| /* Copyright (C) 2007-2017 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| Under Section 7 of GPL version 3, you are granted additional |
| permissions described in the GCC Runtime Library Exception, version |
| 3.1, as published by the Free Software Foundation. |
| |
| You should have received a copy of the GNU General Public License and |
| a copy of the GCC Runtime Library Exception along with this program; |
| see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| /***************************************************************************** |
| * |
| * Helper add functions (for fma) |
| * |
| * __BID_INLINE__ UINT64 get_add64( |
| * UINT64 sign_x, int exponent_x, UINT64 coefficient_x, |
| * UINT64 sign_y, int exponent_y, UINT64 coefficient_y, |
| * int rounding_mode) |
| * |
| * __BID_INLINE__ UINT64 get_add128( |
| * UINT64 sign_x, int exponent_x, UINT64 coefficient_x, |
| * UINT64 sign_y, int final_exponent_y, UINT128 CY, |
| * int extra_digits, int rounding_mode) |
| * |
| ***************************************************************************** |
| * |
| * Algorithm description: |
| * |
| * get_add64: same as BID64 add, but arguments are unpacked and there |
| * are no special case checks |
| * |
| * get_add128: add 64-bit coefficient to 128-bit product (which contains |
| * 16+extra_digits decimal digits), |
| * return BID64 result |
| * - the exponents are compared and the two coefficients are |
| * properly aligned for addition/subtraction |
| * - multiple paths are needed |
| * - final result exponent is calculated and the lower term is |
| * rounded first if necessary, to avoid manipulating |
| * coefficients longer than 128 bits |
| * |
| ****************************************************************************/ |
| |
| #ifndef _INLINE_BID_ADD_H_ |
| #define _INLINE_BID_ADD_H_ |
| |
| #include "bid_internal.h" |
| |
| #define MAX_FORMAT_DIGITS 16 |
| #define DECIMAL_EXPONENT_BIAS 398 |
| #define MASK_BINARY_EXPONENT 0x7ff0000000000000ull |
| #define BINARY_EXPONENT_BIAS 0x3ff |
| #define UPPER_EXPON_LIMIT 51 |
| |
| /////////////////////////////////////////////////////////////////////// |
| // |
| // get_add64() is essentially the same as bid_add(), except that |
| // the arguments are unpacked |
| // |
| ////////////////////////////////////////////////////////////////////// |
| __BID_INLINE__ UINT64 |
| get_add64 (UINT64 sign_x, int exponent_x, UINT64 coefficient_x, |
| UINT64 sign_y, int exponent_y, UINT64 coefficient_y, |
| int rounding_mode, unsigned *fpsc) { |
| UINT128 CA, CT, CT_new; |
| UINT64 sign_a, sign_b, coefficient_a, coefficient_b, sign_s, sign_ab, |
| rem_a; |
| UINT64 saved_ca, saved_cb, C0_64, C64, remainder_h, T1, carry, tmp, |
| C64_new; |
| int_double tempx; |
| int exponent_a, exponent_b, diff_dec_expon; |
| int bin_expon_ca, extra_digits, amount, scale_k, scale_ca; |
| unsigned rmode, status; |
| |
| // sort arguments by exponent |
| if (exponent_x <= exponent_y) { |
| sign_a = sign_y; |
| exponent_a = exponent_y; |
| coefficient_a = coefficient_y; |
| sign_b = sign_x; |
| exponent_b = exponent_x; |
| coefficient_b = coefficient_x; |
| } else { |
| sign_a = sign_x; |
| exponent_a = exponent_x; |
| coefficient_a = coefficient_x; |
| sign_b = sign_y; |
| exponent_b = exponent_y; |
| coefficient_b = coefficient_y; |
| } |
| |
| // exponent difference |
| diff_dec_expon = exponent_a - exponent_b; |
| |
| /* get binary coefficients of x and y */ |
| |
| //--- get number of bits in the coefficients of x and y --- |
| |
| tempx.d = (double) coefficient_a; |
| bin_expon_ca = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff; |
| |
| if (!coefficient_a) { |
| return get_BID64 (sign_b, exponent_b, coefficient_b, rounding_mode, |
| fpsc); |
| } |
| if (diff_dec_expon > MAX_FORMAT_DIGITS) { |
| // normalize a to a 16-digit coefficient |
| |
| scale_ca = estimate_decimal_digits[bin_expon_ca]; |
| if (coefficient_a >= power10_table_128[scale_ca].w[0]) |
| scale_ca++; |
| |
| scale_k = 16 - scale_ca; |
| |
| coefficient_a *= power10_table_128[scale_k].w[0]; |
| |
| diff_dec_expon -= scale_k; |
| exponent_a -= scale_k; |
| |
| /* get binary coefficients of x and y */ |
| |
| //--- get number of bits in the coefficients of x and y --- |
| tempx.d = (double) coefficient_a; |
| bin_expon_ca = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff; |
| |
| if (diff_dec_expon > MAX_FORMAT_DIGITS) { |
| #ifdef SET_STATUS_FLAGS |
| if (coefficient_b) { |
| __set_status_flags (fpsc, INEXACT_EXCEPTION); |
| } |
| #endif |
| |
| #ifndef IEEE_ROUND_NEAREST_TIES_AWAY |
