| /* Copyright (C) 2007-2017 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| Under Section 7 of GPL version 3, you are granted additional |
| permissions described in the GCC Runtime Library Exception, version |
| 3.1, as published by the Free Software Foundation. |
| |
| You should have received a copy of the GNU General Public License and |
| a copy of the GCC Runtime Library Exception along with this program; |
| see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| /***************************************************************************** |
| * BID64 add |
| ***************************************************************************** |
| * |
| * Algorithm description: |
| * |
| * if(exponent_a < exponent_b) |
| * switch a, b |
| * diff_expon = exponent_a - exponent_b |
| * if(diff_expon > 16) |
| * return normalize(a) |
| * if(coefficient_a*10^diff_expon guaranteed below 2^62) |
| * S = sign_a*coefficient_a*10^diff_expon + sign_b*coefficient_b |
| * if(|S|<10^16) |
| * return get_BID64(sign(S),exponent_b,|S|) |
| * else |
| * determine number of extra digits in S (1, 2, or 3) |
| * return rounded result |
| * else // large exponent difference |
| * if(number_digits(coefficient_a*10^diff_expon) +/- 10^16) |
| * guaranteed the same as |
| * number_digits(coefficient_a*10^diff_expon) ) |
| * S = normalize(coefficient_a + (sign_a^sign_b)*10^(16-diff_expon)) |
| * corr = 10^16 + (sign_a^sign_b)*coefficient_b |
| * corr*10^exponent_b is rounded so it aligns with S*10^exponent_S |
| * return get_BID64(sign_a,exponent(S),S+rounded(corr)) |
| * else |
| * add sign_a*coefficient_a*10^diff_expon, sign_b*coefficient_b |
| * in 128-bit integer arithmetic, then round to 16 decimal digits |
| * |
| * |
| ****************************************************************************/ |
| |
| #include "bid_internal.h" |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void bid64_add (UINT64 * pres, UINT64 * px, |
| UINT64 * |
| py _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM); |
| #else |
| UINT64 bid64_add (UINT64 x, |
| UINT64 y _RND_MODE_PARAM _EXC_FLAGS_PARAM |
| _EXC_MASKS_PARAM _EXC_INFO_PARAM); |
| #endif |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| |
| void |
| bid64_sub (UINT64 * pres, UINT64 * px, |
| UINT64 * |
| py _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT64 y = *py; |
| #if !DECIMAL_GLOBAL_ROUNDING |
| _IDEC_round rnd_mode = *prnd_mode; |
| #endif |
| // check if y is not NaN |
| if (((y & NAN_MASK64) != NAN_MASK64)) |
| y ^= 0x8000000000000000ull; |
| bid64_add (pres, px, |
| &y _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG |
| _EXC_INFO_ARG); |
| } |
| #else |
| |
| UINT64 |
| bid64_sub (UINT64 x, |
| UINT64 y _RND_MODE_PARAM _EXC_FLAGS_PARAM |
| _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| // check if y is not NaN |
| if (((y & NAN_MASK64) != NAN_MASK64)) |
| y ^= 0x8000000000000000ull; |
| |
| return bid64_add (x, |
| y _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG |
| _EXC_INFO_ARG); |
| } |
| #endif |
| |
| |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| |
| void |
| bid64_add (UINT64 * pres, UINT64 * px, |
| UINT64 * |
| py _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT64 x, y; |
| #else |
| |
| UINT64 |
| bid64_add (UINT64 x, |
| UINT64 y _RND_MODE_PARAM _EXC_FLAGS_PARAM |
