| /* Copyright (C) 2007-2017 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| Under Section 7 of GPL version 3, you are granted additional |
| permissions described in the GCC Runtime Library Exception, version |
| 3.1, as published by the Free Software Foundation. |
| |
| You should have received a copy of the GNU General Public License and |
| a copy of the GCC Runtime Library Exception along with this program; |
| see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| /***************************************************************************** |
| * |
| * BID64 encoding: |
| * **************************************** |
| * 63 62 53 52 0 |
| * |---|------------------|--------------| |
| * | S | Biased Exp (E) | Coeff (c) | |
| * |---|------------------|--------------| |
| * |
| * bias = 398 |
| * number = (-1)^s * 10^(E-398) * c |
| * coefficient range - 0 to (2^53)-1 |
| * COEFF_MAX = 2^53-1 = 9007199254740991 |
| * |
| ***************************************************************************** |
| * |
| * BID128 encoding: |
| * 1-bit sign |
| * 14-bit biased exponent in [0x21, 0x3020] = [33, 12320] |
| * unbiased exponent in [-6176, 6111]; exponent bias = 6176 |
| * 113-bit unsigned binary integer coefficient (49-bit high + 64-bit low) |
| * Note: 10^34-1 ~ 2^112.945555... < 2^113 => coefficient fits in 113 bits |
| * |
| * Note: assume invalid encodings are not passed to this function |
| * |
| * Round a number C with q decimal digits, represented as a binary integer |
| * to q - x digits. Six different routines are provided for different values |
| * of q. The maximum value of q used in the library is q = 3 * P - 1 where |
| * P = 16 or P = 34 (so q <= 111 decimal digits). |
| * The partitioning is based on the following, where Kx is the scaled |
| * integer representing the value of 10^(-x) rounded up to a number of bits |
| * sufficient to ensure correct rounding: |
| * |
| * -------------------------------------------------------------------------- |
| * q x max. value of a max number min. number |
| * of bits in C of bits in Kx |
| * -------------------------------------------------------------------------- |
| * |
| * GROUP 1: 64 bits |
| * round64_2_18 () |
| * |
| * 2 [1,1] 10^1 - 1 < 2^3.33 4 4 |
| * ... ... ... ... ... |
| * 18 [1,17] 10^18 - 1 < 2^59.80 60 61 |
| * |
| * GROUP 2: 128 bits |
| * round128_19_38 () |
| * |
| * 19 [1,18] 10^19 - 1 < 2^63.11 64 65 |
| * 20 [1,19] 10^20 - 1 < 2^66.44 67 68 |
| * ... ... ... ... ... |
| * 38 [1,37] 10^38 - 1 < 2^126.24 127 128 |
| * |
| * GROUP 3: 192 bits |
| * round192_39_57 () |
| * |
| * 39 [1,38] 10^39 - 1 < 2^129.56 130 131 |
| * ... ... ... ... ... |
| * 57 [1,56] 10^57 - 1 < 2^189.35 190 191 |
| * |
| * GROUP 4: 256 bits |
| * round256_58_76 () |
| * |
| * 58 [1,57] 10^58 - 1 < 2^192.68 193 194 |
| * ... ... ... ... ... |
| * 76 [1,75] 10^76 - 1 < 2^252.47 253 254 |
| * |
| * GROUP 5: 320 bits |
| * round320_77_96 () |
| * |
| * 77 [1,76] 10^77 - 1 < 2^255.79 256 257 |
| * 78 [1,77] 10^78 - 1 < 2^259.12 260 261 |
| * ... ... ... ... ... |
| * 96 [1,95] 10^96 - 1 < 2^318.91 319 320 |
| * |
| * GROUP 6: 384 bits |
| * round384_97_115 () |
| * |
| * 97 [1,96] 10^97 - 1 < 2^322.23 323 324 |
| * ... ... ... ... ... |
| * 115 [1,114] 10^115 - 1 < 2^382.03 383 384 |
| * |
| ****************************************************************************/ |
| |
| #include "bid_internal.h" |
| |
| void |
| round64_2_18 (int q, |
| int x, |
| UINT64 C, |
| UINT64 * ptr_Cstar, |
| int *incr_exp, |
| int *ptr_is_midpoint_lt_even, |
| int *ptr_is_midpoint_gt_even, |
| int *ptr_is_inexact_lt_midpoint, |
| int *ptr_is_inexact_gt_midpoint) { |
| |
| UINT128 P128; |
| UINT128 fstar; |
| UINT64 Cstar; |
| UINT64 tmp64; |
| int shift; |
| int ind; |
| |
| // Note: |
| // In round128_2_18() positive numbers with 2 <= q <= 18 will be |
| // rounded to nearest only for 1 <= x <= 3: |
| // x = 1 or x = 2 when q = 17 |
| // x = 2 or x = 3 when q = 18 |
| // However, for generality and possible uses outside the frame of IEEE 754R |
| // this implementation works for 1 <= x <= q - 1 |
| |
| // assume *ptr_is_midpoint_lt_even, *ptr_is_midpoint_gt_even, |
| // *ptr_is_inexact_lt_midpoint, and *ptr_is_inexact_gt_midpoint are |
| // initialized to 0 by the caller |
| |
| // round a number C with q decimal digits, 2 <= q <= 18 |
| // to q - x digits, 1 <= x <= 17 |
