| /* Copyright (C) 2007-2017 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| Under Section 7 of GPL version 3, you are granted additional |
| permissions described in the GCC Runtime Library Exception, version |
| 3.1, as published by the Free Software Foundation. |
| |
| You should have received a copy of the GNU General Public License and |
| a copy of the GCC Runtime Library Exception along with this program; |
| see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "bid_internal.h" |
| |
| static const UINT64 mult_factor[16] = { |
| 1ull, 10ull, 100ull, 1000ull, |
| 10000ull, 100000ull, 1000000ull, 10000000ull, |
| 100000000ull, 1000000000ull, 10000000000ull, 100000000000ull, |
| 1000000000000ull, 10000000000000ull, |
| 100000000000000ull, 1000000000000000ull |
| }; |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_quiet_equal (int *pres, UINT64 * px, |
| UINT64 * |
| py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| UINT64 y = *py; |
| #else |
| int |
| bid64_quiet_equal (UINT64 x, |
| UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| int exp_x, exp_y, exp_t; |
| UINT64 sig_x, sig_y, sig_t; |
| char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y, lcv; |
| |
| // NaN (CASE1) |
| // if either number is NAN, the comparison is unordered, |
| // rather than equal : return 0 |
| if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { |
| if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { |
| *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN |
| } |
| res = 0; |
| BID_RETURN (res); |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equivalent. |
| if (x == y) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if (((x & MASK_INF) == MASK_INF) && ((y & MASK_INF) == MASK_INF)) { |
| res = (((x ^ y) & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // ONE INFINITY (CASE3') |
| if (((x & MASK_INF) == MASK_INF) || ((y & MASK_INF) == MASK_INF)) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; |
| sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_x > 9999999999999999ull) { |
| non_canon_x = 1; |
| } else { |
| non_canon_x = 0; |
| } |
| } else { |
| exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; |
| sig_x = (x & MASK_BINARY_SIG1); |
| non_canon_x = 0; |
| } |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; |
| sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_y > 9999999999999999ull) { |
| non_canon_y = 1; |
| } else { |
| non_canon_y = 0; |
| } |
| } else { |
| exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; |
| sig_y = (y & MASK_BINARY_SIG1); |
| non_canon_y = 0; |
| } |
| // ZERO (CASE4) |
| // some properties: |
| // (+ZERO==-ZERO) => therefore ignore the sign |
| // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => |
| // therefore ignore the exponent field |
| // (Any non-canonical # is considered 0) |
| if (non_canon_x || sig_x == 0) { |
| x_is_zero = 1; |
| } |
| if (non_canon_y || sig_y == 0) { |
| y_is_zero = 1; |
| } |
| if (x_is_zero && y_is_zero) { |
| res = 1; |
| BID_RETURN (res); |
| } else if ((x_is_zero && !y_is_zero) || (!x_is_zero && y_is_zero)) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // OPPOSITE SIGN (CASE5) |
| // now, if the sign bits differ => not equal : return 0 |
| if ((x ^ y) & MASK_SIGN) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| if (exp_x > exp_y) { // to simplify the loop below, |
| SWAP (exp_x, exp_y, exp_t); // put the larger exp in y, |
| SWAP (sig_x, sig_y, sig_t); // and the smaller exp in x |
| } |
| if (exp_y - exp_x > 15) { |
| res = 0; // difference cannot be greater than 10^15 |
| BID_RETURN (res); |
| } |
| for (lcv = 0; lcv < (exp_y - exp_x); lcv++) { |
| // recalculate y's significand upwards |
| sig_y = sig_y * 10; |
| if (sig_y > 9999999999999999ull) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| } |
| res = (sig_y == sig_x); |
| BID_RETURN (res); |
| } |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_quiet_greater (int *pres, UINT64 * px, |
| UINT64 * |
| py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| UINT64 y = *py; |
| #else |
| int |
| bid64_quiet_greater (UINT64 x, |
| UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| int exp_x, exp_y; |
| UINT64 sig_x, sig_y; |
| UINT128 sig_n_prime; |
| char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; |
| |
| // NaN (CASE1) |
| // if either number is NAN, the comparison is unordered, rather than equal : |
| // return 0 |
| if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { |
| if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { |
| *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN |
| } |
| res = 0; |
| BID_RETURN (res); |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equal (not Greater). |
| if (x == y) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if ((x & MASK_INF) == MASK_INF) { |
| // if x is neg infinity, there is no way it is greater than y, return 0 |
| if (((x & MASK_SIGN) == MASK_SIGN)) { |
| res = 0; |
| BID_RETURN (res); |
| } else { |
| // x is pos infinity, it is greater, unless y is positive |
| // infinity => return y!=pos_infinity |
| res = (((y & MASK_INF) != MASK_INF) |
| || ((y & MASK_SIGN) == MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } else if ((y & MASK_INF) == MASK_INF) { |
| // x is finite, so if y is positive infinity, then x is less, return 0 |
| // if y is negative infinity, then x is greater, return 1 |
| res = ((y & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; |
| sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_x > 9999999999999999ull) { |
| non_canon_x = 1; |
| } else { |
| non_canon_x = 0; |
| } |
| } else { |
| exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; |
| sig_x = (x & MASK_BINARY_SIG1); |
| non_canon_x = 0; |
| } |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; |
| sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_y > 9999999999999999ull) { |
| non_canon_y = 1; |
| } else { |
| non_canon_y = 0; |
| } |
| } else { |
| exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; |
| sig_y = (y & MASK_BINARY_SIG1); |
| non_canon_y = 0; |
| } |
| // ZERO (CASE4) |
| // some properties: |
| //(+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater |
| //(ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore ignore the |
| // exponent field |
| // (Any non-canonical # is considered 0) |
| if (non_canon_x || sig_x == 0) { |
| x_is_zero = 1; |
| } |
| if (non_canon_y || sig_y == 0) { |
| y_is_zero = 1; |
| } |
| // if both numbers are zero, neither is greater => return NOTGREATERTHAN |
| if (x_is_zero && y_is_zero) { |
| res = 0; |
| BID_RETURN (res); |
| } else if (x_is_zero) { |
| // is x is zero, it is greater if Y is negative |
| res = ((y & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } else if (y_is_zero) { |
| // is y is zero, X is greater if it is positive |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // OPPOSITE SIGN (CASE5) |
| // now, if the sign bits differ, x is greater if y is negative |
| if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { |
| res = ((y & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| // if both components are either bigger or smaller, |
| // it is clear what needs to be done |
| if (sig_x > sig_y && exp_x > exp_y) { |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| if (sig_x < sig_y && exp_x < exp_y) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if exp_x is 15 greater than exp_y, no need for compensation |
| if (exp_x - exp_y > 15) { // difference cannot be greater than 10^15 |
| if (x & MASK_SIGN) // if both are negative |
| res = 0; |
| else // if both are positive |
| res = 1; |
| BID_RETURN (res); |
| } |
| // if exp_x is 15 less than exp_y, no need for compensation |
| if (exp_y - exp_x > 15) { |
| if (x & MASK_SIGN) // if both are negative |
| res = 1; |
| else // if both are positive |
| res = 0; |
| BID_RETURN (res); |
| } |
| // if |exp_x - exp_y| < 15, it comes down to the compensated significand |
| if (exp_x > exp_y) { // to simplify the loop below, |
| // otherwise adjust the x significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_x, |
| mult_factor[exp_x - exp_y]); |
| // if postitive, return whichever significand is larger (converse if neg.) |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| res = (((sig_n_prime.w[1] > 0) |
| || sig_n_prime.w[0] > sig_y) ^ ((x & MASK_SIGN) == |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| // adjust the y significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_y, |
| mult_factor[exp_y - exp_x]); |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| res = (((sig_n_prime.w[1] == 0) |
| && (sig_x > sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_quiet_greater_equal (int *pres, UINT64 * px, |
| UINT64 * |
| py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| UINT64 y = *py; |
| #else |
| int |
| bid64_quiet_greater_equal (UINT64 x, |
| UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| int exp_x, exp_y; |
| UINT64 sig_x, sig_y; |
| UINT128 sig_n_prime; |
| char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; |
| |
| // NaN (CASE1) |
| // if either number is NAN, the comparison is unordered : return 1 |
| if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { |
| if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { |
| *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN |
| } |
| res = 0; |
| BID_RETURN (res); |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equal. |
| if (x == y) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if ((x & MASK_INF) == MASK_INF) { |
