_mode; |
| #endif |
| #else |
| UINT64 |
| bid64qq_add (UINT128 x, UINT128 y |
| _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| #endif |
| |
| UINT128 one = { {0x0000000000000001ull, 0x3040000000000000ull} |
| }; |
| UINT64 res = 0xbaddbaddbaddbaddull; |
| |
| BID_SWAP128 (one); |
| #if DECIMAL_CALL_BY_REFERENCE |
| bid64qqq_fma (&res, &one, &x, &y |
| _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG |
| _EXC_INFO_ARG); |
| #else |
| res = bid64qqq_fma (one, x, y |
| _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG |
| _EXC_INFO_ARG); |
| #endif |
| BID_RETURN (res); |
| } |
| |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid128dd_add (UINT128 * pres, UINT64 * px, UINT64 * py |
| _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT64 x = *px, y = *py; |
| #if !DECIMAL_GLOBAL_ROUNDING |
| unsigned int rnd_mode = *prnd_mode; |
| #endif |
| #else |
| UINT128 |
| bid128dd_add (UINT64 x, UINT64 y |
| _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| #endif |
| UINT128 res = { {0xbaddbaddbaddbaddull, 0xbaddbaddbaddbaddull} |
| }; |
| UINT128 x1, y1; |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| bid64_to_bid128 (&x1, &x _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG); |
| bid64_to_bid128 (&y1, &y _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG); |
| bid128_add (&res, &x1, &y1 |
| _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG |
| _EXC_INFO_ARG); |
| #else |
| x1 = bid64_to_bid128 (x _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG); |
| y1 = bid64_to_bid128 (y _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG); |
| res = bid128_add (x1, y1 |
| _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG |
| _EXC_INFO_ARG); |
| #endif |
| BID_RETURN (res); |
| } |
| |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid128dq_add (UINT128 * pres, UINT64 * px, UINT128 * py |
| _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| #if !DECIMAL_GLOBAL_ROUNDING |
| unsigned int rnd_mode = *prnd_mode; |
| #endif |
| #else |
| UINT128 |
| bid128dq_add (UINT64 x, UINT128 y |
| _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| #endif |
| UINT128 res = { {0xbaddbaddbaddbaddull, 0xbaddbaddbaddbaddull} |
| }; |
| UINT128 x1; |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| bid64_to_bid128 (&x1, &x _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG); |
| bid128_add (&res, &x1, py |
| _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG |
| _EXC_INFO_ARG); |
| #else |
| x1 = bid64_to_bid128 (x _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG); |
| res = bid128_add (x1, y |
| _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG |
| _EXC_INFO_ARG); |
| #endif |
| BID_RETURN (res); |
| } |
| |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid128qd_add (UINT128 * pres, UINT128 * px, UINT64 * py |
| _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT64 y = *py; |
| #if !DECIMAL_GLOBAL_ROUNDING |
| unsigned int rnd_mode = *prnd_mode; |
| #endif |
| #else |
| UINT128 |
| bid128qd_add (UINT128 x, UINT64 y |
| _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| #endif |
| UINT128 res = { {0xbaddbaddbaddbaddull, 0xbaddbaddbaddbaddull} |
| }; |
| UINT128 y1; |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| bid64_to_bid128 (&y1, &y _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG); |
| bid128_add (&res, px, &y1 |
| _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG |
| _EXC_INFO_ARG); |
| #else |
| y1 = bid64_to_bid128 (y _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG); |
| res = bid128_add (x, y1 |
| _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG |
| _EXC_INFO_ARG); |
| #endif |
| BID_RETURN (res); |
| } |
| |
| |
| // bid128_add stands for bid128qq_add |
| |
| |
| /***************************************************************************** |
| * BID64/BID128 sub |
| ****************************************************************************/ |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64dq_sub (UINT64 * pres, UINT64 * px, UINT128 * py |
| _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| #if !DECIMAL_GLOBAL_ROUNDING |
| unsigned int rnd_mode = *prnd_mode; |
| #endif |
| #else |
| UINT64 |
| bid64dq_sub (UINT64 x, UINT128 y |
| _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| #endif |
| UINT64 res = 0xbaddbaddbaddbaddull; |
| UINT128 x1; |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| bid64_to_bid128 (&x1, &x _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG); |
| bid64qq_sub (&res, &x1, py |
| _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG |
| _EXC_INFO_ARG); |
| #else |
| x1 = bid64_to_bid128 (x _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG); |
| res = bid64qq_sub (x1, y |
| _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG |
| _EXC_INFO_ARG); |
| #endif |
| BID_RETURN (res); |
| } |
| |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64qd_sub (UINT64 * pres, UINT128 * px, UINT64 * py |
| _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT64 y = *py; |
| #if !DECIMAL_GLOBAL_ROUNDING |
| unsigned int rnd_mode = *prnd_mode; |
| #endif |
| #else |
| UINT64 |
| bid64qd_sub (UINT128 x, UINT64 y |
| _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| #endif |
| UINT64 res = 0xbaddbaddbaddbaddull; |
| UINT128 y1; |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| bid64_to_bid128 (&y1, &y _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG); |
| bid64qq_sub (&res, px, &y1 |
| _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG |
| _EXC_INFO_ARG); |
| #else |
| y1 = bid64_to_bid128 (y _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG); |
| res = bid64qq_sub (x, y1 |
| _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG |
| _EXC_INFO_ARG); |
| #endif |
| BID_RETURN (res); |
| } |
| |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64qq_sub (UINT64 * pres, UINT128 * px, UINT128 * py |
| _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT128 x = *px, y = *py; |
| #if !DECIMAL_GLOBAL_ROUNDING |
| unsigned int rnd_mode = *prnd_mode; |
| #endif |
| #else |
| UINT64 |
| bid64qq_sub (UINT128 x, UINT128 y |
| _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| #endif |
| |
| UINT128 one = { {0x0000000000000001ull, 0x3040000000000000ull} |
| }; |
| UINT64 res = 0xbaddbaddbaddbaddull; |
| UINT64 y_sign; |
| |
| BID_SWAP128 (one); |
| if ((y.w[HIGH_128W] & MASK_NAN) != MASK_NAN) { // y is not NAN |
| // change its sign |
| y_sign = y.w[HIGH_128W] & MASK_SIGN; // 0 for positive, MASK_SIGN for negative |
| if (y_sign) |
| y.w[HIGH_128W] = y.w[HIGH_128W] & 0x7fffffffffffffffull; |
| else |
| y.w[HIGH_128W] = y.w[HIGH_128W] | 0x8000000000000000ull; |
| } |
| #if DECIMAL_CALL_BY_REFERENCE |
| bid64qqq_fma (&res, &one, &x, &y |
| _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG |
| _EXC_INFO_ARG); |
| #else |
| res = bid64qqq_fma (one, x, y |
| _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG |
| _EXC_INFO_ARG); |
| #endif |
| BID_RETURN (res); |
| } |
| |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid128dd_sub (UINT128 * pres, UINT64 * px, UINT64 * py |
| _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT64 x = *px, y = *py; |
| #if !DECIMAL_GLOBAL_ROUNDING |
| unsigned int rnd_mode = *prnd_mode; |
| #endif |
| #else |
| UINT128 |
| bid128dd_sub (UINT64 x, UINT64 y |
| _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| #endif |
| UINT128 res = { {0xbaddbaddbaddbaddull, 0xbaddbaddbaddbaddull} |
| }; |
| UINT128 x1, y1; |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| bid64_to_bid128 (&x1, &x _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG); |
| bid64_to_bid128 (&y1, &y _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG); |
| bid128_sub (&res, &x1, &y1 |
| _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG |
| _EXC_INFO_ARG); |
| #else |
| x1 = bid64_to_bid128 (x _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG); |
| y1 = bid64_to_bid128 (y _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG); |
| res = bid128_sub (x1, y1 |
| _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG |
| _EXC_INFO_ARG); |
| #endif |
| BID_RETURN (res); |
| } |
| |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid128dq_sub (UINT128 * pres, UINT64 * px, UINT128 * py |
| _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| #if !DECIMAL_GLOBAL_ROUNDING |
| unsigned int rnd_mode = *prnd_mode; |
| #endif |
| #else |
| UINT128 |
| bid128dq_sub (UINT64 x, UINT128 y |
| _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| #endif |
| UINT128 res = { {0xbaddbaddbaddbaddull, 0xbaddbaddbaddbaddull} |
| }; |
| UINT128 x1; |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| bid64_to_bid128 (&x1, &x _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG); |
| bid128_sub (&res, &x1, py |
| _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG |
| _EXC_INFO_ARG); |
| #else |
| x1 = bid64_to_bid128 (x _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG); |
| res = bid128_sub (x1, y |
| _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG |
| _EXC_INFO_ARG); |
| #endif |
| BID_RETURN (res); |
| } |
| |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid128qd_sub (UINT128 * pres, UINT128 * px, UINT64 * py |
| _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT64 y = *py; |
| #if !DECIMAL_GLOBAL_ROUNDING |
| unsigned int rnd_mode = *prnd_mode; |
| #endif |
| #else |
| UINT128 |
| bid128qd_sub (UINT128 x, UINT64 y |
| _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| #endif |
| UINT128 res = { {0xbaddbaddbaddbaddull, 0xbaddbaddbaddbaddull} |
| }; |
| UINT128 y1; |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| bid64_to_bid128 (&y1, &y _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG); |
| bid128_sub (&res, px, &y1 |
| _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG |
| _EXC_INFO_ARG); |
| #else |
| y1 = bid64_to_bid128 (y _EXC_FLAGS_ARG _EXC_MASKS_ARG _EXC_INFO_ARG); |
| res = bid128_sub (x, y1 |
| _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG |
| _EXC_INFO_ARG); |
| #endif |
| BID_RETURN (res); |
| } |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid128_add (UINT128 * pres, UINT128 * px, UINT128 * py |
| _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT128 x = *px, y = *py; |
| #if !DECIMAL_GLOBAL_ROUNDING |
| unsigned int rnd_mode = *prnd_mode; |
| #endif |
| #else |
| UINT128 |
| bid128_add (UINT128 x, UINT128 y |
| _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| #endif |
| UINT128 res = { {0xbaddbaddbaddbaddull, 0xbaddbaddbaddbaddull} |
| }; |
| UINT64 x_sign, y_sign, tmp_sign; |
| UINT64 x_exp, y_exp, tmp_exp; // e1 = x_exp, e2 = y_exp |
| UINT64 C1_hi, C2_hi, tmp_signif_hi; |
| UINT64 C1_lo, C2_lo, tmp_signif_lo; |
| // Note: C1.w[1], C1.w[0] represent C1_hi, C1_lo (all UINT64) |
| // Note: C2.w[1], C2.w[0] represent C2_hi, C2_lo (all UINT64) |
| UINT64 tmp64, tmp64A, tmp64B; |
| BID_UI64DOUBLE tmp1, tmp2; |
| int x_nr_bits, y_nr_bits; |
| int q1, q2, delta, scale, x1, ind, shift, tmp_inexact = 0; |
| UINT64 halfulp64; |
| UINT128 halfulp128; |
| UINT128 C1, C2; |
| UINT128 ten2m1; |
| UINT128 highf2star; // top 128 bits in f2*; low 128 bits in R256[1], R256[0] |
| UINT256 P256, Q256, R256; |
| int is_inexact = 0, is_midpoint_lt_even = 0, is_midpoint_gt_even = 0; |
| int is_inexact_lt_midpoint = 0, is_inexact_gt_midpoint = 0; |
| int second_pass = 0; |
| |
| BID_SWAP128 (x); |
| BID_SWAP128 (y); |
| x_sign = x.w[1] & MASK_SIGN; // 0 for positive, MASK_SIGN for negative |
| y_sign = y.w[1] & MASK_SIGN; // 0 for positive, MASK_SIGN for negative |
| |
| // check for NaN or Infinity |
