| /* Copyright (C) 2007-2017 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| Under Section 7 of GPL version 3, you are granted additional |
| permissions described in the GCC Runtime Library Exception, version |
| 3.1, as published by the Free Software Foundation. |
| |
| You should have received a copy of the GNU General Public License and |
| a copy of the GCC Runtime Library Exception along with this program; |
| see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| /***************************************************************************** |
| * BID64 square root |
| ***************************************************************************** |
| * |
| * Algorithm description: |
| * |
| * if(exponent_x is odd) |
| * scale coefficient_x by 10, adjust exponent |
| * - get lower estimate for number of digits in coefficient_x |
| * - scale coefficient x to between 31 and 33 decimal digits |
| * - in parallel, check for exact case and return if true |
| * - get high part of result coefficient using double precision sqrt |
| * - compute remainder and refine coefficient in one iteration (which |
| * modifies it by at most 1) |
| * - result exponent is easy to compute from the adjusted arg. exponent |
| * |
| ****************************************************************************/ |
| |
| #include "bid_internal.h" |
| #include "bid_sqrt_macros.h" |
| #ifdef UNCHANGED_BINARY_STATUS_FLAGS |
| #include <fenv.h> |
| |
| #define FE_ALL_FLAGS FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW|FE_UNDERFLOW|FE_INEXACT |
| #endif |
| |
| extern double sqrt (double); |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| |
| void |
| bid64_sqrt (UINT64 * pres, |
| UINT64 * |
| px _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM |
| _EXC_INFO_PARAM) { |
| UINT64 x; |
| #else |
| |
| UINT64 |
| bid64_sqrt (UINT64 x _RND_MODE_PARAM _EXC_FLAGS_PARAM |
| _EXC_MASKS_PARAM _EXC_INFO_PARAM) { |
| #endif |
| UINT128 CA, CT; |
| UINT64 sign_x, coefficient_x; |
| UINT64 Q, Q2, A10, C4, R, R2, QE, res; |
| SINT64 D; |
| int_double t_scale; |
| int_float tempx; |
| double da, dq, da_h, da_l, dqe; |
| int exponent_x, exponent_q, bin_expon_cx; |
| int digits_x; |
| int scale; |
| #ifdef UNCHANGED_BINARY_STATUS_FLAGS |
| fexcept_t binaryflags = 0; |
| #endif |
| |
| #if DECIMAL_CALL_BY_REFERENCE |
| #if !DECIMAL_GLOBAL_ROUNDING |
| _IDEC_round rnd_mode = *prnd_mode; |
| #endif |
| x = *px; |
| #endif |
| |
| // unpack arguments, check for NaN or Infinity |
| if (!unpack_BID64 (&sign_x, &exponent_x, &coefficient_x, x)) { |
| // x is Inf. or NaN or 0 |
| if ((x & INFINITY_MASK64) == INFINITY_MASK64) { |
| res = coefficient_x; |
| if ((coefficient_x & SSNAN_MASK64) == SINFINITY_MASK64) // -Infinity |
| { |
| res = NAN_MASK64; |
| #ifdef SET_STATUS_FLAGS |
| __set_status_flags (pfpsf, INVALID_EXCEPTION); |
| #endif |
| } |
| #ifdef SET_STATUS_FLAGS |
| if ((x & SNAN_MASK64) == SNAN_MASK64) // sNaN |
| __set_status_flags (pfpsf, INVALID_EXCEPTION); |
| #endif |
| BID_RETURN (res & QUIET_MASK64); |