| _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| #endif |
| |
| UINT128 CA, CT, CT_new; |
| UINT64 sign_x, sign_y, coefficient_x, coefficient_y, C64_new; |
| UINT64 valid_x, valid_y; |
| UINT64 res; |
| UINT64 sign_a, sign_b, coefficient_a, coefficient_b, sign_s, sign_ab, |
| rem_a; |
| UINT64 saved_ca, saved_cb, C0_64, C64, remainder_h, T1, carry, tmp; |
| int_double tempx; |
| int exponent_x, exponent_y, exponent_a, exponent_b, diff_dec_expon; |
| int bin_expon_ca, extra_digits, amount, scale_k, scale_ca; |
| unsigned rmode, status; |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| #if !DECIMAL_GLOBAL_ROUNDING |
| _IDEC_round rnd_mode = *prnd_mode; |
| #endif |
| x = *px; |
| y = *py; |
| #endif |
| |
| valid_x = unpack_BID64 (&sign_x, &exponent_x, &coefficient_x, x); |
| valid_y = unpack_BID64 (&sign_y, &exponent_y, &coefficient_y, y); |
| |
| // unpack arguments, check for NaN or Infinity |
| if (!valid_x) { |
| // x is Inf. or NaN |
| |
| // test if x is NaN |
| if ((x & NAN_MASK64) == NAN_MASK64) { |
| #ifdef SET_STATUS_FLAGS |
| if (((x & SNAN_MASK64) == SNAN_MASK64) // sNaN |
| || ((y & SNAN_MASK64) == SNAN_MASK64)) |
| __set_status_flags (pfpsf, INVALID_EXCEPTION); |
| #endif |
| res = coefficient_x & QUIET_MASK64; |
| BID_RETURN (res); |
| } |
| // x is Infinity? |
| if ((x & INFINITY_MASK64) == INFINITY_MASK64) { |
| // check if y is Inf |
| if (((y & NAN_MASK64) == INFINITY_MASK64)) { |
| if (sign_x == (y & 0x8000000000000000ull)) { |
| res = coefficient_x; |
| BID_RETURN (res); |
| } |
| // return NaN |
| { |
| #ifdef SET_STATUS_FLAGS |
| __set_status_flags (pfpsf, INVALID_EXCEPTION); |
| #endif |
| res = NAN_MASK64; |
| BID_RETURN (res); |
| } |
| } |
| // check if y is NaN |
| if (((y & NAN_MASK64) == NAN_MASK64)) { |
| res = coefficient_y & QUIET_MASK64; |
| #ifdef SET_STATUS_FLAGS |
| if (((y & SNAN_MASK64) == SNAN_MASK64)) |
| __set_status_flags (pfpsf, INVALID_EXCEPTION); |
| #endif |
| BID_RETURN (res); |
| } |
| // otherwise return +/-Inf |
| { |
| res = coefficient_x; |
| BID_RETURN (res); |
| } |
| } |
| // x is 0 |
| { |
| if (((y & INFINITY_MASK64) != INFINITY_MASK64) && coefficient_y) { |
| if (exponent_y <= exponent_x) { |
| res = y; |
| BID_RETURN (res); |
| } |
| } |
| } |
| |
| } |
| if (!valid_y) { |
| // y is Inf. or NaN? |
| if (((y & INFINITY_MASK64) == INFINITY_MASK64)) { |
| #ifdef SET_STATUS_FLAGS |
| if ((y & SNAN_MASK64) == SNAN_MASK64) // sNaN |
| __set_status_flags (pfpsf, INVALID_EXCEPTION); |
| #endif |
| res = coefficient_y & QUIET_MASK64; |
| BID_RETURN (res); |
| } |
| // y is 0 |
| if (!coefficient_x) { // x==0 |
| if (exponent_x <= exponent_y) |
| res = ((UINT64) exponent_x) << 53; |
| else |
| res = ((UINT64) exponent_y) << 53; |
| if (sign_x == sign_y) |
| res |= sign_x; |
| #ifndef IEEE_ROUND_NEAREST_TIES_AWAY |
| #ifndef IEEE_ROUND_NEAREST |
| if (rnd_mode == ROUNDING_DOWN && sign_x != sign_y) |
| res |= 0x8000000000000000ull; |
| #endif |
| #endif |
| BID_RETURN (res); |
| } else if (exponent_y >= exponent_x) { |
| res = x; |
| BID_RETURN (res); |
| } |
| } |
| // sort arguments by exponent |
| if (exponent_x < exponent_y) { |
| sign_a = sign_y; |
| exponent_a = exponent_y; |
| coefficient_a = coefficient_y; |
| sign_b = sign_x; |
| exponent_b = exponent_x; |
| coefficient_b = coefficient_x; |
| } else { |
| sign_a = sign_x; |
| exponent_a = exponent_x; |
| coefficient_a = coefficient_x; |
