| /* Copyright (C) 2007-2017 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| Under Section 7 of GPL version 3, you are granted additional |
| permissions described in the GCC Runtime Library Exception, version |
| 3.1, as published by the Free Software Foundation. |
| |
| You should have received a copy of the GNU General Public License and |
| a copy of the GCC Runtime Library Exception along with this program; |
| see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "bid_internal.h" |
| |
| BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int, bid128_quiet_equal, x, y) |
| |
| int res; |
| int exp_x, exp_y, exp_t; |
| UINT128 sig_x, sig_y, sig_t; |
| UINT192 sig_n_prime192; |
| UINT256 sig_n_prime256; |
| char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; |
| |
| // NaN (CASE1) |
| // if either number is NAN, the comparison is unordered, |
| // rather than equal : return 0 |
| if (((x.w[1] & MASK_NAN) == MASK_NAN) |
| || ((y.w[1] & MASK_NAN) == MASK_NAN)) { |
| if ((x.w[1] & MASK_SNAN) == MASK_SNAN |
| || (y.w[1] & MASK_SNAN) == MASK_SNAN) { |
| *pfpsf |= INVALID_EXCEPTION; |
| } |
| { |
| res = 0; |
| BID_RETURN (res); |
| } |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equivalent. |
| if (x.w[0] == y.w[0] && x.w[1] == y.w[1]) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if ((x.w[1] & MASK_INF) == MASK_INF) { |
| if ((y.w[1] & MASK_INF) == MASK_INF) { |
| res = (((x.w[1] ^ y.w[1]) & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } else { |
| res = 0; |
| BID_RETURN (res); |
| } |
| } |
| if ((y.w[1] & MASK_INF) == MASK_INF) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // CONVERT X |
| sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull; |
| sig_x.w[0] = x.w[0]; |
| exp_x = (x.w[1] >> 49) & 0x000000000003fffull; |
| |
| // CHECK IF X IS CANONICAL |
| // 9999999999999999999999999999999999(decimal) = |
| // 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal) |
| // [0, 10^34) is the 754r supported canonical range. |
| // If the value exceeds that, it is interpreted as 0. |
| if ((sig_x.w[1] > 0x0001ed09bead87c0ull) |
| || ((sig_x.w[1] == 0x0001ed09bead87c0ull) |
| && (sig_x.w[0] > 0x378d8e63ffffffffull)) |
| || ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) |
| non_canon_x = 1; |
| else |
| non_canon_x = 0; |
| |
| // CONVERT Y |
| exp_y = (y.w[1] >> 49) & 0x0000000000003fffull; |
| sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull; |
| sig_y.w[0] = y.w[0]; |
| |
| // CHECK IF Y IS CANONICAL |
| // 9999999999999999999999999999999999(decimal) = |
| // 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal) |
| // [0, 10^34) is the 754r supported canonical range. |
| // If the value exceeds that, it is interpreted as 0. |
| if ((sig_y.w[1] > 0x0001ed09bead87c0ull) |
| || ((sig_y.w[1] == 0x0001ed09bead87c0ull) |
| && (sig_y.w[0] > 0x378d8e63ffffffffull)) |
| || ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) |
| non_canon_y = 1; |
| else |
| non_canon_y = 0; |
| |
| // some properties: |
| // (+ZERO == -ZERO) => therefore ignore the sign |
| // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore |
| // ignore the exponent field |
| // (Any non-canonical # is considered 0) |
| if (non_canon_x || ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) { |
| x_is_zero = 1; |
| } |
| if (non_canon_y || ((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) { |
| y_is_zero = 1; |
| } |
| |
| if (x_is_zero && y_is_zero) { |
| res = 1; |
| BID_RETURN (res); |
| } else if ((x_is_zero && !y_is_zero) || (!x_is_zero && y_is_zero)) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // OPPOSITE SIGN (CASE5) |
| // now, if the sign bits differ => not equal : return 0 |
| if ((x.w[1] ^ y.w[1]) & MASK_SIGN) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| if (exp_x > exp_y) { // to simplify the loop below, |
| SWAP (exp_x, exp_y, exp_t); // put the larger exp in y, |
| SWAP (sig_x.w[1], sig_y.w[1], sig_t.w[1]); // and the smaller exp in x |
| SWAP (sig_x.w[0], sig_y.w[0], sig_t.w[0]); // and the smaller exp in x |
| } |
| |
| |
| if (exp_y - exp_x > 33) { |
| res = 0; |
| BID_RETURN (res); |
| } // difference cannot be greater than 10^33 |
| |
| if (exp_y - exp_x > 19) { |
| // recalculate y's significand upwards |
| __mul_128x128_to_256 (sig_n_prime256, sig_y, |
| ten2k128[exp_y - exp_x - 20]); |
| { |
| res = ((sig_n_prime256.w[3] == 0) && (sig_n_prime256.w[2] == 0) |
| && (sig_n_prime256.w[1] == sig_x.w[1]) |
| && (sig_n_prime256.w[0] == sig_x.w[0])); |
| BID_RETURN (res); |
| } |
| |
| } |
| //else{ |
| // recalculate y's significand upwards |
| __mul_64x128_to_192 (sig_n_prime192, ten2k64[exp_y - exp_x], sig_y); |
| { |
| res = ((sig_n_prime192.w[2] == 0) |
| && (sig_n_prime192.w[1] == sig_x.w[1]) |
| && (sig_n_prime192.w[0] == sig_x.w[0])); |
| BID_RETURN (res); |
| } |
| } |
| |
| BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int, bid128_quiet_greater, x, |
| y) |
| |
| int res; |
| int exp_x, exp_y; |
| int diff; |
| UINT128 sig_x, sig_y; |
| UINT192 sig_n_prime192; |
| UINT256 sig_n_prime256; |
| char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; |
| |
| // NaN (CASE1) |
| // if either number is NAN, the comparison is unordered, rather than |
| // equal : return 0 |
| if (((x.w[1] & MASK_NAN) == MASK_NAN) |
| || ((y.w[1] & MASK_NAN) == MASK_NAN)) { |
| if ((x.w[1] & MASK_SNAN) == MASK_SNAN |
| || (y.w[1] & MASK_SNAN) == MASK_SNAN) { |
| *pfpsf |= INVALID_EXCEPTION; |
| } |
| { |
| res = 0; |
| BID_RETURN (res); |
| } |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equal (not Greater). |
| if (x.w[0] == y.w[0] && x.w[1] == y.w[1]) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if ((x.w[1] & MASK_INF) == MASK_INF) { |
| // if x is neg infinity, there is no way it is greater than y, return 0 |
| if (((x.w[1] & MASK_SIGN) == MASK_SIGN)) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // x is pos infinity, it is greater, unless y is positive infinity => |
| // return y!=pos_infinity |
| else { |
| res = (((y.w[1] & MASK_INF) != MASK_INF) |
| || ((y.w[1] & MASK_SIGN) == MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } else if ((y.w[1] & MASK_INF) == MASK_INF) { |
| // x is finite, so if y is positive infinity, then x is less, return 0 |
| // if y is negative infinity, then x is greater, return 1 |
| { |
| res = ((y.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| } |
| // CONVERT X |
| sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull; |
| sig_x.w[0] = x.w[0]; |
| exp_x = (x.w[1] >> 49) & 0x000000000003fffull; |
| |
| // CHECK IF X IS CANONICAL |
| // 9999999999999999999999999999999999(decimal) = |
| // 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal) |
| // [0, 10^34) is the 754r supported canonical range. |
| // If the value exceeds that, it is interpreted as 0. |
| if ((sig_x.w[1] > 0x0001ed09bead87c0ull) |
| || ((sig_x.w[1] == 0x0001ed09bead87c0ull) |
| && (sig_x.w[0] > 0x378d8e63ffffffffull)) |
| || ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) |
| non_canon_x = 1; |
| else |
| non_canon_x = 0; |
| |
| // CONVERT Y |
| exp_y = (y.w[1] >> 49) & 0x0000000000003fffull; |
| sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull; |
| sig_y.w[0] = y.w[0]; |
| |
| // CHECK IF Y IS CANONICAL |
| // 9999999999999999999999999999999999(decimal) = |
| // 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal) |
| // [0, 10^34) is the 754r supported canonical range. |
| // If the value exceeds that, it is interpreted as 0. |
| if ((sig_y.w[1] > 0x0001ed09bead87c0ull) |
| || ((sig_y.w[1] == 0x0001ed09bead87c0ull) |
| && (sig_y.w[0] > 0x378d8e63ffffffffull)) |
| || ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) |
| non_canon_y = 1; |
| else |
| non_canon_y = 0; |
| |
| // ZERO (CASE4) |
| // some properties: |
| // (+ZERO == -ZERO) => therefore ignore the sign |
| // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore |
| // ignore the exponent field |
| // (Any non-canonical # is considered 0) |
| if (non_canon_x || ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) { |
| x_is_zero = 1; |
| } |
| if (non_canon_y || ((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) { |
| y_is_zero = 1; |
| } |
| // if both numbers are zero, neither is greater => return NOTGREATERTHAN |
| if (x_is_zero && y_is_zero) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // is x is zero, it is greater if Y is negative |
| else if (x_is_zero) { |
| res = ((y.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // is y is zero, X is greater if it is positive |
| else if (y_is_zero) { |
| res = ((x.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // OPPOSITE SIGN (CASE5) |
| // now, if the sign bits differ, x is greater if y is negative |
| if (((x.w[1] ^ y.w[1]) & MASK_SIGN) == MASK_SIGN) { |
| res = ((y.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| // if exponents are the same, then we have a simple comparison |
| // of the significands |
| if (exp_y == exp_x) { |
| res = (((sig_x.w[1] > sig_y.w[1]) |
| || (sig_x.w[1] == sig_y.w[1] |
| && sig_x.w[0] >= sig_y.w[0])) ^ ((x.w[1] & MASK_SIGN) == |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| // if both components are either bigger or smaller, |
| // it is clear what needs to be done |
| if ((sig_x.w[1] > sig_y.w[1] |
| || (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] > sig_y.w[0])) |
| && exp_x >= exp_y) { |
| { |
| res = ((x.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| } |
| if ((sig_x.w[1] < sig_y.w[1] |
| || (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] < sig_y.w[0])) |
| && exp_x <= exp_y) { |
| { |
| res = ((x.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| } |