| #ifndef IEEE_ROUND_NEAREST |
| if (((rounding_mode) & 3) && coefficient_b) // not ROUNDING_TO_NEAREST |
| { |
| switch (rounding_mode) { |
| case ROUNDING_DOWN: |
| if (sign_b) { |
| coefficient_a -= ((((SINT64) sign_a) >> 63) | 1); |
| if (coefficient_a < 1000000000000000ull) { |
| exponent_a--; |
| coefficient_a = 9999999999999999ull; |
| } else if (coefficient_a >= 10000000000000000ull) { |
| exponent_a++; |
| coefficient_a = 1000000000000000ull; |
| } |
| } |
| break; |
| case ROUNDING_UP: |
| if (!sign_b) { |
| coefficient_a += ((((SINT64) sign_a) >> 63) | 1); |
| if (coefficient_a < 1000000000000000ull) { |
| exponent_a--; |
| coefficient_a = 9999999999999999ull; |
| } else if (coefficient_a >= 10000000000000000ull) { |
| exponent_a++; |
| coefficient_a = 1000000000000000ull; |
| } |
| } |
| break; |
| default: // RZ |
| if (sign_a != sign_b) { |
| coefficient_a--; |
| if (coefficient_a < 1000000000000000ull) { |
| exponent_a--; |
| coefficient_a = 9999999999999999ull; |
| } |
| } |
| break; |
| } |
| } else |
| #endif |
| #endif |
| // check special case here |
| if ((coefficient_a == 1000000000000000ull) |
| && (diff_dec_expon == MAX_FORMAT_DIGITS + 1) |
| && (sign_a ^ sign_b) |
| && (coefficient_b > 5000000000000000ull)) { |
| coefficient_a = 9999999999999999ull; |
| exponent_a--; |
| } |
| |
| return get_BID64 (sign_a, exponent_a, coefficient_a, |
| rounding_mode, fpsc); |
| } |
| } |
| // test whether coefficient_a*10^(exponent_a-exponent_b) may exceed 2^62 |
| if (bin_expon_ca + estimate_bin_expon[diff_dec_expon] < 60) { |
| // coefficient_a*10^(exponent_a-exponent_b)<2^63 |
| |
| // multiply by 10^(exponent_a-exponent_b) |
| coefficient_a *= power10_table_128[diff_dec_expon].w[0]; |
| |
| // sign mask |
| sign_b = ((SINT64) sign_b) >> 63; |
| // apply sign to coeff. of b |
| coefficient_b = (coefficient_b + sign_b) ^ sign_b; |
| |
| // apply sign to coefficient a |
| sign_a = ((SINT64) sign_a) >> 63; |
| coefficient_a = (coefficient_a + sign_a) ^ sign_a; |
| |
| coefficient_a += coefficient_b; |
| // get sign |
| sign_s = ((SINT64) coefficient_a) >> 63; |
| coefficient_a = (coefficient_a + sign_s) ^ sign_s; |
| sign_s &= 0x8000000000000000ull; |
| |
| // coefficient_a < 10^16 ? |
| if (coefficient_a < power10_table_128[MAX_FORMAT_DIGITS].w[0]) { |
| #ifndef IEEE_ROUND_NEAREST_TIES_AWAY |
| #ifndef IEEE_ROUND_NEAREST |
| if (rounding_mode == ROUNDING_DOWN && (!coefficient_a) |
| && sign_a != sign_b) |
| sign_s = 0x8000000000000000ull; |
| #endif |
| #endif |
| return get_BID64 (sign_s, exponent_b, coefficient_a, |
| rounding_mode, fpsc); |
| } |
| // otherwise rounding is necessary |
| |
| // already know coefficient_a<10^19 |
| // coefficient_a < 10^17 ? |
| if (coefficient_a < power10_table_128[17].w[0]) |
| extra_digits = 1; |
| else if (coefficient_a < power10_table_128[18].w[0]) |
| extra_digits = 2; |
| else |
| extra_digits = 3; |
| |
| #ifndef IEEE_ROUND_NEAREST_TIES_AWAY |
| #ifndef IEEE_ROUND_NEAREST |
| rmode = rounding_mode; |
| if (sign_s && (unsigned) (rmode - 1) < 2) |
| rmode = 3 - rmode; |
| #else |
| rmode = 0; |
| #endif |
| #else |
| rmode = 0; |
| #endif |
| coefficient_a += round_const_table[rmode][extra_digits]; |
| |
| // get P*(2^M[extra_digits])/10^extra_digits |
| __mul_64x64_to_128 (CT, coefficient_a, |
| reciprocals10_64[extra_digits]); |
| |
| // now get P/10^extra_digits: shift C64 right by M[extra_digits]-128 |
| amount = short_recip_scale[extra_digits]; |
| C64 = CT.w[1] >> amount; |
| |
| } else { |
| // coefficient_a*10^(exponent_a-exponent_b) is large |
| sign_s = sign_a; |
| |
| #ifndef IEEE_ROUND_NEAREST_TIES_AWAY |
| #ifndef IEEE_ROUND_NEAREST |
| rmode = rounding_mode; |
| if (sign_s && (unsigned) (rmode - 1) < 2) |
| rmode = 3 - rmode; |
| #else |
| rmode = 0; |
| #endif |
| #else |
| rmode = 0; |
| #endif |
| |
| // check whether we can take faster path |
| scale_ca = estimate_decimal_digits[bin_expon_ca]; |
| |
| sign_ab = sign_a ^ sign_b; |
| sign_ab = ((SINT64) sign_ab) >> 63; |
| |
| // T1 = 10^(16-diff_dec_expon) |
| T1 = power10_table_128[16 - diff_dec_expon].w[0]; |
| |
| // get number of digits in coefficient_a |
| //P_ca = power10_table_128[scale_ca].w[0]; |
| //P_ca_m1 = power10_table_128[scale_ca-1].w[0]; |
| if (coefficient_a >= power10_table_128[scale_ca].w[0]) { |
| scale_ca++; |
| //P_ca_m1 = P_ca; |
| //P_ca = power10_table_128[scale_ca].w[0]; |
| } |
| |
| scale_k = 16 - scale_ca; |
| |
| // apply sign |
| //Ts = (T1 + sign_ab) ^ sign_ab; |
| |
| // test range of ca |
| //X = coefficient_a + Ts - P_ca_m1; |