| sign_b = sign_y; |
| exponent_b = exponent_y; |
| coefficient_b = coefficient_y; |
| } |
| |
| // exponent difference |
| diff_dec_expon = exponent_a - exponent_b; |
| |
| /* get binary coefficients of x and y */ |
| |
| //--- get number of bits in the coefficients of x and y --- |
| |
| // version 2 (original) |
| tempx.d = (double) coefficient_a; |
| bin_expon_ca = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff; |
| |
| if (diff_dec_expon > MAX_FORMAT_DIGITS) { |
| // normalize a to a 16-digit coefficient |
| |
| scale_ca = estimate_decimal_digits[bin_expon_ca]; |
| if (coefficient_a >= power10_table_128[scale_ca].w[0]) |
| scale_ca++; |
| |
| scale_k = 16 - scale_ca; |
| |
| coefficient_a *= power10_table_128[scale_k].w[0]; |
| |
| diff_dec_expon -= scale_k; |
| exponent_a -= scale_k; |
| |
| /* get binary coefficients of x and y */ |
| |
| //--- get number of bits in the coefficients of x and y --- |
| tempx.d = (double) coefficient_a; |
| bin_expon_ca = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff; |
| |
| if (diff_dec_expon > MAX_FORMAT_DIGITS) { |
| #ifdef SET_STATUS_FLAGS |
| if (coefficient_b) { |
| __set_status_flags (pfpsf, INEXACT_EXCEPTION); |
| } |
| #endif |
| |
| #ifndef IEEE_ROUND_NEAREST_TIES_AWAY |
| #ifndef IEEE_ROUND_NEAREST |
| if (((rnd_mode) & 3) && coefficient_b) // not ROUNDING_TO_NEAREST |
| { |
| switch (rnd_mode) { |
| case ROUNDING_DOWN: |
| if (sign_b) { |
| coefficient_a -= ((((SINT64) sign_a) >> 63) | 1); |
| if (coefficient_a < 1000000000000000ull) { |
| exponent_a--; |
| coefficient_a = 9999999999999999ull; |
| } else if (coefficient_a >= 10000000000000000ull) { |
| exponent_a++; |
| coefficient_a = 1000000000000000ull; |
| } |
| } |
| break; |
| case ROUNDING_UP: |
| if (!sign_b) { |
| coefficient_a += ((((SINT64) sign_a) >> 63) | 1); |
| if (coefficient_a < 1000000000000000ull) { |
| exponent_a--; |
| coefficient_a = 9999999999999999ull; |
| } else if (coefficient_a >= 10000000000000000ull) { |
| exponent_a++; |
| coefficient_a = 1000000000000000ull; |
| } |
| } |
| break; |
| default: // RZ |
| if (sign_a != sign_b) { |
| coefficient_a--; |
| if (coefficient_a < 1000000000000000ull) { |
| exponent_a--; |
| coefficient_a = 9999999999999999ull; |
| } |
| } |
| break; |
| } |
| } else |
| #endif |
| #endif |
| // check special case here |
| if ((coefficient_a == 1000000000000000ull) |
| && (diff_dec_expon == MAX_FORMAT_DIGITS + 1) |
| && (sign_a ^ sign_b) |
| && (coefficient_b > 5000000000000000ull)) { |
| coefficient_a = 9999999999999999ull; |
| exponent_a--; |
| } |
| |
| res = |
| fast_get_BID64_check_OF (sign_a, exponent_a, coefficient_a, |
| rnd_mode, pfpsf); |
| BID_RETURN (res); |
| } |
| } |
| // test whether coefficient_a*10^(exponent_a-exponent_b) may exceed 2^62 |
| if (bin_expon_ca + estimate_bin_expon[diff_dec_expon] < 60) { |
| // coefficient_a*10^(exponent_a-exponent_b)<2^63 |
| |
| // multiply by 10^(exponent_a-exponent_b) |
| coefficient_a *= power10_table_128[diff_dec_expon].w[0]; |
| |
| // sign mask |
| sign_b = ((SINT64) sign_b) >> 63; |
| // apply sign to coeff. of b |
| coefficient_b = (coefficient_b + sign_b) ^ sign_b; |
| |
| // apply sign to coefficient a |
| sign_a = ((SINT64) sign_a) >> 63; |
| coefficient_a = (coefficient_a + sign_a) ^ sign_a; |
| |
| coefficient_a += coefficient_b; |
| // get sign |