| |
| diff = exp_x - exp_y; |
| |
| // if |exp_x - exp_y| < 33, it comes down to the compensated significand |
| if (diff > 0) { // to simplify the loop below, |
| |
| // if exp_x is 33 greater than exp_y, no need for compensation |
| if (diff > 33) { |
| res = ((x.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } // difference cannot be greater than 10^33 |
| |
| if (diff > 19) { //128 by 128 bit multiply -> 256 bits |
| __mul_128x128_to_256 (sig_n_prime256, sig_x, ten2k128[diff - 20]); |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0) |
| && sig_n_prime256.w[1] == sig_y.w[1] |
| && (sig_n_prime256.w[0] == sig_y.w[0])) { |
| res = 0; |
| BID_RETURN (res); |
| } // if equal, return 0 |
| { |
| res = ((((sig_n_prime256.w[3] > 0) || sig_n_prime256.w[2] > 0) |
| || (sig_n_prime256.w[1] > sig_y.w[1]) |
| || (sig_n_prime256.w[1] == sig_y.w[1] |
| && sig_n_prime256.w[0] > |
| sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| //else { //128 by 64 bit multiply -> 192 bits |
| __mul_64x128_to_192 (sig_n_prime192, ten2k64[diff], sig_x); |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_y.w[1] |
| && (sig_n_prime192.w[0] == sig_y.w[0])) { |
| res = 0; |
| BID_RETURN (res); |
| } // if equal, return 0 |
| { |
| res = (((sig_n_prime192.w[2] > 0) || |
| (sig_n_prime192.w[1] > sig_y.w[1]) || |
| (sig_n_prime192.w[1] == sig_y.w[1] && |
| sig_n_prime192.w[0] > sig_y.w[0])) ^ |
| ((y.w[1] & MASK_SIGN) == MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| |
| diff = exp_y - exp_x; |
| |
| // if exp_x is 33 less than exp_y, no need for compensation |
| if (diff > 33) { |
| res = ((x.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| |
| if (diff > 19) { //128 by 128 bit multiply -> 256 bits |
| // adjust the y significand upwards |
| __mul_128x128_to_256 (sig_n_prime256, sig_y, ten2k128[diff - 20]); |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0) |
| && sig_n_prime256.w[1] == sig_x.w[1] |
| && (sig_n_prime256.w[0] == sig_x.w[0])) { |
| res = 0; |
| BID_RETURN (res); |
| } // if equal, return 0 |
| { |
| res = ((sig_n_prime256.w[3] != 0 || sig_n_prime256.w[2] != 0 || |
| (sig_n_prime256.w[1] > sig_x.w[1] || |
| (sig_n_prime256.w[1] == sig_x.w[1] && |
| sig_n_prime256.w[0] > sig_x.w[0]))) ^ |
| ((x.w[1] & MASK_SIGN) != MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| //else { //128 by 64 bit multiply -> 192 bits |
| // adjust the y significand upwards |
| __mul_64x128_to_192 (sig_n_prime192, ten2k64[diff], sig_y); |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_x.w[1] |
| && (sig_n_prime192.w[0] == sig_x.w[0])) { |
| res = 0; |
| BID_RETURN (res); |
| } // if equal, return 0 |
| { |
| res = (sig_n_prime192.w[2] != 0 |
| || (sig_n_prime192.w[1] > sig_x.w[1] |
| || (sig_n_prime192.w[1] == sig_x.w[1] |
| && sig_n_prime192.w[0] > |
| sig_x.w[0]))) ^ ((y.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| } |
| |
| BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int, |
| bid128_quiet_greater_equal, x, |
| y) |
| |
| int res; |
| int exp_x, exp_y; |
| int diff; |
| UINT128 sig_x, sig_y; |
| UINT192 sig_n_prime192; |
| UINT256 sig_n_prime256; |
| char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; |
| |
| // NaN (CASE1) |
| // if either number is NAN, the comparison is unordered, |
| // rather than equal : return 1 |
| if (((x.w[1] & MASK_NAN) == MASK_NAN) |
| || ((y.w[1] & MASK_NAN) == MASK_NAN)) { |
| if ((x.w[1] & MASK_SNAN) == MASK_SNAN |
| || (y.w[1] & MASK_SNAN) == MASK_SNAN) { |
| *pfpsf |= INVALID_EXCEPTION; |
| } |
| { |
| res = 0; |
| BID_RETURN (res); |
| } |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equal (not Greater). |
| if (x.w[0] == y.w[0] && x.w[1] == y.w[1]) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if ((x.w[1] & MASK_INF) == MASK_INF) { |
| // if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) } |
| if ((x.w[1] & MASK_SIGN) == MASK_SIGN) |
| // x is -inf, so it is less than y unless y is -inf |
| { |
| res = (((y.w[1] & MASK_INF) == MASK_INF) |
| && (y.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } else |
| // x is pos_inf, no way for it to be less than y |
| { |
| res = 1; |
| BID_RETURN (res); |
| } |
| } else if ((y.w[1] & MASK_INF) == MASK_INF) { |
| // x is finite, so if y is positive infinity, then x is less, return 0 |
| // if y is negative infinity, then x is greater, return 1 |
| { |
| res = ((y.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| } |
| // CONVERT X |
| sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull; |
| sig_x.w[0] = x.w[0]; |
| exp_x = (x.w[1] >> 49) & 0x000000000003fffull; |
| |
| // CHECK IF X IS CANONICAL |
| // 9999999999999999999999999999999999(decimal) = |
| // 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal) |
| // [0, 10^34) is the 754r supported canonical range. |
| // If the value exceeds that, it is interpreted as 0. |
| if ((sig_x.w[1] > 0x0001ed09bead87c0ull) |
| || ((sig_x.w[1] == 0x0001ed09bead87c0ull) |
| && (sig_x.w[0] > 0x378d8e63ffffffffull)) |
| || ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) |
| non_canon_x = 1; |
| else |
| non_canon_x = 0; |
| |
| // CONVERT Y |
| exp_y = (y.w[1] >> 49) & 0x0000000000003fffull; |
| sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull; |
| sig_y.w[0] = y.w[0]; |
| |
| // CHECK IF Y IS CANONICAL |
| // 9999999999999999999999999999999999(decimal) = |
| // 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal) |
| // [0, 10^34) is the 754r supported canonical range. |
| // If the value exceeds that, it is interpreted as 0. |
| if ((sig_y.w[1] > 0x0001ed09bead87c0ull) |
| || ((sig_y.w[1] == 0x0001ed09bead87c0ull) |
| && (sig_y.w[0] > 0x378d8e63ffffffffull)) |
| || ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) |
| non_canon_y = 1; |
| else |
| non_canon_y = 0; |
| |
| // ZERO (CASE4) |
| // some properties: |
| // (+ZERO == -ZERO) => therefore ignore the sign |
| // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore |
| // ignore the exponent field |
| // (Any non-canonical # is considered 0) |
| if (non_canon_x || ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) { |
| x_is_zero = 1; |
| } |
| if (non_canon_y || ((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) { |
| y_is_zero = 1; |
| } |
| // if both numbers are zero, neither is greater => return NOTGREATERTHAN |
| if (x_is_zero && y_is_zero) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // is x is zero, it is greater if Y is negative |
| else if (x_is_zero) { |
| res = ((y.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // is y is zero, X is greater if it is positive |
| else if (y_is_zero) { |
| res = ((x.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // OPPOSITE SIGN (CASE5) |
| // now, if the sign bits differ, x is greater if y is negative |
| if (((x.w[1] ^ y.w[1]) & MASK_SIGN) == MASK_SIGN) { |
| res = ((y.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| // if exponents are the same, then we have a simple comparison of the |
| // significands |
| if (exp_y == exp_x) { |
| res = (((sig_x.w[1] > sig_y.w[1]) |
| || (sig_x.w[1] == sig_y.w[1] |
| && sig_x.w[0] >= sig_y.w[0])) ^ ((x.w[1] & MASK_SIGN) == |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| // if both components are either bigger or smaller, |
| // it is clear what needs to be done |
| if (sig_x.w[1] >= sig_y.w[1] && sig_x.w[0] >= sig_y.w[0] |
| && exp_x > exp_y) { |
| res = ((x.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| if (sig_x.w[1] <= sig_y.w[1] && sig_x.w[0] <= sig_y.w[0] |
| && exp_x < exp_y) { |
| res = ((x.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| |
| diff = exp_x - exp_y; |
| |
| // if |exp_x - exp_y| < 33, it comes down to the compensated significand |
| if (diff > 0) { // to simplify the loop below, |
| |
| // if exp_x is 33 greater than exp_y, no need for compensation |
| if (diff > 33) { |
| res = ((x.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } // difference cannot be greater than 10^33 |
| |
| if (diff > 19) { //128 by 128 bit multiply -> 256 bits |
| __mul_128x128_to_256 (sig_n_prime256, sig_x, ten2k128[diff - 20]); |
| |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0) |
| && sig_n_prime256.w[1] == sig_y.w[1] |
| && (sig_n_prime256.w[0] == sig_y.w[0])) { |
| res = 1; |
| BID_RETURN (res); |
| } // if equal, return 1 |
| { |
| res = ((((sig_n_prime256.w[3] > 0) || sig_n_prime256.w[2] > 0) |
| || (sig_n_prime256.w[1] > sig_y.w[1]) |
| || (sig_n_prime256.w[1] == sig_y.w[1] |
| && sig_n_prime256.w[0] > |
| sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| //else { //128 by 64 bit multiply -> 192 bits |
| __mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_x); |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_y.w[1] |
| && (sig_n_prime192.w[0] == sig_y.w[0])) { |
| res = 1; |
| BID_RETURN (res); |
| } // if equal, return 1 |
| { |
| res = (((sig_n_prime192.w[2] > 0) |
| || (sig_n_prime192.w[1] > sig_y.w[1]) |
| || (sig_n_prime192.w[1] == sig_y.w[1] |
| && sig_n_prime192.w[0] > |
| sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| |
| diff = exp_y - exp_x; |
| |
| // if exp_x is 33 less than exp_y, no need for compensation |
| if (diff > 33) { |
| res = ((x.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| |
| if (diff > 19) { //128 by 128 bit multiply -> 256 bits |
| // adjust the y significand upwards |
| __mul_128x128_to_256 (sig_n_prime256, sig_y, ten2k128[diff - 20]); |
| |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0) |
| && sig_n_prime256.w[1] == sig_x.w[1] |
| && (sig_n_prime256.w[0] == sig_x.w[0])) { |
| res = 1; |
| BID_RETURN (res); |
| } // if equal, return 1 |
| { |