| } |
| // x is 0 |
| exponent_x = (exponent_x + DECIMAL_EXPONENT_BIAS) >> 1; |
| res = sign_x | (((UINT64) exponent_x) << 53); |
| BID_RETURN (res); |
| } |
| // x<0? |
| if (sign_x && coefficient_x) { |
| res = NAN_MASK64; |
| #ifdef SET_STATUS_FLAGS |
| __set_status_flags (pfpsf, INVALID_EXCEPTION); |
| #endif |
| BID_RETURN (res); |
| } |
| #ifdef UNCHANGED_BINARY_STATUS_FLAGS |
| (void) fegetexceptflag (&binaryflags, FE_ALL_FLAGS); |
| #endif |
| //--- get number of bits in the coefficient of x --- |
| tempx.d = (float) coefficient_x; |
| bin_expon_cx = ((tempx.i >> 23) & 0xff) - 0x7f; |
| digits_x = estimate_decimal_digits[bin_expon_cx]; |
| // add test for range |
| if (coefficient_x >= power10_index_binexp[bin_expon_cx]) |
| digits_x++; |
| |
| A10 = coefficient_x; |
| if (exponent_x & 1) { |
| A10 = (A10 << 2) + A10; |
| A10 += A10; |
| } |
| |
| dqe = sqrt ((double) A10); |
| QE = (UINT32) dqe; |
| if (QE * QE == A10) { |
| res = |
| very_fast_get_BID64 (0, (exponent_x + DECIMAL_EXPONENT_BIAS) >> 1, |
| QE); |
| #ifdef UNCHANGED_BINARY_STATUS_FLAGS |
| (void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS); |
| #endif |
| BID_RETURN (res); |
| } |
| // if exponent is odd, scale coefficient by 10 |
| scale = 31 - digits_x; |
| exponent_q = exponent_x - scale; |
| scale += (exponent_q & 1); // exp. bias is even |
| |
| CT = power10_table_128[scale]; |
| __mul_64x128_short (CA, coefficient_x, CT); |
| |
| // 2^64 |
| t_scale.i = 0x43f0000000000000ull; |
| // convert CA to DP |
| da_h = CA.w[1]; |
| da_l = CA.w[0]; |
| da = da_h * t_scale.d + da_l; |
| |
| dq = sqrt (da); |
| |
| Q = (UINT64) dq; |
| |
| // get sign(sqrt(CA)-Q) |
| R = CA.w[0] - Q * Q; |
| R = ((SINT64) R) >> 63; |
| D = R + R + 1; |
| |
| exponent_q = (exponent_q + DECIMAL_EXPONENT_BIAS) >> 1; |
| |
| #ifdef SET_STATUS_FLAGS |
| __set_status_flags (pfpsf, INEXACT_EXCEPTION); |
| #endif |
| |
| #ifndef IEEE_ROUND_NEAREST |
| #ifndef IEEE_ROUND_NEAREST_TIES_AWAY |
| if (!((rnd_mode) & 3)) { |
| #endif |
| #endif |
| |
| // midpoint to check |
| Q2 = Q + Q + D; |
| C4 = CA.w[0] << 2; |
| |
| // get sign(-sqrt(CA)+Midpoint) |
| R2 = Q2 * Q2 - C4; |
| R2 = ((SINT64) R2) >> 63; |
| |
| // adjust Q if R!=R2 |
| Q += (D & (R ^ R2)); |
| #ifndef IEEE_ROUND_NEAREST |
| #ifndef IEEE_ROUND_NEAREST_TIES_AWAY |
| } else { |
| C4 = CA.w[0]; |
| Q += D; |
| if ((SINT64) (Q * Q - C4) > 0) |
| Q--; |
| if (rnd_mode == ROUNDING_UP) |
| Q++; |
| } |
| #endif |
| #endif |
| |
| res = fast_get_BID64 (0, exponent_q, Q); |
| #ifdef UNCHANGED_BINARY_STATUS_FLAGS |
| (void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS); |
| #endif |
| BID_RETURN (res); |
| } |
| |
| |
| TYPE0_FUNCTION_ARG1 (UINT64, bid64q_sqrt, x) |
| |
| UINT256 M256, C4, C8; |
| UINT128 CX, CX2, A10, S2, T128, CS, CSM, CS2, C256, CS1, |
| mul_factor2_long = { {0x0ull, 0x0ull} }, QH, Tmp, TP128, Qh, Ql; |
| UINT64 sign_x, Carry, B10, res, mul_factor, mul_factor2 = 0x0ull, CS0; |
| SINT64 D; |
| int_float fx, f64; |
| int exponent_x, bin_expon_cx, done = 0; |