| |
| // addition |
| saved_ca = coefficient_a - T1; |
| coefficient_a = |
| (SINT64) saved_ca *(SINT64) power10_table_128[scale_k].w[0]; |
| extra_digits = diff_dec_expon - scale_k; |
| |
| // apply sign |
| saved_cb = (coefficient_b + sign_ab) ^ sign_ab; |
| // add 10^16 and rounding constant |
| coefficient_b = |
| saved_cb + 10000000000000000ull + |
| round_const_table[rmode][extra_digits]; |
| |
| // get P*(2^M[extra_digits])/10^extra_digits |
| __mul_64x64_to_128 (CT, coefficient_b, |
| reciprocals10_64[extra_digits]); |
| |
| // now get P/10^extra_digits: shift C64 right by M[extra_digits]-128 |
| amount = short_recip_scale[extra_digits]; |
| C0_64 = CT.w[1] >> amount; |
| |
| // result coefficient |
| C64 = C0_64 + coefficient_a; |
| // filter out difficult (corner) cases |
| // the following test is equivalent to |
| // ( (initial_coefficient_a + Ts) < P_ca && |
| // (initial_coefficient_a + Ts) > P_ca_m1 ), |
| // which ensures the number of digits in coefficient_a does not change |
| // after adding (the appropriately scaled and rounded) coefficient_b |
| if ((UINT64) (C64 - 1000000000000000ull - 1) > |
| 9000000000000000ull - 2) { |
| if (C64 >= 10000000000000000ull) { |
| // result has more than 16 digits |
| if (!scale_k) { |
| // must divide coeff_a by 10 |
| saved_ca = saved_ca + T1; |
| __mul_64x64_to_128 (CA, saved_ca, 0x3333333333333334ull); |
| //reciprocals10_64[1]); |
| coefficient_a = CA.w[1] >> 1; |
| rem_a = |
| saved_ca - (coefficient_a << 3) - (coefficient_a << 1); |
| coefficient_a = coefficient_a - T1; |
| |
| saved_cb += |
| /*90000000000000000 */ +rem_a * |
| power10_table_128[diff_dec_expon].w[0]; |
| } else |
| coefficient_a = |
| (SINT64) (saved_ca - T1 - |
| (T1 << 3)) * (SINT64) power10_table_128[scale_k - |
| 1].w[0]; |
| |
| extra_digits++; |
| coefficient_b = |
| saved_cb + 100000000000000000ull + |
| round_const_table[rmode][extra_digits]; |
| |
| // get P*(2^M[extra_digits])/10^extra_digits |
| __mul_64x64_to_128 (CT, coefficient_b, |
| reciprocals10_64[extra_digits]); |
| |
| // now get P/10^extra_digits: shift C64 right by M[extra_digits]-128 |
| amount = short_recip_scale[extra_digits]; |
| C0_64 = CT.w[1] >> amount; |
| |
| // result coefficient |
| C64 = C0_64 + coefficient_a; |
| } else if (C64 <= 1000000000000000ull) { |
| // less than 16 digits in result |
| coefficient_a = |
| (SINT64) saved_ca *(SINT64) power10_table_128[scale_k + |
| 1].w[0]; |
| //extra_digits --; |
| exponent_b--; |
| coefficient_b = |
| (saved_cb << 3) + (saved_cb << 1) + 100000000000000000ull + |
| round_const_table[rmode][extra_digits]; |
| |
| // get P*(2^M[extra_digits])/10^extra_digits |
| __mul_64x64_to_128 (CT_new, coefficient_b, |
| reciprocals10_64[extra_digits]); |
| |
| // now get P/10^extra_digits: shift C64 right by M[extra_digits]-128 |
| amount = short_recip_scale[extra_digits]; |
| C0_64 = CT_new.w[1] >> amount; |
| |
| // result coefficient |
| C64_new = C0_64 + coefficient_a; |
| if (C64_new < 10000000000000000ull) { |
| C64 = C64_new; |
| #ifdef SET_STATUS_FLAGS |
| CT = CT_new; |
| #endif |
| } else |
| exponent_b++; |
| } |
| |
| } |
| |
| } |
| |
| #ifndef IEEE_ROUND_NEAREST_TIES_AWAY |
| #ifndef IEEE_ROUND_NEAREST |
| if (rmode == 0) //ROUNDING_TO_NEAREST |
| #endif |
| if (C64 & 1) { |
| // check whether fractional part of initial_P/10^extra_digits |
| // is exactly .5 |
| // this is the same as fractional part of |
| // (initial_P + 0.5*10^extra_digits)/10^extra_digits is exactly zero |
| |
| // get remainder |
| remainder_h = CT.w[1] << (64 - amount); |
| |
| // test whether fractional part is 0 |
| if (!remainder_h && (CT.w[0] < reciprocals10_64[extra_digits])) { |
| C64--; |
| } |
| } |
| #endif |
| |
| #ifdef SET_STATUS_FLAGS |
| status = INEXACT_EXCEPTION; |
| |
| // get remainder |
| remainder_h = CT.w[1] << (64 - amount); |
| |
| switch (rmode) { |
| case ROUNDING_TO_NEAREST: |
| case ROUNDING_TIES_AWAY: |
| // test whether fractional part is 0 |
| if ((remainder_h == 0x8000000000000000ull) |
| && (CT.w[0] < reciprocals10_64[extra_digits])) |
| status = EXACT_STATUS; |
| break; |
| case ROUNDING_DOWN: |
| case ROUNDING_TO_ZERO: |
| if (!remainder_h && (CT.w[0] < reciprocals10_64[extra_digits])) |
| status = EXACT_STATUS; |
| break; |
| default: |
| // round up |
| __add_carry_out (tmp, carry, CT.w[0], |
| reciprocals10_64[extra_digits]); |
| if ((remainder_h >> (64 - amount)) + carry >= |
| (((UINT64) 1) << amount)) |
| status = EXACT_STATUS; |
| break; |
| } |
| __set_status_flags (fpsc, status); |
| |
| #endif |