| res = ((sig_n_prime256.w[3] == 0 && sig_n_prime256.w[2] == 0 |
| && (sig_n_prime256.w[1] < sig_x.w[1] |
| || (sig_n_prime256.w[1] == sig_x.w[1] |
| && sig_n_prime256.w[0] < |
| sig_x.w[0]))) ^ ((x.w[1] & MASK_SIGN) == |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| //else { //128 by 64 bit multiply -> 192 bits |
| // adjust the y significand upwards |
| __mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_y); |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_x.w[1] |
| && (sig_n_prime192.w[0] == sig_x.w[0])) { |
| res = 1; |
| BID_RETURN (res); |
| } // if equal, return 1 |
| { |
| res = (sig_n_prime192.w[2] == 0 |
| && (sig_n_prime192.w[1] < sig_x.w[1] |
| || (sig_n_prime192.w[1] == sig_x.w[1] |
| && sig_n_prime192.w[0] < |
| sig_x.w[0]))) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| } |
| |
| BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int, |
| bid128_quiet_greater_unordered, |
| x, y) |
| |
| int res; |
| int exp_x, exp_y; |
| int diff; |
| UINT128 sig_x, sig_y; |
| UINT192 sig_n_prime192; |
| UINT256 sig_n_prime256; |
| char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; |
| |
| // NaN (CASE1) |
| // if either number is NAN, the comparison is unordered, |
| // rather than |
| // equal : return 1 |
| if (((x.w[1] & MASK_NAN) == MASK_NAN) |
| || ((y.w[1] & MASK_NAN) == MASK_NAN)) { |
| if ((x.w[1] & MASK_SNAN) == MASK_SNAN |
| || (y.w[1] & MASK_SNAN) == MASK_SNAN) { |
| *pfpsf |= INVALID_EXCEPTION; |
| } |
| { |
| res = 1; |
| BID_RETURN (res); |
| } |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equal (not Greater). |
| if (x.w[0] == y.w[0] && x.w[1] == y.w[1]) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if ((x.w[1] & MASK_INF) == MASK_INF) { |
| // if x is neg infinity, there is no way it is greater than y, return 0 |
| if (((x.w[1] & MASK_SIGN) == MASK_SIGN)) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // x is pos infinity, it is greater, unless y is positive infinity => |
| // return y!=pos_infinity |
| else { |
| res = (((y.w[1] & MASK_INF) != MASK_INF) |
| || ((y.w[1] & MASK_SIGN) == MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } else if ((y.w[1] & MASK_INF) == MASK_INF) { |
| // x is finite, so if y is positive infinity, then x is less, return 0 |
| // if y is negative infinity, then x is greater, return 1 |
| { |
| res = ((y.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| } |
| // CONVERT X |
| sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull; |
| sig_x.w[0] = x.w[0]; |
| exp_x = (x.w[1] >> 49) & 0x000000000003fffull; |
| |
| // CHECK IF X IS CANONICAL |
| // 9999999999999999999999999999999999(decimal) = |
| // 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal) |
| // [0, 10^34) is the 754r supported canonical range. |
| // If the value exceeds that, it is interpreted as 0. |
| if ((sig_x.w[1] > 0x0001ed09bead87c0ull) |
| || ((sig_x.w[1] == 0x0001ed09bead87c0ull) |
| && (sig_x.w[0] > 0x378d8e63ffffffffull)) |
| || ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) |
| non_canon_x = 1; |
| else |
| non_canon_x = 0; |
| |
| // CONVERT Y |
| exp_y = (y.w[1] >> 49) & 0x0000000000003fffull; |
| sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull; |
| sig_y.w[0] = y.w[0]; |
| |
| // CHECK IF Y IS CANONICAL |
| // 9999999999999999999999999999999999(decimal) = |
| // 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal) |
| // [0, 10^34) is the 754r supported canonical range. |
| // If the value exceeds that, it is interpreted as 0. |
| if ((sig_y.w[1] > 0x0001ed09bead87c0ull) |
| || ((sig_y.w[1] == 0x0001ed09bead87c0ull) |
| && (sig_y.w[0] > 0x378d8e63ffffffffull)) |
| || ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) |
| non_canon_y = 1; |
| else |
| non_canon_y = 0; |
| |
| // ZERO (CASE4) |
| // some properties: |
| // (+ZERO == -ZERO) => therefore ignore the sign |
| // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore |
| // ignore the exponent field |
| // (Any non-canonical # is considered 0) |
| if (non_canon_x || ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) { |
| x_is_zero = 1; |
| } |
| if (non_canon_y || ((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) { |
| y_is_zero = 1; |
| } |
| // if both numbers are zero, neither is greater => return NOTGREATERTHAN |
| if (x_is_zero && y_is_zero) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // is x is zero, it is greater if Y is negative |
| else if (x_is_zero) { |
| res = ((y.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // is y is zero, X is greater if it is positive |
| else if (y_is_zero) { |
| res = ((x.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // OPPOSITE SIGN (CASE5) |
| // now, if the sign bits differ, x is greater if y is negative |
| if (((x.w[1] ^ y.w[1]) & MASK_SIGN) == MASK_SIGN) { |
| res = ((y.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| // if exponents are the same, then we have a simple comparison of the |
| // significands |
| if (exp_y == exp_x) { |
| res = (((sig_x.w[1] > sig_y.w[1]) |
| || (sig_x.w[1] == sig_y.w[1] |
| && sig_x.w[0] >= sig_y.w[0])) ^ ((x.w[1] & MASK_SIGN) == |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| // if both components are either bigger or smaller, |
| // it is clear what needs to be done |
| if (sig_x.w[1] >= sig_y.w[1] && sig_x.w[0] >= sig_y.w[0] |
| && exp_x > exp_y) { |
| res = ((x.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| if (sig_x.w[1] <= sig_y.w[1] && sig_x.w[0] <= sig_y.w[0] |
| && exp_x < exp_y) { |
| res = ((x.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| |
| diff = exp_x - exp_y; |
| |
| // if |exp_x - exp_y| < 33, it comes down to the compensated significand |
| if (diff > 0) { // to simplify the loop below, |
| |
| // if exp_x is 33 greater than exp_y, no need for compensation |
| if (diff > 33) { |
| res = ((x.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } // difference cannot be greater than 10^33 |
| |
| if (diff > 19) { //128 by 128 bit multiply -> 256 bits |
| __mul_128x128_to_256 (sig_n_prime256, sig_x, ten2k128[diff - 20]); |
| |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0) |
| && sig_n_prime256.w[1] == sig_y.w[1] |
| && (sig_n_prime256.w[0] == sig_y.w[0])) { |
| res = 0; |
| BID_RETURN (res); |
| } // if equal, return 0 |
| { |
| res = ((((sig_n_prime256.w[3] > 0) || sig_n_prime256.w[2] > 0) |
| || (sig_n_prime256.w[1] > sig_y.w[1]) |
| || (sig_n_prime256.w[1] == sig_y.w[1] |
| && sig_n_prime256.w[0] > |
| sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| //else { //128 by 64 bit multiply -> 192 bits |
| __mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_x); |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_y.w[1] |
| && (sig_n_prime192.w[0] == sig_y.w[0])) { |
| res = 0; |
| BID_RETURN (res); |
| } // if equal, return 0 |
| { |
| res = (((sig_n_prime192.w[2] > 0) |
| || (sig_n_prime192.w[1] > sig_y.w[1]) |
| || (sig_n_prime192.w[1] == sig_y.w[1] |
| && sig_n_prime192.w[0] > |
| sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| |
| diff = exp_y - exp_x; |
| |
| // if exp_x is 33 less than exp_y, no need for compensation |
| if (diff > 33) { |
| res = ((x.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| |
| if (diff > 19) { //128 by 128 bit multiply -> 256 bits |
| // adjust the y significand upwards |
| __mul_128x128_to_256 (sig_n_prime256, sig_y, ten2k128[diff - 20]); |
| |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0) |
| && sig_n_prime256.w[1] == sig_x.w[1] |
| && (sig_n_prime256.w[0] == sig_x.w[0])) { |
| res = 0; |
| BID_RETURN (res); |
| } // if equal, return 0 |
| { |
| res = ((sig_n_prime256.w[3] == 0 && sig_n_prime256.w[2] == 0 |
| && (sig_n_prime256.w[1] < sig_x.w[1] |
| || (sig_n_prime256.w[1] == sig_x.w[1] |
| && sig_n_prime256.w[0] < |
| sig_x.w[0]))) ^ ((x.w[1] & MASK_SIGN) == |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| //else { //128 by 64 bit multiply -> 192 bits |
| // adjust the y significand upwards |
| __mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_y); |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_x.w[1] |
| && (sig_n_prime192.w[0] == sig_x.w[0])) { |
| res = 0; |
| BID_RETURN (res); |
| } // if equal, return 0 |
| { |
| res = (sig_n_prime192.w[2] == 0 |
| && (sig_n_prime192.w[1] < sig_x.w[1] |
| || (sig_n_prime192.w[1] == sig_x.w[1] |
| && sig_n_prime192.w[0] < |
| sig_x.w[0]))) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| } |
| |
| BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int, bid128_quiet_less, x, y) |
| |
| int res; |
| int exp_x, exp_y; |
| int diff; |
| UINT128 sig_x, sig_y; |
| UINT192 sig_n_prime192; |
| UINT256 sig_n_prime256; |
| char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; |
| |
| // NaN (CASE1) |
| // if either number is NAN, the comparison is unordered, |
| // rather than equal : return 0 |
| if (((x.w[1] & MASK_NAN) == MASK_NAN) |
| || ((y.w[1] & MASK_NAN) == MASK_NAN)) { |
| if ((x.w[1] & MASK_SNAN) == MASK_SNAN |
| || (y.w[1] & MASK_SNAN) == MASK_SNAN) { |
| *pfpsf |= INVALID_EXCEPTION; |
| } |
| { |
| res = 0; |
| BID_RETURN (res); |
| } |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equal. |
| if (x.w[0] == y.w[0] && x.w[1] == y.w[1]) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if ((x.w[1] & MASK_INF) == MASK_INF) { |
| // if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) } |
| if ((x.w[1] & MASK_SIGN) == MASK_SIGN) |
| // x is -inf, so it is less than y unless y is -inf |
| { |
| res = (((y.w[1] & MASK_INF) != MASK_INF) |
| || (y.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } else |
| // x is pos_inf, no way for it to be less than y |
| { |
| res = 0; |
| BID_RETURN (res); |
| } |