| // if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) } |
| if ((x & MASK_SIGN) == MASK_SIGN) { |
| // x is -inf, so it is less than y unless y is -inf |
| res = (((y & MASK_INF) == MASK_INF) |
| && (y & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } else { // x is pos_inf, no way for it to be less than y |
| res = 1; |
| BID_RETURN (res); |
| } |
| } else if ((y & MASK_INF) == MASK_INF) { |
| // x is finite, so: |
| // if y is +inf, x<y |
| // if y is -inf, x>y |
| res = ((y & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; |
| sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_x > 9999999999999999ull) { |
| non_canon_x = 1; |
| } else { |
| non_canon_x = 0; |
| } |
| } else { |
| exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; |
| sig_x = (x & MASK_BINARY_SIG1); |
| non_canon_x = 0; |
| } |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; |
| sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_y > 9999999999999999ull) { |
| non_canon_y = 1; |
| } else { |
| non_canon_y = 0; |
| } |
| } else { |
| exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; |
| sig_y = (y & MASK_BINARY_SIG1); |
| non_canon_y = 0; |
| } |
| // ZERO (CASE4) |
| // some properties: |
| // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater |
| // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => |
| // therefore ignore the exponent field |
| // (Any non-canonical # is considered 0) |
| if (non_canon_x || sig_x == 0) { |
| x_is_zero = 1; |
| } |
| if (non_canon_y || sig_y == 0) { |
| y_is_zero = 1; |
| } |
| if (x_is_zero && y_is_zero) { |
| // if both numbers are zero, they are equal |
| res = 1; |
| BID_RETURN (res); |
| } else if (x_is_zero) { |
| // if x is zero, it is lessthan if Y is positive |
| res = ((y & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } else if (y_is_zero) { |
| // if y is zero, X is less if it is negative |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // OPPOSITE SIGN (CASE5) |
| // now, if the sign bits differ, x is less than if y is positive |
| if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { |
| res = ((y & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| // if both components are either bigger or smaller |
| if (sig_x > sig_y && exp_x >= exp_y) { |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| if (sig_x < sig_y && exp_x <= exp_y) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if exp_x is 15 greater than exp_y, no need for compensation |
| if (exp_x - exp_y > 15) { |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| // difference cannot be greater than 10^15 |
| BID_RETURN (res); |
| } |
| // if exp_x is 15 less than exp_y, no need for compensation |
| if (exp_y - exp_x > 15) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if |exp_x - exp_y| < 15, it comes down to the compensated significand |
| if (exp_x > exp_y) { // to simplify the loop below, |
| // otherwise adjust the x significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_x, |
| mult_factor[exp_x - exp_y]); |
| // return 1 if values are equal |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // if postitive, return whichever significand abs is smaller |
| // (converse if negative) |
| res = (((sig_n_prime.w[1] == 0) |
| && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) != |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| // adjust the y significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_y, |
| mult_factor[exp_y - exp_x]); |
| // return 0 if values are equal |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // if positive, return whichever significand abs is smaller |
| // (converse if negative) |
| res = (((sig_n_prime.w[1] > 0) |
| || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) != |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_quiet_greater_unordered (int *pres, UINT64 * px, |
| UINT64 * |
| py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| UINT64 y = *py; |
| #else |
| int |
| bid64_quiet_greater_unordered (UINT64 x, |
| UINT64 y _EXC_FLAGS_PARAM |
| _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| int exp_x, exp_y; |
| UINT64 sig_x, sig_y; |
| UINT128 sig_n_prime; |
| char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; |
| |
| // NaN (CASE1) |
| // if either number is NAN, the comparison is unordered, rather than equal : |
| // return 0 |
| if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { |
| if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { |
| *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN |
| } |
| res = 1; |
| BID_RETURN (res); |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equal (not Greater). |
| if (x == y) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if ((x & MASK_INF) == MASK_INF) { |
| // if x is neg infinity, there is no way it is greater than y, return 0 |
| if (((x & MASK_SIGN) == MASK_SIGN)) { |
| res = 0; |
| BID_RETURN (res); |
| } else { |
| // x is pos infinity, it is greater, unless y is positive infinity => |
| // return y!=pos_infinity |
| res = (((y & MASK_INF) != MASK_INF) |
| || ((y & MASK_SIGN) == MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } else if ((y & MASK_INF) == MASK_INF) { |
| // x is finite, so if y is positive infinity, then x is less, return 0 |
| // if y is negative infinity, then x is greater, return 1 |
| res = ((y & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; |
| sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_x > 9999999999999999ull) { |
| non_canon_x = 1; |
| } else { |
| non_canon_x = 0; |
| } |
| } else { |
| exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; |
| sig_x = (x & MASK_BINARY_SIG1); |
| non_canon_x = 0; |
| } |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; |
| sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_y > 9999999999999999ull) { |
| non_canon_y = 1; |
| } else { |
| non_canon_y = 0; |
| } |
| } else { |
| exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; |
| sig_y = (y & MASK_BINARY_SIG1); |
| non_canon_y = 0; |
| } |
| // ZERO (CASE4) |
| // some properties: |
| // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater |
| // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => |
| // therefore ignore the exponent field |
| // (Any non-canonical # is considered 0) |
| if (non_canon_x || sig_x == 0) { |
| x_is_zero = 1; |
| } |
| if (non_canon_y || sig_y == 0) { |
| y_is_zero = 1; |
| } |
| // if both numbers are zero, neither is greater => return NOTGREATERTHAN |
| if (x_is_zero && y_is_zero) { |
| res = 0; |
| BID_RETURN (res); |
| } else if (x_is_zero) { |
| // is x is zero, it is greater if Y is negative |
| res = ((y & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } else if (y_is_zero) { |
| // is y is zero, X is greater if it is positive |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // OPPOSITE SIGN (CASE5) |
| // now, if the sign bits differ, x is greater if y is negative |
| if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { |
| res = ((y & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| // if both components are either bigger or smaller |
| if (sig_x > sig_y && exp_x >= exp_y) { |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| if (sig_x < sig_y && exp_x <= exp_y) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if exp_x is 15 greater than exp_y, no need for compensation |
| if (exp_x - exp_y > 15) { |
| // difference cannot be greater than 10^15 |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if exp_x is 15 less than exp_y, no need for compensation |
| if (exp_y - exp_x > 15) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if |exp_x - exp_y| < 15, it comes down to the compensated significand |
| if (exp_x > exp_y) { // to simplify the loop below, |
| // otherwise adjust the x significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_x, |
| mult_factor[exp_x - exp_y]); |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| res = (((sig_n_prime.w[1] > 0) |
| || sig_n_prime.w[0] > sig_y) ^ ((x & MASK_SIGN) == |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| // adjust the y significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_y, |
| mult_factor[exp_y - exp_x]); |
| // if postitive, return whichever significand is larger (converse if negative) |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| res = (((sig_n_prime.w[1] == 0) |
| && (sig_x > sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_quiet_less (int *pres, UINT64 * px, |
| UINT64 * |
| py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM) |
| { |
| UINT64 x = *px; |
| UINT64 y = *py; |
| #else |
| int |
| bid64_quiet_less (UINT64 x, |
| UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| int exp_x, exp_y; |
| UINT64 sig_x, sig_y; |
| UINT128 sig_n_prime; |
| char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; |
| |
| // NaN (CASE1) |
| // if either number is NAN, the comparison is unordered : return 0 |
| if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { |
| if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { |
| *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN |
| } |
| res = 0; |
| BID_RETURN (res); |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equal. |
| if (x == y) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if ((x & MASK_INF) == MASK_INF) { |
| // if x==neg_inf, { res = (y == neg_inf)?0:1; BID_RETURN (res) } |
| if ((x & MASK_SIGN) == MASK_SIGN) { |
| // x is -inf, so it is less than y unless y is -inf |
| res = (((y & MASK_INF) != MASK_INF) |