| // C = C + 1/2 * 10^x where the result C fits in 64 bits |
| // (because the largest value is 999999999999999999 + 50000000000000000 = |
| // 0x0e92596fd628ffff, which fits in 60 bits) |
| ind = x - 1; // 0 <= ind <= 16 |
| C = C + midpoint64[ind]; |
| // kx ~= 10^(-x), kx = Kx64[ind] * 2^(-Ex), 0 <= ind <= 16 |
| // P128 = (C + 1/2 * 10^x) * kx * 2^Ex = (C + 1/2 * 10^x) * Kx |
| // the approximation kx of 10^(-x) was rounded up to 64 bits |
| __mul_64x64_to_128MACH (P128, C, Kx64[ind]); |
| // calculate C* = floor (P128) and f* |
| // Cstar = P128 >> Ex |
| // fstar = low Ex bits of P128 |
| shift = Ex64m64[ind]; // in [3, 56] |
| Cstar = P128.w[1] >> shift; |
| fstar.w[1] = P128.w[1] & mask64[ind]; |
| fstar.w[0] = P128.w[0]; |
| // the top Ex bits of 10^(-x) are T* = ten2mxtrunc64[ind], e.g. |
| // if x=1, T*=ten2mxtrunc64[0]=0xcccccccccccccccc |
| // if (0 < f* < 10^(-x)) then the result is a midpoint |
| // if floor(C*) is even then C* = floor(C*) - logical right |
| // shift; C* has q - x decimal digits, correct by Prop. 1) |
| // else if floor(C*) is odd C* = floor(C*)-1 (logical right |
| // shift; C* has q - x decimal digits, correct by Pr. 1) |
| // else |
| // C* = floor(C*) (logical right shift; C has q - x decimal digits, |
| // correct by Property 1) |
| // in the caling function n = C* * 10^(e+x) |
| |
| // determine inexactness of the rounding of C* |
| // if (0 < f* - 1/2 < 10^(-x)) then |
| // the result is exact |
| // else // if (f* - 1/2 > T*) then |
| // the result is inexact |
| if (fstar.w[1] > half64[ind] || |
| (fstar.w[1] == half64[ind] && fstar.w[0])) { |
| // f* > 1/2 and the result may be exact |
| // Calculate f* - 1/2 |
| tmp64 = fstar.w[1] - half64[ind]; |
| if (tmp64 || fstar.w[0] > ten2mxtrunc64[ind]) { // f* - 1/2 > 10^(-x) |
| *ptr_is_inexact_lt_midpoint = 1; |
| } // else the result is exact |
| } else { // the result is inexact; f2* <= 1/2 |
| *ptr_is_inexact_gt_midpoint = 1; |
| } |
| // check for midpoints (could do this before determining inexactness) |
| if (fstar.w[1] == 0 && fstar.w[0] <= ten2mxtrunc64[ind]) { |
| // the result is a midpoint |
| if (Cstar & 0x01) { // Cstar is odd; MP in [EVEN, ODD] |
| // if floor(C*) is odd C = floor(C*) - 1; the result may be 0 |
| Cstar--; // Cstar is now even |
| *ptr_is_midpoint_gt_even = 1; |
| *ptr_is_inexact_lt_midpoint = 0; |
| *ptr_is_inexact_gt_midpoint = 0; |
| } else { // else MP in [ODD, EVEN] |
| *ptr_is_midpoint_lt_even = 1; |
| *ptr_is_inexact_lt_midpoint = 0; |
| *ptr_is_inexact_gt_midpoint = 0; |
| } |
| } |
| // check for rounding overflow, which occurs if Cstar = 10^(q-x) |
| ind = q - x; // 1 <= ind <= q - 1 |
| if (Cstar == ten2k64[ind]) { // if Cstar = 10^(q-x) |
| Cstar = ten2k64[ind - 1]; // Cstar = 10^(q-x-1) |
| *incr_exp = 1; |
| } else { // 10^33 <= Cstar <= 10^34 - 1 |
| *incr_exp = 0; |
| } |
| *ptr_Cstar = Cstar; |
| } |
| |
| |
| void |
| round128_19_38 (int q, |
| int x, |
| UINT128 C, |
| UINT128 * ptr_Cstar, |
| int *incr_exp, |
| int *ptr_is_midpoint_lt_even, |
| int *ptr_is_midpoint_gt_even, |
| int *ptr_is_inexact_lt_midpoint, |
| int *ptr_is_inexact_gt_midpoint) { |
| |
| UINT256 P256; |
| UINT256 fstar; |
| UINT128 Cstar; |
| UINT64 tmp64; |
| int shift; |
| int ind; |
| |
| // Note: |
| // In round128_19_38() positive numbers with 19 <= q <= 38 will be |
| // rounded to nearest only for 1 <= x <= 23: |
| // x = 3 or x = 4 when q = 19 |
| // x = 4 or x = 5 when q = 20 |
| // ... |
| // x = 18 or x = 19 when q = 34 |
| // x = 1 or x = 2 or x = 19 or x = 20 when q = 35 |
| // x = 2 or x = 3 or x = 20 or x = 21 when q = 36 |
| // x = 3 or x = 4 or x = 21 or x = 22 when q = 37 |
| // x = 4 or x = 5 or x = 22 or x = 23 when q = 38 |
| // However, for generality and possible uses outside the frame of IEEE 754R |
| // this implementation works for 1 <= x <= q - 1 |
| |
| // assume *ptr_is_midpoint_lt_even, *ptr_is_midpoint_gt_even, |
| // *ptr_is_inexact_lt_midpoint, and *ptr_is_inexact_gt_midpoint are |
| // initialized to 0 by the caller |
| |
| // round a number C with q decimal digits, 19 <= q <= 38 |
| // to q - x digits, 1 <= x <= 37 |
| // C = C + 1/2 * 10^x where the result C fits in 128 bits |
| // (because the largest value is 99999999999999999999999999999999999999 + |
| // 5000000000000000000000000000000000000 = |
| // 0x4efe43b0c573e7e68a043d8fffffffff, which fits is 127 bits) |
| |
| ind = x - 1; // 0 <= ind <= 36 |