| } else if ((y.w[1] & MASK_INF) == MASK_INF) { |
| // x is finite, so if y is positive infinity, then x is less, return 0 |
| // if y is negative infinity, then x is greater, return 1 |
| { |
| res = ((y.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| } |
| // CONVERT X |
| sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull; |
| sig_x.w[0] = x.w[0]; |
| exp_x = (x.w[1] >> 49) & 0x000000000003fffull; |
| |
| // CHECK IF X IS CANONICAL |
| // 9999999999999999999999999999999999(decimal) = |
| // 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal) |
| // [0, 10^34) is the 754r supported canonical range. |
| // If the value exceeds that, it is interpreted as 0. |
| if ((sig_x.w[1] > 0x0001ed09bead87c0ull) |
| || ((sig_x.w[1] == 0x0001ed09bead87c0ull) |
| && (sig_x.w[0] > 0x378d8e63ffffffffull)) |
| || ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) |
| non_canon_x = 1; |
| else |
| non_canon_x = 0; |
| |
| // CONVERT Y |
| exp_y = (y.w[1] >> 49) & 0x0000000000003fffull; |
| sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull; |
| sig_y.w[0] = y.w[0]; |
| |
| // CHECK IF Y IS CANONICAL |
| // 9999999999999999999999999999999999(decimal) = |
| // 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal) |
| // [0, 10^34) is the 754r supported canonical range. |
| // If the value exceeds that, it is interpreted as 0. |
| if ((sig_y.w[1] > 0x0001ed09bead87c0ull) |
| || ((sig_y.w[1] == 0x0001ed09bead87c0ull) |
| && (sig_y.w[0] > 0x378d8e63ffffffffull)) |
| || ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) |
| non_canon_y = 1; |
| else |
| non_canon_y = 0; |
| |
| // ZERO (CASE4) |
| // some properties: |
| // (+ZERO == -ZERO) => therefore ignore the sign |
| // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore |
| // ignore the exponent field |
| // (Any non-canonical # is considered 0) |
| if (non_canon_x || ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) { |
| x_is_zero = 1; |
| } |
| if (non_canon_y || ((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) { |
| y_is_zero = 1; |
| } |
| // if both numbers are zero, neither is greater => return NOTGREATERTHAN |
| if (x_is_zero && y_is_zero) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // is x is zero, it is greater if Y is negative |
| else if (x_is_zero) { |
| res = ((y.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // is y is zero, X is greater if it is positive |
| else if (y_is_zero) { |
| res = ((x.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // OPPOSITE SIGN (CASE5) |
| // now, if the sign bits differ, x is greater if y is negative |
| if (((x.w[1] ^ y.w[1]) & MASK_SIGN) == MASK_SIGN) { |
| res = ((y.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| // if exponents are the same, then we have a simple comparison of the |
| // significands |
| if (exp_y == exp_x) { |
| res = (((sig_x.w[1] > sig_y.w[1]) |
| || (sig_x.w[1] == sig_y.w[1] |
| && sig_x.w[0] >= sig_y.w[0])) ^ ((x.w[1] & MASK_SIGN) != |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| // if both components are either bigger or smaller, |
| // it is clear what needs to be done |
| if ((sig_x.w[1] > sig_y.w[1] |
| || (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] > sig_y.w[0])) |
| && exp_x >= exp_y) { |
| res = ((x.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| if ((sig_x.w[1] < sig_y.w[1] |
| || (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] < sig_y.w[0])) |
| && exp_x <= exp_y) { |
| res = ((x.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| |
| diff = exp_x - exp_y; |
| |
| // if |exp_x - exp_y| < 33, it comes down to the compensated significand |
| if (diff > 0) { // to simplify the loop below, |
| |
| // if exp_x is 33 greater than exp_y, no need for compensation |
| if (diff > 33) { |
| res = ((x.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } // difference cannot be greater than 10^33 |
| |
| if (diff > 19) { //128 by 128 bit multiply -> 256 bits |
| __mul_128x128_to_256 (sig_n_prime256, sig_x, ten2k128[diff - 20]); |
| |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0) |
| && sig_n_prime256.w[1] == sig_y.w[1] |
| && (sig_n_prime256.w[0] == sig_y.w[0])) { |
| res = 0; |
| BID_RETURN (res); |
| } // if equal, return 0 |
| { |
| res = ((((sig_n_prime256.w[3] > 0) || sig_n_prime256.w[2] > 0) |
| || (sig_n_prime256.w[1] > sig_y.w[1]) |
| || (sig_n_prime256.w[1] == sig_y.w[1] |
| && sig_n_prime256.w[0] > |
| sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) != MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| //else { //128 by 64 bit multiply -> 192 bits |
| __mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_x); |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_y.w[1] |
| && (sig_n_prime192.w[0] == sig_y.w[0])) { |
| res = 0; |
| BID_RETURN (res); |
| } // if equal, return 0 |
| { |
| res = (((sig_n_prime192.w[2] > 0) |
| || (sig_n_prime192.w[1] > sig_y.w[1]) |
| || (sig_n_prime192.w[1] == sig_y.w[1] |
| && sig_n_prime192.w[0] > |
| sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) != MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| |
| diff = exp_y - exp_x; |
| |
| // if exp_x is 33 less than exp_y, no need for compensation |
| if (diff > 33) { |
| res = ((x.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| |
| if (diff > 19) { //128 by 128 bit multiply -> 256 bits |
| // adjust the y significand upwards |
| __mul_128x128_to_256 (sig_n_prime256, sig_y, ten2k128[diff - 20]); |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0) |
| && sig_n_prime256.w[1] == sig_x.w[1] |
| && (sig_n_prime256.w[0] == sig_x.w[0])) { |
| res = 0; |
| BID_RETURN (res); |
| } // if equal, return 1 |
| { |
| res = ((sig_n_prime256.w[3] != 0 || sig_n_prime256.w[2] != 0 |
| || (sig_n_prime256.w[1] > sig_x.w[1] |
| || (sig_n_prime256.w[1] == sig_x.w[1] |
| && sig_n_prime256.w[0] > |
| sig_x.w[0]))) ^ ((x.w[1] & MASK_SIGN) == |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| //else { //128 by 64 bit multiply -> 192 bits |
| // adjust the y significand upwards |
| __mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_y); |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_x.w[1] |
| && (sig_n_prime192.w[0] == sig_x.w[0])) { |
| res = 0; |
| BID_RETURN (res); |
| } // if equal, return 0 |
| { |
| res = (sig_n_prime192.w[2] != 0 |
| || (sig_n_prime192.w[1] > sig_x.w[1] |
| || (sig_n_prime192.w[1] == sig_x.w[1] |
| && sig_n_prime192.w[0] > |
| sig_x.w[0]))) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| } |
| |
| BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int, bid128_quiet_less_equal, |
| x, y) |
| |
| int res; |
| int exp_x, exp_y; |
| int diff; |
| UINT128 sig_x, sig_y; |
| UINT192 sig_n_prime192; |
| UINT256 sig_n_prime256; |
| char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; |
| |
| // NaN (CASE1) |
| // if either number is NAN, the comparison is unordered, |
| // rather than equal : return 0 |
| if (((x.w[1] & MASK_NAN) == MASK_NAN) |
| || ((y.w[1] & MASK_NAN) == MASK_NAN)) { |
| if ((x.w[1] & MASK_SNAN) == MASK_SNAN |
| || (y.w[1] & MASK_SNAN) == MASK_SNAN) { |
| *pfpsf |= INVALID_EXCEPTION; |
| } |
| { |
| res = 0; |
| BID_RETURN (res); |
| } |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equal (not Greater). |
| if (x.w[0] == y.w[0] && x.w[1] == y.w[1]) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if ((x.w[1] & MASK_INF) == MASK_INF) { |
| // if x is neg infinity, there is no way it is greater than y, return 1 |
| if (((x.w[1] & MASK_SIGN) == MASK_SIGN)) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // x is pos infinity, it is greater, unless y is positive infinity => |
| // return y!=pos_infinity |
| else { |
| res = (((y.w[1] & MASK_INF) == MASK_INF) |
| && ((y.w[1] & MASK_SIGN) != MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } else if ((y.w[1] & MASK_INF) == MASK_INF) { |
| // x is finite, so if y is positive infinity, then x is less, return 0 |
| // if y is negative infinity, then x is greater, return 1 |
| { |
| res = ((y.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| } |
| // CONVERT X |
| sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull; |
| sig_x.w[0] = x.w[0]; |
| exp_x = (x.w[1] >> 49) & 0x000000000003fffull; |
| |
| // CHECK IF X IS CANONICAL |
| // 9999999999999999999999999999999999(decimal) = |
| // 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal) |
| // [0, 10^34) is the 754r supported canonical range. |
| // If the value exceeds that, it is interpreted as 0. |
| if ((sig_x.w[1] > 0x0001ed09bead87c0ull) |
| || ((sig_x.w[1] == 0x0001ed09bead87c0ull) |
| && (sig_x.w[0] > 0x378d8e63ffffffffull)) |
| || ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) |
| non_canon_x = 1; |
| else |
| non_canon_x = 0; |
| |
| // CONVERT Y |
| exp_y = (y.w[1] >> 49) & 0x0000000000003fffull; |
| sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull; |
| sig_y.w[0] = y.w[0]; |
| |
| // CHECK IF Y IS CANONICAL |
| // 9999999999999999999999999999999999(decimal) = |
| // 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal) |
| // [0, 10^34) is the 754r supported canonical range. |
| // If the value exceeds that, it is interpreted as 0. |
| if ((sig_y.w[1] > 0x0001ed09bead87c0ull) |
| || ((sig_y.w[1] == 0x0001ed09bead87c0ull) |
| && (sig_y.w[0] > 0x378d8e63ffffffffull)) |
| || ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) |
| non_canon_y = 1; |
| else |
| non_canon_y = 0; |
| |
| // ZERO (CASE4) |
| // some properties: |
| // (+ZERO == -ZERO) => therefore ignore the sign |
| // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore |
| // ignore the exponent field |
| // (Any non-canonical # is considered 0) |