| || (y & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } else { |
| // x is pos_inf, no way for it to be less than y |
| res = 0; |
| BID_RETURN (res); |
| } |
| } else if ((y & MASK_INF) == MASK_INF) { |
| // x is finite, so: |
| // if y is +inf, x<y |
| // if y is -inf, x>y |
| res = ((y & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; |
| sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_x > 9999999999999999ull) { |
| non_canon_x = 1; |
| } else { |
| non_canon_x = 0; |
| } |
| } else { |
| exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; |
| sig_x = (x & MASK_BINARY_SIG1); |
| non_canon_x = 0; |
| } |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; |
| sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_y > 9999999999999999ull) { |
| non_canon_y = 1; |
| } else { |
| non_canon_y = 0; |
| } |
| } else { |
| exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; |
| sig_y = (y & MASK_BINARY_SIG1); |
| non_canon_y = 0; |
| } |
| // ZERO (CASE4) |
| // some properties: |
| // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater |
| // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => |
| // therefore ignore the exponent field |
| // (Any non-canonical # is considered 0) |
| if (non_canon_x || sig_x == 0) { |
| x_is_zero = 1; |
| } |
| if (non_canon_y || sig_y == 0) { |
| y_is_zero = 1; |
| } |
| if (x_is_zero && y_is_zero) { |
| // if both numbers are zero, they are equal |
| res = 0; |
| BID_RETURN (res); |
| } else if (x_is_zero) { |
| // if x is zero, it is lessthan if Y is positive |
| res = ((y & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } else if (y_is_zero) { |
| // if y is zero, X is less if it is negative |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // OPPOSITE SIGN (CASE5) |
| // now, if the sign bits differ, x is less than if y is positive |
| if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { |
| res = ((y & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| // if both components are either bigger or smaller, |
| // it is clear what needs to be done |
| if (sig_x > sig_y && exp_x >= exp_y) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| if (sig_x < sig_y && exp_x <= exp_y) { |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if exp_x is 15 greater than exp_y, no need for compensation |
| if (exp_x - exp_y > 15) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| // difference cannot be greater than 10^15 |
| BID_RETURN (res); |
| } |
| // if exp_x is 15 less than exp_y, no need for compensation |
| if (exp_y - exp_x > 15) { |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if |exp_x - exp_y| < 15, it comes down to the compensated significand |
| if (exp_x > exp_y) { // to simplify the loop below, |
| // otherwise adjust the x significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_x, |
| mult_factor[exp_x - exp_y]); |
| // return 0 if values are equal |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // if postitive, return whichever significand abs is smaller |
| // (converse if negative) |
| res = (((sig_n_prime.w[1] == 0) |
| && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) == |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| // adjust the y significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_y, |
| mult_factor[exp_y - exp_x]); |
| // return 0 if values are equal |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // if positive, return whichever significand abs is smaller |
| // (converse if negative) |
| res = (((sig_n_prime.w[1] > 0) |
| || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_quiet_less_equal (int *pres, UINT64 * px, |
| UINT64 * |
| py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| UINT64 y = *py; |
| #else |
| int |
| bid64_quiet_less_equal (UINT64 x, |
| UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| int exp_x, exp_y; |
| UINT64 sig_x, sig_y; |
| UINT128 sig_n_prime; |
| char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; |
| |
| // NaN (CASE1) |
| // if either number is NAN, the comparison is unordered, rather than equal : |
| // return 0 |
| if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { |
| if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { |
| *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN |
| } |
| res = 0; |
| BID_RETURN (res); |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equal (LESSEQUAL). |
| if (x == y) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if ((x & MASK_INF) == MASK_INF) { |
| if (((x & MASK_SIGN) == MASK_SIGN)) { |
| // if x is neg infinity, it must be lessthan or equal to y return 1 |
| res = 1; |
| BID_RETURN (res); |
| } else { |
| // x is pos infinity, it is greater, unless y is positive infinity => |
| // return y==pos_infinity |
| res = !(((y & MASK_INF) != MASK_INF) |
| || ((y & MASK_SIGN) == MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } else if ((y & MASK_INF) == MASK_INF) { |
| // x is finite, so if y is positive infinity, then x is less, return 1 |
| // if y is negative infinity, then x is greater, return 0 |
| res = ((y & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; |
| sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_x > 9999999999999999ull) { |
| non_canon_x = 1; |
| } else { |
| non_canon_x = 0; |
| } |
| } else { |
| exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; |
| sig_x = (x & MASK_BINARY_SIG1); |
| non_canon_x = 0; |
| } |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; |
| sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_y > 9999999999999999ull) { |
| non_canon_y = 1; |
| } else { |
| non_canon_y = 0; |
| } |
| } else { |
| exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; |
| sig_y = (y & MASK_BINARY_SIG1); |
| non_canon_y = 0; |
| } |
| // ZERO (CASE4) |
| // some properties: |
| // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater |
| // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => |
| // therefore ignore the exponent field |
| // (Any non-canonical # is considered 0) |
| if (non_canon_x || sig_x == 0) { |
| x_is_zero = 1; |
| } |
| if (non_canon_y || sig_y == 0) { |
| y_is_zero = 1; |
| } |
| if (x_is_zero && y_is_zero) { |
| // if both numbers are zero, they are equal -> return 1 |
| res = 1; |
| BID_RETURN (res); |
| } else if (x_is_zero) { |
| // if x is zero, it is lessthan if Y is positive |
| res = ((y & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } else if (y_is_zero) { |
| // if y is zero, X is less if it is negative |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // OPPOSITE SIGN (CASE5) |
| // now, if the sign bits differ, x is less than if y is positive |
| if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { |
| res = ((y & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| // if both components are either bigger or smaller |
| if (sig_x > sig_y && exp_x >= exp_y) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| if (sig_x < sig_y && exp_x <= exp_y) { |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if exp_x is 15 greater than exp_y, no need for compensation |
| if (exp_x - exp_y > 15) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| // difference cannot be greater than 10^15 |
| BID_RETURN (res); |
| } |
| // if exp_x is 15 less than exp_y, no need for compensation |
| if (exp_y - exp_x > 15) { |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if |exp_x - exp_y| < 15, it comes down to the compensated significand |
| if (exp_x > exp_y) { // to simplify the loop below, |
| // otherwise adjust the x significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_x, |
| mult_factor[exp_x - exp_y]); |
| // return 1 if values are equal |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // if postitive, return whichever significand abs is smaller |
| // (converse if negative) |
| res = (((sig_n_prime.w[1] == 0) |
| && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) == |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| // adjust the y significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_y, |
| mult_factor[exp_y - exp_x]); |
| // return 1 if values are equal |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // if positive, return whichever significand abs is smaller |
| // (converse if negative) |
| res = (((sig_n_prime.w[1] > 0) |
| || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_quiet_less_unordered (int *pres, UINT64 * px, |
| UINT64 * |
| py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| UINT64 y = *py; |
| #else |
| int |
| bid64_quiet_less_unordered (UINT64 x, |
| UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| int exp_x, exp_y; |
| UINT64 sig_x, sig_y; |
| UINT128 sig_n_prime; |
| char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; |
| |
| // NaN (CASE1) |
| // if either number is NAN, the comparison is unordered : return 0 |
| if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { |
| if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { |
| *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN |
| } |
| res = 1; |
| BID_RETURN (res); |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equal. |
| if (x == y) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if ((x & MASK_INF) == MASK_INF) { |
| // if x==neg_inf, { res = (y == neg_inf)?0:1; BID_RETURN (res) } |
| if ((x & MASK_SIGN) == MASK_SIGN) { |
| // x is -inf, so it is less than y unless y is -inf |
| res = (((y & MASK_INF) != MASK_INF) |
| || (y & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } else { |
| // x is pos_inf, no way for it to be less than y |