| if (ind <= 18) { // if 0 <= ind <= 18 |
| tmp64 = C.w[0]; |
| C.w[0] = C.w[0] + midpoint64[ind]; |
| if (C.w[0] < tmp64) |
| C.w[1]++; |
| } else { // if 19 <= ind <= 37 |
| tmp64 = C.w[0]; |
| C.w[0] = C.w[0] + midpoint128[ind - 19].w[0]; |
| if (C.w[0] < tmp64) { |
| C.w[1]++; |
| } |
| C.w[1] = C.w[1] + midpoint128[ind - 19].w[1]; |
| } |
| // kx ~= 10^(-x), kx = Kx128[ind] * 2^(-Ex), 0 <= ind <= 36 |
| // P256 = (C + 1/2 * 10^x) * kx * 2^Ex = (C + 1/2 * 10^x) * Kx |
| // the approximation kx of 10^(-x) was rounded up to 128 bits |
| __mul_128x128_to_256 (P256, C, Kx128[ind]); |
| // calculate C* = floor (P256) and f* |
| // Cstar = P256 >> Ex |
| // fstar = low Ex bits of P256 |
| shift = Ex128m128[ind]; // in [2, 63] but have to consider two cases |
| if (ind <= 18) { // if 0 <= ind <= 18 |
| Cstar.w[0] = (P256.w[2] >> shift) | (P256.w[3] << (64 - shift)); |
| Cstar.w[1] = (P256.w[3] >> shift); |
| fstar.w[0] = P256.w[0]; |
| fstar.w[1] = P256.w[1]; |
| fstar.w[2] = P256.w[2] & mask128[ind]; |
| fstar.w[3] = 0x0ULL; |
| } else { // if 19 <= ind <= 37 |
| Cstar.w[0] = P256.w[3] >> shift; |
| Cstar.w[1] = 0x0ULL; |
| fstar.w[0] = P256.w[0]; |
| fstar.w[1] = P256.w[1]; |
| fstar.w[2] = P256.w[2]; |
| fstar.w[3] = P256.w[3] & mask128[ind]; |
| } |
| // the top Ex bits of 10^(-x) are T* = ten2mxtrunc64[ind], e.g. |
| // if x=1, T*=ten2mxtrunc128[0]=0xcccccccccccccccccccccccccccccccc |
| // if (0 < f* < 10^(-x)) then the result is a midpoint |
| // if floor(C*) is even then C* = floor(C*) - logical right |
| // shift; C* has q - x decimal digits, correct by Prop. 1) |
| // else if floor(C*) is odd C* = floor(C*)-1 (logical right |
| // shift; C* has q - x decimal digits, correct by Pr. 1) |
| // else |
| // C* = floor(C*) (logical right shift; C has q - x decimal digits, |
| // correct by Property 1) |
| // in the caling function n = C* * 10^(e+x) |
| |
| // determine inexactness of the rounding of C* |
| // if (0 < f* - 1/2 < 10^(-x)) then |
| // the result is exact |
| // else // if (f* - 1/2 > T*) then |
| // the result is inexact |
| if (ind <= 18) { // if 0 <= ind <= 18 |
| if (fstar.w[2] > half128[ind] || |
| (fstar.w[2] == half128[ind] && (fstar.w[1] || fstar.w[0]))) { |
| // f* > 1/2 and the result may be exact |
| // Calculate f* - 1/2 |
| tmp64 = fstar.w[2] - half128[ind]; |
| if (tmp64 || fstar.w[1] > ten2mxtrunc128[ind].w[1] || (fstar.w[1] == ten2mxtrunc128[ind].w[1] && fstar.w[0] > ten2mxtrunc128[ind].w[0])) { // f* - 1/2 > 10^(-x) |
| *ptr_is_inexact_lt_midpoint = 1; |
| } // else the result is exact |
| } else { // the result is inexact; f2* <= 1/2 |
| *ptr_is_inexact_gt_midpoint = 1; |
| } |
| } else { // if 19 <= ind <= 37 |
| if (fstar.w[3] > half128[ind] || (fstar.w[3] == half128[ind] && |
| (fstar.w[2] || fstar.w[1] |
| || fstar.w[0]))) { |
| // f* > 1/2 and the result may be exact |
| // Calculate f* - 1/2 |
| tmp64 = fstar.w[3] - half128[ind]; |
| if (tmp64 || fstar.w[2] || fstar.w[1] > ten2mxtrunc128[ind].w[1] || (fstar.w[1] == ten2mxtrunc128[ind].w[1] && fstar.w[0] > ten2mxtrunc128[ind].w[0])) { // f* - 1/2 > 10^(-x) |
| *ptr_is_inexact_lt_midpoint = 1; |
| } // else the result is exact |
| } else { // the result is inexact; f2* <= 1/2 |
| *ptr_is_inexact_gt_midpoint = 1; |
| } |
| } |
| // check for midpoints (could do this before determining inexactness) |
| if (fstar.w[3] == 0 && fstar.w[2] == 0 && |
| (fstar.w[1] < ten2mxtrunc128[ind].w[1] || |
| (fstar.w[1] == ten2mxtrunc128[ind].w[1] && |
| fstar.w[0] <= ten2mxtrunc128[ind].w[0]))) { |
| // the result is a midpoint |
| if (Cstar.w[0] & 0x01) { // Cstar is odd; MP in [EVEN, ODD] |
| // if floor(C*) is odd C = floor(C*) - 1; the result may be 0 |
| Cstar.w[0]--; // Cstar is now even |
| if (Cstar.w[0] == 0xffffffffffffffffULL) { |
| Cstar.w[1]--; |
| } |
| *ptr_is_midpoint_gt_even = 1; |
| *ptr_is_inexact_lt_midpoint = 0; |
| *ptr_is_inexact_gt_midpoint = 0; |
| } else { // else MP in [ODD, EVEN] |
| *ptr_is_midpoint_lt_even = 1; |
| *ptr_is_inexact_lt_midpoint = 0; |
| *ptr_is_inexact_gt_midpoint = 0; |
| } |
| } |
| // check for rounding overflow, which occurs if Cstar = 10^(q-x) |
| ind = q - x; // 1 <= ind <= q - 1 |
| if (ind <= 19) { |
| if (Cstar.w[1] == 0x0ULL && Cstar.w[0] == ten2k64[ind]) { |
| // if Cstar = 10^(q-x) |
| Cstar.w[0] = ten2k64[ind - 1]; // Cstar = 10^(q-x-1) |
| *incr_exp = 1; |
| } else { |
| *incr_exp = 0; |