| |
| return get_BID64 (sign_s, exponent_b + extra_digits, C64, |
| rounding_mode, fpsc); |
| } |
| |
| |
| /////////////////////////////////////////////////////////////////// |
| // round 128-bit coefficient and return result in BID64 format |
| // do not worry about midpoint cases |
| ////////////////////////////////////////////////////////////////// |
| static UINT64 |
| __bid_simple_round64_sticky (UINT64 sign, int exponent, UINT128 P, |
| int extra_digits, int rounding_mode, |
| unsigned *fpsc) { |
| UINT128 Q_high, Q_low, C128; |
| UINT64 C64; |
| int amount, rmode; |
| |
| rmode = rounding_mode; |
| #ifndef IEEE_ROUND_NEAREST_TIES_AWAY |
| #ifndef IEEE_ROUND_NEAREST |
| if (sign && (unsigned) (rmode - 1) < 2) |
| rmode = 3 - rmode; |
| #endif |
| #endif |
| __add_128_64 (P, P, round_const_table[rmode][extra_digits]); |
| |
| // get P*(2^M[extra_digits])/10^extra_digits |
| __mul_128x128_full (Q_high, Q_low, P, |
| reciprocals10_128[extra_digits]); |
| |
| // now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128 |
| amount = recip_scale[extra_digits]; |
| __shr_128 (C128, Q_high, amount); |
| |
| C64 = __low_64 (C128); |
| |
| #ifdef SET_STATUS_FLAGS |
| |
| __set_status_flags (fpsc, INEXACT_EXCEPTION); |
| |
| #endif |
| |
| return get_BID64 (sign, exponent, C64, rounding_mode, fpsc); |
| } |
| |
| /////////////////////////////////////////////////////////////////// |
| // round 128-bit coefficient and return result in BID64 format |
| /////////////////////////////////////////////////////////////////// |
| static UINT64 |
| __bid_full_round64 (UINT64 sign, int exponent, UINT128 P, |
| int extra_digits, int rounding_mode, |
| unsigned *fpsc) { |
| UINT128 Q_high, Q_low, C128, Stemp, PU; |
| UINT64 remainder_h, C64, carry, CY; |
| int amount, amount2, rmode, status = 0; |
| |
| if (exponent < 0) { |
| if (exponent >= -16 && (extra_digits + exponent < 0)) { |
| extra_digits = -exponent; |
| #ifdef SET_STATUS_FLAGS |
| if (extra_digits > 0) { |
| rmode = rounding_mode; |
| if (sign && (unsigned) (rmode - 1) < 2) |
| rmode = 3 - rmode; |
| __add_128_128 (PU, P, |
| round_const_table_128[rmode][extra_digits]); |
| if (__unsigned_compare_gt_128 |
| (power10_table_128[extra_digits + 15], PU)) |
| status = UNDERFLOW_EXCEPTION; |
| } |
| #endif |
| } |
| } |
| |
| if (extra_digits > 0) { |
| exponent += extra_digits; |
| rmode = rounding_mode; |
| if (sign && (unsigned) (rmode - 1) < 2) |
| rmode = 3 - rmode; |
| __add_128_128 (P, P, round_const_table_128[rmode][extra_digits]); |
| |
| // get P*(2^M[extra_digits])/10^extra_digits |
| __mul_128x128_full (Q_high, Q_low, P, |
| reciprocals10_128[extra_digits]); |
| |
| // now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128 |
| amount = recip_scale[extra_digits]; |
| __shr_128_long (C128, Q_high, amount); |
| |
| C64 = __low_64 (C128); |
| |
| #ifndef IEEE_ROUND_NEAREST_TIES_AWAY |
| #ifndef IEEE_ROUND_NEAREST |
| if (rmode == 0) //ROUNDING_TO_NEAREST |
| #endif |
| if (C64 & 1) { |
| // check whether fractional part of initial_P/10^extra_digits |
| // is exactly .5 |
| |
| // get remainder |
| amount2 = 64 - amount; |
| remainder_h = 0; |
| remainder_h--; |
| remainder_h >>= amount2; |
| remainder_h = remainder_h & Q_high.w[0]; |
| |
| if (!remainder_h |
| && (Q_low.w[1] < reciprocals10_128[extra_digits].w[1] |
| || (Q_low.w[1] == reciprocals10_128[extra_digits].w[1] |
| && Q_low.w[0] < |
| reciprocals10_128[extra_digits].w[0]))) { |
| C64--; |
| } |
| } |
| #endif |
| |
| #ifdef SET_STATUS_FLAGS |
| status |= INEXACT_EXCEPTION; |
| |
| // get remainder |
| remainder_h = Q_high.w[0] << (64 - amount); |
| |
| switch (rmode) { |
| case ROUNDING_TO_NEAREST: |
| case ROUNDING_TIES_AWAY: |
| // test whether fractional part is 0 |
| if (remainder_h == 0x8000000000000000ull |
| && (Q_low.w[1] < reciprocals10_128[extra_digits].w[1] |
| || (Q_low.w[1] == reciprocals10_128[extra_digits].w[1] |
| && Q_low.w[0] < |
| reciprocals10_128[extra_digits].w[0]))) |
| status = EXACT_STATUS; |
| break; |
| case ROUNDING_DOWN: |
| case ROUNDING_TO_ZERO: |
| if (!remainder_h |
| && (Q_low.w[1] < reciprocals10_128[extra_digits].w[1] |
| || (Q_low.w[1] == reciprocals10_128[extra_digits].w[1] |
| && Q_low.w[0] < |
| reciprocals10_128[extra_digits].w[0]))) |
| status = EXACT_STATUS; |
| break; |
| default: |
| // round up |
| __add_carry_out (Stemp.w[0], CY, Q_low.w[0], |
| reciprocals10_128[extra_digits].w[0]); |
| __add_carry_in_out (Stemp.w[1], carry, Q_low.w[1], |
| reciprocals10_128[extra_digits].w[1], CY); |
| if ((remainder_h >> (64 - amount)) + carry >= |