| if (((x.w[1] & MASK_SPECIAL) == MASK_SPECIAL) |
| || ((y.w[1] & MASK_SPECIAL) == MASK_SPECIAL)) { |
| // x is special or y is special |
| if ((x.w[1] & MASK_NAN) == MASK_NAN) { // x is NAN |
| // check first for non-canonical NaN payload |
| if (((x.w[1] & 0x00003fffffffffffull) > 0x0000314dc6448d93ull) || |
| (((x.w[1] & 0x00003fffffffffffull) == 0x0000314dc6448d93ull) |
| && (x.w[0] > 0x38c15b09ffffffffull))) { |
| x.w[1] = x.w[1] & 0xffffc00000000000ull; |
| x.w[0] = 0x0ull; |
| } |
| if ((x.w[1] & MASK_SNAN) == MASK_SNAN) { // x is SNAN |
| // set invalid flag |
| *pfpsf |= INVALID_EXCEPTION; |
| // return quiet (x) |
| res.w[1] = x.w[1] & 0xfc003fffffffffffull; |
| // clear out also G[6]-G[16] |
| res.w[0] = x.w[0]; |
| } else { // x is QNaN |
| // return x |
| res.w[1] = x.w[1] & 0xfc003fffffffffffull; |
| // clear out G[6]-G[16] |
| res.w[0] = x.w[0]; |
| // if y = SNaN signal invalid exception |
| if ((y.w[1] & MASK_SNAN) == MASK_SNAN) { |
| // set invalid flag |
| *pfpsf |= INVALID_EXCEPTION; |
| } |
| } |
| BID_SWAP128 (res); |
| BID_RETURN (res); |
| } else if ((y.w[1] & MASK_NAN) == MASK_NAN) { // y is NAN |
| // check first for non-canonical NaN payload |
| if (((y.w[1] & 0x00003fffffffffffull) > 0x0000314dc6448d93ull) || |
| (((y.w[1] & 0x00003fffffffffffull) == 0x0000314dc6448d93ull) |
| && (y.w[0] > 0x38c15b09ffffffffull))) { |
| y.w[1] = y.w[1] & 0xffffc00000000000ull; |
| y.w[0] = 0x0ull; |
| } |
| if ((y.w[1] & MASK_SNAN) == MASK_SNAN) { // y is SNAN |
| // set invalid flag |
| *pfpsf |= INVALID_EXCEPTION; |
| // return quiet (y) |
| res.w[1] = y.w[1] & 0xfc003fffffffffffull; |
| // clear out also G[6]-G[16] |
| res.w[0] = y.w[0]; |
| } else { // y is QNaN |
| // return y |
| res.w[1] = y.w[1] & 0xfc003fffffffffffull; |
| // clear out G[6]-G[16] |
| res.w[0] = y.w[0]; |
| } |
| BID_SWAP128 (res); |
| BID_RETURN (res); |
| } else { // neither x not y is NaN; at least one is infinity |
| if ((x.w[1] & MASK_ANY_INF) == MASK_INF) { // x is infinity |
| if ((y.w[1] & MASK_ANY_INF) == MASK_INF) { // y is infinity |
| // if same sign, return either of them |
| if ((x.w[1] & MASK_SIGN) == (y.w[1] & MASK_SIGN)) { |
| res.w[1] = x_sign | MASK_INF; |
| res.w[0] = 0x0ull; |
| } else { // x and y are infinities of opposite signs |
| // set invalid flag |
| *pfpsf |= INVALID_EXCEPTION; |
| // return QNaN Indefinite |
| res.w[1] = 0x7c00000000000000ull; |
| res.w[0] = 0x0000000000000000ull; |
| } |
| } else { // y is 0 or finite |
| // return x |
| res.w[1] = x_sign | MASK_INF; |
| res.w[0] = 0x0ull; |
| } |
| } else { // x is not NaN or infinity, so y must be infinity |
| res.w[1] = y_sign | MASK_INF; |
| res.w[0] = 0x0ull; |
| } |
| BID_SWAP128 (res); |
| BID_RETURN (res); |
| } |
| } |
| // unpack the arguments |
| |
| // unpack x |
| C1_hi = x.w[1] & MASK_COEFF; |
| C1_lo = x.w[0]; |
| // test for non-canonical values: |
| // - values whose encoding begins with x00, x01, or x10 and whose |
| // coefficient is larger than 10^34 -1, or |
| // - values whose encoding begins with x1100, x1101, x1110 (if NaNs |
| // and infinitis were eliminated already this test is reduced to |
| // checking for x10x) |
| |
| // x is not infinity; check for non-canonical values - treated as zero |
| if ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) { |
| // G0_G1=11; non-canonical |
| x_exp = (x.w[1] << 2) & MASK_EXP; // biased and shifted left 49 bits |
| C1_hi = 0; // significand high |
| C1_lo = 0; // significand low |
| } else { // G0_G1 != 11 |
| x_exp = x.w[1] & MASK_EXP; // biased and shifted left 49 bits |
| if (C1_hi > 0x0001ed09bead87c0ull || |
| (C1_hi == 0x0001ed09bead87c0ull |
| && C1_lo > 0x378d8e63ffffffffull)) { |
| // x is non-canonical if coefficient is larger than 10^34 -1 |
| C1_hi = 0; |
| C1_lo = 0; |
| } else { // canonical |
| ; |
| } |
| } |
| |
| // unpack y |
| C2_hi = y.w[1] & MASK_COEFF; |
| C2_lo = y.w[0]; |
| // y is not infinity; check for non-canonical values - treated as zero |
| if ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) { |
| // G0_G1=11; non-canonical |
| y_exp = (y.w[1] << 2) & MASK_EXP; // biased and shifted left 49 bits |
| C2_hi = 0; // significand high |
| C2_lo = 0; // significand low |
| } else { // G0_G1 != 11 |
| y_exp = y.w[1] & MASK_EXP; // biased and shifted left 49 bits |
| if (C2_hi > 0x0001ed09bead87c0ull || |
| (C2_hi == 0x0001ed09bead87c0ull |
| && C2_lo > 0x378d8e63ffffffffull)) { |
| // y is non-canonical if coefficient is larger than 10^34 -1 |
| C2_hi = 0; |
| C2_lo = 0; |
| } else { // canonical |
| ; |
| } |
| } |
| |
| if ((C1_hi == 0x0ull) && (C1_lo == 0x0ull)) { |
| // x is 0 and y is not special |
| // if y is 0 return 0 with the smaller exponent |
| if ((C2_hi == 0x0ull) && (C2_lo == 0x0ull)) { |
| if (x_exp < y_exp) |
| res.w[1] = x_exp; |
| else |
| res.w[1] = y_exp; |
| if (x_sign && y_sign) |
| res.w[1] = res.w[1] | x_sign; // both negative |
| else if (rnd_mode == ROUNDING_DOWN && x_sign != y_sign) |
| res.w[1] = res.w[1] | 0x8000000000000000ull; // -0 |
| // else; // res = +0 |
| res.w[0] = 0; |
| } else { |
| // for 0 + y return y, with the preferred exponent |
| if (y_exp <= x_exp) { |
| res.w[1] = y.w[1]; |
| res.w[0] = y.w[0]; |
| } else { // if y_exp > x_exp |
| // return (C2 * 10^scale) * 10^(y_exp - scale) |
| // where scale = min (P34-q2, y_exp-x_exp) |
| // determine q2 = nr. of decimal digits in y |
| // determine first the nr. of bits in y (y_nr_bits) |
| |
| if (C2_hi == 0) { // y_bits is the nr. of bits in C2_lo |
| if (C2_lo >= 0x0020000000000000ull) { // y >= 2^53 |
| // split the 64-bit value in two 32-bit halves to avoid |
| // rounding errors |
| if (C2_lo >= 0x0000000100000000ull) { // y >= 2^32 |
| tmp2.d = (double) (C2_lo >> 32); // exact conversion |
| y_nr_bits = |
| 32 + |
| ((((unsigned int) (tmp2.ui64 >> 52)) & 0x7ff) - 0x3ff); |
| } else { // y < 2^32 |
| tmp2.d = (double) (C2_lo); // exact conversion |
| y_nr_bits = |
| ((((unsigned int) (tmp2.ui64 >> 52)) & 0x7ff) - 0x3ff); |
| } |
| } else { // if y < 2^53 |
| tmp2.d = (double) C2_lo; // exact conversion |
| y_nr_bits = |
| ((((unsigned int) (tmp2.ui64 >> 52)) & 0x7ff) - 0x3ff); |
| } |
| } else { // C2_hi != 0 => nr. bits = 64 + nr_bits (C2_hi) |
| tmp2.d = (double) C2_hi; // exact conversion |
| y_nr_bits = |
| 64 + ((((unsigned int) (tmp2.ui64 >> 52)) & 0x7ff) - 0x3ff); |
| } |
| q2 = nr_digits[y_nr_bits].digits; |
| if (q2 == 0) { |
| q2 = nr_digits[y_nr_bits].digits1; |
| if (C2_hi > nr_digits[y_nr_bits].threshold_hi || |
| (C2_hi == nr_digits[y_nr_bits].threshold_hi && |
| C2_lo >= nr_digits[y_nr_bits].threshold_lo)) |
| q2++; |
| } |
| // return (C2 * 10^scale) * 10^(y_exp - scale) |
| // where scale = min (P34-q2, y_exp-x_exp) |
| scale = P34 - q2; |
| ind = (y_exp - x_exp) >> 49; |
| if (ind < scale) |
| scale = ind; |
| if (scale == 0) { |
| res.w[1] = y.w[1]; |
| res.w[0] = y.w[0]; |
| } else if (q2 <= 19) { // y fits in 64 bits |
| if (scale <= 19) { // 10^scale fits in 64 bits |
| // 64 x 64 C2_lo * ten2k64[scale] |
| __mul_64x64_to_128MACH (res, C2_lo, ten2k64[scale]); |
| } else { // 10^scale fits in 128 bits |
| // 64 x 128 C2_lo * ten2k128[scale - 20] |
| __mul_128x64_to_128 (res, C2_lo, ten2k128[scale - 20]); |
| } |
| } else { // y fits in 128 bits, but 10^scale must fit in 64 bits |
| // 64 x 128 ten2k64[scale] * C2 |
| C2.w[1] = C2_hi; |
| C2.w[0] = C2_lo; |
| __mul_128x64_to_128 (res, ten2k64[scale], C2); |
| } |
| // subtract scale from the exponent |
| y_exp = y_exp - ((UINT64) scale << 49); |
| res.w[1] = res.w[1] | y_sign | y_exp; |
| } |
| } |
| BID_SWAP128 (res); |
| BID_RETURN (res); |
| } else if ((C2_hi == 0x0ull) && (C2_lo == 0x0ull)) { |
| // y is 0 and x is not special, and not zero |
| // for x + 0 return x, with the preferred exponent |
| if (x_exp <= y_exp) { |
| res.w[1] = x.w[1]; |
| res.w[0] = x.w[0]; |
| } else { // if x_exp > y_exp |
| // return (C1 * 10^scale) * 10^(x_exp - scale) |
| // where scale = min (P34-q1, x_exp-y_exp) |
| // determine q1 = nr. of decimal digits in x |
| // determine first the nr. of bits in x |
| if (C1_hi == 0) { // x_bits is the nr. of bits in C1_lo |
| if (C1_lo >= 0x0020000000000000ull) { // x >= 2^53 |
| // split the 64-bit value in two 32-bit halves to avoid |
| // rounding errors |
| if (C1_lo >= 0x0000000100000000ull) { // x >= 2^32 |
| tmp1.d = (double) (C1_lo >> 32); // exact conversion |
| x_nr_bits = |
| 32 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - |
| 0x3ff); |
| } else { // x < 2^32 |
| tmp1.d = (double) (C1_lo); // exact conversion |
| x_nr_bits = |
| ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); |
| } |
| } else { // if x < 2^53 |
| tmp1.d = (double) C1_lo; // exact conversion |
| x_nr_bits = |
| ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); |
| } |
| } else { // C1_hi != 0 => nr. bits = 64 + nr_bits (C1_hi) |
| tmp1.d = (double) C1_hi; // exact conversion |
| x_nr_bits = |
| 64 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); |
| } |
| q1 = nr_digits[x_nr_bits].digits; |
| if (q1 == 0) { |
| q1 = nr_digits[x_nr_bits].digits1; |
| if (C1_hi > nr_digits[x_nr_bits].threshold_hi || |
| (C1_hi == nr_digits[x_nr_bits].threshold_hi && |
| C1_lo >= nr_digits[x_nr_bits].threshold_lo)) |
| q1++; |
| } |
| // return (C1 * 10^scale) * 10^(x_exp - scale) |
| // where scale = min (P34-q1, x_exp-y_exp) |
| scale = P34 - q1; |
| ind = (x_exp - y_exp) >> 49; |
| if (ind < scale) |
| scale = ind; |
| if (scale == 0) { |
| res.w[1] = x.w[1]; |
| res.w[0] = x.w[0]; |
| } else if (q1 <= 19) { // x fits in 64 bits |
| if (scale <= 19) { // 10^scale fits in 64 bits |
| // 64 x 64 C1_lo * ten2k64[scale] |
| __mul_64x64_to_128MACH (res, C1_lo, ten2k64[scale]); |
| } else { // 10^scale fits in 128 bits |
| // 64 x 128 C1_lo * ten2k128[scale - 20] |
| __mul_128x64_to_128 (res, C1_lo, ten2k128[scale - 20]); |
| } |
| } else { // x fits in 128 bits, but 10^scale must fit in 64 bits |
| // 64 x 128 ten2k64[scale] * C1 |
| C1.w[1] = C1_hi; |
| C1.w[0] = C1_lo; |
| __mul_128x64_to_128 (res, ten2k64[scale], C1); |
| } |
| // subtract scale from the exponent |
| x_exp = x_exp - ((UINT64) scale << 49); |
| res.w[1] = res.w[1] | x_sign | x_exp; |
| } |
| BID_SWAP128 (res); |
| BID_RETURN (res); |
| } else { // x and y are not canonical, not special, and are not zero |
| // note that the result may still be zero, and then it has to have the |
| // preferred exponent |
| if (x_exp < y_exp) { // if exp_x < exp_y then swap x and y |
| tmp_sign = x_sign; |
| tmp_exp = x_exp; |
| tmp_signif_hi = C1_hi; |
| tmp_signif_lo = C1_lo; |
| x_sign = y_sign; |
| x_exp = y_exp; |
| C1_hi = C2_hi; |
| C1_lo = C2_lo; |
| y_sign = tmp_sign; |
| y_exp = tmp_exp; |
| C2_hi = tmp_signif_hi; |
| C2_lo = tmp_signif_lo; |
| } |
| // q1 = nr. of decimal digits in x |
| // determine first the nr. of bits in x |
| if (C1_hi == 0) { // x_bits is the nr. of bits in C1_lo |
| if (C1_lo >= 0x0020000000000000ull) { // x >= 2^53 |
| //split the 64-bit value in two 32-bit halves to avoid rounding errors |
| if (C1_lo >= 0x0000000100000000ull) { // x >= 2^32 |
| tmp1.d = (double) (C1_lo >> 32); // exact conversion |
| x_nr_bits = |
| 32 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); |
| } else { // x < 2^32 |
| tmp1.d = (double) (C1_lo); // exact conversion |
| x_nr_bits = |
| ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); |
| } |
| } else { // if x < 2^53 |
| tmp1.d = (double) C1_lo; // exact conversion |
| x_nr_bits = |
| ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); |
| } |
| } else { // C1_hi != 0 => nr. bits = 64 + nr_bits (C1_hi) |
| tmp1.d = (double) C1_hi; // exact conversion |
| x_nr_bits = |