| int digits, scale, exponent_q = 0, exact = 1, amount, extra_digits; |
| #ifdef UNCHANGED_BINARY_STATUS_FLAGS |
| fexcept_t binaryflags = 0; |
| #endif |
| |
| // unpack arguments, check for NaN or Infinity |
| if (!unpack_BID128_value (&sign_x, &exponent_x, &CX, x)) { |
| res = CX.w[1]; |
| // NaN ? |
| if ((x.w[1] & 0x7c00000000000000ull) == 0x7c00000000000000ull) { |
| #ifdef SET_STATUS_FLAGS |
| if ((x.w[1] & 0x7e00000000000000ull) == 0x7e00000000000000ull) // sNaN |
| __set_status_flags (pfpsf, INVALID_EXCEPTION); |
| #endif |
| Tmp.w[1] = (CX.w[1] & 0x00003fffffffffffull); |
| Tmp.w[0] = CX.w[0]; |
| TP128 = reciprocals10_128[18]; |
| __mul_128x128_full (Qh, Ql, Tmp, TP128); |
| amount = recip_scale[18]; |
| __shr_128 (Tmp, Qh, amount); |
| res = (CX.w[1] & 0xfc00000000000000ull) | Tmp.w[0]; |
| BID_RETURN (res); |
| } |
| // x is Infinity? |
| if ((x.w[1] & 0x7800000000000000ull) == 0x7800000000000000ull) { |
| if (sign_x) { |
| // -Inf, return NaN |
| res = 0x7c00000000000000ull; |
| #ifdef SET_STATUS_FLAGS |
| __set_status_flags (pfpsf, INVALID_EXCEPTION); |
| #endif |
| } |
| BID_RETURN (res); |
| } |
| // x is 0 otherwise |
| |
| exponent_x = |
| ((exponent_x - DECIMAL_EXPONENT_BIAS_128) >> 1) + |
| DECIMAL_EXPONENT_BIAS; |
| if (exponent_x < 0) |
| exponent_x = 0; |
| if (exponent_x > DECIMAL_MAX_EXPON_64) |
| exponent_x = DECIMAL_MAX_EXPON_64; |
| //res= sign_x | (((UINT64)exponent_x)<<53); |
| res = get_BID64 (sign_x, exponent_x, 0, rnd_mode, pfpsf); |
| BID_RETURN (res); |
| } |
| if (sign_x) { |
| res = 0x7c00000000000000ull; |
| #ifdef SET_STATUS_FLAGS |
| __set_status_flags (pfpsf, INVALID_EXCEPTION); |
| #endif |
| BID_RETURN (res); |
| } |
| #ifdef UNCHANGED_BINARY_STATUS_FLAGS |
| (void) fegetexceptflag (&binaryflags, FE_ALL_FLAGS); |
| #endif |
| |
| // 2^64 |
| f64.i = 0x5f800000; |
| |
| // fx ~ CX |
| fx.d = (float) CX.w[1] * f64.d + (float) CX.w[0]; |
| bin_expon_cx = ((fx.i >> 23) & 0xff) - 0x7f; |
| digits = estimate_decimal_digits[bin_expon_cx]; |
| |
| A10 = CX; |
| if (exponent_x & 1) { |
| A10.w[1] = (CX.w[1] << 3) | (CX.w[0] >> 61); |
| A10.w[0] = CX.w[0] << 3; |
| CX2.w[1] = (CX.w[1] << 1) | (CX.w[0] >> 63); |
| CX2.w[0] = CX.w[0] << 1; |
| __add_128_128 (A10, A10, CX2); |
| } |
| |
| C256.w[1] = A10.w[1]; |
| C256.w[0] = A10.w[0]; |
| CS.w[0] = short_sqrt128 (A10); |
| CS.w[1] = 0; |
| mul_factor = 0; |
| // check for exact result |
| if (CS.w[0] < 10000000000000000ull) { |
| if (CS.w[0] * CS.w[0] == A10.w[0]) { |
| __sqr64_fast (S2, CS.w[0]); |
| if (S2.w[1] == A10.w[1]) // && S2.w[0]==A10.w[0]) |
| { |
| res = |
| get_BID64 (0, |
| ((exponent_x - DECIMAL_EXPONENT_BIAS_128) >> 1) + |
| DECIMAL_EXPONENT_BIAS, CS.w[0], rnd_mode, pfpsf); |
| #ifdef UNCHANGED_BINARY_STATUS_FLAGS |
| (void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS); |
| #endif |
| BID_RETURN (res); |
| } |
| } |
| if (CS.w[0] >= 1000000000000000ull) { |
| done = 1; |
| exponent_q = exponent_x; |
| C256.w[1] = A10.w[1]; |
| C256.w[0] = A10.w[0]; |
| } |
| #ifdef SET_STATUS_FLAGS |