| (((UINT64) 1) << amount)) |
| status = EXACT_STATUS; |
| } |
| |
| __set_status_flags (fpsc, status); |
| |
| #endif |
| } else { |
| C64 = P.w[0]; |
| if (!C64) { |
| sign = 0; |
| if (rounding_mode == ROUNDING_DOWN) |
| sign = 0x8000000000000000ull; |
| } |
| } |
| return get_BID64 (sign, exponent, C64, rounding_mode, fpsc); |
| } |
| |
| ///////////////////////////////////////////////////////////////////////////////// |
| // round 192-bit coefficient (P, remainder_P) and return result in BID64 format |
| // the lowest 64 bits (remainder_P) are used for midpoint checking only |
| //////////////////////////////////////////////////////////////////////////////// |
| static UINT64 |
| __bid_full_round64_remainder (UINT64 sign, int exponent, UINT128 P, |
| int extra_digits, UINT64 remainder_P, |
| int rounding_mode, unsigned *fpsc, |
| unsigned uf_status) { |
| UINT128 Q_high, Q_low, C128, Stemp; |
| UINT64 remainder_h, C64, carry, CY; |
| int amount, amount2, rmode, status = uf_status; |
| |
| rmode = rounding_mode; |
| if (sign && (unsigned) (rmode - 1) < 2) |
| rmode = 3 - rmode; |
| if (rmode == ROUNDING_UP && remainder_P) { |
| P.w[0]++; |
| if (!P.w[0]) |
| P.w[1]++; |
| } |
| |
| if (extra_digits) { |
| __add_128_64 (P, P, round_const_table[rmode][extra_digits]); |
| |
| // get P*(2^M[extra_digits])/10^extra_digits |
| __mul_128x128_full (Q_high, Q_low, P, |
| reciprocals10_128[extra_digits]); |
| |
| // now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128 |
| amount = recip_scale[extra_digits]; |
| __shr_128 (C128, Q_high, amount); |
| |
| C64 = __low_64 (C128); |
| |
| #ifndef IEEE_ROUND_NEAREST_TIES_AWAY |
| #ifndef IEEE_ROUND_NEAREST |
| if (rmode == 0) //ROUNDING_TO_NEAREST |
| #endif |
| if (!remainder_P && (C64 & 1)) { |
| // check whether fractional part of initial_P/10^extra_digits |
| // is exactly .5 |
| |
| // get remainder |
| amount2 = 64 - amount; |
| remainder_h = 0; |
| remainder_h--; |
| remainder_h >>= amount2; |
| remainder_h = remainder_h & Q_high.w[0]; |
| |
| if (!remainder_h |
| && (Q_low.w[1] < reciprocals10_128[extra_digits].w[1] |
| || (Q_low.w[1] == reciprocals10_128[extra_digits].w[1] |
| && Q_low.w[0] < |
| reciprocals10_128[extra_digits].w[0]))) { |
| C64--; |
| } |
| } |
| #endif |
| |
| #ifdef SET_STATUS_FLAGS |
| status |= INEXACT_EXCEPTION; |
| |
| if (!remainder_P) { |
| // get remainder |
| remainder_h = Q_high.w[0] << (64 - amount); |
| |
| switch (rmode) { |
| case ROUNDING_TO_NEAREST: |
| case ROUNDING_TIES_AWAY: |
| // test whether fractional part is 0 |
| if (remainder_h == 0x8000000000000000ull |
| && (Q_low.w[1] < reciprocals10_128[extra_digits].w[1] |
| || (Q_low.w[1] == reciprocals10_128[extra_digits].w[1] |
| && Q_low.w[0] < |
| reciprocals10_128[extra_digits].w[0]))) |
| status = EXACT_STATUS; |
| break; |
| case ROUNDING_DOWN: |
| case ROUNDING_TO_ZERO: |
| if (!remainder_h |
| && (Q_low.w[1] < reciprocals10_128[extra_digits].w[1] |
| || (Q_low.w[1] == reciprocals10_128[extra_digits].w[1] |
| && Q_low.w[0] < |
| reciprocals10_128[extra_digits].w[0]))) |
| status = EXACT_STATUS; |
| break; |
| default: |
| // round up |
| __add_carry_out (Stemp.w[0], CY, Q_low.w[0], |
| reciprocals10_128[extra_digits].w[0]); |
| __add_carry_in_out (Stemp.w[1], carry, Q_low.w[1], |
| reciprocals10_128[extra_digits].w[1], CY); |
| if ((remainder_h >> (64 - amount)) + carry >= |
| (((UINT64) 1) << amount)) |
| status = EXACT_STATUS; |
| } |
| } |
| __set_status_flags (fpsc, status); |
| |
| #endif |
| } else { |
| C64 = P.w[0]; |
| #ifdef SET_STATUS_FLAGS |
| if (remainder_P) { |
| __set_status_flags (fpsc, uf_status | INEXACT_EXCEPTION); |
| } |
| #endif |
| } |
| |
| return get_BID64 (sign, exponent + extra_digits, C64, rounding_mode, |
| fpsc); |
| } |
| |
| |
| /////////////////////////////////////////////////////////////////// |
| // get P/10^extra_digits |
| // result fits in 64 bits |
| /////////////////////////////////////////////////////////////////// |
| __BID_INLINE__ UINT64 |
| __truncate (UINT128 P, int extra_digits) |
| // extra_digits <= 16 |
| { |
| UINT128 Q_high, Q_low, C128; |
| UINT64 C64; |
| int amount; |
| |
| // get P*(2^M[extra_digits])/10^extra_digits |
| __mul_128x128_full (Q_high, Q_low, P, |
| reciprocals10_128[extra_digits]); |
| |
| // now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128 |
| amount = recip_scale[extra_digits]; |
| __shr_128 (C128, Q_high, amount); |
| |
| C64 = __low_64 (C128); |
| |
| return C64; |
| } |
| |
| |
| /////////////////////////////////////////////////////////////////// |