| res = 0; |
| BID_RETURN (res); |
| } |
| } else if ((y & MASK_INF) == MASK_INF) { |
| // x is finite, so: |
| // if y is +inf, x<y |
| // if y is -inf, x>y |
| res = ((y & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; |
| sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_x > 9999999999999999ull) { |
| non_canon_x = 1; |
| } else { |
| non_canon_x = 0; |
| } |
| } else { |
| exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; |
| sig_x = (x & MASK_BINARY_SIG1); |
| non_canon_x = 0; |
| } |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; |
| sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_y > 9999999999999999ull) { |
| non_canon_y = 1; |
| } else { |
| non_canon_y = 0; |
| } |
| } else { |
| exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; |
| sig_y = (y & MASK_BINARY_SIG1); |
| non_canon_y = 0; |
| } |
| // ZERO (CASE4) |
| // some properties: |
| // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater |
| // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => |
| // therefore ignore the exponent field |
| // (Any non-canonical # is considered 0) |
| if (non_canon_x || sig_x == 0) { |
| x_is_zero = 1; |
| } |
| if (non_canon_y || sig_y == 0) { |
| y_is_zero = 1; |
| } |
| if (x_is_zero && y_is_zero) { |
| // if both numbers are zero, they are equal |
| res = 0; |
| BID_RETURN (res); |
| } else if (x_is_zero) { |
| // if x is zero, it is lessthan if Y is positive |
| res = ((y & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } else if (y_is_zero) { |
| // if y is zero, X is less if it is negative |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // OPPOSITE SIGN (CASE5) |
| // now, if the sign bits differ, x is less than if y is positive |
| if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { |
| res = ((y & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| // if both components are either bigger or smaller |
| if (sig_x > sig_y && exp_x >= exp_y) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| if (sig_x < sig_y && exp_x <= exp_y) { |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if exp_x is 15 greater than exp_y, no need for compensation |
| if (exp_x - exp_y > 15) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| // difference cannot be greater than 10^15 |
| BID_RETURN (res); |
| } |
| // if exp_x is 15 less than exp_y, no need for compensation |
| if (exp_y - exp_x > 15) { |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if |exp_x - exp_y| < 15, it comes down to the compensated significand |
| if (exp_x > exp_y) { // to simplify the loop below, |
| // otherwise adjust the x significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_x, |
| mult_factor[exp_x - exp_y]); |
| // return 0 if values are equal |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // if postitive, return whichever significand abs is smaller |
| // (converse if negative) |
| res = (((sig_n_prime.w[1] == 0) |
| && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) == |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| // adjust the y significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_y, |
| mult_factor[exp_y - exp_x]); |
| // return 0 if values are equal |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // if positive, return whichever significand abs is smaller |
| // (converse if negative) |
| res = (((sig_n_prime.w[1] > 0) |
| || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_quiet_not_equal (int *pres, UINT64 * px, |
| UINT64 * |
| py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| UINT64 y = *py; |
| #else |
| int |
| bid64_quiet_not_equal (UINT64 x, |
| UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| int exp_x, exp_y, exp_t; |
| UINT64 sig_x, sig_y, sig_t; |
| char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y, lcv; |
| |
| // NaN (CASE1) |
| // if either number is NAN, the comparison is unordered, |
| // rather than equal : return 1 |
| if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { |
| if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { |
| *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN |
| } |
| res = 1; |
| BID_RETURN (res); |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equivalent. |
| if (x == y) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if (((x & MASK_INF) == MASK_INF) && ((y & MASK_INF) == MASK_INF)) { |
| res = (((x ^ y) & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // ONE INFINITY (CASE3') |
| if (((x & MASK_INF) == MASK_INF) || ((y & MASK_INF) == MASK_INF)) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; |
| sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_x > 9999999999999999ull) { |
| non_canon_x = 1; |
| } else { |
| non_canon_x = 0; |
| } |
| } else { |
| exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; |
| sig_x = (x & MASK_BINARY_SIG1); |
| non_canon_x = 0; |
| } |
| |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; |
| sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_y > 9999999999999999ull) { |
| non_canon_y = 1; |
| } else { |
| non_canon_y = 0; |
| } |
| } else { |
| exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; |
| sig_y = (y & MASK_BINARY_SIG1); |
| non_canon_y = 0; |
| } |
| |
| // ZERO (CASE4) |
| // some properties: |
| // (+ZERO==-ZERO) => therefore ignore the sign |
| // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => |
| // therefore ignore the exponent field |
| // (Any non-canonical # is considered 0) |
| if (non_canon_x || sig_x == 0) { |
| x_is_zero = 1; |
| } |
| if (non_canon_y || sig_y == 0) { |
| y_is_zero = 1; |
| } |
| |
| if (x_is_zero && y_is_zero) { |
| res = 0; |
| BID_RETURN (res); |
| } else if ((x_is_zero && !y_is_zero) || (!x_is_zero && y_is_zero)) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // OPPOSITE SIGN (CASE5) |
| // now, if the sign bits differ => not equal : return 1 |
| if ((x ^ y) & MASK_SIGN) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| if (exp_x > exp_y) { // to simplify the loop below, |
| SWAP (exp_x, exp_y, exp_t); // put the larger exp in y, |
| SWAP (sig_x, sig_y, sig_t); // and the smaller exp in x |
| } |
| |
| if (exp_y - exp_x > 15) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // difference cannot be greater than 10^16 |
| |
| for (lcv = 0; lcv < (exp_y - exp_x); lcv++) { |
| |
| // recalculate y's significand upwards |
| sig_y = sig_y * 10; |
| if (sig_y > 9999999999999999ull) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| } |
| |
| { |
| res = sig_y != sig_x; |
| BID_RETURN (res); |
| } |
| |
| } |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_quiet_not_greater (int *pres, UINT64 * px, |
| UINT64 * |
| py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| UINT64 y = *py; |
| #else |
| int |
| bid64_quiet_not_greater (UINT64 x, |
| UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| int exp_x, exp_y; |
| UINT64 sig_x, sig_y; |
| UINT128 sig_n_prime; |
| char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; |
| |
| // NaN (CASE1) |
| // if either number is NAN, the comparison is unordered, |
| // rather than equal : return 0 |
| if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { |
| if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { |
| *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN |
| } |
| res = 1; |
| BID_RETURN (res); |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equal (LESSEQUAL). |
| if (x == y) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if ((x & MASK_INF) == MASK_INF) { |
| // if x is neg infinity, it must be lessthan or equal to y return 1 |
| if (((x & MASK_SIGN) == MASK_SIGN)) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // x is pos infinity, it is greater, unless y is positive |
| // infinity => return y==pos_infinity |
| else { |
| res = !(((y & MASK_INF) != MASK_INF) |
| || ((y & MASK_SIGN) == MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } else if ((y & MASK_INF) == MASK_INF) { |
| // x is finite, so if y is positive infinity, then x is less, return 1 |
| // if y is negative infinity, then x is greater, return 0 |
| { |
| res = ((y & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| } |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; |
| sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_x > 9999999999999999ull) { |
| non_canon_x = 1; |
| } else { |
| non_canon_x = 0; |
| } |
| } else { |
| exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; |
| sig_x = (x & MASK_BINARY_SIG1); |
| non_canon_x = 0; |
| } |
| |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; |
| sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_y > 9999999999999999ull) { |
| non_canon_y = 1; |
| } else { |
| non_canon_y = 0; |
| } |
| } else { |
| exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; |
| sig_y = (y & MASK_BINARY_SIG1); |
| non_canon_y = 0; |
| } |
| |
| // ZERO (CASE4) |
| // some properties: |
| // (+ZERO==-ZERO) => therefore ignore the sign, and neither |
| // number is greater |
| // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => |
| // therefore ignore the exponent field |
| // (Any non-canonical # is considered 0) |
| if (non_canon_x || sig_x == 0) { |
| x_is_zero = 1; |
| } |
| if (non_canon_y || sig_y == 0) { |
| y_is_zero = 1; |
| } |
| // if both numbers are zero, they are equal -> return 1 |
| if (x_is_zero && y_is_zero) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // if x is zero, it is lessthan if Y is positive |
| else if (x_is_zero) { |
| res = ((y & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if y is zero, X is less if it is negative |