| if (non_canon_x || ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) { |
| x_is_zero = 1; |
| } |
| if (non_canon_y || ((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) { |
| y_is_zero = 1; |
| } |
| // if both numbers are zero, neither is greater => return NOTGREATERTHAN |
| if (x_is_zero && y_is_zero) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // is x is zero, it is greater if Y is negative |
| else if (x_is_zero) { |
| res = ((y.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // is y is zero, X is greater if it is positive |
| else if (y_is_zero) { |
| res = ((x.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // OPPOSITE SIGN (CASE5) |
| // now, if the sign bits differ, x is greater if y is negative |
| if (((x.w[1] ^ y.w[1]) & MASK_SIGN) == MASK_SIGN) { |
| res = ((y.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| // if exponents are the same, then we have a simple comparison of the |
| // significands |
| if (exp_y == exp_x) { |
| res = (((sig_x.w[1] > sig_y.w[1]) || (sig_x.w[1] == sig_y.w[1] && |
| sig_x.w[0] >= |
| sig_y.w[0])) ^ ((x. |
| w[1] & |
| MASK_SIGN) != |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| // if both components are either bigger or smaller, |
| // it is clear what needs to be done |
| if ((sig_x.w[1] > sig_y.w[1] |
| || (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] > sig_y.w[0])) |
| && exp_x >= exp_y) { |
| res = ((x.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| if ((sig_x.w[1] < sig_y.w[1] |
| || (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] < sig_y.w[0])) |
| && exp_x <= exp_y) { |
| res = ((x.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| |
| diff = exp_x - exp_y; |
| |
| // if |exp_x - exp_y| < 33, it comes down to the compensated significand |
| if (diff > 0) { // to simplify the loop below, |
| |
| // if exp_x is 33 greater than exp_y, no need for compensation |
| if (diff > 33) { |
| res = ((x.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } // difference cannot be greater than 10^33 |
| |
| if (diff > 19) { //128 by 128 bit multiply -> 256 bits |
| __mul_128x128_to_256 (sig_n_prime256, sig_x, ten2k128[diff - 20]); |
| |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0) |
| && sig_n_prime256.w[1] == sig_y.w[1] |
| && (sig_n_prime256.w[0] == sig_y.w[0])) { |
| res = 1; |
| BID_RETURN (res); |
| } // if equal, return 0 |
| { |
| res = ((((sig_n_prime256.w[3] > 0) || sig_n_prime256.w[2] > 0) |
| || (sig_n_prime256.w[1] > sig_y.w[1]) |
| || (sig_n_prime256.w[1] == sig_y.w[1] |
| && sig_n_prime256.w[0] > |
| sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) != MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| //else { //128 by 64 bit multiply -> 192 bits |
| __mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_x); |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_y.w[1] |
| && (sig_n_prime192.w[0] == sig_y.w[0])) { |
| res = 1; |
| BID_RETURN (res); |
| } // if equal, return 0 |
| { |
| res = (((sig_n_prime192.w[2] > 0) |
| || (sig_n_prime192.w[1] > sig_y.w[1]) |
| || (sig_n_prime192.w[1] == sig_y.w[1] |
| && sig_n_prime192.w[0] > |
| sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) != MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| |
| diff = exp_y - exp_x; |
| |
| // if exp_x is 33 less than exp_y, no need for compensation |
| if (diff > 33) { |
| res = ((x.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| |
| if (diff > 19) { //128 by 128 bit multiply -> 256 bits |
| // adjust the y significand upwards |
| __mul_128x128_to_256 (sig_n_prime256, sig_y, ten2k128[diff - 20]); |
| |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0) |
| && sig_n_prime256.w[1] == sig_x.w[1] |
| && (sig_n_prime256.w[0] == sig_x.w[0])) { |
| res = 1; |
| BID_RETURN (res); |
| } // if equal, return 0 |
| { |
| res = |
| ((sig_n_prime256.w[3] != 0 || sig_n_prime256.w[2] != 0 |
| || (sig_n_prime256.w[1] > sig_x.w[1] |
| || (sig_n_prime256.w[1] == sig_x.w[1] |
| && sig_n_prime256.w[0] > |
| sig_x.w[0]))) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| //else { //128 by 64 bit multiply -> 192 bits |
| // adjust the y significand upwards |
| __mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_y); |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_x.w[1] |
| && (sig_n_prime192.w[0] == sig_x.w[0])) { |
| res = 1; |
| BID_RETURN (res); |
| } // if equal, return 0 |
| { |
| res = (sig_n_prime192.w[2] != 0 |
| || (sig_n_prime192.w[1] > sig_x.w[1] |
| || (sig_n_prime192.w[1] == sig_x.w[1] |
| && sig_n_prime192.w[0] > |
| sig_x.w[0]))) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| } |
| |
| BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int, |
| bid128_quiet_less_unordered, |
| x, y) |
| |
| int res; |
| int exp_x, exp_y; |
| int diff; |
| UINT128 sig_x, sig_y; |
| UINT192 sig_n_prime192; |
| UINT256 sig_n_prime256; |
| char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; |
| |
| // NaN (CASE1) |
| // if either number is NAN, the comparison is unordered |
| if (((x.w[1] & MASK_NAN) == MASK_NAN) |
| || ((y.w[1] & MASK_NAN) == MASK_NAN)) { |
| if ((x.w[1] & MASK_SNAN) == MASK_SNAN |
| || (y.w[1] & MASK_SNAN) == MASK_SNAN) { |
| *pfpsf |= INVALID_EXCEPTION; |
| } |
| { |
| res = 1; |
| BID_RETURN (res); |
| } |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equal. |
| if (x.w[0] == y.w[0] && x.w[1] == y.w[1]) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if ((x.w[1] & MASK_INF) == MASK_INF) { |
| // if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) } |
| if ((x.w[1] & MASK_SIGN) == MASK_SIGN) |
| // x is -inf, so it is less than y unless y is -inf |
| { |
| res = (((y.w[1] & MASK_INF) != MASK_INF) |
| || (y.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } else |
| // x is pos_inf, no way for it to be less than y |
| { |
| res = 0; |
| BID_RETURN (res); |
| } |
| } else if ((y.w[1] & MASK_INF) == MASK_INF) { |
| // x is finite, so if y is positive infinity, then x is less, return 0 |
| // if y is negative infinity, then x is greater, return 1 |
| { |
| res = ((y.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| } |
| // CONVERT X |
| sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull; |
| sig_x.w[0] = x.w[0]; |
| exp_x = (x.w[1] >> 49) & 0x000000000003fffull; |
| |
| // CHECK IF X IS CANONICAL |
| // 9999999999999999999999999999999999(decimal) = |
| // 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal) |
| // [0, 10^34) is the 754r supported canonical range. |
| // If the value exceeds that, it is interpreted as 0. |
| if ((sig_x.w[1] > 0x0001ed09bead87c0ull) |
| || ((sig_x.w[1] == 0x0001ed09bead87c0ull) |
| && (sig_x.w[0] > 0x378d8e63ffffffffull)) |
| || ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) |
| non_canon_x = 1; |
| else |
| non_canon_x = 0; |
| |
| // CONVERT Y |
| exp_y = (y.w[1] >> 49) & 0x0000000000003fffull; |
| sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull; |
| sig_y.w[0] = y.w[0]; |
| |
| // CHECK IF Y IS CANONICAL |
| // 9999999999999999999999999999999999(decimal) = |
| // 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal) |
| // [0, 10^34) is the 754r supported canonical range. |
| // If the value exceeds that, it is interpreted as 0. |
| if ((sig_y.w[1] > 0x0001ed09bead87c0ull) |
| || ((sig_y.w[1] == 0x0001ed09bead87c0ull) |
| && (sig_y.w[0] > 0x378d8e63ffffffffull)) |
| || ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) |
| non_canon_y = 1; |
| else |
| non_canon_y = 0; |
| |
| // ZERO (CASE4) |
| // some properties: |
| // (+ZERO == -ZERO) => therefore ignore the sign |
| // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore |
| // ignore the exponent field |
| // (Any non-canonical # is considered 0) |
| if (non_canon_x || ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) { |
| x_is_zero = 1; |
| } |
| if (non_canon_y || ((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) { |
| y_is_zero = 1; |
| } |
| // if both numbers are zero, neither is greater => return NOTGREATERTHAN |
| if (x_is_zero && y_is_zero) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // is x is zero, it is greater if Y is negative |
| else if (x_is_zero) { |
| res = ((y.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // is y is zero, X is greater if it is positive |
| else if (y_is_zero) { |
| res = ((x.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // OPPOSITE SIGN (CASE5) |
| // now, if the sign bits differ, x is greater if y is negative |
| if (((x.w[1] ^ y.w[1]) & MASK_SIGN) == MASK_SIGN) { |
| res = ((y.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| // if exponents are the same, then we have a simple comparison |
| // of the significands |
| if (exp_y == exp_x) { |
| res = (((sig_x.w[1] > sig_y.w[1]) |
| || (sig_x.w[1] == sig_y.w[1] |
| && sig_x.w[0] >= sig_y.w[0])) ^ ((x.w[1] & MASK_SIGN) != |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| // if both components are either bigger or smaller, |
| // it is clear what needs to be done |
| if ((sig_x.w[1] > sig_y.w[1] |
| || (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] > sig_y.w[0])) |
| && exp_x >= exp_y) { |
| res = ((x.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| if ((sig_x.w[1] < sig_y.w[1] |
| || (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] < sig_y.w[0])) |
| && exp_x <= exp_y) { |
| res = ((x.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| |
| diff = exp_x - exp_y; |
| |
| // if |exp_x - exp_y| < 33, it comes down to the compensated significand |
| if (diff > 0) { // to simplify the loop below, |
| |
| // if exp_x is 33 greater than exp_y, no need for compensation |
| if (diff > 33) { |