| // return number of decimal digits in 128-bit value X |
| /////////////////////////////////////////////////////////////////// |
| __BID_INLINE__ int |
| __get_dec_digits64 (UINT128 X) { |
| int_double tempx; |
| int digits_x, bin_expon_cx; |
| |
| if (!X.w[1]) { |
| //--- get number of bits in the coefficients of x and y --- |
| tempx.d = (double) X.w[0]; |
| bin_expon_cx = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff; |
| // get number of decimal digits in the coeff_x |
| digits_x = estimate_decimal_digits[bin_expon_cx]; |
| if (X.w[0] >= power10_table_128[digits_x].w[0]) |
| digits_x++; |
| return digits_x; |
| } |
| tempx.d = (double) X.w[1]; |
| bin_expon_cx = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff; |
| // get number of decimal digits in the coeff_x |
| digits_x = estimate_decimal_digits[bin_expon_cx + 64]; |
| if (__unsigned_compare_ge_128 (X, power10_table_128[digits_x])) |
| digits_x++; |
| |
| return digits_x; |
| } |
| |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // |
| // add 64-bit coefficient to 128-bit coefficient, return result in BID64 format |
| // |
| //////////////////////////////////////////////////////////////////////////////// |
| __BID_INLINE__ UINT64 |
| get_add128 (UINT64 sign_x, int exponent_x, UINT64 coefficient_x, |
| UINT64 sign_y, int final_exponent_y, UINT128 CY, |
| int extra_digits, int rounding_mode, unsigned *fpsc) { |
| UINT128 CY_L, CX, FS, F, CT, ST, T2; |
| UINT64 CYh, CY0L, T, S, coefficient_y, remainder_y; |
| SINT64 D = 0; |
| int_double tempx; |
| int diff_dec_expon, extra_digits2, exponent_y, status; |
| int extra_dx, diff_dec2, bin_expon_cx, digits_x, rmode; |
| |
| // CY has more than 16 decimal digits |
| |
| exponent_y = final_exponent_y - extra_digits; |
| |
| #ifdef IEEE_ROUND_NEAREST_TIES_AWAY |
| rounding_mode = 0; |
| #endif |
| #ifdef IEEE_ROUND_NEAREST |
| rounding_mode = 0; |
| #endif |
| |
| if (exponent_x > exponent_y) { |
| // normalize x |
| //--- get number of bits in the coefficients of x and y --- |
| tempx.d = (double) coefficient_x; |
| bin_expon_cx = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff; |
| // get number of decimal digits in the coeff_x |
| digits_x = estimate_decimal_digits[bin_expon_cx]; |
| if (coefficient_x >= power10_table_128[digits_x].w[0]) |
| digits_x++; |
| |
| extra_dx = 16 - digits_x; |
| coefficient_x *= power10_table_128[extra_dx].w[0]; |
| if ((sign_x ^ sign_y) && (coefficient_x == 1000000000000000ull)) { |
| extra_dx++; |
| coefficient_x = 10000000000000000ull; |
| } |
| exponent_x -= extra_dx; |
| |
| if (exponent_x > exponent_y) { |
| |
| // exponent_x > exponent_y |
| diff_dec_expon = exponent_x - exponent_y; |
| |
| if (exponent_x <= final_exponent_y + 1) { |
| __mul_64x64_to_128 (CX, coefficient_x, |
| power10_table_128[diff_dec_expon].w[0]); |
| |
| if (sign_x == sign_y) { |
| __add_128_128 (CT, CY, CX); |
| if ((exponent_x > |
| final_exponent_y) /*&& (final_exponent_y>0) */ ) |
| extra_digits++; |
| if (__unsigned_compare_ge_128 |
| (CT, power10_table_128[16 + extra_digits])) |
| extra_digits++; |
| } else { |
| __sub_128_128 (CT, CY, CX); |
| if (((SINT64) CT.w[1]) < 0) { |
| CT.w[0] = 0 - CT.w[0]; |
| CT.w[1] = 0 - CT.w[1]; |
| if (CT.w[0]) |
| CT.w[1]--; |
| sign_y = sign_x; |
| } else if (!(CT.w[1] | CT.w[0])) { |
| sign_y = |
| (rounding_mode != |
| ROUNDING_DOWN) ? 0 : 0x8000000000000000ull; |
| } |
| if ((exponent_x + 1 >= |
| final_exponent_y) /*&& (final_exponent_y>=0) */ ) { |
| extra_digits = __get_dec_digits64 (CT) - 16; |
| if (extra_digits <= 0) { |
| if (!CT.w[0] && rounding_mode == ROUNDING_DOWN) |
| sign_y = 0x8000000000000000ull; |
| return get_BID64 (sign_y, exponent_y, CT.w[0], |
| rounding_mode, fpsc); |
| } |
| } else |
| if (__unsigned_compare_gt_128 |
| (power10_table_128[15 + extra_digits], CT)) |
| extra_digits--; |
| } |
| |
| return __bid_full_round64 (sign_y, exponent_y, CT, extra_digits, |
| rounding_mode, fpsc); |
| } |
| // diff_dec2+extra_digits is the number of digits to eliminate from |
| // argument CY |
| diff_dec2 = exponent_x - final_exponent_y; |
| |
| if (diff_dec2 >= 17) { |
| #ifndef IEEE_ROUND_NEAREST |
| #ifndef IEEE_ROUND_NEAREST_TIES_AWAY |
| if ((rounding_mode) & 3) { |
| switch (rounding_mode) { |
| case ROUNDING_UP: |
| if (!sign_y) { |
| D = ((SINT64) (sign_x ^ sign_y)) >> 63; |
| D = D + D + 1; |
| coefficient_x += D; |
| } |
| break; |
| case ROUNDING_DOWN: |
| if (sign_y) { |
| D = ((SINT64) (sign_x ^ sign_y)) >> 63; |
| D = D + D + 1; |
| coefficient_x += D; |
| } |
| break; |