| else if (y_is_zero) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // OPPOSITE SIGN (CASE5) |
| // now, if the sign bits differ, x is less than if y is positive |
| if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { |
| res = ((y & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| // if both components are either bigger or smaller |
| if (sig_x > sig_y && exp_x >= exp_y) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| if (sig_x < sig_y && exp_x <= exp_y) { |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if exp_x is 15 greater than exp_y, no need for compensation |
| if (exp_x - exp_y > 15) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // difference cannot be greater than 10^15 |
| |
| // if exp_x is 15 less than exp_y, no need for compensation |
| if (exp_y - exp_x > 15) { |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if |exp_x - exp_y| < 15, it comes down to the compensated significand |
| if (exp_x > exp_y) { // to simplify the loop below, |
| |
| // otherwise adjust the x significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_x, |
| mult_factor[exp_x - exp_y]); |
| |
| // return 1 if values are equal |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // if postitive, return whichever significand abs is smaller |
| // (converse if negative) |
| { |
| res = (((sig_n_prime.w[1] == 0) |
| && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) == |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| // adjust the y significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_y, |
| mult_factor[exp_y - exp_x]); |
| |
| // return 1 if values are equal |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // if positive, return whichever significand abs is smaller |
| // (converse if negative) |
| { |
| res = (((sig_n_prime.w[1] > 0) |
| || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_quiet_not_less (int *pres, UINT64 * px, |
| UINT64 * |
| py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| UINT64 y = *py; |
| #else |
| int |
| bid64_quiet_not_less (UINT64 x, |
| UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| int exp_x, exp_y; |
| UINT64 sig_x, sig_y; |
| UINT128 sig_n_prime; |
| char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; |
| |
| // NaN (CASE1) |
| // if either number is NAN, the comparison is unordered : return 1 |
| if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { |
| if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { |
| *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN |
| } |
| res = 1; |
| BID_RETURN (res); |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equal. |
| if (x == y) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if ((x & MASK_INF) == MASK_INF) { |
| // if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) } |
| if ((x & MASK_SIGN) == MASK_SIGN) |
| // x is -inf, so it is less than y unless y is -inf |
| { |
| res = (((y & MASK_INF) == MASK_INF) |
| && (y & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } else |
| // x is pos_inf, no way for it to be less than y |
| { |
| res = 1; |
| BID_RETURN (res); |
| } |
| } else if ((y & MASK_INF) == MASK_INF) { |
| // x is finite, so: |
| // if y is +inf, x<y |
| // if y is -inf, x>y |
| { |
| res = ((y & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| } |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; |
| sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_x > 9999999999999999ull) { |
| non_canon_x = 1; |
| } else { |
| non_canon_x = 0; |
| } |
| } else { |
| exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; |
| sig_x = (x & MASK_BINARY_SIG1); |
| non_canon_x = 0; |
| } |
| |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; |
| sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_y > 9999999999999999ull) { |
| non_canon_y = 1; |
| } else { |
| non_canon_y = 0; |
| } |
| } else { |
| exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; |
| sig_y = (y & MASK_BINARY_SIG1); |
| non_canon_y = 0; |
| } |
| |
| // ZERO (CASE4) |
| // some properties: |
| // (+ZERO==-ZERO) => therefore ignore the sign, and neither |
| // number is greater |
| // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => |
| // therefore ignore the exponent field |
| // (Any non-canonical # is considered 0) |
| if (non_canon_x || sig_x == 0) { |
| x_is_zero = 1; |
| } |
| if (non_canon_y || sig_y == 0) { |
| y_is_zero = 1; |
| } |
| // if both numbers are zero, they are equal |
| if (x_is_zero && y_is_zero) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // if x is zero, it is lessthan if Y is positive |
| else if (x_is_zero) { |
| res = ((y & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if y is zero, X is less if it is negative |
| else if (y_is_zero) { |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // OPPOSITE SIGN (CASE5) |
| // now, if the sign bits differ, x is less than if y is positive |
| if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { |
| res = ((y & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| // if both components are either bigger or smaller |
| if (sig_x > sig_y && exp_x >= exp_y) { |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| if (sig_x < sig_y && exp_x <= exp_y) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if exp_x is 15 greater than exp_y, no need for compensation |
| if (exp_x - exp_y > 15) { |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // difference cannot be greater than 10^15 |
| |
| // if exp_x is 15 less than exp_y, no need for compensation |
| if (exp_y - exp_x > 15) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if |exp_x - exp_y| < 15, it comes down to the compensated significand |
| if (exp_x > exp_y) { // to simplify the loop below, |
| |
| // otherwise adjust the x significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_x, |
| mult_factor[exp_x - exp_y]); |
| |
| // return 0 if values are equal |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // if postitive, return whichever significand abs is smaller |
| // (converse if negative) |
| { |
| res = (((sig_n_prime.w[1] == 0) |
| && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) != |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| // adjust the y significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_y, |
| mult_factor[exp_y - exp_x]); |
| |
| // return 0 if values are equal |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // if positive, return whichever significand abs is smaller |
| // (converse if negative) |
| { |
| res = (((sig_n_prime.w[1] > 0) |
| || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) != |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_quiet_ordered (int *pres, UINT64 * px, |
| UINT64 * |
| py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| UINT64 y = *py; |
| #else |
| int |
| bid64_quiet_ordered (UINT64 x, |
| UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| |
| // NaN (CASE1) |
| // if either number is NAN, the comparison is ordered, rather than equal : return 0 |
| if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { |
| if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { |
| *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN |
| } |
| res = 0; |
| BID_RETURN (res); |
| } else { |
| res = 1; |
| BID_RETURN (res); |
| } |
| } |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_quiet_unordered (int *pres, UINT64 * px, |
| UINT64 * |
| py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| UINT64 y = *py; |
| #else |
| int |
| bid64_quiet_unordered (UINT64 x, |
| UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| |
| // NaN (CASE1) |
| // if either number is NAN, the comparison is unordered, |
| // rather than equal : return 0 |
| if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { |
| if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) { |
| *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN |
| } |
| res = 1; |
| BID_RETURN (res); |
| } else { |
| res = 0; |
| BID_RETURN (res); |
| } |
| } |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_signaling_greater (int *pres, UINT64 * px, |
| UINT64 * |
| py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| UINT64 y = *py; |
| #else |
| int |
| bid64_signaling_greater (UINT64 x, |
| UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| int exp_x, exp_y; |
| UINT64 sig_x, sig_y; |
| UINT128 sig_n_prime; |
| char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; |
| |
| // NaN (CASE1) |
| // if either number is NAN, the comparison is unordered, |
| // rather than equal : return 0 |
| if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { |
| *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN |
| res = 0; |
| BID_RETURN (res); |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equal (not Greater). |
| if (x == y) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if ((x & MASK_INF) == MASK_INF) { |
| // if x is neg infinity, there is no way it is greater than y, return 0 |
| if (((x & MASK_SIGN) == MASK_SIGN)) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // x is pos infinity, it is greater, |
| // unless y is positive infinity => return y!=pos_infinity |
| else { |
| res = (((y & MASK_INF) != MASK_INF) |
| || ((y & MASK_SIGN) == MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } else if ((y & MASK_INF) == MASK_INF) { |
| // x is finite, so if y is positive infinity, then x is less, return 0 |
| // if y is negative infinity, then x is greater, return 1 |
| { |