| res = ((x.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } // difference cannot be greater than 10^33 |
| |
| if (diff > 19) { //128 by 128 bit multiply -> 256 bits |
| __mul_128x128_to_256 (sig_n_prime256, sig_x, ten2k128[diff - 20]); |
| |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0) |
| && sig_n_prime256.w[1] == sig_y.w[1] |
| && (sig_n_prime256.w[0] == sig_y.w[0])) { |
| res = 0; |
| BID_RETURN (res); |
| } // if equal, return 0 |
| { |
| res = ((((sig_n_prime256.w[3] > 0) || sig_n_prime256.w[2] > 0) |
| || (sig_n_prime256.w[1] > sig_y.w[1]) |
| || (sig_n_prime256.w[1] == sig_y.w[1] |
| && sig_n_prime256.w[0] > |
| sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) != MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| //else { //128 by 64 bit multiply -> 192 bits |
| __mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_x); |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_y.w[1] |
| && (sig_n_prime192.w[0] == sig_y.w[0])) { |
| res = 0; |
| BID_RETURN (res); |
| } // if equal, return 0 |
| { |
| res = (((sig_n_prime192.w[2] > 0) |
| || (sig_n_prime192.w[1] > sig_y.w[1]) |
| || (sig_n_prime192.w[1] == sig_y.w[1] |
| && sig_n_prime192.w[0] > |
| sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) != MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| |
| diff = exp_y - exp_x; |
| |
| // if exp_x is 33 less than exp_y, no need for compensation |
| if (diff > 33) { |
| res = ((x.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| |
| if (diff > 19) { //128 by 128 bit multiply -> 256 bits |
| // adjust the y significand upwards |
| __mul_128x128_to_256 (sig_n_prime256, sig_y, ten2k128[diff - 20]); |
| |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0) |
| && sig_n_prime256.w[1] == sig_x.w[1] |
| && (sig_n_prime256.w[0] == sig_x.w[0])) { |
| res = 0; |
| BID_RETURN (res); |
| } // if equal, return 1 |
| { |
| res = |
| ((sig_n_prime256.w[3] != 0 || sig_n_prime256.w[2] != 0 |
| || (sig_n_prime256.w[1] > sig_x.w[1] |
| || (sig_n_prime256.w[1] == sig_x.w[1] |
| && sig_n_prime256.w[0] > |
| sig_x.w[0]))) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| //else { //128 by 64 bit multiply -> 192 bits |
| // adjust the y significand upwards |
| __mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_y); |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_x.w[1] |
| && (sig_n_prime192.w[0] == sig_x.w[0])) { |
| res = 0; |
| BID_RETURN (res); |
| } // if equal, return 0 |
| { |
| res = (sig_n_prime192.w[2] != 0 |
| || (sig_n_prime192.w[1] > sig_x.w[1] |
| || (sig_n_prime192.w[1] == sig_x.w[1] |
| && sig_n_prime192.w[0] > |
| sig_x.w[0]))) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| } |
| |
| BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int, bid128_quiet_not_equal, |
| x, y) |
| |
| int res; |
| int exp_x, exp_y, exp_t; |
| UINT128 sig_x, sig_y, sig_t; |
| UINT192 sig_n_prime192; |
| UINT256 sig_n_prime256; |
| char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; |
| |
| // NaN (CASE1) |
| // if either number is NAN, the comparison is unordered, |
| // rather than equal : return 0 |
| if (((x.w[1] & MASK_NAN) == MASK_NAN) |
| || ((y.w[1] & MASK_NAN) == MASK_NAN)) { |
| if ((x.w[1] & MASK_SNAN) == MASK_SNAN |
| || (y.w[1] & MASK_SNAN) == MASK_SNAN) { |
| *pfpsf |= INVALID_EXCEPTION; |
| } |
| { |
| res = 1; |
| BID_RETURN (res); |
| } |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equivalent. |
| if (x.w[0] == y.w[0] && x.w[1] == y.w[1]) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if ((x.w[1] & MASK_INF) == MASK_INF) { |
| if ((y.w[1] & MASK_INF) == MASK_INF) { |
| res = (((x.w[1] ^ y.w[1]) & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } else { |
| res = 1; |
| BID_RETURN (res); |
| } |
| } |
| if ((y.w[1] & MASK_INF) == MASK_INF) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // CONVERT X |
| sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull; |
| sig_x.w[0] = x.w[0]; |
| exp_x = (x.w[1] >> 49) & 0x000000000003fffull; |
| |
| // CHECK IF X IS CANONICAL |
| // 9999999999999999999999999999999999(decimal) = |
| // 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal) |
| // [0, 10^34) is the 754r supported canonical range. |
| // If the value exceeds that, it is interpreted as 0. |
| if ((sig_x.w[1] > 0x0001ed09bead87c0ull) |
| || ((sig_x.w[1] == 0x0001ed09bead87c0ull) |
| && (sig_x.w[0] > 0x378d8e63ffffffffull)) |
| || ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) |
| non_canon_x = 1; |
| else |
| non_canon_x = 0; |
| |
| // CONVERT Y |
| exp_y = (y.w[1] >> 49) & 0x0000000000003fffull; |
| sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull; |
| sig_y.w[0] = y.w[0]; |
| |
| // CHECK IF Y IS CANONICAL |
| // 9999999999999999999999999999999999(decimal) = |
| // 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal) |
| // [0, 10^34) is the 754r supported canonical range. |
| // If the value exceeds that, it is interpreted as 0. |
| if ((sig_y.w[1] > 0x0001ed09bead87c0ull) |
| || ((sig_y.w[1] == 0x0001ed09bead87c0ull) |
| && (sig_y.w[0] > 0x378d8e63ffffffffull)) |
| || ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) |
| non_canon_y = 1; |
| else |
| non_canon_y = 0; |
| |
| // some properties: |
| // (+ZERO == -ZERO) => therefore ignore the sign |
| // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore |
| // ignore the exponent field |
| // (Any non-canonical # is considered 0) |
| if (non_canon_x || ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) { |
| x_is_zero = 1; |
| } |
| if (non_canon_y || ((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) { |
| y_is_zero = 1; |
| } |
| |
| if (x_is_zero && y_is_zero) { |
| res = 0; |
| BID_RETURN (res); |
| } else if ((x_is_zero && !y_is_zero) || (!x_is_zero && y_is_zero)) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // OPPOSITE SIGN (CASE5) |
| // now, if the sign bits differ => not equal : return 0 |
| if ((x.w[1] ^ y.w[1]) & MASK_SIGN) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| if (exp_x > exp_y) { // to simplify the loop below, |
| SWAP (exp_x, exp_y, exp_t); // put the larger exp in y, |
| SWAP (sig_x.w[1], sig_y.w[1], sig_t.w[1]); // and the smaller exp in x |
| SWAP (sig_x.w[0], sig_y.w[0], sig_t.w[0]); // and the smaller exp in x |
| } |
| |
| |
| if (exp_y - exp_x > 33) { |
| res = 1; |
| BID_RETURN (res); |
| } // difference cannot be greater than 10^33 |
| |
| if (exp_y - exp_x > 19) { |
| // recalculate y's significand upwards |
| __mul_128x128_to_256 (sig_n_prime256, sig_y, |
| ten2k128[exp_y - exp_x - 20]); |
| { |
| res = ((sig_n_prime256.w[3] != 0) || (sig_n_prime256.w[2] != 0) |
| || (sig_n_prime256.w[1] != sig_x.w[1]) |
| || (sig_n_prime256.w[0] != sig_x.w[0])); |
| BID_RETURN (res); |
| } |
| |
| } |
| //else{ |
| // recalculate y's significand upwards |
| __mul_64x128_to192 (sig_n_prime192, ten2k64[exp_y - exp_x], sig_y); |
| { |
| res = ((sig_n_prime192.w[2] != 0) |
| || (sig_n_prime192.w[1] != sig_x.w[1]) |
| || (sig_n_prime192.w[0] != sig_x.w[0])); |
| BID_RETURN (res); |
| } |
| } |
| |
| BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int, bid128_quiet_not_greater, |
| x, y) |
| |
| int res; |
| int exp_x, exp_y; |
| int diff; |
| UINT128 sig_x, sig_y; |
| UINT192 sig_n_prime192; |
| UINT256 sig_n_prime256; |
| char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; |
| |
| // NaN (CASE1) |
| // if either number is NAN, the comparison is unordered, |
| // rather than equal : return 0 |
| if (((x.w[1] & MASK_NAN) == MASK_NAN) |
| || ((y.w[1] & MASK_NAN) == MASK_NAN)) { |
| if ((x.w[1] & MASK_SNAN) == MASK_SNAN |
| || (y.w[1] & MASK_SNAN) == MASK_SNAN) { |
| *pfpsf |= INVALID_EXCEPTION; |
| } |
| { |
| res = 1; |
| BID_RETURN (res); |
| } |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equal (not Greater). |
| if (x.w[0] == y.w[0] && x.w[1] == y.w[1]) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if ((x.w[1] & MASK_INF) == MASK_INF) { |
| // if x is neg infinity, there is no way it is greater than y, return 1 |
| if (((x.w[1] & MASK_SIGN) == MASK_SIGN)) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // x is pos infinity, it is greater, unless y is positive infinity => return y!=pos_infinity |
| else { |
| res = (((y.w[1] & MASK_INF) == MASK_INF) |
| && ((y.w[1] & MASK_SIGN) != MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } else if ((y.w[1] & MASK_INF) == MASK_INF) { |
| // x is finite, so if y is positive infinity, then x is less, return 0 |
| // if y is negative infinity, then x is greater, return 1 |
| { |
| res = ((y.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| } |
| // CONVERT X |
| sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull; |
| sig_x.w[0] = x.w[0]; |
| exp_x = (x.w[1] >> 49) & 0x000000000003fffull; |
| |
| // CHECK IF X IS CANONICAL |
| // 9999999999999999999999999999999999(decimal) = |
| // 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal) |
| // [0, 10^34) is the 754r supported canonical range. |
| // If the value exceeds that, it is interpreted as 0. |
| if ((sig_x.w[1] > 0x0001ed09bead87c0ull) |
| || ((sig_x.w[1] == 0x0001ed09bead87c0ull) |
| && (sig_x.w[0] > 0x378d8e63ffffffffull)) |
| || ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) |
| non_canon_x = 1; |
| else |
| non_canon_x = 0; |
| |
| // CONVERT Y |
| exp_y = (y.w[1] >> 49) & 0x0000000000003fffull; |
| sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull; |
| sig_y.w[0] = y.w[0]; |
| |
| // CHECK IF Y IS CANONICAL |
| // 9999999999999999999999999999999999(decimal) = |
| // 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal) |
| // [0, 10^34) is the 754r supported canonical range. |
| // If the value exceeds that, it is interpreted as 0. |