| } |
| } else if (ind == 20) { |
| // if ind = 20 |
| if (Cstar.w[1] == ten2k128[0].w[1] |
| && Cstar.w[0] == ten2k128[0].w[0]) { |
| // if Cstar = 10^(q-x) |
| Cstar.w[0] = ten2k64[19]; // Cstar = 10^(q-x-1) |
| Cstar.w[1] = 0x0ULL; |
| *incr_exp = 1; |
| } else { |
| *incr_exp = 0; |
| } |
| } else { // if 21 <= ind <= 37 |
| if (Cstar.w[1] == ten2k128[ind - 20].w[1] && |
| Cstar.w[0] == ten2k128[ind - 20].w[0]) { |
| // if Cstar = 10^(q-x) |
| Cstar.w[0] = ten2k128[ind - 21].w[0]; // Cstar = 10^(q-x-1) |
| Cstar.w[1] = ten2k128[ind - 21].w[1]; |
| *incr_exp = 1; |
| } else { |
| *incr_exp = 0; |
| } |
| } |
| ptr_Cstar->w[1] = Cstar.w[1]; |
| ptr_Cstar->w[0] = Cstar.w[0]; |
| } |
| |
| |
| void |
| round192_39_57 (int q, |
| int x, |
| UINT192 C, |
| UINT192 * ptr_Cstar, |
| int *incr_exp, |
| int *ptr_is_midpoint_lt_even, |
| int *ptr_is_midpoint_gt_even, |
| int *ptr_is_inexact_lt_midpoint, |
| int *ptr_is_inexact_gt_midpoint) { |
| |
| UINT384 P384; |
| UINT384 fstar; |
| UINT192 Cstar; |
| UINT64 tmp64; |
| int shift; |
| int ind; |
| |
| // Note: |
| // In round192_39_57() positive numbers with 39 <= q <= 57 will be |
| // rounded to nearest only for 5 <= x <= 42: |
| // x = 23 or x = 24 or x = 5 or x = 6 when q = 39 |
| // x = 24 or x = 25 or x = 6 or x = 7 when q = 40 |
| // ... |
| // x = 41 or x = 42 or x = 23 or x = 24 when q = 57 |
| // However, for generality and possible uses outside the frame of IEEE 754R |
| // this implementation works for 1 <= x <= q - 1 |
| |
| // assume *ptr_is_midpoint_lt_even, *ptr_is_midpoint_gt_even, |
| // *ptr_is_inexact_lt_midpoint, and *ptr_is_inexact_gt_midpoint are |
| // initialized to 0 by the caller |
| |
| // round a number C with q decimal digits, 39 <= q <= 57 |
| // to q - x digits, 1 <= x <= 56 |
| // C = C + 1/2 * 10^x where the result C fits in 192 bits |
| // (because the largest value is |
| // 999999999999999999999999999999999999999999999999999999999 + |
| // 50000000000000000000000000000000000000000000000000000000 = |
| // 0x2ad282f212a1da846afdaf18c034ff09da7fffffffffffff, which fits in 190 bits) |
| ind = x - 1; // 0 <= ind <= 55 |
| if (ind <= 18) { // if 0 <= ind <= 18 |
| tmp64 = C.w[0]; |
| C.w[0] = C.w[0] + midpoint64[ind]; |
| if (C.w[0] < tmp64) { |
| C.w[1]++; |
| if (C.w[1] == 0x0) { |
| C.w[2]++; |
| } |
| } |
| } else if (ind <= 37) { // if 19 <= ind <= 37 |
| tmp64 = C.w[0]; |
| C.w[0] = C.w[0] + midpoint128[ind - 19].w[0]; |
| if (C.w[0] < tmp64) { |
| C.w[1]++; |
| if (C.w[1] == 0x0) { |
| C.w[2]++; |
| } |
| } |
| tmp64 = C.w[1]; |
| C.w[1] = C.w[1] + midpoint128[ind - 19].w[1]; |
| if (C.w[1] < tmp64) { |
| C.w[2]++; |
| } |
| } else { // if 38 <= ind <= 57 (actually ind <= 55) |
| tmp64 = C.w[0]; |
| C.w[0] = C.w[0] + midpoint192[ind - 38].w[0]; |
| if (C.w[0] < tmp64) { |
| C.w[1]++; |
| if (C.w[1] == 0x0ull) { |
| C.w[2]++; |
| } |
| } |
| tmp64 = C.w[1]; |
| C.w[1] = C.w[1] + midpoint192[ind - 38].w[1]; |
| if (C.w[1] < tmp64) { |
| C.w[2]++; |
| } |
| C.w[2] = C.w[2] + midpoint192[ind - 38].w[2]; |
| } |
| // kx ~= 10^(-x), kx = Kx192[ind] * 2^(-Ex), 0 <= ind <= 55 |
| // P384 = (C + 1/2 * 10^x) * kx * 2^Ex = (C + 1/2 * 10^x) * Kx |
| // the approximation kx of 10^(-x) was rounded up to 192 bits |
| __mul_192x192_to_384 (P384, C, Kx192[ind]); |
| // calculate C* = floor (P384) and f* |
| // Cstar = P384 >> Ex |
| // fstar = low Ex bits of P384 |
| shift = Ex192m192[ind]; // in [1, 63] but have to consider three cases |
| if (ind <= 18) { // if 0 <= ind <= 18 |
| Cstar.w[2] = (P384.w[5] >> shift); |
| Cstar.w[1] = (P384.w[5] << (64 - shift)) | (P384.w[4] >> shift); |
| Cstar.w[0] = (P384.w[4] << (64 - shift)) | (P384.w[3] >> shift); |
| fstar.w[5] = 0x0ULL; |
| fstar.w[4] = 0x0ULL; |
| fstar.w[3] = P384.w[3] & mask192[ind]; |
| fstar.w[2] = P384.w[2]; |
| fstar.w[1] = P384.w[1]; |
| fstar.w[0] = P384.w[0]; |
| } else if (ind <= 37) { // if 19 <= ind <= 37 |
| Cstar.w[2] = 0x0ULL; |
| Cstar.w[1] = P384.w[5] >> shift; |
| Cstar.w[0] = (P384.w[5] << (64 - shift)) | (P384.w[4] >> shift); |
| fstar.w[5] = 0x0ULL; |
| fstar.w[4] = P384.w[4] & mask192[ind]; |
| fstar.w[3] = P384.w[3]; |
| fstar.w[2] = P384.w[2]; |
| fstar.w[1] = P384.w[1]; |
| fstar.w[0] = P384.w[0]; |
| } else { // if 38 <= ind <= 57 |
| Cstar.w[2] = 0x0ULL; |
| Cstar.w[1] = 0x0ULL; |
| Cstar.w[0] = P384.w[5] >> shift; |
| fstar.w[5] = P384.w[5] & mask192[ind]; |
| fstar.w[4] = P384.w[4]; |