| case ROUNDING_TO_ZERO: |
| if (sign_y != sign_x) { |
| D = 0 - 1; |
| coefficient_x += D; |
| } |
| break; |
| } |
| if (coefficient_x < 1000000000000000ull) { |
| coefficient_x -= D; |
| coefficient_x = |
| D + (coefficient_x << 1) + (coefficient_x << 3); |
| exponent_x--; |
| } |
| } |
| #endif |
| #endif |
| #ifdef SET_STATUS_FLAGS |
| if (CY.w[1] | CY.w[0]) |
| __set_status_flags (fpsc, INEXACT_EXCEPTION); |
| #endif |
| return get_BID64 (sign_x, exponent_x, coefficient_x, |
| rounding_mode, fpsc); |
| } |
| // here exponent_x <= 16+final_exponent_y |
| |
| // truncate CY to 16 dec. digits |
| CYh = __truncate (CY, extra_digits); |
| |
| // get remainder |
| T = power10_table_128[extra_digits].w[0]; |
| __mul_64x64_to_64 (CY0L, CYh, T); |
| |
| remainder_y = CY.w[0] - CY0L; |
| |
| // align coeff_x, CYh |
| __mul_64x64_to_128 (CX, coefficient_x, |
| power10_table_128[diff_dec2].w[0]); |
| |
| if (sign_x == sign_y) { |
| __add_128_64 (CT, CX, CYh); |
| if (__unsigned_compare_ge_128 |
| (CT, power10_table_128[16 + diff_dec2])) |
| diff_dec2++; |
| } else { |
| if (remainder_y) |
| CYh++; |
| __sub_128_64 (CT, CX, CYh); |
| if (__unsigned_compare_gt_128 |
| (power10_table_128[15 + diff_dec2], CT)) |
| diff_dec2--; |
| } |
| |
| return __bid_full_round64_remainder (sign_x, final_exponent_y, CT, |
| diff_dec2, remainder_y, |
| rounding_mode, fpsc, 0); |
| } |
| } |
| // Here (exponent_x <= exponent_y) |
| { |
| diff_dec_expon = exponent_y - exponent_x; |
| |
| if (diff_dec_expon > MAX_FORMAT_DIGITS) { |
| rmode = rounding_mode; |
| |
| if ((sign_x ^ sign_y)) { |
| if (!CY.w[0]) |
| CY.w[1]--; |
| CY.w[0]--; |
| if (__unsigned_compare_gt_128 |
| (power10_table_128[15 + extra_digits], CY)) { |
| if (rmode & 3) { |
| extra_digits--; |
| final_exponent_y--; |
| } else { |
| CY.w[0] = 1000000000000000ull; |
| CY.w[1] = 0; |
| extra_digits = 0; |
| } |
| } |
| } |
| __scale128_10 (CY, CY); |
| extra_digits++; |
| CY.w[0] |= 1; |
| |
| return __bid_simple_round64_sticky (sign_y, final_exponent_y, CY, |
| extra_digits, rmode, fpsc); |
| } |
| // apply sign to coeff_x |
| sign_x ^= sign_y; |
| sign_x = ((SINT64) sign_x) >> 63; |
| CX.w[0] = (coefficient_x + sign_x) ^ sign_x; |
| CX.w[1] = sign_x; |
| |
| // check whether CY (rounded to 16 digits) and CX have |
| // any digits in the same position |
| diff_dec2 = final_exponent_y - exponent_x; |
| |
| if (diff_dec2 <= 17) { |
| // align CY to 10^ex |
| S = power10_table_128[diff_dec_expon].w[0]; |
| __mul_64x128_short (CY_L, S, CY); |
| |
| __add_128_128 (ST, CY_L, CX); |
| extra_digits2 = __get_dec_digits64 (ST) - 16; |
| return __bid_full_round64 (sign_y, exponent_x, ST, extra_digits2, |
| rounding_mode, fpsc); |
| } |
| // truncate CY to 16 dec. digits |
| CYh = __truncate (CY, extra_digits); |
| |
| // get remainder |
| T = power10_table_128[extra_digits].w[0]; |
| __mul_64x64_to_64 (CY0L, CYh, T); |
| |
| coefficient_y = CY.w[0] - CY0L; |
| // add rounding constant |
| rmode = rounding_mode; |
| if (sign_y && (unsigned) (rmode - 1) < 2) |
| rmode = 3 - rmode; |
| #ifndef IEEE_ROUND_NEAREST_TIES_AWAY |
| #ifndef IEEE_ROUND_NEAREST |
| if (!(rmode & 3)) //ROUNDING_TO_NEAREST |
| #endif |
| #endif |
| { |
| coefficient_y += round_const_table[rmode][extra_digits]; |
| } |
| // align coefficient_y, coefficient_x |
| S = power10_table_128[diff_dec_expon].w[0]; |
| __mul_64x64_to_128 (F, coefficient_y, S); |
| |
| // fraction |
| __add_128_128 (FS, F, CX); |
| |
| #ifndef IEEE_ROUND_NEAREST_TIES_AWAY |
| #ifndef IEEE_ROUND_NEAREST |
| if (rmode == 0) //ROUNDING_TO_NEAREST |
| #endif |
| { |
| // rounding code, here RN_EVEN |
| // 10^(extra_digits+diff_dec_expon) |
| T2 = power10_table_128[diff_dec_expon + extra_digits]; |
| if (__unsigned_compare_gt_128 (FS, T2) |
| || ((CYh & 1) && __test_equal_128 (FS, T2))) { |
| CYh++; |
| __sub_128_128 (FS, FS, T2); |
| } |
| } |
| #endif |
| #ifndef IEEE_ROUND_NEAREST |
| #ifndef IEEE_ROUND_NEAREST_TIES_AWAY |
| if (rmode == 4) //ROUNDING_TO_NEAREST |
| #endif |
| { |
| // rounding code, here RN_AWAY |
| // 10^(extra_digits+diff_dec_expon) |
| T2 = power10_table_128[diff_dec_expon + extra_digits]; |
| if (__unsigned_compare_ge_128 (FS, T2)) { |
| CYh++; |
| __sub_128_128 (FS, FS, T2); |
| } |
| } |
| #endif |
| #ifndef IEEE_ROUND_NEAREST |
| #ifndef IEEE_ROUND_NEAREST_TIES_AWAY |
| switch (rmode) { |
| case ROUNDING_DOWN: |
| case ROUNDING_TO_ZERO: |
| if ((SINT64) FS.w[1] < 0) { |
| CYh--; |
| if (CYh < 1000000000000000ull) { |
| CYh = 9999999999999999ull; |
| final_exponent_y--; |
| } |
| } else { |