| if ((sig_y.w[1] > 0x0001ed09bead87c0ull) |
| || ((sig_y.w[1] == 0x0001ed09bead87c0ull) |
| && (sig_y.w[0] > 0x378d8e63ffffffffull)) |
| || ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) |
| non_canon_y = 1; |
| else |
| non_canon_y = 0; |
| |
| // ZERO (CASE4) |
| // some properties: |
| // (+ZERO == -ZERO) => therefore ignore the sign |
| // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore |
| // ignore the exponent field |
| // (Any non-canonical # is considered 0) |
| if (non_canon_x || ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) { |
| x_is_zero = 1; |
| } |
| if (non_canon_y || ((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) { |
| y_is_zero = 1; |
| } |
| // if both numbers are zero, neither is greater => return NOTGREATERTHAN |
| if (x_is_zero && y_is_zero) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // is x is zero, it is greater if Y is negative |
| else if (x_is_zero) { |
| res = ((y.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // is y is zero, X is greater if it is positive |
| else if (y_is_zero) { |
| res = ((x.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // OPPOSITE SIGN (CASE5) |
| // now, if the sign bits differ, x is greater if y is negative |
| if (((x.w[1] ^ y.w[1]) & MASK_SIGN) == MASK_SIGN) { |
| res = ((y.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| // if exponents are the same, then we have a simple comparison |
| // of the significands |
| if (exp_y == exp_x) { |
| res = (((sig_x.w[1] > sig_y.w[1]) |
| || (sig_x.w[1] == sig_y.w[1] |
| && sig_x.w[0] >= sig_y.w[0])) ^ ((x.w[1] & MASK_SIGN) != |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| // if both components are either bigger or smaller, |
| // it is clear what needs to be done |
| if ((sig_x.w[1] > sig_y.w[1] |
| || (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] > sig_y.w[0])) |
| && exp_x >= exp_y) { |
| res = ((x.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| if ((sig_x.w[1] < sig_y.w[1] |
| || (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] < sig_y.w[0])) |
| && exp_x <= exp_y) { |
| res = ((x.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| |
| diff = exp_x - exp_y; |
| |
| // if |exp_x - exp_y| < 33, it comes down to the compensated significand |
| if (diff > 0) { // to simplify the loop below, |
| |
| // if exp_x is 33 greater than exp_y, no need for compensation |
| if (diff > 33) { |
| res = ((x.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } // difference cannot be greater than 10^33 |
| |
| if (diff > 19) { //128 by 128 bit multiply -> 256 bits |
| __mul_128x128_to_256 (sig_n_prime256, sig_x, ten2k128[diff - 20]); |
| |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0) |
| && sig_n_prime256.w[1] == sig_y.w[1] |
| && (sig_n_prime256.w[0] == sig_y.w[0])) { |
| res = 1; |
| BID_RETURN (res); |
| } // if equal, return 0 |
| { |
| res = ((((sig_n_prime256.w[3] > 0) || sig_n_prime256.w[2] > 0) |
| || (sig_n_prime256.w[1] > sig_y.w[1]) |
| || (sig_n_prime256.w[1] == sig_y.w[1] |
| && sig_n_prime256.w[0] > |
| sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) != MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| //else { //128 by 64 bit multiply -> 192 bits |
| __mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_x); |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_y.w[1] |
| && (sig_n_prime192.w[0] == sig_y.w[0])) { |
| res = 1; |
| BID_RETURN (res); |
| } // if equal, return 0 |
| { |
| res = (((sig_n_prime192.w[2] > 0) |
| || (sig_n_prime192.w[1] > sig_y.w[1]) |
| || (sig_n_prime192.w[1] == sig_y.w[1] |
| && sig_n_prime192.w[0] > |
| sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) != MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| |
| diff = exp_y - exp_x; |
| |
| // if exp_x is 33 less than exp_y, no need for compensation |
| if (diff > 33) { |
| res = ((x.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| |
| if (diff > 19) { //128 by 128 bit multiply -> 256 bits |
| // adjust the y significand upwards |
| __mul_128x128_to_256 (sig_n_prime256, sig_y, ten2k128[diff - 20]); |
| |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0) |
| && sig_n_prime256.w[1] == sig_x.w[1] |
| && (sig_n_prime256.w[0] == sig_x.w[0])) { |
| res = 1; |
| BID_RETURN (res); |
| } // if equal, return 0 |
| { |
| res = |
| ((sig_n_prime256.w[3] != 0 || sig_n_prime256.w[2] != 0 |
| || (sig_n_prime256.w[1] > sig_x.w[1] |
| || (sig_n_prime256.w[1] == sig_x.w[1] |
| && sig_n_prime256.w[0] > |
| sig_x.w[0]))) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| //else { //128 by 64 bit multiply -> 192 bits |
| // adjust the y significand upwards |
| __mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_y); |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_x.w[1] |
| && (sig_n_prime192.w[0] == sig_x.w[0])) { |
| res = 1; |
| BID_RETURN (res); |
| } // if equal, return 0 |
| { |
| res = (sig_n_prime192.w[2] != 0 |
| || (sig_n_prime192.w[1] > sig_x.w[1] |
| || (sig_n_prime192.w[1] == sig_x.w[1] |
| && sig_n_prime192.w[0] > |
| sig_x.w[0]))) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| } |
| |
| BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int, bid128_quiet_not_less, x, |
| y) |
| |
| int res; |
| int exp_x, exp_y; |
| int diff; |
| UINT128 sig_x, sig_y; |
| UINT192 sig_n_prime192; |
| UINT256 sig_n_prime256; |
| char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; |
| |
| // NaN (CASE1) |
| // if either number is NAN, the comparison is unordered, |
| // rather than equal : return 1 |
| if (((x.w[1] & MASK_NAN) == MASK_NAN) |
| || ((y.w[1] & MASK_NAN) == MASK_NAN)) { |
| if ((x.w[1] & MASK_SNAN) == MASK_SNAN |
| || (y.w[1] & MASK_SNAN) == MASK_SNAN) { |
| *pfpsf |= INVALID_EXCEPTION; |
| } |
| { |
| res = 1; |
| BID_RETURN (res); |
| } |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equal (not Greater). |
| if (x.w[0] == y.w[0] && x.w[1] == y.w[1]) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if ((x.w[1] & MASK_INF) == MASK_INF) { |
| // if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) } |
| if ((x.w[1] & MASK_SIGN) == MASK_SIGN) |
| // x is -inf, so it is less than y unless y is -inf |
| { |
| res = (((y.w[1] & MASK_INF) == MASK_INF) |
| && (y.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } else |
| // x is pos_inf, no way for it to be less than y |
| { |
| res = 1; |
| BID_RETURN (res); |
| } |
| } else if ((y.w[1] & MASK_INF) == MASK_INF) { |
| // x is finite, so if y is positive infinity, then x is less, return 0 |
| // if y is negative infinity, then x is greater, return 1 |
| { |
| res = ((y.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| } |
| // CONVERT X |
| sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull; |
| sig_x.w[0] = x.w[0]; |
| exp_x = (x.w[1] >> 49) & 0x000000000003fffull; |
| |
| // CHECK IF X IS CANONICAL |
| // 9999999999999999999999999999999999(decimal) = |
| // 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal) |
| // [0, 10^34) is the 754r supported canonical range. |
| // If the value exceeds that, it is interpreted as 0. |
| if ((sig_x.w[1] > 0x0001ed09bead87c0ull) |
| || ((sig_x.w[1] == 0x0001ed09bead87c0ull) |
| && (sig_x.w[0] > 0x378d8e63ffffffffull)) |
| || ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) |
| non_canon_x = 1; |
| else |
| non_canon_x = 0; |
| |
| // CONVERT Y |
| exp_y = (y.w[1] >> 49) & 0x0000000000003fffull; |
| sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull; |
| sig_y.w[0] = y.w[0]; |
| |
| // CHECK IF Y IS CANONICAL |
| // 9999999999999999999999999999999999(decimal) = |
| // 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal) |
| // [0, 10^34) is the 754r supported canonical range. |
| // If the value exceeds that, it is interpreted as 0. |
| if ((sig_y.w[1] > 0x0001ed09bead87c0ull) |
| || ((sig_y.w[1] == 0x0001ed09bead87c0ull) |
| && (sig_y.w[0] > 0x378d8e63ffffffffull)) |
| || ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) |
| non_canon_y = 1; |
| else |
| non_canon_y = 0; |
| |
| // ZERO (CASE4) |
| // some properties: |
| // (+ZERO == -ZERO) => therefore ignore the sign |
| // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore |
| // ignore the exponent field |
| // (Any non-canonical # is considered 0) |
| if (non_canon_x || ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) { |
| x_is_zero = 1; |
| } |
| if (non_canon_y || ((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) { |
| y_is_zero = 1; |
| } |
| // if both numbers are zero, neither is greater => return NOTGREATERTHAN |
| if (x_is_zero && y_is_zero) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // is x is zero, it is greater if Y is negative |
| else if (x_is_zero) { |
| res = ((y.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // is y is zero, X is greater if it is positive |
| else if (y_is_zero) { |
| res = ((x.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // OPPOSITE SIGN (CASE5) |
| // now, if the sign bits differ, x is greater if y is negative |
| if (((x.w[1] ^ y.w[1]) & MASK_SIGN) == MASK_SIGN) { |
| res = ((y.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| |
| // if exponents are the same, then we have a simple comparison |
| // of the significands |
| if (exp_y == exp_x) { |
| res = (((sig_x.w[1] > sig_y.w[1]) |
| || (sig_x.w[1] == sig_y.w[1] |
| && sig_x.w[0] >= sig_y.w[0])) ^ ((x.w[1] & MASK_SIGN) == |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| // if both components are either bigger or smaller, |
| // it is clear what needs to be done |
| if (sig_x.w[1] >= sig_y.w[1] && sig_x.w[0] >= sig_y.w[0] |
| && exp_x > exp_y) { |
| res = ((x.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| if (sig_x.w[1] <= sig_y.w[1] && sig_x.w[0] <= sig_y.w[0] |