| 64 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff); |
| } |
| |
| q1 = nr_digits[x_nr_bits].digits; |
| if (q1 == 0) { |
| q1 = nr_digits[x_nr_bits].digits1; |
| if (C1_hi > nr_digits[x_nr_bits].threshold_hi || |
| (C1_hi == nr_digits[x_nr_bits].threshold_hi && |
| C1_lo >= nr_digits[x_nr_bits].threshold_lo)) |
| q1++; |
| } |
| // q2 = nr. of decimal digits in y |
| // determine first the nr. of bits in y (y_nr_bits) |
| if (C2_hi == 0) { // y_bits is the nr. of bits in C2_lo |
| if (C2_lo >= 0x0020000000000000ull) { // y >= 2^53 |
| //split the 64-bit value in two 32-bit halves to avoid rounding errors |
| if (C2_lo >= 0x0000000100000000ull) { // y >= 2^32 |
| tmp2.d = (double) (C2_lo >> 32); // exact conversion |
| y_nr_bits = |
| 32 + ((((unsigned int) (tmp2.ui64 >> 52)) & 0x7ff) - 0x3ff); |
| } else { // y < 2^32 |
| tmp2.d = (double) (C2_lo); // exact conversion |
| y_nr_bits = |
| ((((unsigned int) (tmp2.ui64 >> 52)) & 0x7ff) - 0x3ff); |
| } |
| } else { // if y < 2^53 |
| tmp2.d = (double) C2_lo; // exact conversion |
| y_nr_bits = |
| ((((unsigned int) (tmp2.ui64 >> 52)) & 0x7ff) - 0x3ff); |
| } |
| } else { // C2_hi != 0 => nr. bits = 64 + nr_bits (C2_hi) |
| tmp2.d = (double) C2_hi; // exact conversion |
| y_nr_bits = |
| 64 + ((((unsigned int) (tmp2.ui64 >> 52)) & 0x7ff) - 0x3ff); |
| } |
| |
| q2 = nr_digits[y_nr_bits].digits; |
| if (q2 == 0) { |
| q2 = nr_digits[y_nr_bits].digits1; |
| if (C2_hi > nr_digits[y_nr_bits].threshold_hi || |
| (C2_hi == nr_digits[y_nr_bits].threshold_hi && |
| C2_lo >= nr_digits[y_nr_bits].threshold_lo)) |
| q2++; |
| } |
| |
| delta = q1 + (int) (x_exp >> 49) - q2 - (int) (y_exp >> 49); |
| |
| if (delta >= P34) { |
| // round the result directly because 0 < C2 < ulp (C1 * 10^(x_exp-e2)) |
| // n = C1 * 10^e1 or n = C1 +/- 10^(q1-P34)) * 10^e1 |
| // the result is inexact; the preferred exponent is the least possible |
| |
| if (delta >= P34 + 1) { |
| // for RN the result is the operand with the larger magnitude, |
| // possibly scaled up by 10^(P34-q1) |
| // an overflow cannot occur in this case (rounding to nearest) |
| if (q1 < P34) { // scale C1 up by 10^(P34-q1) |
| // Note: because delta >= P34+1 it is certain that |
| // x_exp - ((UINT64)scale << 49) will stay above e_min |
| scale = P34 - q1; |
| if (q1 <= 19) { // C1 fits in 64 bits |
| // 1 <= q1 <= 19 => 15 <= scale <= 33 |
| if (scale <= 19) { // 10^scale fits in 64 bits |
| __mul_64x64_to_128MACH (C1, ten2k64[scale], C1_lo); |
| } else { // if 20 <= scale <= 33 |
| // C1 * 10^scale = (C1 * 10^(scale-19)) * 10^19 where |
| // (C1 * 10^(scale-19)) fits in 64 bits |
| C1_lo = C1_lo * ten2k64[scale - 19]; |
| __mul_64x64_to_128MACH (C1, ten2k64[19], C1_lo); |
| } |
| } else { //if 20 <= q1 <= 33=P34-1 then C1 fits only in 128 bits |
| // => 1 <= P34 - q1 <= 14 so 10^(P34-q1) fits in 64 bits |
| C1.w[1] = C1_hi; |
| C1.w[0] = C1_lo; |
| // C1 = ten2k64[P34 - q1] * C1 |
| __mul_128x64_to_128 (C1, ten2k64[P34 - q1], C1); |
| } |
| x_exp = x_exp - ((UINT64) scale << 49); |
| C1_hi = C1.w[1]; |
| C1_lo = C1.w[0]; |
| } |
| // some special cases arise: if delta = P34 + 1 and C1 = 10^(P34-1) |
| // (after scaling) and x_sign != y_sign and C2 > 5*10^(q2-1) => |
| // subtract 1 ulp |
| // Note: do this only for rounding to nearest; for other rounding |
| // modes the correction will be applied next |
| if ((rnd_mode == ROUNDING_TO_NEAREST |
| || rnd_mode == ROUNDING_TIES_AWAY) && delta == (P34 + 1) |
| && C1_hi == 0x0000314dc6448d93ull |
| && C1_lo == 0x38c15b0a00000000ull && x_sign != y_sign |
| && ((q2 <= 19 && C2_lo > midpoint64[q2 - 1]) || (q2 >= 20 |
| && (C2_hi > |
| midpoint128 |
| [q2 - |
| 20]. |
| w[1] |
| || |
| (C2_hi |
| == |
| midpoint128 |
| [q2 - |
| 20]. |
| w[1] |
| && |
| C2_lo |
| > |
| midpoint128 |
| [q2 - |
| 20]. |
| w |
| [0]))))) |
| { |
| // C1 = 10^34 - 1 and decrement x_exp by 1 (no underflow possible) |
| C1_hi = 0x0001ed09bead87c0ull; |
| C1_lo = 0x378d8e63ffffffffull; |
| x_exp = x_exp - EXP_P1; |
| } |
| if (rnd_mode != ROUNDING_TO_NEAREST) { |
| if ((rnd_mode == ROUNDING_DOWN && x_sign && y_sign) || |
| (rnd_mode == ROUNDING_UP && !x_sign && !y_sign)) { |
| // add 1 ulp and then check for overflow |
| C1_lo = C1_lo + 1; |
| if (C1_lo == 0) { // rounding overflow in the low 64 bits |
| C1_hi = C1_hi + 1; |
| } |
| if (C1_hi == 0x0001ed09bead87c0ull |
| && C1_lo == 0x378d8e6400000000ull) { |
| // C1 = 10^34 => rounding overflow |
| C1_hi = 0x0000314dc6448d93ull; |
| C1_lo = 0x38c15b0a00000000ull; // 10^33 |
| x_exp = x_exp + EXP_P1; |
| if (x_exp == EXP_MAX_P1) { // overflow |
| C1_hi = 0x7800000000000000ull; // +inf |
| C1_lo = 0x0ull; |
| x_exp = 0; // x_sign is preserved |
| // set overflow flag (the inexact flag was set too) |
| *pfpsf |= OVERFLOW_EXCEPTION; |
| } |
| } |
| } else if ((rnd_mode == ROUNDING_DOWN && !x_sign && y_sign) || |
| (rnd_mode == ROUNDING_UP && x_sign && !y_sign) || |
| (rnd_mode == ROUNDING_TO_ZERO |
| && x_sign != y_sign)) { |
| // subtract 1 ulp from C1 |
| // Note: because delta >= P34 + 1 the result cannot be zero |
| C1_lo = C1_lo - 1; |
| if (C1_lo == 0xffffffffffffffffull) |
| C1_hi = C1_hi - 1; |
| // if the coefficient is 10^33 - 1 then make it 10^34 - 1 and |
| // decrease the exponent by 1 (because delta >= P34 + 1 the |
| // exponent will not become less than e_min) |
| // 10^33 - 1 = 0x0000314dc6448d9338c15b09ffffffff |
| // 10^34 - 1 = 0x0001ed09bead87c0378d8e63ffffffff |
| if (C1_hi == 0x0000314dc6448d93ull |
| && C1_lo == 0x38c15b09ffffffffull) { |
| // make C1 = 10^34 - 1 |
| C1_hi = 0x0001ed09bead87c0ull; |
| C1_lo = 0x378d8e63ffffffffull; |
| x_exp = x_exp - EXP_P1; |
| } |
| } else { |
| ; // the result is already correct |
| } |
| } |
| // set the inexact flag |
| *pfpsf |= INEXACT_EXCEPTION; |
| // assemble the result |
| res.w[1] = x_sign | x_exp | C1_hi; |
| res.w[0] = C1_lo; |
| } else { // delta = P34 |
| // in most cases, the smaller operand may be < or = or > 1/2 ulp of the |
| // larger operand |
| // however, the case C1 = 10^(q1-1) and x_sign != y_sign is special due |
| // to accuracy loss after subtraction, and will be treated separately |
| if (x_sign == y_sign || (q1 <= 20 |
| && (C1_hi != 0 |
| || C1_lo != ten2k64[q1 - 1])) |
| || (q1 >= 21 && (C1_hi != ten2k128[q1 - 21].w[1] |
| || C1_lo != ten2k128[q1 - 21].w[0]))) { |
| // if x_sign == y_sign or C1 != 10^(q1-1) |
| // compare C2 with 1/2 ulp = 5 * 10^(q2-1), the latter read from table |
| // Note: cases q1<=19 and q1>=20 can be coalesced at some latency cost |
| if (q2 <= 19) { // C2 and 5*10^(q2-1) both fit in 64 bits |
| halfulp64 = midpoint64[q2 - 1]; // 5 * 10^(q2-1) |
| if (C2_lo < halfulp64) { // n2 < 1/2 ulp (n1) |
| // for RN the result is the operand with the larger magnitude, |
| // possibly scaled up by 10^(P34-q1) |
| // an overflow cannot occur in this case (rounding to nearest) |
| if (q1 < P34) { // scale C1 up by 10^(P34-q1) |
| // Note: because delta = P34 it is certain that |
| // x_exp - ((UINT64)scale << 49) will stay above e_min |
| scale = P34 - q1; |
| if (q1 <= 19) { // C1 fits in 64 bits |
| // 1 <= q1 <= 19 => 15 <= scale <= 33 |
| if (scale <= 19) { // 10^scale fits in 64 bits |
| __mul_64x64_to_128MACH (C1, ten2k64[scale], C1_lo); |
| } else { // if 20 <= scale <= 33 |
| // C1 * 10^scale = (C1 * 10^(scale-19)) * 10^19 where |
| // (C1 * 10^(scale-19)) fits in 64 bits |
| C1_lo = C1_lo * ten2k64[scale - 19]; |
| __mul_64x64_to_128MACH (C1, ten2k64[19], C1_lo); |
| } |
| } else { //if 20 <= q1 <= 33=P34-1 then C1 fits only in 128 bits |
| // => 1 <= P34 - q1 <= 14 so 10^(P34-q1) fits in 64 bits |
| C1.w[1] = C1_hi; |
| C1.w[0] = C1_lo; |
| // C1 = ten2k64[P34 - q1] * C1 |
| __mul_128x64_to_128 (C1, ten2k64[P34 - q1], C1); |
| } |
| x_exp = x_exp - ((UINT64) scale << 49); |
| C1_hi = C1.w[1]; |
| C1_lo = C1.w[0]; |
| } |
| if (rnd_mode != ROUNDING_TO_NEAREST) { |
| if ((rnd_mode == ROUNDING_DOWN && x_sign && y_sign) || |
| (rnd_mode == ROUNDING_UP && !x_sign && !y_sign)) { |
| // add 1 ulp and then check for overflow |
| C1_lo = C1_lo + 1; |
| if (C1_lo == 0) { // rounding overflow in the low 64 bits |
| C1_hi = C1_hi + 1; |
| } |
| if (C1_hi == 0x0001ed09bead87c0ull |
| && C1_lo == 0x378d8e6400000000ull) { |
| // C1 = 10^34 => rounding overflow |
| C1_hi = 0x0000314dc6448d93ull; |
| C1_lo = 0x38c15b0a00000000ull; // 10^33 |
| x_exp = x_exp + EXP_P1; |
| if (x_exp == EXP_MAX_P1) { // overflow |
| C1_hi = 0x7800000000000000ull; // +inf |
| C1_lo = 0x0ull; |
| x_exp = 0; // x_sign is preserved |
| // set overflow flag (the inexact flag was set too) |
| *pfpsf |= OVERFLOW_EXCEPTION; |
| } |
| } |
| } else |
| if ((rnd_mode == ROUNDING_DOWN && !x_sign && y_sign) |
| || (rnd_mode == ROUNDING_UP && x_sign && !y_sign) |
| || (rnd_mode == ROUNDING_TO_ZERO |
| && x_sign != y_sign)) { |
| // subtract 1 ulp from C1 |
| // Note: because delta >= P34 + 1 the result cannot be zero |
| C1_lo = C1_lo - 1; |
| if (C1_lo == 0xffffffffffffffffull) |
| C1_hi = C1_hi - 1; |
| // if the coefficient is 10^33-1 then make it 10^34-1 and |
| // decrease the exponent by 1 (because delta >= P34 + 1 the |
| // exponent will not become less than e_min) |
| // 10^33 - 1 = 0x0000314dc6448d9338c15b09ffffffff |
| // 10^34 - 1 = 0x0001ed09bead87c0378d8e63ffffffff |
| if (C1_hi == 0x0000314dc6448d93ull |
| && C1_lo == 0x38c15b09ffffffffull) { |
| // make C1 = 10^34 - 1 |
| C1_hi = 0x0001ed09bead87c0ull; |
| C1_lo = 0x378d8e63ffffffffull; |
| x_exp = x_exp - EXP_P1; |
| } |
| } else { |
| ; // the result is already correct |
| } |
| } |
| // set the inexact flag |
| *pfpsf |= INEXACT_EXCEPTION; |
| // assemble the result |
| res.w[1] = x_sign | x_exp | C1_hi; |
| res.w[0] = C1_lo; |
| } else if ((C2_lo == halfulp64) |
| && (q1 < P34 || ((C1_lo & 0x1) == 0))) { |
| // n2 = 1/2 ulp (n1) and C1 is even |
| // the result is the operand with the larger magnitude, |
| // possibly scaled up by 10^(P34-q1) |
| // an overflow cannot occur in this case (rounding to nearest) |
| if (q1 < P34) { // scale C1 up by 10^(P34-q1) |
| // Note: because delta = P34 it is certain that |
| // x_exp - ((UINT64)scale << 49) will stay above e_min |
| scale = P34 - q1; |
| if (q1 <= 19) { // C1 fits in 64 bits |
| // 1 <= q1 <= 19 => 15 <= scale <= 33 |
| if (scale <= 19) { // 10^scale fits in 64 bits |
| __mul_64x64_to_128MACH (C1, ten2k64[scale], C1_lo); |
| } else { // if 20 <= scale <= 33 |
| // C1 * 10^scale = (C1 * 10^(scale-19)) * 10^19 where |
| // (C1 * 10^(scale-19)) fits in 64 bits |
| C1_lo = C1_lo * ten2k64[scale - 19]; |
| __mul_64x64_to_128MACH (C1, ten2k64[19], C1_lo); |
| } |
| } else { //if 20 <= q1 <= 33=P34-1 then C1 fits only in 128 bits |
| // => 1 <= P34 - q1 <= 14 so 10^(P34-q1) fits in 64 bits |
| C1.w[1] = C1_hi; |
| C1.w[0] = C1_lo; |
| // C1 = ten2k64[P34 - q1] * C1 |
| __mul_128x64_to_128 (C1, ten2k64[P34 - q1], C1); |
| } |
| x_exp = x_exp - ((UINT64) scale << 49); |
| C1_hi = C1.w[1]; |
| C1_lo = C1.w[0]; |
| } |
| if ((rnd_mode == ROUNDING_TO_NEAREST && x_sign == y_sign |
| && (C1_lo & 0x01)) || (rnd_mode == ROUNDING_TIES_AWAY |
| && x_sign == y_sign) |
| || (rnd_mode == ROUNDING_UP && !x_sign && !y_sign) |
| || (rnd_mode == ROUNDING_DOWN && x_sign && y_sign)) { |
| // add 1 ulp and then check for overflow |
| C1_lo = C1_lo + 1; |
| if (C1_lo == 0) { // rounding overflow in the low 64 bits |
| C1_hi = C1_hi + 1; |
| } |
| if (C1_hi == 0x0001ed09bead87c0ull |
| && C1_lo == 0x378d8e6400000000ull) { |
| // C1 = 10^34 => rounding overflow |
| C1_hi = 0x0000314dc6448d93ull; |
| C1_lo = 0x38c15b0a00000000ull; // 10^33 |
| x_exp = x_exp + EXP_P1; |
| if (x_exp == EXP_MAX_P1) { // overflow |
| C1_hi = 0x7800000000000000ull; // +inf |