| res = ((y & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| } |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; |
| sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_x > 9999999999999999ull) { |
| non_canon_x = 1; |
| } else { |
| non_canon_x = 0; |
| } |
| } else { |
| exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; |
| sig_x = (x & MASK_BINARY_SIG1); |
| non_canon_x = 0; |
| } |
| |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; |
| sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_y > 9999999999999999ull) { |
| non_canon_y = 1; |
| } else { |
| non_canon_y = 0; |
| } |
| } else { |
| exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; |
| sig_y = (y & MASK_BINARY_SIG1); |
| non_canon_y = 0; |
| } |
| |
| // ZERO (CASE4) |
| // some properties: |
| // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater |
| // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => |
| // therefore ignore the exponent field |
| // (Any non-canonical # is considered 0) |
| if (non_canon_x || sig_x == 0) { |
| x_is_zero = 1; |
| } |
| if (non_canon_y || sig_y == 0) { |
| y_is_zero = 1; |
| } |
| // if both numbers are zero, neither is greater => return NOTGREATERTHAN |
| if (x_is_zero && y_is_zero) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // is x is zero, it is greater if Y is negative |
| else if (x_is_zero) { |
| res = ((y & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // is y is zero, X is greater if it is positive |
| else if (y_is_zero) { |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // OPPOSITE SIGN (CASE5) |
| // now, if the sign bits differ, x is greater if y is negative |
| if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { |
| res = ((y & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| |
| // if both components are either bigger or smaller |
| if (sig_x > sig_y && exp_x >= exp_y) { |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| if (sig_x < sig_y && exp_x <= exp_y) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if exp_x is 15 greater than exp_y, no need for compensation |
| if (exp_x - exp_y > 15) { |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // difference cannot be greater than 10^15 |
| |
| // if exp_x is 15 less than exp_y, no need for compensation |
| if (exp_y - exp_x > 15) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if |exp_x - exp_y| < 15, it comes down to the compensated significand |
| if (exp_x > exp_y) { // to simplify the loop below, |
| |
| // otherwise adjust the x significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_x, |
| mult_factor[exp_x - exp_y]); |
| |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| |
| { |
| res = (((sig_n_prime.w[1] > 0) |
| || sig_n_prime.w[0] > sig_y) ^ ((x & MASK_SIGN) == |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| // adjust the y significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_y, |
| mult_factor[exp_y - exp_x]); |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| { |
| res = (((sig_n_prime.w[1] == 0) |
| && (sig_x > sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_signaling_greater_equal (int *pres, UINT64 * px, |
| UINT64 * |
| py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| UINT64 y = *py; |
| #else |
| int |
| bid64_signaling_greater_equal (UINT64 x, |
| UINT64 y _EXC_FLAGS_PARAM |
| _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| int exp_x, exp_y; |
| UINT64 sig_x, sig_y; |
| UINT128 sig_n_prime; |
| char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; |
| |
| // NaN (CASE1) |
| // if either number is NAN, the comparison is unordered : return 1 |
| if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { |
| *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN |
| res = 0; |
| BID_RETURN (res); |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equal. |
| if (x == y) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if ((x & MASK_INF) == MASK_INF) { |
| // if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) } |
| if ((x & MASK_SIGN) == MASK_SIGN) |
| // x is -inf, so it is less than y unless y is -inf |
| { |
| res = (((y & MASK_INF) == MASK_INF) |
| && (y & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } else |
| // x is pos_inf, no way for it to be less than y |
| { |
| res = 1; |
| BID_RETURN (res); |
| } |
| } else if ((y & MASK_INF) == MASK_INF) { |
| // x is finite, so: |
| // if y is +inf, x<y |
| // if y is -inf, x>y |
| { |
| res = ((y & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| } |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; |
| sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_x > 9999999999999999ull) { |
| non_canon_x = 1; |
| } else { |
| non_canon_x = 0; |
| } |
| } else { |
| exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; |
| sig_x = (x & MASK_BINARY_SIG1); |
| non_canon_x = 0; |
| } |
| |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; |
| sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_y > 9999999999999999ull) { |
| non_canon_y = 1; |
| } else { |
| non_canon_y = 0; |
| } |
| } else { |
| exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; |
| sig_y = (y & MASK_BINARY_SIG1); |
| non_canon_y = 0; |
| } |
| |
| // ZERO (CASE4) |
| // some properties: |
| // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater |
| // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => |
| // therefore ignore the exponent field |
| // (Any non-canonical # is considered 0) |
| if (non_canon_x || sig_x == 0) { |
| x_is_zero = 1; |
| } |
| if (non_canon_y || sig_y == 0) { |
| y_is_zero = 1; |
| } |
| // if both numbers are zero, they are equal |
| if (x_is_zero && y_is_zero) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // if x is zero, it is lessthan if Y is positive |
| else if (x_is_zero) { |
| res = ((y & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if y is zero, X is less if it is negative |
| else if (y_is_zero) { |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // OPPOSITE SIGN (CASE5) |
| // now, if the sign bits differ, x is less than if y is positive |
| if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { |
| res = ((y & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| // if both components are either bigger or smaller |
| if (sig_x > sig_y && exp_x >= exp_y) { |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| if (sig_x < sig_y && exp_x <= exp_y) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if exp_x is 15 greater than exp_y, no need for compensation |
| if (exp_x - exp_y > 15) { |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // difference cannot be greater than 10^15 |
| |
| // if exp_x is 15 less than exp_y, no need for compensation |
| if (exp_y - exp_x > 15) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if |exp_x - exp_y| < 15, it comes down to the compensated significand |
| if (exp_x > exp_y) { // to simplify the loop below, |
| |
| // otherwise adjust the x significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_x, |
| mult_factor[exp_x - exp_y]); |
| |
| // return 1 if values are equal |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // if postitive, return whichever significand abs is smaller |
| // (converse if negative) |
| { |
| res = (((sig_n_prime.w[1] == 0) |
| && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) != |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| // adjust the y significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_y, |
| mult_factor[exp_y - exp_x]); |
| |
| // return 0 if values are equal |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // if positive, return whichever significand abs is smaller |
| // (converse if negative) |
| { |
| res = (((sig_n_prime.w[1] > 0) |
| || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) != |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_signaling_greater_unordered (int *pres, UINT64 * px, |
| UINT64 * |
| py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| UINT64 y = *py; |
| #else |
| int |
| bid64_signaling_greater_unordered (UINT64 x, |
| UINT64 y _EXC_FLAGS_PARAM |
| _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| int exp_x, exp_y; |
| UINT64 sig_x, sig_y; |
| UINT128 sig_n_prime; |
| char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; |
| |
| // NaN (CASE1) |
| // if either number is NAN, the comparison is unordered, |
| // rather than equal : return 0 |
| if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { |
| *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN |
| res = 1; |
| BID_RETURN (res); |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equal (not Greater). |
| if (x == y) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if ((x & MASK_INF) == MASK_INF) { |
| // if x is neg infinity, there is no way it is greater than y, return 0 |
| if (((x & MASK_SIGN) == MASK_SIGN)) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // x is pos infinity, it is greater, |
| // unless y is positive infinity => return y!=pos_infinity |
| else { |
| res = (((y & MASK_INF) != MASK_INF) |
| || ((y & MASK_SIGN) == MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } else if ((y & MASK_INF) == MASK_INF) { |
| // x is finite, so if y is positive infinity, then x is less, return 0 |
| // if y is negative infinity, then x is greater, return 1 |
| { |
| res = ((y & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| } |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; |
| sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_x > 9999999999999999ull) { |
| non_canon_x = 1; |
| } else { |