| T2 = power10_table_128[diff_dec_expon + extra_digits]; |
| if (__unsigned_compare_ge_128 (FS, T2)) { |
| CYh++; |
| __sub_128_128 (FS, FS, T2); |
| } |
| } |
| break; |
| case ROUNDING_UP: |
| if ((SINT64) FS.w[1] < 0) |
| break; |
| T2 = power10_table_128[diff_dec_expon + extra_digits]; |
| if (__unsigned_compare_gt_128 (FS, T2)) { |
| CYh += 2; |
| __sub_128_128 (FS, FS, T2); |
| } else if ((FS.w[1] == T2.w[1]) && (FS.w[0] == T2.w[0])) { |
| CYh++; |
| FS.w[1] = FS.w[0] = 0; |
| } else if (FS.w[1] | FS.w[0]) |
| CYh++; |
| break; |
| } |
| #endif |
| #endif |
| |
| #ifdef SET_STATUS_FLAGS |
| status = INEXACT_EXCEPTION; |
| #ifndef IEEE_ROUND_NEAREST |
| #ifndef IEEE_ROUND_NEAREST_TIES_AWAY |
| if (!(rmode & 3)) |
| #endif |
| #endif |
| { |
| // RN modes |
| if ((FS.w[1] == |
| round_const_table_128[0][diff_dec_expon + extra_digits].w[1]) |
| && (FS.w[0] == |
| round_const_table_128[0][diff_dec_expon + |
| extra_digits].w[0])) |
| status = EXACT_STATUS; |
| } |
| #ifndef IEEE_ROUND_NEAREST |
| #ifndef IEEE_ROUND_NEAREST_TIES_AWAY |
| else if (!FS.w[1] && !FS.w[0]) |
| status = EXACT_STATUS; |
| #endif |
| #endif |
| |
| __set_status_flags (fpsc, status); |
| #endif |
| |
| return get_BID64 (sign_y, final_exponent_y, CYh, rounding_mode, |
| fpsc); |
| } |
| |
| } |
| |
| ////////////////////////////////////////////////////////////////////////// |
| // |
| // If coefficient_z is less than 16 digits long, normalize to 16 digits |
| // |
| ///////////////////////////////////////////////////////////////////////// |
| static UINT64 |
| BID_normalize (UINT64 sign_z, int exponent_z, |
| UINT64 coefficient_z, UINT64 round_dir, int round_flag, |
| int rounding_mode, unsigned *fpsc) { |
| SINT64 D; |
| int_double tempx; |
| int digits_z, bin_expon, scale, rmode; |
| |
| #ifndef IEEE_ROUND_NEAREST_TIES_AWAY |
| #ifndef IEEE_ROUND_NEAREST |
| rmode = rounding_mode; |
| if (sign_z && (unsigned) (rmode - 1) < 2) |
| rmode = 3 - rmode; |
| #else |
| if (coefficient_z >= power10_table_128[15].w[0]) |
| return z; |
| #endif |
| #endif |
| |
| //--- get number of bits in the coefficients of x and y --- |
| tempx.d = (double) coefficient_z; |
| bin_expon = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff; |
| // get number of decimal digits in the coeff_x |
| digits_z = estimate_decimal_digits[bin_expon]; |
| if (coefficient_z >= power10_table_128[digits_z].w[0]) |
| digits_z++; |
| |
| scale = 16 - digits_z; |
| exponent_z -= scale; |
| if (exponent_z < 0) { |
| scale += exponent_z; |
| exponent_z = 0; |
| } |
| coefficient_z *= power10_table_128[scale].w[0]; |
| |
| #ifdef SET_STATUS_FLAGS |
| if (round_flag) { |
| __set_status_flags (fpsc, INEXACT_EXCEPTION); |
| if (coefficient_z < 1000000000000000ull) |
| __set_status_flags (fpsc, UNDERFLOW_EXCEPTION); |
| else if ((coefficient_z == 1000000000000000ull) && !exponent_z |
| && ((SINT64) (round_dir ^ sign_z) < 0) && round_flag |
| && (rmode == ROUNDING_DOWN || rmode == ROUNDING_TO_ZERO)) |
| __set_status_flags (fpsc, UNDERFLOW_EXCEPTION); |
| } |
| #endif |
| |
| #ifndef IEEE_ROUND_NEAREST_TIES_AWAY |
| #ifndef IEEE_ROUND_NEAREST |
| if (round_flag && (rmode & 3)) { |
| D = round_dir ^ sign_z; |
| |
| if (rmode == ROUNDING_UP) { |
| if (D >= 0) |
| coefficient_z++; |
| } else { |
| if (D < 0) |
| coefficient_z--; |
| if (coefficient_z < 1000000000000000ull && exponent_z) { |
| coefficient_z = 9999999999999999ull; |
| exponent_z--; |
| } |
| } |
| } |
| #endif |
| #endif |
| |
| return get_BID64 (sign_z, exponent_z, coefficient_z, rounding_mode, |
| fpsc); |
| } |
| |
| |
| ////////////////////////////////////////////////////////////////////////// |
| // |
| // 0*10^ey + cz*10^ez, ey<ez |
| // |
| ////////////////////////////////////////////////////////////////////////// |
| |
| __BID_INLINE__ UINT64 |
| add_zero64 (int exponent_y, UINT64 sign_z, int exponent_z, |
| UINT64 coefficient_z, unsigned *prounding_mode, |
| unsigned *fpsc) { |
| int_double tempx; |
| int bin_expon, scale_k, scale_cz; |
| int diff_expon; |
| |
| diff_expon = exponent_z - exponent_y; |
| |
| tempx.d = (double) coefficient_z; |
| bin_expon = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff; |
| scale_cz = estimate_decimal_digits[bin_expon]; |
| if (coefficient_z >= power10_table_128[scale_cz].w[0]) |
| scale_cz++; |
| |
| scale_k = 16 - scale_cz; |
| if (diff_expon < scale_k) |
| scale_k = diff_expon; |
| coefficient_z *= power10_table_128[scale_k].w[0]; |
| |
| return get_BID64 (sign_z, exponent_z - scale_k, coefficient_z, |
| *prounding_mode, fpsc); |
| } |
| #endif |