| __set_status_flags (pfpsf, INEXACT_EXCEPTION); |
| #endif |
| exact = 0; |
| } else { |
| B10 = 0x3333333333333334ull; |
| __mul_64x64_to_128_full (CS2, CS.w[0], B10); |
| CS0 = CS2.w[1] >> 1; |
| if (CS.w[0] != ((CS0 << 3) + (CS0 << 1))) { |
| #ifdef SET_STATUS_FLAGS |
| __set_status_flags (pfpsf, INEXACT_EXCEPTION); |
| #endif |
| exact = 0; |
| } |
| done = 1; |
| CS.w[0] = CS0; |
| exponent_q = exponent_x + 2; |
| mul_factor = 10; |
| mul_factor2 = 100; |
| if (CS.w[0] >= 10000000000000000ull) { |
| __mul_64x64_to_128_full (CS2, CS.w[0], B10); |
| CS0 = CS2.w[1] >> 1; |
| if (CS.w[0] != ((CS0 << 3) + (CS0 << 1))) { |
| #ifdef SET_STATUS_FLAGS |
| __set_status_flags (pfpsf, INEXACT_EXCEPTION); |
| #endif |
| exact = 0; |
| } |
| exponent_q += 2; |
| CS.w[0] = CS0; |
| mul_factor = 100; |
| mul_factor2 = 10000; |
| } |
| if (exact) { |
| CS0 = CS.w[0] * mul_factor; |
| __sqr64_fast (CS1, CS0) |
| if ((CS1.w[0] != A10.w[0]) || (CS1.w[1] != A10.w[1])) { |
| #ifdef SET_STATUS_FLAGS |
| __set_status_flags (pfpsf, INEXACT_EXCEPTION); |
| #endif |
| exact = 0; |
| } |
| } |
| } |
| |
| if (!done) { |
| // get number of digits in CX |
| D = CX.w[1] - power10_index_binexp_128[bin_expon_cx].w[1]; |
| if (D > 0 |
| || (!D && CX.w[0] >= power10_index_binexp_128[bin_expon_cx].w[0])) |
| digits++; |
| |
| // if exponent is odd, scale coefficient by 10 |
| scale = 31 - digits; |
| exponent_q = exponent_x - scale; |
| scale += (exponent_q & 1); // exp. bias is even |
| |
| T128 = power10_table_128[scale]; |
| __mul_128x128_low (C256, CX, T128); |
| |
| |
| CS.w[0] = short_sqrt128 (C256); |
| } |
| //printf("CS=%016I64x\n",CS.w[0]); |
| |
| exponent_q = |
| ((exponent_q - DECIMAL_EXPONENT_BIAS_128) >> 1) + |
| DECIMAL_EXPONENT_BIAS; |
| if ((exponent_q < 0) && (exponent_q + MAX_FORMAT_DIGITS >= 0)) { |
| extra_digits = -exponent_q; |
| exponent_q = 0; |
| |
| // get coeff*(2^M[extra_digits])/10^extra_digits |
| __mul_64x64_to_128 (QH, CS.w[0], reciprocals10_64[extra_digits]); |
| |
| // now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128 |
| amount = short_recip_scale[extra_digits]; |
| |
| CS0 = QH.w[1] >> amount; |
| |
| #ifdef SET_STATUS_FLAGS |
| if (exact) { |
| if (CS.w[0] != CS0 * power10_table_128[extra_digits].w[0]) |
| exact = 0; |
| } |
| if (!exact) |
| __set_status_flags (pfpsf, UNDERFLOW_EXCEPTION | INEXACT_EXCEPTION); |
| #endif |
| |
| CS.w[0] = CS0; |
| if (!mul_factor) |
| mul_factor = 1; |
| mul_factor *= power10_table_128[extra_digits].w[0]; |
| __mul_64x64_to_128 (mul_factor2_long, mul_factor, mul_factor); |
| if (mul_factor2_long.w[1]) |
| mul_factor2 = 0; |
| else |
| mul_factor2 = mul_factor2_long.w[1]; |
| } |
| // 4*C256 |
| C4.w[1] = (C256.w[1] << 2) | (C256.w[0] >> 62); |
| C4.w[0] = C256.w[0] << 2; |
| |
| #ifndef IEEE_ROUND_NEAREST |
| #ifndef IEEE_ROUND_NEAREST_TIES_AWAY |
| if (!((rnd_mode) & 3)) { |
| #endif |
| #endif |
| // compare to midpoints |
| CSM.w[0] = (CS.w[0] + CS.w[0]) | 1; |
| //printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x\n",C4.w[1],C4.w[0],CSM.w[1],CSM.w[0], CS.w[0]); |