| fstar.w[3] = P384.w[3]; |
| fstar.w[2] = P384.w[2]; |
| fstar.w[1] = P384.w[1]; |
| fstar.w[0] = P384.w[0]; |
| } |
| |
| // the top Ex bits of 10^(-x) are T* = ten2mxtrunc192[ind], e.g. if x=1, |
| // T*=ten2mxtrunc192[0]=0xcccccccccccccccccccccccccccccccccccccccccccccccc |
| // if (0 < f* < 10^(-x)) then the result is a midpoint |
| // if floor(C*) is even then C* = floor(C*) - logical right |
| // shift; C* has q - x decimal digits, correct by Prop. 1) |
| // else if floor(C*) is odd C* = floor(C*)-1 (logical right |
| // shift; C* has q - x decimal digits, correct by Pr. 1) |
| // else |
| // C* = floor(C*) (logical right shift; C has q - x decimal digits, |
| // correct by Property 1) |
| // in the caling function n = C* * 10^(e+x) |
| |
| // determine inexactness of the rounding of C* |
| // if (0 < f* - 1/2 < 10^(-x)) then |
| // the result is exact |
| // else // if (f* - 1/2 > T*) then |
| // the result is inexact |
| if (ind <= 18) { // if 0 <= ind <= 18 |
| if (fstar.w[3] > half192[ind] || (fstar.w[3] == half192[ind] && |
| (fstar.w[2] || fstar.w[1] |
| || fstar.w[0]))) { |
| // f* > 1/2 and the result may be exact |
| // Calculate f* - 1/2 |
| tmp64 = fstar.w[3] - half192[ind]; |
| if (tmp64 || fstar.w[2] > ten2mxtrunc192[ind].w[2] || (fstar.w[2] == ten2mxtrunc192[ind].w[2] && fstar.w[1] > ten2mxtrunc192[ind].w[1]) || (fstar.w[2] == ten2mxtrunc192[ind].w[2] && fstar.w[1] == ten2mxtrunc192[ind].w[1] && fstar.w[0] > ten2mxtrunc192[ind].w[0])) { // f* - 1/2 > 10^(-x) |
| *ptr_is_inexact_lt_midpoint = 1; |
| } // else the result is exact |
| } else { // the result is inexact; f2* <= 1/2 |
| *ptr_is_inexact_gt_midpoint = 1; |
| } |
| } else if (ind <= 37) { // if 19 <= ind <= 37 |
| if (fstar.w[4] > half192[ind] || (fstar.w[4] == half192[ind] && |
| (fstar.w[3] || fstar.w[2] |
| || fstar.w[1] || fstar.w[0]))) { |
| // f* > 1/2 and the result may be exact |
| // Calculate f* - 1/2 |
| tmp64 = fstar.w[4] - half192[ind]; |
| if (tmp64 || fstar.w[3] || fstar.w[2] > ten2mxtrunc192[ind].w[2] || (fstar.w[2] == ten2mxtrunc192[ind].w[2] && fstar.w[1] > ten2mxtrunc192[ind].w[1]) || (fstar.w[2] == ten2mxtrunc192[ind].w[2] && fstar.w[1] == ten2mxtrunc192[ind].w[1] && fstar.w[0] > ten2mxtrunc192[ind].w[0])) { // f* - 1/2 > 10^(-x) |
| *ptr_is_inexact_lt_midpoint = 1; |
| } // else the result is exact |
| } else { // the result is inexact; f2* <= 1/2 |
| *ptr_is_inexact_gt_midpoint = 1; |
| } |
| } else { // if 38 <= ind <= 55 |
| if (fstar.w[5] > half192[ind] || (fstar.w[5] == half192[ind] && |
| (fstar.w[4] || fstar.w[3] |
| || fstar.w[2] || fstar.w[1] |
| || fstar.w[0]))) { |
| // f* > 1/2 and the result may be exact |
| // Calculate f* - 1/2 |
| tmp64 = fstar.w[5] - half192[ind]; |
| if (tmp64 || fstar.w[4] || fstar.w[3] || fstar.w[2] > ten2mxtrunc192[ind].w[2] || (fstar.w[2] == ten2mxtrunc192[ind].w[2] && fstar.w[1] > ten2mxtrunc192[ind].w[1]) || (fstar.w[2] == ten2mxtrunc192[ind].w[2] && fstar.w[1] == ten2mxtrunc192[ind].w[1] && fstar.w[0] > ten2mxtrunc192[ind].w[0])) { // f* - 1/2 > 10^(-x) |
| *ptr_is_inexact_lt_midpoint = 1; |
| } // else the result is exact |
| } else { // the result is inexact; f2* <= 1/2 |
| *ptr_is_inexact_gt_midpoint = 1; |
| } |
| } |
| // check for midpoints (could do this before determining inexactness) |
| if (fstar.w[5] == 0 && fstar.w[4] == 0 && fstar.w[3] == 0 && |
| (fstar.w[2] < ten2mxtrunc192[ind].w[2] || |
| (fstar.w[2] == ten2mxtrunc192[ind].w[2] && |
| fstar.w[1] < ten2mxtrunc192[ind].w[1]) || |
| (fstar.w[2] == ten2mxtrunc192[ind].w[2] && |
| fstar.w[1] == ten2mxtrunc192[ind].w[1] && |
| fstar.w[0] <= ten2mxtrunc192[ind].w[0]))) { |
| // the result is a midpoint |
| if (Cstar.w[0] & 0x01) { // Cstar is odd; MP in [EVEN, ODD] |
| // if floor(C*) is odd C = floor(C*) - 1; the result may be 0 |
| Cstar.w[0]--; // Cstar is now even |
| if (Cstar.w[0] == 0xffffffffffffffffULL) { |
| Cstar.w[1]--; |
| if (Cstar.w[1] == 0xffffffffffffffffULL) { |
| Cstar.w[2]--; |
| } |
| } |
| *ptr_is_midpoint_gt_even = 1; |
| *ptr_is_inexact_lt_midpoint = 0; |
| *ptr_is_inexact_gt_midpoint = 0; |
| } else { // else MP in [ODD, EVEN] |
| *ptr_is_midpoint_lt_even = 1; |
| *ptr_is_inexact_lt_midpoint = 0; |
| *ptr_is_inexact_gt_midpoint = 0; |
| } |
| } |
| // check for rounding overflow, which occurs if Cstar = 10^(q-x) |
| ind = q - x; // 1 <= ind <= q - 1 |
| if (ind <= 19) { |