| C1_lo = 0x0ull; |
| x_exp = 0; // x_sign is preserved |
| // set overflow flag (the inexact flag was set too) |
| *pfpsf |= OVERFLOW_EXCEPTION; |
| } |
| } |
| } else |
| if ((rnd_mode == ROUNDING_TO_NEAREST && x_sign != y_sign |
| && (C1_lo & 0x01)) || (rnd_mode == ROUNDING_DOWN |
| && !x_sign && y_sign) |
| || (rnd_mode == ROUNDING_UP && x_sign && !y_sign) |
| || (rnd_mode == ROUNDING_TO_ZERO |
| && x_sign != y_sign)) { |
| // subtract 1 ulp from C1 |
| // Note: because delta >= P34 + 1 the result cannot be zero |
| C1_lo = C1_lo - 1; |
| if (C1_lo == 0xffffffffffffffffull) |
| C1_hi = C1_hi - 1; |
| // if the coefficient is 10^33 - 1 then make it 10^34 - 1 |
| // and decrease the exponent by 1 (because delta >= P34 + 1 |
| // the exponent will not become less than e_min) |
| // 10^33 - 1 = 0x0000314dc6448d9338c15b09ffffffff |
| // 10^34 - 1 = 0x0001ed09bead87c0378d8e63ffffffff |
| if (C1_hi == 0x0000314dc6448d93ull |
| && C1_lo == 0x38c15b09ffffffffull) { |
| // make C1 = 10^34 - 1 |
| C1_hi = 0x0001ed09bead87c0ull; |
| C1_lo = 0x378d8e63ffffffffull; |
| x_exp = x_exp - EXP_P1; |
| } |
| } else { |
| ; // the result is already correct |
| } |
| // set the inexact flag |
| *pfpsf |= INEXACT_EXCEPTION; |
| // assemble the result |
| res.w[1] = x_sign | x_exp | C1_hi; |
| res.w[0] = C1_lo; |
| } else { // if C2_lo > halfulp64 || |
| // (C2_lo == halfulp64 && q1 == P34 && ((C1_lo & 0x1) == 1)), i.e. |
| // 1/2 ulp(n1) < n2 < 1 ulp(n1) or n2 = 1/2 ulp(n1) and C1 odd |
| // res = x+1 ulp if n1*n2 > 0 and res = x-1 ulp if n1*n2 < 0 |
| if (q1 < P34) { // then 1 ulp = 10^(e1+q1-P34) < 10^e1 |
| // Note: if (q1 == P34) then 1 ulp = 10^(e1+q1-P34) = 10^e1 |
| // because q1 < P34 we must first replace C1 by |
| // C1 * 10^(P34-q1), and must decrease the exponent by |
| // (P34-q1) (it will still be at least e_min) |
| scale = P34 - q1; |
| if (q1 <= 19) { // C1 fits in 64 bits |
| // 1 <= q1 <= 19 => 15 <= scale <= 33 |
| if (scale <= 19) { // 10^scale fits in 64 bits |
| __mul_64x64_to_128MACH (C1, ten2k64[scale], C1_lo); |
| } else { // if 20 <= scale <= 33 |
| // C1 * 10^scale = (C1 * 10^(scale-19)) * 10^19 where |
| // (C1 * 10^(scale-19)) fits in 64 bits |
| C1_lo = C1_lo * ten2k64[scale - 19]; |
| __mul_64x64_to_128MACH (C1, ten2k64[19], C1_lo); |
| } |
| } else { //if 20 <= q1 <= 33=P34-1 then C1 fits only in 128 bits |
| // => 1 <= P34 - q1 <= 14 so 10^(P34-q1) fits in 64 bits |
| C1.w[1] = C1_hi; |
| C1.w[0] = C1_lo; |
| // C1 = ten2k64[P34 - q1] * C1 |
| __mul_128x64_to_128 (C1, ten2k64[P34 - q1], C1); |
| } |
| x_exp = x_exp - ((UINT64) scale << 49); |
| C1_hi = C1.w[1]; |
| C1_lo = C1.w[0]; |
| // check for rounding overflow |
| if (C1_hi == 0x0001ed09bead87c0ull |
| && C1_lo == 0x378d8e6400000000ull) { |
| // C1 = 10^34 => rounding overflow |
| C1_hi = 0x0000314dc6448d93ull; |
| C1_lo = 0x38c15b0a00000000ull; // 10^33 |
| x_exp = x_exp + EXP_P1; |
| } |
| } |
| if ((rnd_mode == ROUNDING_TO_NEAREST && x_sign != y_sign) |
| || (rnd_mode == ROUNDING_TIES_AWAY && x_sign != y_sign |
| && C2_lo != halfulp64) |
| || (rnd_mode == ROUNDING_DOWN && !x_sign && y_sign) |
| || (rnd_mode == ROUNDING_UP && x_sign && !y_sign) |
| || (rnd_mode == ROUNDING_TO_ZERO |
| && x_sign != y_sign)) { |
| // the result is x - 1 |
| // for RN n1 * n2 < 0; underflow not possible |
| C1_lo = C1_lo - 1; |
| if (C1_lo == 0xffffffffffffffffull) |
| C1_hi--; |
| // check if we crossed into the lower decade |
| if (C1_hi == 0x0000314dc6448d93ull && C1_lo == 0x38c15b09ffffffffull) { // 10^33 - 1 |
| C1_hi = 0x0001ed09bead87c0ull; // 10^34 - 1 |
| C1_lo = 0x378d8e63ffffffffull; |
| x_exp = x_exp - EXP_P1; // no underflow, because n1 >> n2 |
| } |
| } else |
| if ((rnd_mode == ROUNDING_TO_NEAREST |
| && x_sign == y_sign) |
| || (rnd_mode == ROUNDING_TIES_AWAY |
| && x_sign == y_sign) |
| || (rnd_mode == ROUNDING_DOWN && x_sign && y_sign) |
| || (rnd_mode == ROUNDING_UP && !x_sign |
| && !y_sign)) { |
| // the result is x + 1 |
| // for RN x_sign = y_sign, i.e. n1*n2 > 0 |
| C1_lo = C1_lo + 1; |
| if (C1_lo == 0) { // rounding overflow in the low 64 bits |
| C1_hi = C1_hi + 1; |
| } |
| if (C1_hi == 0x0001ed09bead87c0ull |
| && C1_lo == 0x378d8e6400000000ull) { |
| // C1 = 10^34 => rounding overflow |
| C1_hi = 0x0000314dc6448d93ull; |
| C1_lo = 0x38c15b0a00000000ull; // 10^33 |
| x_exp = x_exp + EXP_P1; |
| if (x_exp == EXP_MAX_P1) { // overflow |
| C1_hi = 0x7800000000000000ull; // +inf |
| C1_lo = 0x0ull; |
| x_exp = 0; // x_sign is preserved |
| // set the overflow flag |
| *pfpsf |= OVERFLOW_EXCEPTION; |
| } |
| } |
| } else { |
| ; // the result is x |
| } |
| // set the inexact flag |
| *pfpsf |= INEXACT_EXCEPTION; |
| // assemble the result |
| res.w[1] = x_sign | x_exp | C1_hi; |
| res.w[0] = C1_lo; |
| } |
| } else { // if q2 >= 20 then 5*10^(q2-1) and C2 (the latter in |
| // most cases) fit only in more than 64 bits |
| halfulp128 = midpoint128[q2 - 20]; // 5 * 10^(q2-1) |
| if ((C2_hi < halfulp128.w[1]) |
| || (C2_hi == halfulp128.w[1] |
| && C2_lo < halfulp128.w[0])) { |
| // n2 < 1/2 ulp (n1) |
| // the result is the operand with the larger magnitude, |
| // possibly scaled up by 10^(P34-q1) |
| // an overflow cannot occur in this case (rounding to nearest) |
| if (q1 < P34) { // scale C1 up by 10^(P34-q1) |
| // Note: because delta = P34 it is certain that |
| // x_exp - ((UINT64)scale << 49) will stay above e_min |
| scale = P34 - q1; |
| if (q1 <= 19) { // C1 fits in 64 bits |
| // 1 <= q1 <= 19 => 15 <= scale <= 33 |
| if (scale <= 19) { // 10^scale fits in 64 bits |
| __mul_64x64_to_128MACH (C1, ten2k64[scale], C1_lo); |
| } else { // if 20 <= scale <= 33 |
| // C1 * 10^scale = (C1 * 10^(scale-19)) * 10^19 where |
| // (C1 * 10^(scale-19)) fits in 64 bits |
| C1_lo = C1_lo * ten2k64[scale - 19]; |
| __mul_64x64_to_128MACH (C1, ten2k64[19], C1_lo); |
| } |
| } else { //if 20 <= q1 <= 33=P34-1 then C1 fits only in 128 bits |
| // => 1 <= P34 - q1 <= 14 so 10^(P34-q1) fits in 64 bits |
| C1.w[1] = C1_hi; |
| C1.w[0] = C1_lo; |
| // C1 = ten2k64[P34 - q1] * C1 |
| __mul_128x64_to_128 (C1, ten2k64[P34 - q1], C1); |
| } |
| C1_hi = C1.w[1]; |
| C1_lo = C1.w[0]; |
| x_exp = x_exp - ((UINT64) scale << 49); |
| } |
| if (rnd_mode != ROUNDING_TO_NEAREST) { |
| if ((rnd_mode == ROUNDING_DOWN && x_sign && y_sign) || |
| (rnd_mode == ROUNDING_UP && !x_sign && !y_sign)) { |
| // add 1 ulp and then check for overflow |
| C1_lo = C1_lo + 1; |
| if (C1_lo == 0) { // rounding overflow in the low 64 bits |
| C1_hi = C1_hi + 1; |
| } |
| if (C1_hi == 0x0001ed09bead87c0ull |
| && C1_lo == 0x378d8e6400000000ull) { |
| // C1 = 10^34 => rounding overflow |
| C1_hi = 0x0000314dc6448d93ull; |
| C1_lo = 0x38c15b0a00000000ull; // 10^33 |
| x_exp = x_exp + EXP_P1; |
| if (x_exp == EXP_MAX_P1) { // overflow |
| C1_hi = 0x7800000000000000ull; // +inf |
| C1_lo = 0x0ull; |
| x_exp = 0; // x_sign is preserved |
| // set overflow flag (the inexact flag was set too) |
| *pfpsf |= OVERFLOW_EXCEPTION; |
| } |
| } |
| } else |
| if ((rnd_mode == ROUNDING_DOWN && !x_sign && y_sign) |
| || (rnd_mode == ROUNDING_UP && x_sign && !y_sign) |
| || (rnd_mode == ROUNDING_TO_ZERO |
| && x_sign != y_sign)) { |
| // subtract 1 ulp from C1 |
| // Note: because delta >= P34 + 1 the result cannot be zero |
| C1_lo = C1_lo - 1; |
| if (C1_lo == 0xffffffffffffffffull) |
| C1_hi = C1_hi - 1; |
| // if the coefficient is 10^33-1 then make it 10^34-1 and |
| // decrease the exponent by 1 (because delta >= P34 + 1 the |
| // exponent will not become less than e_min) |
| // 10^33 - 1 = 0x0000314dc6448d9338c15b09ffffffff |
| // 10^34 - 1 = 0x0001ed09bead87c0378d8e63ffffffff |
| if (C1_hi == 0x0000314dc6448d93ull |
| && C1_lo == 0x38c15b09ffffffffull) { |
| // make C1 = 10^34 - 1 |
| C1_hi = 0x0001ed09bead87c0ull; |
| C1_lo = 0x378d8e63ffffffffull; |
| x_exp = x_exp - EXP_P1; |
| } |
| } else { |
| ; // the result is already correct |
| } |
| } |
| // set the inexact flag |
| *pfpsf |= INEXACT_EXCEPTION; |
| // assemble the result |
| res.w[1] = x_sign | x_exp | C1_hi; |
| res.w[0] = C1_lo; |
| } else if ((C2_hi == halfulp128.w[1] |
| && C2_lo == halfulp128.w[0]) |
| && (q1 < P34 || ((C1_lo & 0x1) == 0))) { |
| // midpoint & lsb in C1 is 0 |
| // n2 = 1/2 ulp (n1) and C1 is even |
| // the result is the operand with the larger magnitude, |
| // possibly scaled up by 10^(P34-q1) |
| // an overflow cannot occur in this case (rounding to nearest) |
| if (q1 < P34) { // scale C1 up by 10^(P34-q1) |
| // Note: because delta = P34 it is certain that |
| // x_exp - ((UINT64)scale << 49) will stay above e_min |
| scale = P34 - q1; |
| if (q1 <= 19) { // C1 fits in 64 bits |
| // 1 <= q1 <= 19 => 15 <= scale <= 33 |
| if (scale <= 19) { // 10^scale fits in 64 bits |
| __mul_64x64_to_128MACH (C1, ten2k64[scale], C1_lo); |
| } else { // if 20 <= scale <= 33 |
| // C1 * 10^scale = (C1 * 10^(scale-19)) * 10^19 where |
| // (C1 * 10^(scale-19)) fits in 64 bits |
| C1_lo = C1_lo * ten2k64[scale - 19]; |
| __mul_64x64_to_128MACH (C1, ten2k64[19], C1_lo); |
| } |
| } else { //if 20 <= q1 <= 33=P34-1 then C1 fits only in 128 bits |
| // => 1 <= P34 - q1 <= 14 so 10^(P34-q1) fits in 64 bits |
| C1.w[1] = C1_hi; |
| C1.w[0] = C1_lo; |
| // C1 = ten2k64[P34 - q1] * C1 |
| __mul_128x64_to_128 (C1, ten2k64[P34 - q1], C1); |
| } |
| x_exp = x_exp - ((UINT64) scale << 49); |
| C1_hi = C1.w[1]; |
| C1_lo = C1.w[0]; |
| } |
| if (rnd_mode != ROUNDING_TO_NEAREST) { |
| if ((rnd_mode == ROUNDING_TIES_AWAY && x_sign == y_sign) |
| || (rnd_mode == ROUNDING_UP && !y_sign)) { |
| // add 1 ulp and then check for overflow |
| C1_lo = C1_lo + 1; |
| if (C1_lo == 0) { // rounding overflow in the low 64 bits |
| C1_hi = C1_hi + 1; |
| } |
| if (C1_hi == 0x0001ed09bead87c0ull |
| && C1_lo == 0x378d8e6400000000ull) { |
| // C1 = 10^34 => rounding overflow |
| C1_hi = 0x0000314dc6448d93ull; |
| C1_lo = 0x38c15b0a00000000ull; // 10^33 |
| x_exp = x_exp + EXP_P1; |
| if (x_exp == EXP_MAX_P1) { // overflow |
| C1_hi = 0x7800000000000000ull; // +inf |
| C1_lo = 0x0ull; |
| x_exp = 0; // x_sign is preserved |
| // set overflow flag (the inexact flag was set too) |
| *pfpsf |= OVERFLOW_EXCEPTION; |
| } |
| } |
| } else if ((rnd_mode == ROUNDING_DOWN && y_sign) |
| || (rnd_mode == ROUNDING_TO_ZERO |
| && x_sign != y_sign)) { |
| // subtract 1 ulp from C1 |
| // Note: because delta >= P34 + 1 the result cannot be zero |
| C1_lo = C1_lo - 1; |
| if (C1_lo == 0xffffffffffffffffull) |
| C1_hi = C1_hi - 1; |
| // if the coefficient is 10^33 - 1 then make it 10^34 - 1 |
| // and decrease the exponent by 1 (because delta >= P34 + 1 |
| // the exponent will not become less than e_min) |
| // 10^33 - 1 = 0x0000314dc6448d9338c15b09ffffffff |
| // 10^34 - 1 = 0x0001ed09bead87c0378d8e63ffffffff |
| if (C1_hi == 0x0000314dc6448d93ull |
| && C1_lo == 0x38c15b09ffffffffull) { |
| // make C1 = 10^34 - 1 |
| C1_hi = 0x0001ed09bead87c0ull; |
| C1_lo = 0x378d8e63ffffffffull; |
| x_exp = x_exp - EXP_P1; |
| } |
| } else { |
| ; // the result is already correct |
| } |
| } |
| // set the inexact flag |
| *pfpsf |= INEXACT_EXCEPTION; |
| // assemble the result |
| res.w[1] = x_sign | x_exp | C1_hi; |
| res.w[0] = C1_lo; |
| } else { // if C2 > halfulp128 || |
| // (C2 == halfulp128 && q1 == P34 && ((C1 & 0x1) == 1)), i.e. |
| // 1/2 ulp(n1) < n2 < 1 ulp(n1) or n2 = 1/2 ulp(n1) and C1 odd |
| // res = x+1 ulp if n1*n2 > 0 and res = x-1 ulp if n1*n2 < 0 |
| if (q1 < P34) { // then 1 ulp = 10^(e1+q1-P34) < 10^e1 |
| // Note: if (q1 == P34) then 1 ulp = 10^(e1+q1-P34) = 10^e1 |
| // because q1 < P34 we must first replace C1 by C1*10^(P34-q1), |