| non_canon_x = 0; |
| } |
| } else { |
| exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; |
| sig_x = (x & MASK_BINARY_SIG1); |
| non_canon_x = 0; |
| } |
| |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; |
| sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_y > 9999999999999999ull) { |
| non_canon_y = 1; |
| } else { |
| non_canon_y = 0; |
| } |
| } else { |
| exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; |
| sig_y = (y & MASK_BINARY_SIG1); |
| non_canon_y = 0; |
| } |
| |
| // ZERO (CASE4) |
| // some properties: |
| // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater |
| // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => |
| // therefore ignore the exponent field |
| // (Any non-canonical # is considered 0) |
| if (non_canon_x || sig_x == 0) { |
| x_is_zero = 1; |
| } |
| if (non_canon_y || sig_y == 0) { |
| y_is_zero = 1; |
| } |
| // if both numbers are zero, neither is greater => return NOTGREATERTHAN |
| if (x_is_zero && y_is_zero) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // is x is zero, it is greater if Y is negative |
| else if (x_is_zero) { |
| res = ((y & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // is y is zero, X is greater if it is positive |
| else if (y_is_zero) { |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // OPPOSITE SIGN (CASE5) |
| // now, if the sign bits differ, x is greater if y is negative |
| if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { |
| res = ((y & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| |
| // if both components are either bigger or smaller |
| if (sig_x > sig_y && exp_x >= exp_y) { |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| if (sig_x < sig_y && exp_x <= exp_y) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if exp_x is 15 greater than exp_y, no need for compensation |
| if (exp_x - exp_y > 15) { |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // difference cannot be greater than 10^15 |
| |
| // if exp_x is 15 less than exp_y, no need for compensation |
| if (exp_y - exp_x > 15) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if |exp_x - exp_y| < 15, it comes down to the compensated significand |
| if (exp_x > exp_y) { // to simplify the loop below, |
| |
| // otherwise adjust the x significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_x, |
| mult_factor[exp_x - exp_y]); |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| |
| { |
| res = (((sig_n_prime.w[1] > 0) |
| || sig_n_prime.w[0] > sig_y) ^ ((x & MASK_SIGN) == |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| // adjust the y significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_y, |
| mult_factor[exp_y - exp_x]); |
| |
| // if postitive, return whichever significand is larger |
| // (converse if negative) |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| { |
| res = (((sig_n_prime.w[1] == 0) |
| && (sig_x > sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_signaling_less (int *pres, UINT64 * px, |
| UINT64 * |
| py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| UINT64 y = *py; |
| #else |
| int |
| bid64_signaling_less (UINT64 x, |
| UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| int exp_x, exp_y; |
| UINT64 sig_x, sig_y; |
| UINT128 sig_n_prime; |
| char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; |
| |
| // NaN (CASE1) |
| // if either number is NAN, the comparison is unordered : return 0 |
| if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { |
| *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN |
| res = 0; |
| BID_RETURN (res); |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equal. |
| if (x == y) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if ((x & MASK_INF) == MASK_INF) { |
| // if x==neg_inf, { res = (y == neg_inf)?0:1; BID_RETURN (res) } |
| if ((x & MASK_SIGN) == MASK_SIGN) |
| // x is -inf, so it is less than y unless y is -inf |
| { |
| res = (((y & MASK_INF) != MASK_INF) |
| || (y & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } else |
| // x is pos_inf, no way for it to be less than y |
| { |
| res = 0; |
| BID_RETURN (res); |
| } |
| } else if ((y & MASK_INF) == MASK_INF) { |
| // x is finite, so: |
| // if y is +inf, x<y |
| // if y is -inf, x>y |
| { |
| res = ((y & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| } |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; |
| sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_x > 9999999999999999ull) { |
| non_canon_x = 1; |
| } else { |
| non_canon_x = 0; |
| } |
| } else { |
| exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; |
| sig_x = (x & MASK_BINARY_SIG1); |
| non_canon_x = 0; |
| } |
| |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; |
| sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_y > 9999999999999999ull) { |
| non_canon_y = 1; |
| } else { |
| non_canon_y = 0; |
| } |
| } else { |
| exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; |
| sig_y = (y & MASK_BINARY_SIG1); |
| non_canon_y = 0; |
| } |
| |
| // ZERO (CASE4) |
| // some properties: |
| // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater |
| // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => |
| // therefore ignore the exponent field |
| // (Any non-canonical # is considered 0) |
| if (non_canon_x || sig_x == 0) { |
| x_is_zero = 1; |
| } |
| if (non_canon_y || sig_y == 0) { |
| y_is_zero = 1; |
| } |
| // if both numbers are zero, they are equal |
| if (x_is_zero && y_is_zero) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // if x is zero, it is lessthan if Y is positive |
| else if (x_is_zero) { |
| res = ((y & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if y is zero, X is less if it is negative |
| else if (y_is_zero) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // OPPOSITE SIGN (CASE5) |
| // now, if the sign bits differ, x is less than if y is positive |
| if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { |
| res = ((y & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| // if both components are either bigger or smaller |
| if (sig_x > sig_y && exp_x >= exp_y) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| if (sig_x < sig_y && exp_x <= exp_y) { |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if exp_x is 15 greater than exp_y, no need for compensation |
| if (exp_x - exp_y > 15) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // difference cannot be greater than 10^15 |
| |
| // if exp_x is 15 less than exp_y, no need for compensation |
| if (exp_y - exp_x > 15) { |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if |exp_x - exp_y| < 15, it comes down to the compensated significand |
| if (exp_x > exp_y) { // to simplify the loop below, |
| |
| // otherwise adjust the x significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_x, |
| mult_factor[exp_x - exp_y]); |
| |
| // return 0 if values are equal |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // if postitive, return whichever significand abs is smaller |
| // (converse if negative) |
| { |
| res = (((sig_n_prime.w[1] == 0) |
| && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) == |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| // adjust the y significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_y, |
| mult_factor[exp_y - exp_x]); |
| |
| // return 0 if values are equal |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // if positive, return whichever significand abs is smaller |
| // (converse if negative) |
| { |
| res = (((sig_n_prime.w[1] > 0) |
| || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_signaling_less_equal (int *pres, UINT64 * px, |
| UINT64 * |
| py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| UINT64 y = *py; |
| #else |
| int |
| bid64_signaling_less_equal (UINT64 x, |
| UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| int exp_x, exp_y; |
| UINT64 sig_x, sig_y; |
| UINT128 sig_n_prime; |
| char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; |
| |
| // NaN (CASE1) |
| // if either number is NAN, the comparison is unordered, |
| // rather than equal : return 0 |
| if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { |
| *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN |
| res = 0; |
| BID_RETURN (res); |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equal (LESSEQUAL). |
| if (x == y) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if ((x & MASK_INF) == MASK_INF) { |
| // if x is neg infinity, it must be lessthan or equal to y return 1 |
| if (((x & MASK_SIGN) == MASK_SIGN)) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // x is pos infinity, it is greater, |
| // unless y is positive infinity => return y==pos_infinity |
| else { |
| res = !(((y & MASK_INF) != MASK_INF) |
| || ((y & MASK_SIGN) == MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } else if ((y & MASK_INF) == MASK_INF) { |
| // x is finite, so if y is positive infinity, then x is less, return 1 |
| // if y is negative infinity, then x is greater, return 0 |
| { |
| res = ((y & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| } |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; |
| sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_x > 9999999999999999ull) { |
| non_canon_x = 1; |
| } else { |
| non_canon_x = 0; |
| } |
| } else { |
| exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; |
| sig_x = (x & MASK_BINARY_SIG1); |
| non_canon_x = 0; |
| } |
| |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; |
| sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_y > 9999999999999999ull) { |