| sign_s = ((SINT64) coefficient_a) >> 63; |
| coefficient_a = (coefficient_a + sign_s) ^ sign_s; |
| sign_s &= 0x8000000000000000ull; |
| |
| // coefficient_a < 10^16 ? |
| if (coefficient_a < power10_table_128[MAX_FORMAT_DIGITS].w[0]) { |
| #ifndef IEEE_ROUND_NEAREST_TIES_AWAY |
| #ifndef IEEE_ROUND_NEAREST |
| if (rnd_mode == ROUNDING_DOWN && (!coefficient_a) |
| && sign_a != sign_b) |
| sign_s = 0x8000000000000000ull; |
| #endif |
| #endif |
| res = very_fast_get_BID64 (sign_s, exponent_b, coefficient_a); |
| BID_RETURN (res); |
| } |
| // otherwise rounding is necessary |
| |
| // already know coefficient_a<10^19 |
| // coefficient_a < 10^17 ? |
| if (coefficient_a < power10_table_128[17].w[0]) |
| extra_digits = 1; |
| else if (coefficient_a < power10_table_128[18].w[0]) |
| extra_digits = 2; |
| else |
| extra_digits = 3; |
| |
| #ifndef IEEE_ROUND_NEAREST_TIES_AWAY |
| #ifndef IEEE_ROUND_NEAREST |
| rmode = rnd_mode; |
| if (sign_s && (unsigned) (rmode - 1) < 2) |
| rmode = 3 - rmode; |
| #else |
| rmode = 0; |
| #endif |
| #else |
| rmode = 0; |
| #endif |
| coefficient_a += round_const_table[rmode][extra_digits]; |
| |
| // get P*(2^M[extra_digits])/10^extra_digits |
| __mul_64x64_to_128 (CT, coefficient_a, |
| reciprocals10_64[extra_digits]); |
| |
| // now get P/10^extra_digits: shift C64 right by M[extra_digits]-128 |
| amount = short_recip_scale[extra_digits]; |
| C64 = CT.w[1] >> amount; |
| |
| } else { |
| // coefficient_a*10^(exponent_a-exponent_b) is large |
| sign_s = sign_a; |
| |
| #ifndef IEEE_ROUND_NEAREST_TIES_AWAY |
| #ifndef IEEE_ROUND_NEAREST |
| rmode = rnd_mode; |
| if (sign_s && (unsigned) (rmode - 1) < 2) |
| rmode = 3 - rmode; |
| #else |
| rmode = 0; |
| #endif |
| #else |
| rmode = 0; |
| #endif |
| |
| // check whether we can take faster path |
| scale_ca = estimate_decimal_digits[bin_expon_ca]; |
| |
| sign_ab = sign_a ^ sign_b; |
| sign_ab = ((SINT64) sign_ab) >> 63; |
| |
| // T1 = 10^(16-diff_dec_expon) |
| T1 = power10_table_128[16 - diff_dec_expon].w[0]; |
| |
| // get number of digits in coefficient_a |
| if (coefficient_a >= power10_table_128[scale_ca].w[0]) { |
| scale_ca++; |
| } |
| |
| scale_k = 16 - scale_ca; |
| |
| // addition |
| saved_ca = coefficient_a - T1; |
| coefficient_a = |
| (SINT64) saved_ca *(SINT64) power10_table_128[scale_k].w[0]; |
| extra_digits = diff_dec_expon - scale_k; |
| |
| // apply sign |
| saved_cb = (coefficient_b + sign_ab) ^ sign_ab; |
| // add 10^16 and rounding constant |
| coefficient_b = |
| saved_cb + 10000000000000000ull + |
| round_const_table[rmode][extra_digits]; |
| |
| // get P*(2^M[extra_digits])/10^extra_digits |
| __mul_64x64_to_128 (CT, coefficient_b, |
| reciprocals10_64[extra_digits]); |
| |
| // now get P/10^extra_digits: shift C64 right by M[extra_digits]-128 |
| amount = short_recip_scale[extra_digits]; |
| C0_64 = CT.w[1] >> amount; |
| |
| // result coefficient |
| C64 = C0_64 + coefficient_a; |
| // filter out difficult (corner) cases |
| // this test ensures the number of digits in coefficient_a does not change |
| // after adding (the appropriately scaled and rounded) coefficient_b |
| if ((UINT64) (C64 - 1000000000000000ull - 1) > |
| 9000000000000000ull - 2) { |
| if (C64 >= 10000000000000000ull) { |
| // result has more than 16 digits |
| if (!scale_k) { |
| // must divide coeff_a by 10 |
| saved_ca = saved_ca + T1; |