| && exp_x < exp_y) { |
| res = ((x.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| |
| diff = exp_x - exp_y; |
| |
| // if |exp_x - exp_y| < 33, it comes down to the compensated significand |
| if (diff > 0) { // to simplify the loop below, |
| |
| // if exp_x is 33 greater than exp_y, no need for compensation |
| if (diff > 33) { |
| res = ((x.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } // difference cannot be greater than 10^33 |
| |
| if (diff > 19) { //128 by 128 bit multiply -> 256 bits |
| __mul_128x128_to_256 (sig_n_prime256, sig_x, ten2k128[diff - 20]); |
| |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0) |
| && sig_n_prime256.w[1] == sig_y.w[1] |
| && (sig_n_prime256.w[0] == sig_y.w[0])) { |
| res = 1; |
| BID_RETURN (res); |
| } // if equal, return 1 |
| { |
| res = ((((sig_n_prime256.w[3] > 0) || sig_n_prime256.w[2] > 0) |
| || (sig_n_prime256.w[1] > sig_y.w[1]) |
| || (sig_n_prime256.w[1] == sig_y.w[1] |
| && sig_n_prime256.w[0] > |
| sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| //else { //128 by 64 bit multiply -> 192 bits |
| __mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_x); |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_y.w[1] |
| && (sig_n_prime192.w[0] == sig_y.w[0])) { |
| res = 1; |
| BID_RETURN (res); |
| } // if equal, return 1 |
| { |
| res = (((sig_n_prime192.w[2] > 0) |
| || (sig_n_prime192.w[1] > sig_y.w[1]) |
| || (sig_n_prime192.w[1] == sig_y.w[1] |
| && sig_n_prime192.w[0] > |
| sig_y.w[0])) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| |
| diff = exp_y - exp_x; |
| |
| // if exp_x is 33 less than exp_y, no need for compensation |
| if (diff > 33) { |
| res = ((x.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| |
| if (diff > 19) { //128 by 128 bit multiply -> 256 bits |
| // adjust the y significand upwards |
| __mul_128x128_to_256 (sig_n_prime256, sig_y, ten2k128[diff - 20]); |
| |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0) |
| && sig_n_prime256.w[1] == sig_x.w[1] |
| && (sig_n_prime256.w[0] == sig_x.w[0])) { |
| res = 1; |
| BID_RETURN (res); |
| } // if equal, return 1 |
| { |
| res = |
| ((sig_n_prime256.w[3] == 0 && sig_n_prime256.w[2] == 0 |
| && (sig_n_prime256.w[1] < sig_x.w[1] |
| || (sig_n_prime256.w[1] == sig_x.w[1] |
| && sig_n_prime256.w[0] < |
| sig_x.w[0]))) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| //else { //128 by 64 bit multiply -> 192 bits |
| // adjust the y significand upwards |
| __mul_64x128_to192 (sig_n_prime192, ten2k64[diff], sig_y); |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_x.w[1] |
| && (sig_n_prime192.w[0] == sig_x.w[0])) { |
| res = 1; |
| BID_RETURN (res); |
| } // if equal, return 1 |
| { |
| res = (sig_n_prime192.w[2] == 0 |
| && (sig_n_prime192.w[1] < sig_x.w[1] |
| || (sig_n_prime192.w[1] == sig_x.w[1] |
| && sig_n_prime192.w[0] < |
| sig_x.w[0]))) ^ ((y.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| } |
| |
| BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int, bid128_quiet_ordered, x, |
| y) |
| |
| int res; |
| |
| // NaN (CASE1) |
| // if either number is NAN, the comparison is ordered : return 1 |
| if (((x.w[1] & MASK_NAN) == MASK_NAN) |
| || ((y.w[1] & MASK_NAN) == MASK_NAN)) { |
| if ((x.w[1] & MASK_SNAN) == MASK_SNAN |
| || (y.w[1] & MASK_SNAN) == MASK_SNAN) { |
| *pfpsf |= INVALID_EXCEPTION; |
| } |
| { |
| res = 0; |
| BID_RETURN (res); |
| } |
| } |
| { |
| res = 1; |
| BID_RETURN (res); |
| } |
| } |
| |
| BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int, bid128_quiet_unordered, |
| x, y) |
| |
| int res; |
| |
| // NaN (CASE1) |
| // if either number is NAN, the comparison is unordered : return 1 |
| if (((x.w[1] & MASK_NAN) == MASK_NAN) |
| || ((y.w[1] & MASK_NAN) == MASK_NAN)) { |
| if ((x.w[1] & MASK_SNAN) == MASK_SNAN |
| || (y.w[1] & MASK_SNAN) == MASK_SNAN) { |
| *pfpsf |= INVALID_EXCEPTION; |
| } |
| { |
| res = 1; |
| BID_RETURN (res); |
| } |
| } |
| { |
| res = 0; |
| BID_RETURN (res); |
| } |
| } |
| |
| BID128_FUNCTION_ARG2_NORND_CUSTOMRESTYPE (int, bid128_signaling_greater, |
| x, y) |
| |
| int res; |
| int exp_x, exp_y; |
| int diff; |
| UINT128 sig_x, sig_y; |
| UINT192 sig_n_prime192; |
| UINT256 sig_n_prime256; |
| char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; |
| |
| // NaN (CASE1) |
| // if either number is NAN, the comparison is unordered, |
| // rather than equal : return 0 |
| if (((x.w[1] & MASK_NAN) == MASK_NAN) |
| || ((y.w[1] & MASK_NAN) == MASK_NAN)) { |
| *pfpsf |= INVALID_EXCEPTION; |
| { |
| res = 0; |
| BID_RETURN (res); |
| } |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equal (not Greater). |
| if (x.w[0] == y.w[0] && x.w[1] == y.w[1]) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if ((x.w[1] & MASK_INF) == MASK_INF) { |
| // if x is neg infinity, there is no way it is greater than y, return 0 |
| if (((x.w[1] & MASK_SIGN) == MASK_SIGN)) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // x is pos infinity, it is greater, unless y is positive infinity => return y!=pos_infinity |
| else { |
| res = (((y.w[1] & MASK_INF) != MASK_INF) |
| || ((y.w[1] & MASK_SIGN) == MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } else if ((y.w[1] & MASK_INF) == MASK_INF) { |
| // x is finite, so if y is positive infinity, then x is less, return 0 |
| // if y is negative infinity, then x is greater, return 1 |
| { |
| res = ((y.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| } |
| // CONVERT X |
| sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull; |
| sig_x.w[0] = x.w[0]; |
| exp_x = (x.w[1] >> 49) & 0x000000000003fffull; |
| |
| // CHECK IF X IS CANONICAL |
| // 9999999999999999999999999999999999(decimal) = |
| // 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal) |
| // [0, 10^34) is the 754r supported canonical range. |
| // If the value exceeds that, it is interpreted as 0. |
| if ((sig_x.w[1] > 0x0001ed09bead87c0ull) |
| || ((sig_x.w[1] == 0x0001ed09bead87c0ull) |
| && (sig_x.w[0] > 0x378d8e63ffffffffull)) |
| || ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) |
| non_canon_x = 1; |
| else |
| non_canon_x = 0; |
| |
| // CONVERT Y |
| exp_y = (y.w[1] >> 49) & 0x0000000000003fffull; |
| sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull; |
| sig_y.w[0] = y.w[0]; |
| |
| // CHECK IF Y IS CANONICAL |
| // 9999999999999999999999999999999999(decimal) = |
| // 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal) |
| // [0, 10^34) is the 754r supported canonical range. |
| // If the value exceeds that, it is interpreted as 0. |
| if ((sig_y.w[1] > 0x0001ed09bead87c0ull) |
| || ((sig_y.w[1] == 0x0001ed09bead87c0ull) |
| && (sig_y.w[0] > 0x378d8e63ffffffffull)) |
| || ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) |
| non_canon_y = 1; |
| else |
| non_canon_y = 0; |
| |
| // ZERO (CASE4) |
| // some properties: |
| // (+ZERO == -ZERO) => therefore ignore the sign |
| // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore |
| // ignore the exponent field |
| // (Any non-canonical # is considered 0) |
| if (non_canon_x || ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) { |
| x_is_zero = 1; |
| } |
| if (non_canon_y || ((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) { |
| y_is_zero = 1; |
| } |
| // if both numbers are zero, neither is greater => return NOTGREATERTHAN |
| if (x_is_zero && y_is_zero) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // is x is zero, it is greater if Y is negative |
| else if (x_is_zero) { |
| res = ((y.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // is y is zero, X is greater if it is positive |
| else if (y_is_zero) { |
| res = ((x.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // OPPOSITE SIGN (CASE5) |
| // now, if the sign bits differ, x is greater if y is negative |
| if (((x.w[1] ^ y.w[1]) & MASK_SIGN) == MASK_SIGN) { |
| res = ((y.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| // if exponents are the same, then we have a simple comparison |
| // of the significands |
| if (exp_y == exp_x) { |
| res = (((sig_x.w[1] > sig_y.w[1]) |
| || (sig_x.w[1] == sig_y.w[1] |
| && sig_x.w[0] >= sig_y.w[0])) ^ ((x.w[1] & MASK_SIGN) == |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| // if both components are either bigger or smaller, |
| // it is clear what needs to be done |
| if ((sig_x.w[1] > sig_y.w[1] |
| || (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] > sig_y.w[0])) |
| && exp_x >= exp_y) { |
| { |
| res = ((x.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| } |
| if ((sig_x.w[1] < sig_y.w[1] |
| || (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] < sig_y.w[0])) |
| && exp_x <= exp_y) { |
| { |
| res = ((x.w[1] & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| } |
| |
| diff = exp_x - exp_y; |
| |
| // if |exp_x - exp_y| < 33, it comes down to the compensated significand |
| if (diff > 0) { // to simplify the loop below, |
| |
| // if exp_x is 33 greater than exp_y, no need for compensation |
| if (diff > 33) { |
| res = ((x.w[1] & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } // difference cannot be greater than 10^33 |
| |
| if (diff > 19) { //128 by 128 bit multiply -> 256 bits |
| __mul_128x128_to_256 (sig_n_prime256, sig_x, ten2k128[diff - 20]); |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if (sig_n_prime256.w[3] == 0 && (sig_n_prime256.w[2] == 0) |
| && sig_n_prime256.w[1] == sig_y.w[1] |
| && (sig_n_prime256.w[0] == sig_y.w[0])) { |
| res = 0; |
| BID_RETURN (res); |
| } // if equal, return 0 |
| { |
| res = ((((sig_n_prime256.w[3] > 0) || sig_n_prime256.w[2] > 0) |
| || (sig_n_prime256.w[1] > sig_y.w[1]) |
|