| if (Cstar.w[2] == 0x0ULL && Cstar.w[1] == 0x0ULL && |
| Cstar.w[0] == ten2k64[ind]) { |
| // if Cstar = 10^(q-x) |
| Cstar.w[0] = ten2k64[ind - 1]; // Cstar = 10^(q-x-1) |
| *incr_exp = 1; |
| } else { |
| *incr_exp = 0; |
| } |
| } else if (ind == 20) { |
| // if ind = 20 |
| if (Cstar.w[2] == 0x0ULL && Cstar.w[1] == ten2k128[0].w[1] && |
| Cstar.w[0] == ten2k128[0].w[0]) { |
| // if Cstar = 10^(q-x) |
| Cstar.w[0] = ten2k64[19]; // Cstar = 10^(q-x-1) |
| Cstar.w[1] = 0x0ULL; |
| *incr_exp = 1; |
| } else { |
| *incr_exp = 0; |
| } |
| } else if (ind <= 38) { // if 21 <= ind <= 38 |
| if (Cstar.w[2] == 0x0ULL && Cstar.w[1] == ten2k128[ind - 20].w[1] && |
| Cstar.w[0] == ten2k128[ind - 20].w[0]) { |
| // if Cstar = 10^(q-x) |
| Cstar.w[0] = ten2k128[ind - 21].w[0]; // Cstar = 10^(q-x-1) |
| Cstar.w[1] = ten2k128[ind - 21].w[1]; |
| *incr_exp = 1; |
| } else { |
| *incr_exp = 0; |
| } |
| } else if (ind == 39) { |
| if (Cstar.w[2] == ten2k256[0].w[2] && Cstar.w[1] == ten2k256[0].w[1] |
| && Cstar.w[0] == ten2k256[0].w[0]) { |
| // if Cstar = 10^(q-x) |
| Cstar.w[0] = ten2k128[18].w[0]; // Cstar = 10^(q-x-1) |
| Cstar.w[1] = ten2k128[18].w[1]; |
| Cstar.w[2] = 0x0ULL; |
| *incr_exp = 1; |
| } else { |
| *incr_exp = 0; |
| } |
| } else { // if 40 <= ind <= 56 |
| if (Cstar.w[2] == ten2k256[ind - 39].w[2] && |
| Cstar.w[1] == ten2k256[ind - 39].w[1] && |
| Cstar.w[0] == ten2k256[ind - 39].w[0]) { |
| // if Cstar = 10^(q-x) |
| Cstar.w[0] = ten2k256[ind - 40].w[0]; // Cstar = 10^(q-x-1) |
| Cstar.w[1] = ten2k256[ind - 40].w[1]; |
| Cstar.w[2] = ten2k256[ind - 40].w[2]; |
| *incr_exp = 1; |
| } else { |
| *incr_exp = 0; |
| } |
| } |
| ptr_Cstar->w[2] = Cstar.w[2]; |
| ptr_Cstar->w[1] = Cstar.w[1]; |
| ptr_Cstar->w[0] = Cstar.w[0]; |
| } |
| |
| |
| void |
| round256_58_76 (int q, |
| int x, |
| UINT256 C, |
| UINT256 * ptr_Cstar, |
| int *incr_exp, |
| int *ptr_is_midpoint_lt_even, |
| int *ptr_is_midpoint_gt_even, |
| int *ptr_is_inexact_lt_midpoint, |
| int *ptr_is_inexact_gt_midpoint) { |
| |
| UINT512 P512; |
| UINT512 fstar; |
| UINT256 Cstar; |
| UINT64 tmp64; |
| int shift; |
| int ind; |
| |
| // Note: |
| // In round256_58_76() positive numbers with 58 <= q <= 76 will be |
| // rounded to nearest only for 24 <= x <= 61: |
| // x = 42 or x = 43 or x = 24 or x = 25 when q = 58 |
| // x = 43 or x = 44 or x = 25 or x = 26 when q = 59 |
| // ... |
| // x = 60 or x = 61 or x = 42 or x = 43 when q = 76 |
| // However, for generality and possible uses outside the frame of IEEE 754R |
| // this implementation works for 1 <= x <= q - 1 |
| |
| // assume *ptr_is_midpoint_lt_even, *ptr_is_midpoint_gt_even, |
| // *ptr_is_inexact_lt_midpoint, and *ptr_is_inexact_gt_midpoint are |
| // initialized to 0 by the caller |
| |
| // round a number C with q decimal digits, 58 <= q <= 76 |
| // to q - x digits, 1 <= x <= 75 |
| // C = C + 1/2 * 10^x where the result C fits in 256 bits |
| // (because the largest value is 9999999999999999999999999999999999999999 |
| // 999999999999999999999999999999999999 + 500000000000000000000000000 |
| // 000000000000000000000000000000000000000000000000 = |
| // 0x1736ca15d27a56cae15cf0e7b403d1f2bd6ebb0a50dc83ffffffffffffffffff, |
| // which fits in 253 bits) |
| ind = x - 1; // 0 <= ind <= 74 |
| if (ind <= 18) { // if 0 <= ind <= 18 |
| tmp64 = C.w[0]; |
| C.w[0] = C.w[0] + midpoint64[ind]; |
| if (C.w[0] < tmp64) { |
| C.w[1]++; |
| if (C.w[1] == 0x0) { |
| C.w[2]++; |
| if (C.w[2] == 0x0) { |
| C.w[3]++; |
| } |
| } |
| } |
| } else if (ind <= 37) { // if 19 <= ind <= 37 |
| tmp64 = C.w[0]; |
| C.w[0] = C.w[0] + midpoint128[ind - 19].w[0]; |
| if (C.w[0] < tmp64) { |
| C.w[1]++; |
| if (C.w[1] == 0x0) { |
| C.w[2]++; |
| if (C.w[2] == 0x0) { |
| C.w[3]++; |
| } |
| } |
| } |
| tmp64 = C.w[1]; |
| C.w[1] = C.w[1] + midpoint128[ind - 19].w[1]; |
| if (C.w[1] < tmp64) { |
| C.w[2]++; |
| if (C.w[2] == 0x0) { |
| C.w[3]++; |
| } |
| } |
| } else if (ind <= 57) { // if 38 <= ind <= 57 |
| tmp64 = C.w[0]; |
| C.w[0] = C.w[0] + midpoint192[ind - 38].w[0]; |
| if (C.w[0] < tmp64) { |
| C.w[1]++; |
| if (C.w[1] == 0x0ull) { |
| C.w[2]++; |
| if (C.w[2] == 0x0) { |
| C.w[3]++; |
| } |
| } |
| } |
| tmp64 = C.w[1]; |
| C.w[1] = C.w[1] + midpoint192[ind - 38].w[1]; |
| if (C.w[1] < tmp64) { |
| C.w[2]++; |
| if (C.w[2] == 0x0) { |
| C.w[3]++; |
| } |
| } |
| tmp64 = C.w[2]; |
| C.w[2] = C.w[2] + midpoint192[ind - 38].w[2]; |