| // and must decrease the exponent by (P34-q1) (it will still be |
| // at least e_min) |
| scale = P34 - q1; |
| if (q1 <= 19) { // C1 fits in 64 bits |
| // 1 <= q1 <= 19 => 15 <= scale <= 33 |
| if (scale <= 19) { // 10^scale fits in 64 bits |
| __mul_64x64_to_128MACH (C1, ten2k64[scale], C1_lo); |
| } else { // if 20 <= scale <= 33 |
| // C1 * 10^scale = (C1 * 10^(scale-19)) * 10^19 where |
| // (C1 * 10^(scale-19)) fits in 64 bits |
| C1_lo = C1_lo * ten2k64[scale - 19]; |
| __mul_64x64_to_128MACH (C1, ten2k64[19], C1_lo); |
| } |
| } else { //if 20 <= q1 <= 33=P34-1 then C1 fits only in 128 bits |
| // => 1 <= P34 - q1 <= 14 so 10^(P34-q1) fits in 64 bits |
| C1.w[1] = C1_hi; |
| C1.w[0] = C1_lo; |
| // C1 = ten2k64[P34 - q1] * C1 |
| __mul_128x64_to_128 (C1, ten2k64[P34 - q1], C1); |
| } |
| C1_hi = C1.w[1]; |
| C1_lo = C1.w[0]; |
| x_exp = x_exp - ((UINT64) scale << 49); |
| } |
| if ((rnd_mode == ROUNDING_TO_NEAREST && x_sign != y_sign) |
| || (rnd_mode == ROUNDING_TIES_AWAY && x_sign != y_sign |
| && (C2_hi != halfulp128.w[1] |
| || C2_lo != halfulp128.w[0])) |
| || (rnd_mode == ROUNDING_DOWN && !x_sign && y_sign) |
| || (rnd_mode == ROUNDING_UP && x_sign && !y_sign) |
| || (rnd_mode == ROUNDING_TO_ZERO |
| && x_sign != y_sign)) { |
| // the result is x - 1 |
| // for RN n1 * n2 < 0; underflow not possible |
| C1_lo = C1_lo - 1; |
| if (C1_lo == 0xffffffffffffffffull) |
| C1_hi--; |
| // check if we crossed into the lower decade |
| if (C1_hi == 0x0000314dc6448d93ull && C1_lo == 0x38c15b09ffffffffull) { // 10^33 - 1 |
| C1_hi = 0x0001ed09bead87c0ull; // 10^34 - 1 |
| C1_lo = 0x378d8e63ffffffffull; |
| x_exp = x_exp - EXP_P1; // no underflow, because n1 >> n2 |
| } |
| } else |
| if ((rnd_mode == ROUNDING_TO_NEAREST |
| && x_sign == y_sign) |
| || (rnd_mode == ROUNDING_TIES_AWAY |
| && x_sign == y_sign) |
| || (rnd_mode == ROUNDING_DOWN && x_sign && y_sign) |
| || (rnd_mode == ROUNDING_UP && !x_sign |
| && !y_sign)) { |
| // the result is x + 1 |
| // for RN x_sign = y_sign, i.e. n1*n2 > 0 |
| C1_lo = C1_lo + 1; |
| if (C1_lo == 0) { // rounding overflow in the low 64 bits |
| C1_hi = C1_hi + 1; |
| } |
| if (C1_hi == 0x0001ed09bead87c0ull |
| && C1_lo == 0x378d8e6400000000ull) { |
| // C1 = 10^34 => rounding overflow |
| C1_hi = 0x0000314dc6448d93ull; |
| C1_lo = 0x38c15b0a00000000ull; // 10^33 |
| x_exp = x_exp + EXP_P1; |
| if (x_exp == EXP_MAX_P1) { // overflow |
| C1_hi = 0x7800000000000000ull; // +inf |
| C1_lo = 0x0ull; |
| x_exp = 0; // x_sign is preserved |
| // set the overflow flag |
| *pfpsf |= OVERFLOW_EXCEPTION; |
| } |
| } |
| } else { |
| ; // the result is x |
| } |
| // set the inexact flag |
| *pfpsf |= INEXACT_EXCEPTION; |
| // assemble the result |
| res.w[1] = x_sign | x_exp | C1_hi; |
| res.w[0] = C1_lo; |
| } |
| } // end q1 >= 20 |
| // end case where C1 != 10^(q1-1) |
| } else { // C1 = 10^(q1-1) and x_sign != y_sign |
| // instead of C' = (C1 * 10^(e1-e2) + C2)rnd,P34 |
| // calculate C' = C1 * 10^(e1-e2-x1) + (C2 * 10^(-x1))rnd,P34 |
| // where x1 = q2 - 1, 0 <= x1 <= P34 - 1 |
| // Because C1 = 10^(q1-1) and x_sign != y_sign, C' will have P34 |
| // digits and n = C' * 10^(e2+x1) |
| // If the result has P34+1 digits, redo the steps above with x1+1 |
| // If the result has P34-1 digits or less, redo the steps above with |
| // x1-1 but only if initially x1 >= 1 |
| // NOTE: these two steps can be improved, e.g we could guess if |
| // P34+1 or P34-1 digits will be obtained by adding/subtracting |
| // just the top 64 bits of the two operands |
| // The result cannot be zero, and it cannot overflow |
| x1 = q2 - 1; // 0 <= x1 <= P34-1 |
| // Calculate C1 * 10^(e1-e2-x1) where 1 <= e1-e2-x1 <= P34 |
| // scale = (int)(e1 >> 49) - (int)(e2 >> 49) - x1; 0 <= scale <= P34-1 |
| scale = P34 - q1 + 1; // scale=e1-e2-x1 = P34+1-q1; 1<=scale<=P34 |
| // either C1 or 10^(e1-e2-x1) may not fit is 64 bits, |
| // but their product fits with certainty in 128 bits |
| if (scale >= 20) { //10^(e1-e2-x1) doesn't fit in 64 bits, but C1 does |
| __mul_128x64_to_128 (C1, C1_lo, ten2k128[scale - 20]); |
| } else { // if (scale >= 1 |
| // if 1 <= scale <= 19 then 10^(e1-e2-x1) fits in 64 bits |
| if (q1 <= 19) { // C1 fits in 64 bits |
| __mul_64x64_to_128MACH (C1, C1_lo, ten2k64[scale]); |
| } else { // q1 >= 20 |
| C1.w[1] = C1_hi; |
| C1.w[0] = C1_lo; |
| __mul_128x64_to_128 (C1, ten2k64[scale], C1); |
| } |
| } |
| tmp64 = C1.w[0]; // C1.w[1], C1.w[0] contains C1 * 10^(e1-e2-x1) |
| |
| // now round C2 to q2-x1 = 1 decimal digit |
| // C2' = C2 + 1/2 * 10^x1 = C2 + 5 * 10^(x1-1) |
| ind = x1 - 1; // -1 <= ind <= P34 - 2 |
| if (ind >= 0) { // if (x1 >= 1) |
| C2.w[0] = C2_lo; |
| C2.w[1] = C2_hi; |
| if (ind <= 18) { |
| C2.w[0] = C2.w[0] + midpoint64[ind]; |
| if (C2.w[0] < C2_lo) |
| C2.w[1]++; |
| } else { // 19 <= ind <= 32 |
| C2.w[0] = C2.w[0] + midpoint128[ind - 19].w[0]; |
| C2.w[1] = C2.w[1] + midpoint128[ind - 19].w[1]; |
| if (C2.w[0] < C2_lo) |
| C2.w[1]++; |
| } |
| // the approximation of 10^(-x1) was rounded up to 118 bits |
| __mul_128x128_to_256 (R256, C2, ten2mk128[ind]); // R256 = C2*, f2* |
| // calculate C2* and f2* |
| // C2* is actually floor(C2*) in this case |
| // C2* and f2* need shifting and masking, as shown by |
| // shiftright128[] and maskhigh128[] |
| // the top Ex bits of 10^(-x1) are T* = ten2mk128trunc[ind], e.g. |
| // if x1=1, T*=ten2mk128trunc[0]=0x19999999999999999999999999999999 |
| // if (0 < f2* < 10^(-x1)) then |
| // if floor(C1+C2*) is even then C2* = floor(C2*) - logical right |
| // shift; C2* has p decimal digits, correct by Prop. 1) |
| // else if floor(C1+C2*) is odd C2* = floor(C2*)-1 (logical right |
| // shift; C2* has p decimal digits, correct by Pr. 1) |
| // else |
| // C2* = floor(C2*) (logical right shift; C has p decimal digits, |
| // correct by Property 1) |
| // n = C2* * 10^(e2+x1) |
| |
| if (ind <= 2) { |
| highf2star.w[1] = 0x0; |
| highf2star.w[0] = 0x0; // low f2* ok |
| } else if (ind <= 21) { |
| highf2star.w[1] = 0x0; |
| highf2star.w[0] = R256.w[2] & maskhigh128[ind]; // low f2* ok |
| } else { |
| highf2star.w[1] = R256.w[3] & maskhigh128[ind]; |
| highf2star.w[0] = R256.w[2]; // low f2* is ok |
| } |
| // shift right C2* by Ex-128 = shiftright128[ind] |
| if (ind >= 3) { |
| shift = shiftright128[ind]; |
| if (shift < 64) { // 3 <= shift <= 63 |
| R256.w[2] = |
| (R256.w[2] >> shift) | (R256.w[3] << (64 - shift)); |
| R256.w[3] = (R256.w[3] >> shift); |
| } else { // 66 <= shift <= 102 |
| R256.w[2] = (R256.w[3] >> (shift - 64)); |
| R256.w[3] = 0x0ULL; |
| } |
| } |
| // redundant |
| is_inexact_lt_midpoint = 0; |
| is_inexact_gt_midpoint = 0; |
| is_midpoint_lt_even = 0; |
| is_midpoint_gt_even = 0; |
| // determine inexactness of the rounding of C2* |
| // (cannot be followed by a second rounding) |
| // if (0 < f2* - 1/2 < 10^(-x1)) then |
| // the result is exact |
| // else (if f2* - 1/2 > T* then) |
| // the result of is inexact |
| if (ind <= 2) { |
| if (R256.w[1] > 0x8000000000000000ull || |
| (R256.w[1] == 0x8000000000000000ull |
| && R256.w[0] > 0x0ull)) { |
| // f2* > 1/2 and the result may be exact |
| tmp64A = R256.w[1] - 0x8000000000000000ull; // f* - 1/2 |
| if ((tmp64A > ten2mk128trunc[ind].w[1] |
| || (tmp64A == ten2mk128trunc[ind].w[1] |
| && R256.w[0] >= ten2mk128trunc[ind].w[0]))) { |
| // set the inexact flag |
| *pfpsf |= INEXACT_EXCEPTION; |
| // this rounding is applied to C2 only! |
| // x_sign != y_sign |
| is_inexact_gt_midpoint = 1; |
| } // else the result is exact |
| // rounding down, unless a midpoint in [ODD, EVEN] |
| } else { // the result is inexact; f2* <= 1/2 |
| // set the inexact flag |
| *pfpsf |= INEXACT_EXCEPTION; |
| // this rounding is applied to C2 only! |
| // x_sign != y_sign |
| is_inexact_lt_midpoint = 1; |
| } |
| } else if (ind <= 21) { // if 3 <= ind <= 21 |
| if (highf2star.w[1] > 0x0 || (highf2star.w[1] == 0x0 |
| && highf2star.w[0] > |
| onehalf128[ind]) |
| || (highf2star.w[1] == 0x0 |
| && highf2star.w[0] == onehalf128[ind] |
| && (R256.w[1] || R256.w[0]))) { |
| // f2* > 1/2 and the result may be exact |
| // Calculate f2* - 1/2 |
| tmp64A = highf2star.w[0] - onehalf128[ind]; |
| tmp64B = highf2star.w[1]; |
| if (tmp64A > highf2star.w[0]) |
| tmp64B--; |
| if (tmp64B || tmp64A |
| || R256.w[1] > ten2mk128trunc[ind].w[1] |
| || (R256.w[1] == ten2mk128trunc[ind].w[1] |
| && R256.w[0] > ten2mk128trunc[ind].w[0])) { |
| // set the inexact flag |
| *pfpsf |= INEXACT_EXCEPTION; |
| // this rounding is applied to C2 only! |
| // x_sign != y_sign |
| is_inexact_gt_midpoint = 1; |
| } // else the result is exact |
| } else { // the result is inexact; f2* <= 1/2 |
| // set the inexact flag |
| *pfpsf |= INEXACT_EXCEPTION; |
| // this rounding is applied to C2 only! |
| // x_sign != y_sign |
| is_inexact_lt_midpoint = 1; |
| } |
| } else { // if 22 <= ind <= 33 |
| if (highf2star.w[1] > onehalf128[ind] |
| || (highf2star.w[1] == onehalf128[ind] |
| && (highf2star.w[0] || R256.w[1] |
| || R256.w[0]))) { |
| // f2* > 1/2 and the result may be exact |
| // Calculate f2* - 1/2 |
| // tmp64A = highf2star.w[0]; |
| tmp64B = highf2star.w[1] - onehalf128[ind]; |
| if (tmp64B || highf2star.w[0] |
| || R256.w[1] > ten2mk128trunc[ind].w[1] |
| || (R256.w[1] == ten2mk128trunc[ind].w[1] |
| && R256.w[0] > ten2mk128trunc[ind].w[0])) { |
| // set the inexact flag |
| *pfpsf |= INEXACT_EXCEPTION; |
| // this rounding is applied to C2 only! |
| // x_sign != y_sign |
| is_inexact_gt_midpoint = 1; |
| } // else the result is exact |
| } else { // the result is inexact; f2* <= 1/2 |
| // set the inexact flag |
| *pfpsf |= INEXACT_EXCEPTION; |
| // this rounding is applied to C2 only! |
| // x_sign != y_sign |
| is_inexact_lt_midpoint = 1; |
| } |
| } |
| // check for midpoints after determining inexactness |
| if ((R256.w[1] || R256.w[0]) && (highf2star.w[1] == 0) |
| && (highf2star.w[0] == 0) |
| && (R256.w[1] < ten2mk128trunc[ind].w[1] |
| || (R256.w[1] == ten2mk128trunc[ind].w[1] |
| && R256.w[0] <= ten2mk128trunc[ind].w[0]))) { |
| // the result is a midpoint |
| if ((tmp64 + R256.w[2]) & 0x01) { // MP in [EVEN, ODD] |
| // if floor(C2*) is odd C = floor(C2*) - 1; the result may be 0 |
| R256.w[2]--; |
| if (R256.w[2] == 0xffffffffffffffffull) |
| R256.w[3]--; |
| // this rounding is applied to C2 only! |
| // x_sign != y_sign |
| is_midpoint_lt_even = 1; |
| is_inexact_lt_midpoint = 0; |
| is_inexact_gt_midpoint = 0; |
| } else { |
| // else MP in [ODD, EVEN] |
| // this rounding is applied to C2 only! |
| // x_sign != y_sign |
| is_midpoint_gt_even = 1; |
| is_inexact_lt_midpoint = 0; |
| is_inexact_gt_midpoint = 0; |
| } |
| } |
| } else { // if (ind == -1) only when x1 = 0 |
| R256.w[2] = C2_lo; |
| R256.w[3] = C2_hi; |
| is_midpoint_lt_even = 0; |
| is_midpoint_gt_even = 0; |
| is_inexact_lt_midpoint = 0; |
| is_inexact_gt_midpoint = 0; |
| } |
| // and now subtract C1 * 10^(e1-e2-x1) - (C2 * 10^(-x1))rnd,P34 |
| // because x_sign != y_sign this last operation is exact |
| C1.w[0] = C1.w[0] - R256.w[2]; |
| C1.w[1] = C1.w[1] - R256.w[3]; |
| if (C1.w[0] > tmp64) |
| C1.w[1]--; // borrow |
| if (C1.w[1] >= 0x8000000000000000ull) { // negative coefficient! |
| C1.w[0] = ~C1.w[0]; |
| C1.w[0]++; |
| C1.w[1] = ~C1.w[1]; |
| if (C1.w[0] == 0x0) |
| C1.w[1]++; |
| tmp_sign = y_sign; // the result will have the sign of y |
| } else { |
| tmp_sign = x_sign; |
| } |
| // the difference has exactly P34 digits |
| x_sign = tmp_sign; |
| if (x1 >= 1) |
| y_exp = y_exp + ((UINT64) x1 << 49); |
| C1_hi = C1.w[1]; |
| C1_lo = C1.w[0]; |
| // general correction from RN to RA, RM, RP, RZ; result uses y_exp |
| if (rnd_mode != ROUNDING_TO_NEAREST) { |