| non_canon_y = 1; |
| } else { |
| non_canon_y = 0; |
| } |
| } else { |
| exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; |
| sig_y = (y & MASK_BINARY_SIG1); |
| non_canon_y = 0; |
| } |
| |
| // ZERO (CASE4) |
| // some properties: |
| // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater |
| // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => |
| // therefore ignore the exponent field |
| // (Any non-canonical # is considered 0) |
| if (non_canon_x || sig_x == 0) { |
| x_is_zero = 1; |
| } |
| if (non_canon_y || sig_y == 0) { |
| y_is_zero = 1; |
| } |
| // if both numbers are zero, they are equal -> return 1 |
| if (x_is_zero && y_is_zero) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // if x is zero, it is lessthan if Y is positive |
| else if (x_is_zero) { |
| res = ((y & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if y is zero, X is less if it is negative |
| else if (y_is_zero) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // OPPOSITE SIGN (CASE5) |
| // now, if the sign bits differ, x is less than if y is positive |
| if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { |
| res = ((y & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| // if both components are either bigger or smaller |
| if (sig_x > sig_y && exp_x >= exp_y) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| if (sig_x < sig_y && exp_x <= exp_y) { |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if exp_x is 15 greater than exp_y, no need for compensation |
| if (exp_x - exp_y > 15) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // difference cannot be greater than 10^15 |
| |
| // if exp_x is 15 less than exp_y, no need for compensation |
| if (exp_y - exp_x > 15) { |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if |exp_x - exp_y| < 15, it comes down to the compensated significand |
| if (exp_x > exp_y) { // to simplify the loop below, |
| |
| // otherwise adjust the x significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_x, |
| mult_factor[exp_x - exp_y]); |
| |
| // return 1 if values are equal |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // if postitive, return whichever significand abs is smaller |
| // (converse if negative) |
| { |
| res = (((sig_n_prime.w[1] == 0) |
| && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) == |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| // adjust the y significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_y, |
| mult_factor[exp_y - exp_x]); |
| |
| // return 1 if values are equal |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // if positive, return whichever significand abs is smaller |
| // (converse if negative) |
| { |
| res = (((sig_n_prime.w[1] > 0) |
| || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_signaling_less_unordered (int *pres, UINT64 * px, |
| UINT64 * |
| py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| UINT64 y = *py; |
| #else |
| int |
| bid64_signaling_less_unordered (UINT64 x, |
| UINT64 y _EXC_FLAGS_PARAM |
| _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| int exp_x, exp_y; |
| UINT64 sig_x, sig_y; |
| UINT128 sig_n_prime; |
| char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; |
| |
| // NaN (CASE1) |
| // if either number is NAN, the comparison is unordered : return 0 |
| if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { |
| *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN |
| res = 1; |
| BID_RETURN (res); |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equal. |
| if (x == y) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if ((x & MASK_INF) == MASK_INF) { |
| // if x==neg_inf, { res = (y == neg_inf)?0:1; BID_RETURN (res) } |
| if ((x & MASK_SIGN) == MASK_SIGN) |
| // x is -inf, so it is less than y unless y is -inf |
| { |
| res = (((y & MASK_INF) != MASK_INF) |
| || (y & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } else |
| // x is pos_inf, no way for it to be less than y |
| { |
| res = 0; |
| BID_RETURN (res); |
| } |
| } else if ((y & MASK_INF) == MASK_INF) { |
| // x is finite, so: |
| // if y is +inf, x<y |
| // if y is -inf, x>y |
| { |
| res = ((y & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| } |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; |
| sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_x > 9999999999999999ull) { |
| non_canon_x = 1; |
| } else { |
| non_canon_x = 0; |
| } |
| } else { |
| exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; |
| sig_x = (x & MASK_BINARY_SIG1); |
| non_canon_x = 0; |
| } |
| |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; |
| sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_y > 9999999999999999ull) { |
| non_canon_y = 1; |
| } else { |
| non_canon_y = 0; |
| } |
| } else { |
| exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; |
| sig_y = (y & MASK_BINARY_SIG1); |
| non_canon_y = 0; |
| } |
| |
| // ZERO (CASE4) |
| // some properties: |
| // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater |
| // (ZERO x 10^A == ZERO x 10^B) for any valid A, B => |
| // therefore ignore the exponent field |
| // (Any non-canonical # is considered 0) |
| if (non_canon_x || sig_x == 0) { |
| x_is_zero = 1; |
| } |
| if (non_canon_y || sig_y == 0) { |
| y_is_zero = 1; |
| } |
| // if both numbers are zero, they are equal |
| if (x_is_zero && y_is_zero) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // if x is zero, it is lessthan if Y is positive |
| else if (x_is_zero) { |
| res = ((y & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if y is zero, X is less if it is negative |
| else if (y_is_zero) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // OPPOSITE SIGN (CASE5) |
| // now, if the sign bits differ, x is less than if y is positive |
| if (((x ^ y) & MASK_SIGN) == MASK_SIGN) { |
| res = ((y & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // REDUNDANT REPRESENTATIONS (CASE6) |
| // if both components are either bigger or smaller |
| if (sig_x > sig_y && exp_x >= exp_y) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| if (sig_x < sig_y && exp_x <= exp_y) { |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if exp_x is 15 greater than exp_y, no need for compensation |
| if (exp_x - exp_y > 15) { |
| res = ((x & MASK_SIGN) == MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // difference cannot be greater than 10^15 |
| |
| // if exp_x is 15 less than exp_y, no need for compensation |
| if (exp_y - exp_x > 15) { |
| res = ((x & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| // if |exp_x - exp_y| < 15, it comes down to the compensated significand |
| if (exp_x > exp_y) { // to simplify the loop below, |
| |
| // otherwise adjust the x significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_x, |
| mult_factor[exp_x - exp_y]); |
| |
| // return 0 if values are equal |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // if postitive, return whichever significand abs is smaller |
| // (converse if negative) |
| { |
| res = (((sig_n_prime.w[1] == 0) |
| && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) == |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| // adjust the y significand upwards |
| __mul_64x64_to_128MACH (sig_n_prime, sig_y, |
| mult_factor[exp_y - exp_x]); |
| |
| // return 0 if values are equal |
| if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { |
| res = 0; |
| BID_RETURN (res); |
| } |
| // if positive, return whichever significand abs is smaller |
| // (converse if negative) |
| { |
| res = (((sig_n_prime.w[1] > 0) |
| || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == |
| MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| void |
| bid64_signaling_not_greater (int *pres, UINT64 * px, |
| UINT64 * |
| py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT64 x = *px; |
| UINT64 y = *py; |
| #else |
| int |
| bid64_signaling_not_greater (UINT64 x, |
| UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| #endif |
| int res; |
| int exp_x, exp_y; |
| UINT64 sig_x, sig_y; |
| UINT128 sig_n_prime; |
| char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y; |
| |
| // NaN (CASE1) |
| // if either number is NAN, the comparison is unordered, |
| // rather than equal : return 0 |
| if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) { |
| *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN |
| res = 1; |
| BID_RETURN (res); |
| } |
| // SIMPLE (CASE2) |
| // if all the bits are the same, these numbers are equal (LESSEQUAL). |
| if (x == y) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // INFINITY (CASE3) |
| if ((x & MASK_INF) == MASK_INF) { |
| // if x is neg infinity, it must be lessthan or equal to y return 1 |
| if (((x & MASK_SIGN) == MASK_SIGN)) { |
| res = 1; |
| BID_RETURN (res); |
| } |
| // x is pos infinity, it is greater, |
| // unless y is positive infinity => return y==pos_infinity |
| else { |
| res = !(((y & MASK_INF) != MASK_INF) |
| || ((y & MASK_SIGN) == MASK_SIGN)); |
| BID_RETURN (res); |
| } |
| } else if ((y & MASK_INF) == MASK_INF) { |
| // x is finite, so if y is positive infinity, then x is less, return 1 |
| // if y is negative infinity, then x is greater, return 0 |
| { |
| res = ((y & MASK_SIGN) != MASK_SIGN); |
| BID_RETURN (res); |
| } |
| } |
| // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => |
| if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { |
| exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; |
| sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; |
| if (sig_x > |