| if (C.w[2] < tmp64) { |
| C.w[3]++; |
| } |
| } else { // if 58 <= ind <= 76 (actually 58 <= ind <= 74) |
| tmp64 = C.w[0]; |
| C.w[0] = C.w[0] + midpoint256[ind - 58].w[0]; |
| if (C.w[0] < tmp64) { |
| C.w[1]++; |
| if (C.w[1] == 0x0ull) { |
| C.w[2]++; |
| if (C.w[2] == 0x0) { |
| C.w[3]++; |
| } |
| } |
| } |
| tmp64 = C.w[1]; |
| C.w[1] = C.w[1] + midpoint256[ind - 58].w[1]; |
| if (C.w[1] < tmp64) { |
| C.w[2]++; |
| if (C.w[2] == 0x0) { |
| C.w[3]++; |
| } |
| } |
| tmp64 = C.w[2]; |
| C.w[2] = C.w[2] + midpoint256[ind - 58].w[2]; |
| if (C.w[2] < tmp64) { |
| C.w[3]++; |
| } |
| C.w[3] = C.w[3] + midpoint256[ind - 58].w[3]; |
| } |
| // kx ~= 10^(-x), kx = Kx256[ind] * 2^(-Ex), 0 <= ind <= 74 |
| // P512 = (C + 1/2 * 10^x) * kx * 2^Ex = (C + 1/2 * 10^x) * Kx |
| // the approximation kx of 10^(-x) was rounded up to 192 bits |
| __mul_256x256_to_512 (P512, C, Kx256[ind]); |
| // calculate C* = floor (P512) and f* |
| // Cstar = P512 >> Ex |
| // fstar = low Ex bits of P512 |
| shift = Ex256m256[ind]; // in [0, 63] but have to consider four cases |
| if (ind <= 18) { // if 0 <= ind <= 18 |
| Cstar.w[3] = (P512.w[7] >> shift); |
| Cstar.w[2] = (P512.w[7] << (64 - shift)) | (P512.w[6] >> shift); |
| Cstar.w[1] = (P512.w[6] << (64 - shift)) | (P512.w[5] >> shift); |
| Cstar.w[0] = (P512.w[5] << (64 - shift)) | (P512.w[4] >> shift); |
| fstar.w[7] = 0x0ULL; |
| fstar.w[6] = 0x0ULL; |
| fstar.w[5] = 0x0ULL; |
| fstar.w[4] = P512.w[4] & mask256[ind]; |
| fstar.w[3] = P512.w[3]; |
| fstar.w[2] = P512.w[2]; |
| fstar.w[1] = P512.w[1]; |
| fstar.w[0] = P512.w[0]; |
| } else if (ind <= 37) { // if 19 <= ind <= 37 |
| Cstar.w[3] = 0x0ULL; |
| Cstar.w[2] = P512.w[7] >> shift; |
| Cstar.w[1] = (P512.w[7] << (64 - shift)) | (P512.w[6] >> shift); |
| Cstar.w[0] = (P512.w[6] << (64 - shift)) | (P512.w[5] >> shift); |
| fstar.w[7] = 0x0ULL; |
| fstar.w[6] = 0x0ULL; |
| fstar.w[5] = P512.w[5] & mask256[ind]; |
| fstar.w[4] = P512.w[4]; |
| fstar.w[3] = P512.w[3]; |
| fstar.w[2] = P512.w[2]; |
| fstar.w[1] = P512.w[1]; |
| fstar.w[0] = P512.w[0]; |
| } else if (ind <= 56) { // if 38 <= ind <= 56 |
| Cstar.w[3] = 0x0ULL; |
| Cstar.w[2] = 0x0ULL; |
| Cstar.w[1] = P512.w[7] >> shift; |
| Cstar.w[0] = (P512.w[7] << (64 - shift)) | (P512.w[6] >> shift); |
| fstar.w[7] = 0x0ULL; |
| fstar.w[6] = P512.w[6] & mask256[ind]; |
| fstar.w[5] = P512.w[5]; |
| fstar.w[4] = P512.w[4]; |
| fstar.w[3] = P512.w[3]; |
| fstar.w[2] = P512.w[2]; |
| fstar.w[1] = P512.w[1]; |
| fstar.w[0] = P512.w[0]; |
| } else if (ind == 57) { |
| Cstar.w[3] = 0x0ULL; |
| Cstar.w[2] = 0x0ULL; |
| Cstar.w[1] = 0x0ULL; |
| Cstar.w[0] = P512.w[7]; |
| fstar.w[7] = 0x0ULL; |
| fstar.w[6] = P512.w[6]; |
| fstar.w[5] = P512.w[5]; |
| fstar.w[4] = P512.w[4]; |
| fstar.w[3] = P512.w[3]; |
| fstar.w[2] = P512.w[2]; |
| fstar.w[1] = P512.w[1]; |
| fstar.w[0] = P512.w[0]; |
| } else { // if 58 <= ind <= 74 |
| Cstar.w[3] = 0x0ULL; |
| Cstar.w[2] = 0x0ULL; |
| Cstar.w[1] = 0x0ULL; |
| Cstar.w[0] = P512.w[7] >> shift; |
| fstar.w[7] = P512.w[7] & mask256[ind]; |
| fstar.w[6] = P512.w[6]; |
| fstar.w[5] = P512.w[5]; |
| fstar.w[4] = P512.w[4]; |
| fstar.w[3] = P512.w[3]; |
| fstar.w[2] = P512.w[2]; |
| fstar.w[1] = P512.w[1]; |
| fstar.w[0] = P512.w[0]; |
| } |
| |
| // the top Ex bits of 10^(-x) are T* = ten2mxtrunc256[ind], e.g. if x=1, |
| // T*=ten2mxtrunc256[0]= |
| // 0xcccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| // if (0 < f* < 10^(-x)) then the result is a midpoint |
| // if floor(C*) is even then C* = floor(C*) - logical right |
| // shift; C* has q - x decimal digits, correct by Prop. 1) |
| // else if floor(C*) is odd C* = floor(C*)-1 (logical right |
| // shift; C* has q - x decimal digits, correct by Pr. 1) |
| // else |
| // C* = floor(C*) (logical right shift; C has q - x decimal digits, |
| // correct by Property 1) |
| // in the caling function n = C* * 10^(e+x) |
| |
| // determine inexactness of the rounding of C* |
| // if (0 < f* - 1/2 < 10^(-x)) then |
| // the result is exact |
| // else // if (f* - 1/2 > T*) then |
| // the result is inexact |
| if (ind <= 18) { // if 0 <= ind <= 18 |
| if (fstar.w[4] > half256[ind] || (fstar.w[4] == half256[ind] && |
| (fstar.w[3] || fstar.w[2] |
| || fstar.w[1] || fstar.w[0]))) { |
| // f* > 1/2 and the result may be exact |
| // Calculate f* - 1/2 |
| tmp64 = fstar.w[4] - half256[ind]; |