| if ((!x_sign |
| && ((rnd_mode == ROUNDING_UP && is_inexact_lt_midpoint) |
| || |
| ((rnd_mode == ROUNDING_TIES_AWAY |
| || rnd_mode == ROUNDING_UP) |
| && is_midpoint_gt_even))) || (x_sign |
| && |
| ((rnd_mode == |
| ROUNDING_DOWN |
| && |
| is_inexact_lt_midpoint) |
| || |
| ((rnd_mode == |
| ROUNDING_TIES_AWAY |
| || rnd_mode == |
| ROUNDING_DOWN) |
| && |
| is_midpoint_gt_even)))) |
| { |
| // C1 = C1 + 1 |
| C1_lo = C1_lo + 1; |
| if (C1_lo == 0) { // rounding overflow in the low 64 bits |
| C1_hi = C1_hi + 1; |
| } |
| if (C1_hi == 0x0001ed09bead87c0ull |
| && C1_lo == 0x378d8e6400000000ull) { |
| // C1 = 10^34 => rounding overflow |
| C1_hi = 0x0000314dc6448d93ull; |
| C1_lo = 0x38c15b0a00000000ull; // 10^33 |
| y_exp = y_exp + EXP_P1; |
| } |
| } else if ((is_midpoint_lt_even || is_inexact_gt_midpoint) |
| && |
| ((x_sign |
| && (rnd_mode == ROUNDING_UP |
| || rnd_mode == ROUNDING_TO_ZERO)) |
| || (!x_sign |
| && (rnd_mode == ROUNDING_DOWN |
| || rnd_mode == ROUNDING_TO_ZERO)))) { |
| // C1 = C1 - 1 |
| C1_lo = C1_lo - 1; |
| if (C1_lo == 0xffffffffffffffffull) |
| C1_hi--; |
| // check if we crossed into the lower decade |
| if (C1_hi == 0x0000314dc6448d93ull && C1_lo == 0x38c15b09ffffffffull) { // 10^33 - 1 |
| C1_hi = 0x0001ed09bead87c0ull; // 10^34 - 1 |
| C1_lo = 0x378d8e63ffffffffull; |
| y_exp = y_exp - EXP_P1; |
| // no underflow, because delta + q2 >= P34 + 1 |
| } |
| } else { |
| ; // exact, the result is already correct |
| } |
| } |
| // assemble the result |
| res.w[1] = x_sign | y_exp | C1_hi; |
| res.w[0] = C1_lo; |
| } |
| } // end delta = P34 |
| } else { // if (|delta| <= P34 - 1) |
| if (delta >= 0) { // if (0 <= delta <= P34 - 1) |
| if (delta <= P34 - 1 - q2) { |
| // calculate C' directly; the result is exact |
| // in this case 1<=q1<=P34-1, 1<=q2<=P34-1 and 0 <= e1-e2 <= P34-2 |
| // The coefficient of the result is C1 * 10^(e1-e2) + C2 and the |
| // exponent is e2; either C1 or 10^(e1-e2) may not fit is 64 bits, |
| // but their product fits with certainty in 128 bits (actually in 113) |
| scale = delta - q1 + q2; // scale = (int)(e1 >> 49) - (int)(e2 >> 49) |
| |
| if (scale >= 20) { // 10^(e1-e2) does not fit in 64 bits, but C1 does |
| __mul_128x64_to_128 (C1, C1_lo, ten2k128[scale - 20]); |
| C1_hi = C1.w[1]; |
| C1_lo = C1.w[0]; |
| } else if (scale >= 1) { |
| // if 1 <= scale <= 19 then 10^(e1-e2) fits in 64 bits |
| if (q1 <= 19) { // C1 fits in 64 bits |
| __mul_64x64_to_128MACH (C1, C1_lo, ten2k64[scale]); |
| } else { // q1 >= 20 |
| C1.w[1] = C1_hi; |
| C1.w[0] = C1_lo; |
| __mul_128x64_to_128 (C1, ten2k64[scale], C1); |
| } |
| C1_hi = C1.w[1]; |
| C1_lo = C1.w[0]; |
| } else { // if (scale == 0) C1 is unchanged |
| C1.w[0] = C1_lo; // C1.w[1] = C1_hi; |
| } |
| // now add C2 |
| if (x_sign == y_sign) { |
| // the result cannot overflow |
| C1_lo = C1_lo + C2_lo; |
| C1_hi = C1_hi + C2_hi; |
| if (C1_lo < C1.w[0]) |
| C1_hi++; |
| } else { // if x_sign != y_sign |
| C1_lo = C1_lo - C2_lo; |
| C1_hi = C1_hi - C2_hi; |
| if (C1_lo > C1.w[0]) |
| C1_hi--; |
| // the result can be zero, but it cannot overflow |
| if (C1_lo == 0 && C1_hi == 0) { |
| // assemble the result |
| if (x_exp < y_exp) |
| res.w[1] = x_exp; |
| else |
| res.w[1] = y_exp; |
| res.w[0] = 0; |
| if (rnd_mode == ROUNDING_DOWN) { |
| res.w[1] |= 0x8000000000000000ull; |
| } |
| BID_SWAP128 (res); |
| BID_RETURN (res); |
| } |
| if (C1_hi >= 0x8000000000000000ull) { // negative coefficient! |
| C1_lo = ~C1_lo; |
| C1_lo++; |
| C1_hi = ~C1_hi; |
| if (C1_lo == 0x0) |
| C1_hi++; |
| x_sign = y_sign; // the result will have the sign of y |
| } |
| } |
| // assemble the result |
| res.w[1] = x_sign | y_exp | C1_hi; |
| res.w[0] = C1_lo; |
| } else if (delta == P34 - q2) { |
| // calculate C' directly; the result may be inexact if it requires |
| // P34+1 decimal digits; in this case the 'cutoff' point for addition |
| // is at the position of the lsb of C2, so 0 <= e1-e2 <= P34-1 |
| // The coefficient of the result is C1 * 10^(e1-e2) + C2 and the |
| // exponent is e2; either C1 or 10^(e1-e2) may not fit is 64 bits, |
| // but their product fits with certainty in 128 bits (actually in 113) |
| scale = delta - q1 + q2; // scale = (int)(e1 >> 49) - (int)(e2 >> 49) |
| if (scale >= 20) { // 10^(e1-e2) does not fit in 64 bits, but C1 does |
| __mul_128x64_to_128 (C1, C1_lo, ten2k128[scale - 20]); |
| } else if (scale >= 1) { |
| // if 1 <= scale <= 19 then 10^(e1-e2) fits in 64 bits |
| if (q1 <= 19) { // C1 fits in 64 bits |
| __mul_64x64_to_128MACH (C1, C1_lo, ten2k64[scale]); |
| } else { // q1 >= 20 |
| C1.w[1] = C1_hi; |
| C1.w[0] = C1_lo; |
| __mul_128x64_to_128 (C1, ten2k64[scale], C1); |
| } |
| } else { // if (scale == 0) C1 is unchanged |
| C1.w[1] = C1_hi; |
| C1.w[0] = C1_lo; // only the low part is necessary |
| } |
| C1_hi = C1.w[1]; |
| C1_lo = C1.w[0]; |
| // now add C2 |
| if (x_sign == y_sign) { |
| // the result can overflow! |
| C1_lo = C1_lo + C2_lo; |
| C1_hi = C1_hi + C2_hi; |
| if (C1_lo < C1.w[0]) |
| C1_hi++; |
| // test for overflow, possible only when C1 >= 10^34 |
| if (C1_hi > 0x0001ed09bead87c0ull || (C1_hi == 0x0001ed09bead87c0ull && C1_lo >= 0x378d8e6400000000ull)) { // C1 >= 10^34 |
| // in this case q = P34 + 1 and x = q - P34 = 1, so multiply |
| // C'' = C'+ 5 = C1 + 5 by k1 ~ 10^(-1) calculated for P34 + 1 |
| // decimal digits |
| // Calculate C'' = C' + 1/2 * 10^x |
| if (C1_lo >= 0xfffffffffffffffbull) { // low half add has carry |
| C1_lo = C1_lo + 5; |
| C1_hi = C1_hi + 1; |
| } else { |
| C1_lo = C1_lo + 5; |
| } |
| // the approximation of 10^(-1) was rounded up to 118 bits |
| // 10^(-1) =~ 33333333333333333333333333333400 * 2^-129 |
| // 10^(-1) =~ 19999999999999999999999999999a00 * 2^-128 |
| C1.w[1] = C1_hi; |
| C1.w[0] = C1_lo; // C'' |
| ten2m1.w[1] = 0x1999999999999999ull; |
| ten2m1.w[0] = 0x9999999999999a00ull; |
| __mul_128x128_to_256 (P256, C1, ten2m1); // P256 = C*, f* |
| // C* is actually floor(C*) in this case |
| // the top Ex = 128 bits of 10^(-1) are |
| // T* = 0x00199999999999999999999999999999 |
| // if (0 < f* < 10^(-x)) then |
| // if floor(C*) is even then C = floor(C*) - logical right |
| // shift; C has p decimal digits, correct by Prop. 1) |
| // else if floor(C*) is odd C = floor(C*) - 1 (logical right |
| // shift; C has p decimal digits, correct by Pr. 1) |
| // else |
| // C = floor(C*) (logical right shift; C has p decimal digits, |
| // correct by Property 1) |
| // n = C * 10^(e2+x) |
| if ((P256.w[1] || P256.w[0]) |
| && (P256.w[1] < 0x1999999999999999ull |
| || (P256.w[1] == 0x1999999999999999ull |
| && P256.w[0] <= 0x9999999999999999ull))) { |
| // the result is a midpoint |
| if (P256.w[2] & 0x01) { |
| is_midpoint_gt_even = 1; |
| // if floor(C*) is odd C = floor(C*) - 1; the result is not 0 |
| P256.w[2]--; |
| if (P256.w[2] == 0xffffffffffffffffull) |
| P256.w[3]--; |
| } else { |
| is_midpoint_lt_even = 1; |
| } |
| } |
| // n = Cstar * 10^(e2+1) |
| y_exp = y_exp + EXP_P1; |
| // C* != 10^P because C* has P34 digits |
| // check for overflow |
| if (y_exp == EXP_MAX_P1 |
| && (rnd_mode == ROUNDING_TO_NEAREST |
| || rnd_mode == ROUNDING_TIES_AWAY)) { |
| // overflow for RN |
| res.w[1] = x_sign | 0x7800000000000000ull; // +/-inf |
| res.w[0] = 0x0ull; |
| // set the inexact flag |
| *pfpsf |= INEXACT_EXCEPTION; |
| // set the overflow flag |
| *pfpsf |= OVERFLOW_EXCEPTION; |
| BID_SWAP128 (res); |
| BID_RETURN (res); |
| } |
| // if (0 < f* - 1/2 < 10^(-x)) then |
| // the result of the addition is exact |
| // else |
| // the result of the addition is inexact |
| if (P256.w[1] > 0x8000000000000000ull || (P256.w[1] == 0x8000000000000000ull && P256.w[0] > 0x0ull)) { // the result may be exact |
| tmp64 = P256.w[1] - 0x8000000000000000ull; // f* - 1/2 |
| if ((tmp64 > 0x1999999999999999ull |
| || (tmp64 == 0x1999999999999999ull |
| && P256.w[0] >= 0x9999999999999999ull))) { |
| // set the inexact flag |
| *pfpsf |= INEXACT_EXCEPTION; |
| is_inexact = 1; |
| } // else the result is exact |
| } else { // the result is inexact |
| // set the inexact flag |
| *pfpsf |= INEXACT_EXCEPTION; |
| is_inexact = 1; |
| } |
| C1_hi = P256.w[3]; |
| C1_lo = P256.w[2]; |
| if (!is_midpoint_gt_even && !is_midpoint_lt_even) { |
| is_inexact_lt_midpoint = is_inexact |
| && (P256.w[1] & 0x8000000000000000ull); |
| is_inexact_gt_midpoint = is_inexact |
| && !(P256.w[1] & 0x8000000000000000ull); |
| } |
| // general correction from RN to RA, RM, RP, RZ; |
| // result uses y_exp |
| if (rnd_mode != ROUNDING_TO_NEAREST) { |
| if ((!x_sign |
| && |
| ((rnd_mode == ROUNDING_UP |
| && is_inexact_lt_midpoint) |
| || |
| ((rnd_mode == ROUNDING_TIES_AWAY |
| || rnd_mode == ROUNDING_UP) |
| && is_midpoint_gt_even))) || (x_sign |
| && |
| ((rnd_mode == |
| ROUNDING_DOWN |
| && |
| is_inexact_lt_midpoint) |
| || |
| ((rnd_mode == |
| ROUNDING_TIES_AWAY |
| || rnd_mode == |
| ROUNDING_DOWN) |
| && |
| is_midpoint_gt_even)))) |
| { |
| // C1 = C1 + 1 |
| C1_lo = C1_lo + 1; |
| if (C1_lo == 0) { // rounding overflow in the low 64 bits |
| C1_hi = C1_hi + 1; |
| } |
| if (C1_hi == 0x0001ed09bead87c0ull |
| && C1_lo == 0x378d8e6400000000ull) { |
| // C1 = 10^34 => rounding overflow |
| C1_hi = 0x0000314dc6448d93ull; |
| C1_lo = 0x38c15b0a00000000ull; // 10^33 |
| y_exp = y_exp + EXP_P1; |
| } |
| } else |
| if ((is_midpoint_lt_even || is_inexact_gt_midpoint) |
| && |
| ((x_sign |
| && (rnd_mode == ROUNDING_UP |
| || rnd_mode == ROUNDING_TO_ZERO)) |
| || (!x_sign |
| && (rnd_mode == ROUNDING_DOWN |
| || rnd_mode == ROUNDING_TO_ZERO)))) { |
| // C1 = C1 - 1 |
| C1_lo = C1_lo - 1; |
| if (C1_lo == 0xffffffffffffffffull) |
| C1_hi--; |
| // check if we crossed into the lower decade |
| if (C1_hi == 0x0000314dc6448d93ull && C1_lo == 0x38c15b09ffffffffull) { // 10^33 - 1 |
| C1_hi = 0x0001ed09bead87c0ull; // 10^34 - 1 |
| C1_lo = 0x378d8e63ffffffffull; |
| y_exp = y_exp - EXP_P1; |
| // no underflow, because delta + q2 >= P34 + 1 |
| } |
| } else { |
| ; // exact, the result is already correct |
| } |
| // in all cases check for overflow (RN and RA solved already) |
| if (y_exp == EXP_MAX_P1) { // overflow |
| if ((rnd_mode == ROUNDING_DOWN && x_sign) || // RM and res < 0 |
| (rnd_mode == ROUNDING_UP && !x_sign)) { // RP and res > 0 |
| C1_hi = 0x7800000000000000ull; // +inf |
| C1_lo = 0x0ull; |
| } else { // RM and res > 0, RP and res < 0, or RZ |
| C1_hi = 0x5fffed09bead87c0ull; |
| C1_lo = 0x378d8e63ffffffffull; |
| } |
| y_exp = 0; // x_sign is preserved |
| // set the inexact flag (in case the exact addition was exact) |
| *pfpsf |= INEXACT_EXCEPTION; |
| // set the overflow flag |
| *pfpsf |= OVERFLOW_EXCEPTION; |
| } |
| } |
| } // else if (C1 < 10^34) then C1 is the coeff.; the result is exact |
| } else { // if x_sign != y_sign the result is exact |
| C1_lo = C1_lo - C2_lo; |
| C1_hi = C1_hi - C2_hi; |
| if (C1_lo > C1.w[0]) |
| C1_hi--; |
| // the result can be zero, but it cannot overflow |
| if (C1_lo == 0 && C1_hi == 0) { |
| // assemble the result |
| if (x_exp < y_exp) |
| res.w[1] = x_exp; |
| else |
| res.w[1] = y_exp; |
| res.w[0] = 0; |
| if (rnd_mode == ROUNDING_DOWN) { |
| res.w[1] |= 0x8000000000000000ull; |
| } |
| BID_SWAP128 (res); |
| BID_RETURN (res); |
| } |
| if (C1_hi >= 0x8000000000000000ull) { // negative coefficient! |
| C1_lo = ~C1_lo; |
| C1_lo++; |
| C1_hi = ~C1_hi; |
| if (C1_lo == 0x0) |
| C1_hi++; |
| x_sign = y_sign; // the result will have the sign of y |
| } |
| } |
| // assemble the result |
| res.w[1] = x_sign | y_exp | C1_hi; |
| res.w[0] = C1_lo; |
| } else { // if (delta >= P34 + 1 - q2) |
| // instead of C' = (C1 * 10^(e1-e2) + C2)rnd,P34 |