| __mul_64x64_to_128 (CA, saved_ca, 0x3333333333333334ull); |
| //reciprocals10_64[1]); |
| coefficient_a = CA.w[1] >> 1; |
| rem_a = |
| saved_ca - (coefficient_a << 3) - (coefficient_a << 1); |
| coefficient_a = coefficient_a - T1; |
| |
| saved_cb += rem_a * power10_table_128[diff_dec_expon].w[0]; |
| } else |
| coefficient_a = |
| (SINT64) (saved_ca - T1 - |
| (T1 << 3)) * (SINT64) power10_table_128[scale_k - |
| 1].w[0]; |
| |
| extra_digits++; |
| coefficient_b = |
| saved_cb + 100000000000000000ull + |
| round_const_table[rmode][extra_digits]; |
| |
| // get P*(2^M[extra_digits])/10^extra_digits |
| __mul_64x64_to_128 (CT, coefficient_b, |
| reciprocals10_64[extra_digits]); |
| |
| // now get P/10^extra_digits: shift C64 right by M[extra_digits]-128 |
| amount = short_recip_scale[extra_digits]; |
| C0_64 = CT.w[1] >> amount; |
| |
| // result coefficient |
| C64 = C0_64 + coefficient_a; |
| } else if (C64 <= 1000000000000000ull) { |
| // less than 16 digits in result |
| coefficient_a = |
| (SINT64) saved_ca *(SINT64) power10_table_128[scale_k + |
| 1].w[0]; |
| //extra_digits --; |
| exponent_b--; |
| coefficient_b = |
| (saved_cb << 3) + (saved_cb << 1) + 100000000000000000ull + |
| round_const_table[rmode][extra_digits]; |
| |
| // get P*(2^M[extra_digits])/10^extra_digits |
| __mul_64x64_to_128 (CT_new, coefficient_b, |
| reciprocals10_64[extra_digits]); |
| |
| // now get P/10^extra_digits: shift C64 right by M[extra_digits]-128 |
| amount = short_recip_scale[extra_digits]; |
| C0_64 = CT_new.w[1] >> amount; |
| |
| // result coefficient |
| C64_new = C0_64 + coefficient_a; |
| if (C64_new < 10000000000000000ull) { |
| C64 = C64_new; |
| #ifdef SET_STATUS_FLAGS |
| CT = CT_new; |
| #endif |
| } else |
| exponent_b++; |
| } |
| |
| } |
| |
| } |
| |
| #ifndef IEEE_ROUND_NEAREST_TIES_AWAY |
| #ifndef IEEE_ROUND_NEAREST |
| if (rmode == 0) //ROUNDING_TO_NEAREST |
| #endif |
| if (C64 & 1) { |
| // check whether fractional part of initial_P/10^extra_digits is |
| // exactly .5 |
| // this is the same as fractional part of |
| // (initial_P + 0.5*10^extra_digits)/10^extra_digits is exactly zero |
| |
| // get remainder |
| remainder_h = CT.w[1] << (64 - amount); |
| |
| // test whether fractional part is 0 |
| if (!remainder_h && (CT.w[0] < reciprocals10_64[extra_digits])) { |
| C64--; |
| } |
| } |
| #endif |
| |
| #ifdef SET_STATUS_FLAGS |
| status = INEXACT_EXCEPTION; |
| |
| // get remainder |
| remainder_h = CT.w[1] << (64 - amount); |
| |
| switch (rmode) { |
| case ROUNDING_TO_NEAREST: |
| case ROUNDING_TIES_AWAY: |
| // test whether fractional part is 0 |
| if ((remainder_h == 0x8000000000000000ull) |
| && (CT.w[0] < reciprocals10_64[extra_digits])) |
| status = EXACT_STATUS; |
| break; |
| case ROUNDING_DOWN: |
| case ROUNDING_TO_ZERO: |
| if (!remainder_h && (CT.w[0] < reciprocals10_64[extra_digits])) |
| status = EXACT_STATUS; |
| //if(!C64 && rmode==ROUNDING_DOWN) sign_s=sign_y; |
| break; |
| default: |
| // round up |
| __add_carry_out (tmp, carry, CT.w[0], |
| reciprocals10_64[extra_digits]); |
| if ((remainder_h >> (64 - amount)) + carry >= |
| (((UINT64) 1) << amount)) |
| status = EXACT_STATUS; |
| break; |
| } |
| __set_status_flags (pfpsf, status); |
| |
| #endif |
| |
| res = |
| fast_get_BID64_check_OF (sign_s, exponent_b + extra_digits, C64, |
| rnd_mode, pfpsf); |
| BID_RETURN (res); |
| } |