| if (mul_factor) |
| CSM.w[0] *= mul_factor; |
| // CSM^2 |
| __mul_64x64_to_128 (M256, CSM.w[0], CSM.w[0]); |
| //__mul_128x128_to_256(M256, CSM, CSM); |
| |
| if (C4.w[1] > M256.w[1] || |
| (C4.w[1] == M256.w[1] && C4.w[0] > M256.w[0])) { |
| // round up |
| CS.w[0]++; |
| } else { |
| C8.w[0] = CS.w[0] << 3; |
| C8.w[1] = 0; |
| if (mul_factor) { |
| if (mul_factor2) { |
| __mul_64x64_to_128 (C8, C8.w[0], mul_factor2); |
| } else { |
| __mul_64x128_low (C8, C8.w[0], mul_factor2_long); |
| } |
| } |
| // M256 - 8*CSM |
| __sub_borrow_out (M256.w[0], Carry, M256.w[0], C8.w[0]); |
| M256.w[1] = M256.w[1] - C8.w[1] - Carry; |
| |
| // if CSM' > C256, round up |
| if (M256.w[1] > C4.w[1] || |
| (M256.w[1] == C4.w[1] && M256.w[0] > C4.w[0])) { |
| // round down |
| if (CS.w[0]) |
| CS.w[0]--; |
| } |
| } |
| #ifndef IEEE_ROUND_NEAREST |
| #ifndef IEEE_ROUND_NEAREST_TIES_AWAY |
| } else { |
| CS.w[0]++; |
| CSM.w[0] = CS.w[0]; |
| C8.w[0] = CSM.w[0] << 1; |
| if (mul_factor) |
| CSM.w[0] *= mul_factor; |
| __mul_64x64_to_128 (M256, CSM.w[0], CSM.w[0]); |
| C8.w[1] = 0; |
| if (mul_factor) { |
| if (mul_factor2) { |
| __mul_64x64_to_128 (C8, C8.w[0], mul_factor2); |
| } else { |
| __mul_64x128_low (C8, C8.w[0], mul_factor2_long); |
| } |
| } |
| //printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x\n",C256.w[1],C256.w[0],M256.w[1],M256.w[0], CS.w[0]); |
| |
| if (M256.w[1] > C256.w[1] || |
| (M256.w[1] == C256.w[1] && M256.w[0] > C256.w[0])) { |
| __sub_borrow_out (M256.w[0], Carry, M256.w[0], C8.w[0]); |
| M256.w[1] = M256.w[1] - Carry - C8.w[1]; |
| M256.w[0]++; |
| if (!M256.w[0]) { |
| M256.w[1]++; |
| |
| } |
| |
| if ((M256.w[1] > C256.w[1] || |
| (M256.w[1] == C256.w[1] && M256.w[0] > C256.w[0])) |
| && (CS.w[0] > 1)) { |
| |
| CS.w[0]--; |
| |
| if (CS.w[0] > 1) { |
| __sub_borrow_out (M256.w[0], Carry, M256.w[0], C8.w[0]); |
| M256.w[1] = M256.w[1] - Carry - C8.w[1]; |
| M256.w[0]++; |
| if (!M256.w[0]) { |
| M256.w[1]++; |
| } |
| |
| if (M256.w[1] > C256.w[1] || |
| (M256.w[1] == C256.w[1] && M256.w[0] > C256.w[0])) |
| CS.w[0]--; |
| } |
| } |
| } |
| |
| else { |
| /*__add_carry_out(M256.w[0], Carry, M256.w[0], C8.w[0]); |
| M256.w[1] = M256.w[1] + Carry + C8.w[1]; |
| M256.w[0]++; |
| if(!M256.w[0]) |
| { |
| M256.w[1]++; |
| } |
| CS.w[0]++; |
| if(M256.w[1]<C256.w[1] || |
| (M256.w[1]==C256.w[1] && M256.w[0]<=C256.w[0])) |
| { |
| CS.w[0]++; |
| }*/ |
| CS.w[0]++; |
| } |
| //printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x %d\n",C4.w[1],C4.w[0],M256.w[1],M256.w[0], CS.w[0], exact); |
| // RU? |
| if (((rnd_mode) != ROUNDING_UP) || exact) { |
| if (CS.w[0]) |
| CS.w[0]--; |
| } |
| |
| } |
| #endif |
| #endif |
| //printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x %d\n",C4.w[1],C4.w[0],M256.w[1],M256.w[0], CS.w[0], exact); |
| |
| res = get_BID64 (0, exponent_q, CS.w[0], rnd_mode, pfpsf); |
| #ifdef UNCHANGED_BINARY_STATUS_FLAGS |
| (void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS); |
| #endif |
| BID_RETURN (res); |
| |
| |
| } |