| // calculate C' = C1 * 10^(e1-e2-x1) + (C2 * 10^(-x1))rnd,P34 |
| // where x1 = q1 + e1 - e2 - P34, 1 <= x1 <= P34 - 1 |
| // In most cases C' will have P34 digits, and n = C' * 10^(e2+x1) |
| // If the result has P34+1 digits, redo the steps above with x1+1 |
| // If the result has P34-1 digits or less, redo the steps above with |
| // x1-1 but only if initially x1 >= 1 |
| // NOTE: these two steps can be improved, e.g we could guess if |
| // P34+1 or P34-1 digits will be obtained by adding/subtracting just |
| // the top 64 bits of the two operands |
| // The result cannot be zero, but it can overflow |
| x1 = delta + q2 - P34; // 1 <= x1 <= P34-1 |
| roundC2: |
| // Calculate C1 * 10^(e1-e2-x1) where 0 <= e1-e2-x1 <= P34 - 1 |
| // scale = (int)(e1 >> 49) - (int)(e2 >> 49) - x1; 0 <= scale <= P34-1 |
| scale = delta - q1 + q2 - x1; // scale = e1 - e2 - x1 = P34 - q1 |
| // either C1 or 10^(e1-e2-x1) may not fit is 64 bits, |
| // but their product fits with certainty in 128 bits (actually in 113) |
| if (scale >= 20) { //10^(e1-e2-x1) doesn't fit in 64 bits, but C1 does |
| __mul_128x64_to_128 (C1, C1_lo, ten2k128[scale - 20]); |
| } else if (scale >= 1) { |
| // if 1 <= scale <= 19 then 10^(e1-e2-x1) fits in 64 bits |
| if (q1 <= 19) { // C1 fits in 64 bits |
| __mul_64x64_to_128MACH (C1, C1_lo, ten2k64[scale]); |
| } else { // q1 >= 20 |
| C1.w[1] = C1_hi; |
| C1.w[0] = C1_lo; |
| __mul_128x64_to_128 (C1, ten2k64[scale], C1); |
| } |
| } else { // if (scale == 0) C1 is unchanged |
| C1.w[1] = C1_hi; |
| C1.w[0] = C1_lo; |
| } |
| tmp64 = C1.w[0]; // C1.w[1], C1.w[0] contains C1 * 10^(e1-e2-x1) |
| |
| // now round C2 to q2-x1 decimal digits, where 1<=x1<=q2-1<=P34-1 |
| // (but if we got here a second time after x1 = x1 - 1, then |
| // x1 >= 0; note that for x1 = 0 C2 is unchanged) |
| // C2' = C2 + 1/2 * 10^x1 = C2 + 5 * 10^(x1-1) |
| ind = x1 - 1; // 0 <= ind <= q2-2<=P34-2=32; but note that if x1 = 0 |
| // during a second pass, then ind = -1 |
| if (ind >= 0) { // if (x1 >= 1) |
| C2.w[0] = C2_lo; |
| C2.w[1] = C2_hi; |
| if (ind <= 18) { |
| C2.w[0] = C2.w[0] + midpoint64[ind]; |
| if (C2.w[0] < C2_lo) |
| C2.w[1]++; |
| } else { // 19 <= ind <= 32 |
| C2.w[0] = C2.w[0] + midpoint128[ind - 19].w[0]; |
| C2.w[1] = C2.w[1] + midpoint128[ind - 19].w[1]; |
| if (C2.w[0] < C2_lo) |
| C2.w[1]++; |
| } |
| // the approximation of 10^(-x1) was rounded up to 118 bits |
| __mul_128x128_to_256 (R256, C2, ten2mk128[ind]); // R256 = C2*, f2* |
| // calculate C2* and f2* |
| // C2* is actually floor(C2*) in this case |
| // C2* and f2* need shifting and masking, as shown by |
| // shiftright128[] and maskhigh128[] |
| // the top Ex bits of 10^(-x1) are T* = ten2mk128trunc[ind], e.g. |
| // if x1=1, T*=ten2mk128trunc[0]=0x19999999999999999999999999999999 |
| // if (0 < f2* < 10^(-x1)) then |
| // if floor(C1+C2*) is even then C2* = floor(C2*) - logical right |
| // shift; C2* has p decimal digits, correct by Prop. 1) |
| // else if floor(C1+C2*) is odd C2* = floor(C2*)-1 (logical right |
| // shift; C2* has p decimal digits, correct by Pr. 1) |
| // else |
| // C2* = floor(C2*) (logical right shift; C has p decimal digits, |
| // correct by Property 1) |
| // n = C2* * 10^(e2+x1) |
| |
| if (ind <= 2) { |
| highf2star.w[1] = 0x0; |
| highf2star.w[0] = 0x0; // low f2* ok |
| } else if (ind <= 21) { |
| highf2star.w[1] = 0x0; |
| highf2star.w[0] = R256.w[2] & maskhigh128[ind]; // low f2* ok |
| } else { |
| highf2star.w[1] = R256.w[3] & maskhigh128[ind]; |
| highf2star.w[0] = R256.w[2]; // low f2* is ok |
| } |
| // shift right C2* by Ex-128 = shiftright128[ind] |
| if (ind >= 3) { |
| shift = shiftright128[ind]; |
| if (shift < 64) { // 3 <= shift <= 63 |
| R256.w[2] = |
| (R256.w[2] >> shift) | (R256.w[3] << (64 - shift)); |
| R256.w[3] = (R256.w[3] >> shift); |
| } else { // 66 <= shift <= 102 |
| R256.w[2] = (R256.w[3] >> (shift - 64)); |
| R256.w[3] = 0x0ULL; |
| } |
| } |
| if (second_pass) { |
| is_inexact_lt_midpoint = 0; |
| is_inexact_gt_midpoint = 0; |
| is_midpoint_lt_even = 0; |
| is_midpoint_gt_even = 0; |
| } |
| // determine inexactness of the rounding of C2* (this may be |
| // followed by a second rounding only if we get P34+1 |
| // decimal digits) |
| // if (0 < f2* - 1/2 < 10^(-x1)) then |
| // the result is exact |
| // else (if f2* - 1/2 > T* then) |
| // the result of is inexact |
| if (ind <= 2) { |
| if (R256.w[1] > 0x8000000000000000ull || |
| (R256.w[1] == 0x8000000000000000ull |
| && R256.w[0] > 0x0ull)) { |
| // f2* > 1/2 and the result may be exact |
| tmp64A = R256.w[1] - 0x8000000000000000ull; // f* - 1/2 |
| if ((tmp64A > ten2mk128trunc[ind].w[1] |
| || (tmp64A == ten2mk128trunc[ind].w[1] |
| && R256.w[0] >= ten2mk128trunc[ind].w[0]))) { |
| // set the inexact flag |
| // *pfpsf |= INEXACT_EXCEPTION; |
| tmp_inexact = 1; // may be set again during a second pass |
| // this rounding is applied to C2 only! |
| if (x_sign == y_sign) |
| is_inexact_lt_midpoint = 1; |
| else // if (x_sign != y_sign) |
| is_inexact_gt_midpoint = 1; |
| } // else the result is exact |
| // rounding down, unless a midpoint in [ODD, EVEN] |
| } else { // the result is inexact; f2* <= 1/2 |
| // set the inexact flag |
| // *pfpsf |= INEXACT_EXCEPTION; |
| tmp_inexact = 1; // just in case we will round a second time |
| // rounding up, unless a midpoint in [EVEN, ODD] |
| // this rounding is applied to C2 only! |
| if (x_sign == y_sign) |
| is_inexact_gt_midpoint = 1; |
| else // if (x_sign != y_sign) |
| is_inexact_lt_midpoint = 1; |
| } |
| } else if (ind <= 21) { // if 3 <= ind <= 21 |
| if (highf2star.w[1] > 0x0 || (highf2star.w[1] == 0x0 |
| && highf2star.w[0] > |
| onehalf128[ind]) |
| || (highf2star.w[1] == 0x0 |
| && highf2star.w[0] == onehalf128[ind] |
| && (R256.w[1] || R256.w[0]))) { |
| // f2* > 1/2 and the result may be exact |
| // Calculate f2* - 1/2 |
| tmp64A = highf2star.w[0] - onehalf128[ind]; |
| tmp64B = highf2star.w[1]; |
| if (tmp64A > highf2star.w[0]) |
| tmp64B--; |
| if (tmp64B || tmp64A |
| || R256.w[1] > ten2mk128trunc[ind].w[1] |
| || (R256.w[1] == ten2mk128trunc[ind].w[1] |
| && R256.w[0] > ten2mk128trunc[ind].w[0])) { |
| // set the inexact flag |
| // *pfpsf |= INEXACT_EXCEPTION; |
| tmp_inexact = 1; // may be set again during a second pass |
| // this rounding is applied to C2 only! |
| if (x_sign == y_sign) |
| is_inexact_lt_midpoint = 1; |
| else // if (x_sign != y_sign) |
| is_inexact_gt_midpoint = 1; |
| } // else the result is exact |
| } else { // the result is inexact; f2* <= 1/2 |
| // set the inexact flag |
| // *pfpsf |= INEXACT_EXCEPTION; |
| tmp_inexact = 1; // may be set again during a second pass |
| // rounding up, unless a midpoint in [EVEN, ODD] |
| // this rounding is applied to C2 only! |
| if (x_sign == y_sign) |
| is_inexact_gt_midpoint = 1; |
| else // if (x_sign != y_sign) |
| is_inexact_lt_midpoint = 1; |
| } |
| } else { // if 22 <= ind <= 33 |
| if (highf2star.w[1] > onehalf128[ind] |
| || (highf2star.w[1] == onehalf128[ind] |
| && (highf2star.w[0] || R256.w[1] |
| || R256.w[0]))) { |
| // f2* > 1/2 and the result may be exact |
| // Calculate f2* - 1/2 |
| // tmp64A = highf2star.w[0]; |
| tmp64B = highf2star.w[1] - onehalf128[ind]; |
| if (tmp64B || highf2star.w[0] |
| || R256.w[1] > ten2mk128trunc[ind].w[1] |
| || (R256.w[1] == ten2mk128trunc[ind].w[1] |
| && R256.w[0] > ten2mk128trunc[ind].w[0])) { |
| // set the inexact flag |
| // *pfpsf |= INEXACT_EXCEPTION; |
| tmp_inexact = 1; // may be set again during a second pass |
| // this rounding is applied to C2 only! |
| if (x_sign == y_sign) |
| is_inexact_lt_midpoint = 1; |
| else // if (x_sign != y_sign) |
| is_inexact_gt_midpoint = 1; |
| } // else the result is exact |
| } else { // the result is inexact; f2* <= 1/2 |
| // set the inexact flag |
| // *pfpsf |= INEXACT_EXCEPTION; |
| tmp_inexact = 1; // may be set again during a second pass |
| // rounding up, unless a midpoint in [EVEN, ODD] |
| // this rounding is applied to C2 only! |
| if (x_sign == y_sign) |
| is_inexact_gt_midpoint = 1; |
| else // if (x_sign != y_sign) |
| is_inexact_lt_midpoint = 1; |
| } |
| } |
| // check for midpoints |
| if ((R256.w[1] || R256.w[0]) && (highf2star.w[1] == 0) |
| && (highf2star.w[0] == 0) |
| && (R256.w[1] < ten2mk128trunc[ind].w[1] |
| || (R256.w[1] == ten2mk128trunc[ind].w[1] |
| && R256.w[0] <= ten2mk128trunc[ind].w[0]))) { |
| // the result is a midpoint |
| if ((tmp64 + R256.w[2]) & 0x01) { // MP in [EVEN, ODD] |
| // if floor(C2*) is odd C = floor(C2*) - 1; the result may be 0 |
| R256.w[2]--; |
| if (R256.w[2] == 0xffffffffffffffffull) |
| R256.w[3]--; |
| // this rounding is applied to C2 only! |
| if (x_sign == y_sign) |
| is_midpoint_gt_even = 1; |
| else // if (x_sign != y_sign) |
| is_midpoint_lt_even = 1; |
| is_inexact_lt_midpoint = 0; |
| is_inexact_gt_midpoint = 0; |
| } else { |
| // else MP in [ODD, EVEN] |
| // this rounding is applied to C2 only! |
| if (x_sign == y_sign) |
| is_midpoint_lt_even = 1; |
| else // if (x_sign != y_sign) |
| is_midpoint_gt_even = 1; |
| is_inexact_lt_midpoint = 0; |
| is_inexact_gt_midpoint = 0; |
| } |
| } |
| // end if (ind >= 0) |
| } else { // if (ind == -1); only during a 2nd pass, and when x1 = 0 |
| R256.w[2] = C2_lo; |
| R256.w[3] = C2_hi; |
| tmp_inexact = 0; |
| // to correct a possible setting to 1 from 1st pass |
| if (second_pass) { |
| is_midpoint_lt_even = 0; |
| is_midpoint_gt_even = 0; |
| is_inexact_lt_midpoint = 0; |
| is_inexact_gt_midpoint = 0; |
| } |
| } |
| // and now add/subtract C1 * 10^(e1-e2-x1) +/- (C2 * 10^(-x1))rnd,P34 |
| if (x_sign == y_sign) { // addition; could overflow |
| // no second pass is possible this way (only for x_sign != y_sign) |
| C1.w[0] = C1.w[0] + R256.w[2]; |
| C1.w[1] = C1.w[1] + R256.w[3]; |
| if (C1.w[0] < tmp64) |
| C1.w[1]++; // carry |
| // if the sum has P34+1 digits, i.e. C1>=10^34 redo the calculation |
| // with x1=x1+1 |
| if (C1.w[1] > 0x0001ed09bead87c0ull || (C1.w[1] == 0x0001ed09bead87c0ull && C1.w[0] >= 0x378d8e6400000000ull)) { // C1 >= 10^34 |
| // chop off one more digit from the sum, but make sure there is |
| // no double-rounding error (see table - double rounding logic) |
| // now round C1 from P34+1 to P34 decimal digits |
| // C1' = C1 + 1/2 * 10 = C1 + 5 |
| if (C1.w[0] >= 0xfffffffffffffffbull) { // low half add has carry |
| C1.w[0] = C1.w[0] + 5; |
| C1.w[1] = C1.w[1] + 1; |
| } else { |
| C1.w[0] = C1.w[0] + 5; |
| } |
| // the approximation of 10^(-1) was rounded up to 118 bits |
| __mul_128x128_to_256 (Q256, C1, ten2mk128[0]); // Q256 = C1*, f1* |
| // C1* is actually floor(C1*) in this case |
| // the top 128 bits of 10^(-1) are |
| // T* = ten2mk128trunc[0]=0x19999999999999999999999999999999 |
| // if (0 < f1* < 10^(-1)) then |
| // if floor(C1*) is even then C1* = floor(C1*) - logical right |
| // shift; C1* has p decimal digits, correct by Prop. 1) |
| // else if floor(C1*) is odd C1* = floor(C1*) - 1 (logical right |
| // shift; C1* has p decimal digits, correct by Pr. 1) |
| // else |
| // C1* = floor(C1*) (logical right shift; C has p decimal digits |
| // correct by Property 1) |
| // n = C1* * 10^(e2+x1+1) |
| if ((Q256.w[1] || Q256.w[0]) |
| && (Q256.w[1] < ten2mk128trunc[0].w[1] |
| || (Q256.w[1] == ten2mk128trunc[0].w[1] |
| && Q256.w[0] <= ten2mk128trunc[0].w[0]))) { |
| // the result is a midpoint |
| if (is_inexact_lt_midpoint) { // for the 1st rounding |
| is_inexact_gt_midpoint = 1; |
| is_inexact_lt_midpoint = 0; |
| is_midpoint_gt_even = 0; |
| is_midpoint_lt_even = 0; |
| } else if (is_inexact_gt_midpoint) { // for the 1st rounding |
| Q256.w[2]--; |
| if (Q256.w[2] == 0xffffffffffffffffull) |
| Q256.w[3]--; |
| is_inexact_gt_midpoint = 0; |
| is_inexact_lt_midpoint = 1; |
| is_midpoint_gt_even = 0; |
| is_midpoint_lt_even = 0; |
| } else if (is_midpoint_gt_even) { // for the 1st rounding |
| // Note: cannot have is_midpoint_lt_even |
| is_inexact_gt_midpoint = 0; |
| is_inexact_lt_midpoint = 1; |
| is_midpoint_gt_even = 0; |
| is_midpoint_lt_even = 0; |
| } else { // the first rounding must have been exact |
| if (Q256.w[2] & 0x01) { // MP in [EVEN, ODD] |
| // the truncated result is correct |
| Q256.w[2]--; |
| if (Q256.w[2] == 0xffffffffffffffffull) |
| Q256.w[3]--; |
| is_inexact_gt_midpoint = 0; |
| is_inexact_lt_midpoint = 0; |
| is_midpoint_gt_even = 1; |
| is_midpoint_lt_even = 0; |
| } else { // MP in [ODD, EVEN] |
| is_inexact_gt_midpoint = 0; |
| is_inexact_lt_midpoint = 0; |
| is_midpoint_gt_even = 0; |
| is_midpoint_lt_even = 1; |
| } |
| } |
| tmp_inexact = 1; // in all cases |
| } else { // the result is not a midpoint |
| // determine inexactness of the rounding of C1 (the sum C1+C2*) |
| // if (0 < f1* - 1/2 < 10^(-1)) then |
| // the result is exact |
| // else (if f1* - 1/2 > T* then) |
| // the result of is inexact |
| // ind = 0 |
| if (Q256.w[1] > 0x8000000000000000ull |
| || (Q256.w[1] == 0x8000000000000000ull |
| && Q256.w[0] > 0x0ull)) { |
| // f1* > 1/2 and the result may be exact |
| Q256.w[1] = Q256.w[1] - 0x8000000000000000ull; // f1* - 1/2 |
| if ((Q256.w[1] > ten2mk128trunc[0].w[1] |
| || (Q256.w[1] == ten2mk128trunc[0].w[1] |
| && Q256.w[0] > ten2mk128trunc[0].w[0]))) { |
| is_inexact_gt_midpoint = 0; |
| is_inexact_lt_midpoint = 1; |
| is_midpoint_gt_even = 0; |
| is_midpoint_lt_even = 0; |
| // set the inexact flag |
| tmp_inexact = 1; |
| // *pfpsf |= INEXACT_EXCEPTION; |
| } else { // else the result is exact for the 2nd rounding |
| if (tmp_inexact) { // if the previous rounding was inexact |
| if (is_midpoint_lt_even) { |
| is_inexact_gt_midpoint = 1; |
| is_midpoint_lt_even = 0; |
| } else if (is_midpoint_gt_even) { |
| is_inexact_lt_midpoint = 1; |
| is_midpoint_gt_even = 0; |
| } else { |
| ; // no change |
| } |
| } |
| } |
| // rounding down, unless a midpoint in [ODD, EVEN] |
| } else { // the result is inexact; f1* <= 1/2 |
| is_inexact_gt_midpoint = 1; |
| is_inexact_lt_midpoint = 0; |
| is_midpoint_gt_even = 0; |
| is_midpoint_lt_even = 0; |
| // set the inexact flag |
| tmp_inexact = 1; |
| // *pfpsf |= INEXACT_EXCEPTION; |
| } |
| } // end 'the result is not a midpoint' |
| // n = C1 * 10^(e2+x1) |
| C1.w[1] = Q256.w[3]; |
| C1.w[0] = Q256.w[2]; |
| y_exp = y_exp + ((UINT64) (x1 + 1) << 49); |
| } else { // C1 < 10^34 |
| // C1.w[1] and C1.w[0] already set |
| // n = C1 * 10^(e2+x1) |
| y_exp = y_exp + ((UINT64) x1 << 49); |
| } |
| // check for overflow |
| if (y_exp == EXP_MAX_P1 |
| && (rnd_mode == ROUNDING_TO_NEAREST |
| || rnd_mode == ROUNDING_TIES_AWAY)) { |
| res.w[1] = 0x7800000000000000ull | x_sign; // +/-inf |
| res.w[0] = 0x0ull; |
| // set the inexact flag |
| *pfpsf |= INEXACT_EXCEPTION; |
| // set the overflow flag |
| *pfpsf |= OVERFLOW_EXCEPTION; |
| BID_SWAP128 (res); |
| BID_RETURN (res); |
| } // else no overflow |
| } else { // if x_sign != y_sign the result of this subtract. is exact |
| C1.w[0] = C1.w[0] - R256.w[2]; |
| C1.w[1] = C1.w[1] - R256.w[3]; |
| if (C1.w[0] > tmp64) |
| C1.w[1]--; // borrow |
| if (C1.w[1] >= 0x8000000000000000ull) { // negative coefficient! |
| C1.w[0] = ~C1.w[0]; |
| C1.w[0]++; |
| C1.w[1] = ~C1.w[1]; |
| if (C1.w[0] == 0x0) |
| C1.w[1]++; |
| tmp_sign = y_sign; |
| // the result will have the sign of y if last rnd |
| } else { |
| tmp_sign = x_sign; |
| } |
| // if the difference has P34-1 digits or less, i.e. C1 < 10^33 then |
| // redo the calculation with x1=x1-1; |
| // redo the calculation also if C1 = 10^33 and |
| // (is_inexact_gt_midpoint or is_midpoint_lt_even); |
| // (the last part should have really been |
| // (is_inexact_lt_midpoint or is_midpoint_gt_even) from |
| // the rounding of C2, but the position flags have been reversed) |
| // 10^33 = 0x0000314dc6448d93 0x38c15b0a00000000 |
| if ((C1.w[1] < 0x0000314dc6448d93ull || (C1.w[1] == 0x0000314dc6448d93ull && C1.w[0] < 0x38c15b0a00000000ull)) || (C1.w[1] == 0x0000314dc6448d93ull && C1.w[0] == 0x38c15b0a00000000ull && (is_inexact_gt_midpoint || is_midpoint_lt_even))) { // C1=10^33 |
| x1 = x1 - 1; // x1 >= 0 |
| if (x1 >= 0) { |
| // clear position flags and tmp_inexact |
| is_midpoint_lt_even = 0; |
| is_midpoint_gt_even = 0; |
| is_inexact_lt_midpoint = 0; |
| is_inexact_gt_midpoint = 0; |
| tmp_inexact = 0; |
| second_pass = 1; |
| goto roundC2; // else result has less than P34 digits |
| } |
| } |
| // if the coefficient of the result is 10^34 it means that this |
| // must be the second pass, and we are done |
| if (C1.w[1] == 0x0001ed09bead87c0ull && C1.w[0] == 0x378d8e6400000000ull) { // if C1 = 10^34 |
| C1.w[1] = 0x0000314dc6448d93ull; // C1 = 10^33 |
| C1.w[0] = 0x38c15b0a00000000ull; |
| y_exp = y_exp + ((UINT64) 1 << 49); |
| } |
| x_sign = tmp_sign; |
| if (x1 >= 1) |
| y_exp = y_exp + ((UINT64) x1 << 49); |
| // x1 = -1 is possible at the end of a second pass when the |
| // first pass started with x1 = 1 |
| } |
| C1_hi = C1.w[1]; |
| C1_lo = C1.w[0]; |
| // general correction from RN to RA, RM, RP, RZ; result uses y_exp |
| if (rnd_mode != ROUNDING_TO_NEAREST) { |
| if ((!x_sign |
| && ((rnd_mode == ROUNDING_UP && is_inexact_lt_midpoint) |
| || |
| ((rnd_mode == ROUNDING_TIES_AWAY |
| || rnd_mode == ROUNDING_UP) |
| && is_midpoint_gt_even))) || (x_sign |
| && |
| ((rnd_mode == |
| ROUNDING_DOWN |
| && |
| is_inexact_lt_midpoint) |
| || |
| ((rnd_mode == |
| ROUNDING_TIES_AWAY |
| || rnd_mode == |
| ROUNDING_DOWN) |
| && |
| is_midpoint_gt_even)))) |
| { |
| // C1 = C1 + 1 |
| C1_lo = C1_lo + 1; |
| if (C1_lo == 0) { // rounding overflow in the low 64 bits |
| C1_hi = C1_hi + 1; |
| } |
| if (C1_hi == 0x0001ed09bead87c0ull |
| && C1_lo == 0x378d8e6400000000ull) { |
| // C1 = 10^34 => rounding overflow |
| C1_hi = 0x0000314dc6448d93ull; |
| C1_lo = 0x38c15b0a00000000ull; // 10^33 |
| y_exp = y_exp + EXP_P1; |
| } |
| } else if ((is_midpoint_lt_even || is_inexact_gt_midpoint) |
| && |
| ((x_sign |
| && (rnd_mode == ROUNDING_UP |
| || rnd_mode == ROUNDING_TO_ZERO)) |
| || (!x_sign |
| && (rnd_mode == ROUNDING_DOWN |
| || rnd_mode == ROUNDING_TO_ZERO)))) { |
| // C1 = C1 - 1 |
| C1_lo = C1_lo - 1; |
| if (C1_lo == 0xffffffffffffffffull) |
| C1_hi--; |
| // check if we crossed into the lower decade |
| if (C1_hi == 0x0000314dc6448d93ull && C1_lo == 0x38c15b09ffffffffull) { // 10^33 - 1 |
| C1_hi = 0x0001ed09bead87c0ull; // 10^34 - 1 |
| C1_lo = 0x378d8e63ffffffffull; |
| y_exp = y_exp - EXP_P1; |
| // no underflow, because delta + q2 >= P34 + 1 |
| } |
| } else { |
| ; // exact, the result is already correct |
| } |
| // in all cases check for overflow (RN and RA solved already) |
| if (y_exp == EXP_MAX_P1) { // overflow |
| if ((rnd_mode == ROUNDING_DOWN && x_sign) || // RM and res < 0 |
| (rnd_mode == ROUNDING_UP && !x_sign)) { // RP and res > 0 |
| C1_hi = 0x7800000000000000ull; // +inf |
| C1_lo = 0x0ull; |
| } else { // RM and res > 0, RP and res < 0, or RZ |
| C1_hi = 0x5fffed09bead87c0ull; |
| C1_lo = 0x378d8e63ffffffffull; |
| } |
| y_exp = 0; // x_sign is preserved |
| // set the inexact flag (in case the exact addition was exact) |
| *pfpsf |= INEXACT_EXCEPTION; |
| // set the overflow flag |
| *pfpsf |= OVERFLOW_EXCEPTION; |
| } |
| } |
| // assemble the result |
| res.w[1] = x_sign | y_exp | C1_hi; |
| res.w[0] = C1_lo; |
| if (tmp_inexact) |
| *pfpsf |= INEXACT_EXCEPTION; |
| } |
| } else { // if (-P34 + 1 <= delta <= -1) <=> 1 <= -delta <= P34 - 1 |
| // NOTE: the following, up to "} else { // if x_sign != y_sign |
| // the result is exact" is identical to "else if (delta == P34 - q2) {" |
| // from above; also, the code is not symmetric: a+b and b+a may take |
| // different paths (need to unify eventually!) |
| // calculate C' = C2 + C1 * 10^(e1-e2) directly; the result may be |
| // inexact if it requires P34 + 1 decimal digits; in either case the |
| // 'cutoff' point for addition is at the position of the lsb of C2 |
| // The coefficient of the result is C1 * 10^(e1-e2) + C2 and the |
| // exponent is e2; either C1 or 10^(e1-e2) may not fit is 64 bits, |
| // but their product fits with certainty in 128 bits (actually in 113) |
| // Note that 0 <= e1 - e2 <= P34 - 2 |
| // -P34 + 1 <= delta <= -1 <=> -P34 + 1 <= delta <= -1 <=> |
| // -P34 + 1 <= q1 + e1 - q2 - e2 <= -1 <=> |
| // q2 - q1 - P34 + 1 <= e1 - e2 <= q2 - q1 - 1 <=> |
| // 1 - P34 - P34 + 1 <= e1-e2 <= P34 - 1 - 1 => 0 <= e1-e2 <= P34 - 2 |
| scale = delta - q1 + q2; // scale = (int)(e1 >> 49) - (int)(e2 >> 49) |
| if (scale >= 20) { // 10^(e1-e2) does not fit in 64 bits, but C1 does |
| __mul_128x64_to_128 (C1, C1_lo, ten2k128[scale - 20]); |
| } else if (scale >= 1) { |
| // if 1 <= scale <= 19 then 10^(e1-e2) fits in 64 bits |
| if (q1 <= 19) { // C1 fits in 64 bits |
| __mul_64x64_to_128MACH (C1, C1_lo, ten2k64[scale]); |
| } else { // q1 >= 20 |
| C1.w[1] = C1_hi; |
| C1.w[0] = C1_lo; |
| __mul_128x64_to_128 (C1, ten2k64[scale], C1); |
| } |
| } else { // if (scale == 0) C1 is unchanged |
| C1.w[1] = C1_hi; |
| C1.w[0] = C1_lo; // only the low part is necessary |
| } |
| C1_hi = C1.w[1]; |
| C1_lo = C1.w[0]; |
| // now add C2 |
| if (x_sign == y_sign) { |
| // the result can overflow! |
| C1_lo = C1_lo + C2_lo; |
| C1_hi = C1_hi + C2_hi; |
| if (C1_lo < C1.w[0]) |
| C1_hi++; |
| // test for overflow, possible only when C1 >= 10^34 |
| if (C1_hi > 0x0001ed09bead87c0ull || (C1_hi == 0x0001ed09bead87c0ull && C1_lo >= 0x378d8e6400000000ull)) { // C1 >= 10^34 |
| // in this case q = P34 + 1 and x = q - P34 = 1, so multiply |
| // C'' = C'+ 5 = C1 + 5 by k1 ~ 10^(-1) calculated for P34 + 1 |
| // decimal digits |
| // Calculate C'' = C' + 1/2 * 10^x |
| if (C1_lo >= 0xfffffffffffffffbull) { // low half add has carry |
| C1_lo = C1_lo + 5; |
| C1_hi = C1_hi + 1; |
| } else { |
| C1_lo = C1_lo + 5; |
| } |
| // the approximation of 10^(-1) was rounded up to 118 bits |
| // 10^(-1) =~ 33333333333333333333333333333400 * 2^-129 |
| // 10^(-1) =~ 19999999999999999999999999999a00 * 2^-128 |
| C1.w[1] = C1_hi; |
| C1.w[0] = C1_lo; // C'' |
| ten2m1.w[1] = 0x1999999999999999ull; |
| ten2m1.w[0] = 0x9999999999999a00ull; |
| __mul_128x128_to_256 (P256, C1, ten2m1); // P256 = C*, f* |
| // C* is actually floor(C*) in this case |
| // the top Ex = 128 bits of 10^(-1) are |
| // T* = 0x00199999999999999999999999999999 |
| // if (0 < f* < 10^(-x)) then |
| // if floor(C*) is even then C = floor(C*) - logical right |
| // shift; C has p decimal digits, correct by Prop. 1) |
| // else if floor(C*) is odd C = floor(C*) - 1 (logical right |
| // shift; C has p decimal digits, correct by Pr. 1) |
| // else |
| // C = floor(C*) (logical right shift; C has p decimal digits, |
| // correct by Property 1) |
| // n = C * 10^(e2+x) |
| if ((P256.w[1] || P256.w[0]) |
| && (P256.w[1] < 0x1999999999999999ull |
| || (P256.w[1] == 0x1999999999999999ull |
| && P256.w[0] <= 0x9999999999999999ull))) { |
| // the result is a midpoint |
| if (P256.w[2] & 0x01) { |
| is_midpoint_gt_even = 1; |
| // if floor(C*) is odd C = floor(C*) - 1; the result is not 0 |
| P256.w[2]--; |
| if (P256.w[2] == 0xffffffffffffffffull) |
| P256.w[3]--; |
| } else { |
| is_midpoint_lt_even = 1; |
| } |
| } |
| // n = Cstar * 10^(e2+1) |
| y_exp = y_exp + EXP_P1; |
| // C* != 10^P34 because C* has P34 digits |
| // check for overflow |
| if (y_exp == EXP_MAX_P1 |
| && (rnd_mode == ROUNDING_TO_NEAREST |
|