| if (tmp64 || fstar.w[3] > ten2mxtrunc256[ind].w[2] || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] > ten2mxtrunc256[ind].w[2]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] > ten2mxtrunc256[ind].w[1]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] == ten2mxtrunc256[ind].w[1] && fstar.w[0] > ten2mxtrunc256[ind].w[0])) { // f* - 1/2 > 10^(-x) |
| *ptr_is_inexact_lt_midpoint = 1; |
| } // else the result is exact |
| } else { // the result is inexact; f2* <= 1/2 |
| *ptr_is_inexact_gt_midpoint = 1; |
| } |
| } else if (ind <= 37) { // if 19 <= ind <= 37 |
| if (fstar.w[5] > half256[ind] || (fstar.w[5] == half256[ind] && |
| (fstar.w[4] || fstar.w[3] |
| || fstar.w[2] || fstar.w[1] |
| || fstar.w[0]))) { |
| // f* > 1/2 and the result may be exact |
| // Calculate f* - 1/2 |
| tmp64 = fstar.w[5] - half256[ind]; |
| if (tmp64 || fstar.w[4] || fstar.w[3] > ten2mxtrunc256[ind].w[3] || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] > ten2mxtrunc256[ind].w[2]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] > ten2mxtrunc256[ind].w[1]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] == ten2mxtrunc256[ind].w[1] && fstar.w[0] > ten2mxtrunc256[ind].w[0])) { // f* - 1/2 > 10^(-x) |
| *ptr_is_inexact_lt_midpoint = 1; |
| } // else the result is exact |
| } else { // the result is inexact; f2* <= 1/2 |
| *ptr_is_inexact_gt_midpoint = 1; |
| } |
| } else if (ind <= 57) { // if 38 <= ind <= 57 |
| if (fstar.w[6] > half256[ind] || (fstar.w[6] == half256[ind] && |
| (fstar.w[5] || fstar.w[4] |
| || fstar.w[3] || fstar.w[2] |
| || fstar.w[1] || fstar.w[0]))) { |
| // f* > 1/2 and the result may be exact |
| // Calculate f* - 1/2 |
| tmp64 = fstar.w[6] - half256[ind]; |
| if (tmp64 || fstar.w[5] || fstar.w[4] || fstar.w[3] > ten2mxtrunc256[ind].w[3] || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] > ten2mxtrunc256[ind].w[2]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] > ten2mxtrunc256[ind].w[1]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] == ten2mxtrunc256[ind].w[1] && fstar.w[0] > ten2mxtrunc256[ind].w[0])) { // f* - 1/2 > 10^(-x) |
| *ptr_is_inexact_lt_midpoint = 1; |
| } // else the result is exact |
| } else { // the result is inexact; f2* <= 1/2 |
| *ptr_is_inexact_gt_midpoint = 1; |
| } |
| } else { // if 58 <= ind <= 74 |
| if (fstar.w[7] > half256[ind] || (fstar.w[7] == half256[ind] && |
| (fstar.w[6] || fstar.w[5] |
| || fstar.w[4] || fstar.w[3] |
| || fstar.w[2] || fstar.w[1] |
| || fstar.w[0]))) { |
| // f* > 1/2 and the result may be exact |
| // Calculate f* - 1/2 |
| tmp64 = fstar.w[7] - half256[ind]; |
| if (tmp64 || fstar.w[6] || fstar.w[5] || fstar.w[4] || fstar.w[3] > ten2mxtrunc256[ind].w[3] || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] > ten2mxtrunc256[ind].w[2]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] > ten2mxtrunc256[ind].w[1]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] == ten2mxtrunc256[ind].w[1] && fstar.w[0] > ten2mxtrunc256[ind].w[0])) { // f* - 1/2 > 10^(-x) |
| *ptr_is_inexact_lt_midpoint = 1; |
| } // else the result is exact |
| } else { // the result is inexact; f2* <= 1/2 |
| *ptr_is_inexact_gt_midpoint = 1; |
| } |
| } |
| // check for midpoints (could do this before determining inexactness) |
| if (fstar.w[7] == 0 && fstar.w[6] == 0 && |
| fstar.w[5] == 0 && fstar.w[4] == 0 && |
| (fstar.w[3] < ten2mxtrunc256[ind].w[3] || |
| (fstar.w[3] == ten2mxtrunc256[ind].w[3] && |
| fstar.w[2] < ten2mxtrunc256[ind].w[2]) || |
| (fstar.w[3] == ten2mxtrunc256[ind].w[3] && |
| fstar.w[2] == ten2mxtrunc256[ind].w[2] && |
| fstar.w[1] < ten2mxtrunc256[ind].w[1]) || |
| (fstar.w[3] == ten2mxtrunc256[ind].w[3] && |
| fstar.w[2] == ten2mxtrunc256[ind].w[2] && |
| fstar.w[1] == ten2mxtrunc256[ind].w[1] && |
| fstar.w[0] <= ten2mxtrunc256[ind].w[0]))) { |
| // the result is a midpoint |
| if (Cstar.w[0] & 0x01) { // Cstar is odd; MP in [EVEN, ODD] |
| // if floor(C*) is odd C = floor(C*) - 1; the result may be 0 |
| Cstar.w[0]--; // Cstar is now even |
| if (Cstar.w[0] == 0xffffffffffffffffULL) { |
| Cstar.w[1]--; |
| if (Cstar.w[1] == 0xffffffffffffffffULL) { |
| Cstar.w[2]--; |
| if (Cstar.w[2] == 0xffffffffffffffffULL) { |
| Cstar.w[3]--; |
| } |
| } |
| } |
| *ptr_is_midpoint_gt_even = 1; |
| *ptr_is_inexact_lt_midpoint = 0; |
| *ptr_is_inexact_gt_midpoint = 0; |
| } else { // else MP in [ODD, EVEN] |
| *ptr_is_midpoint_lt_even = 1; |
| *ptr_is_inexact_lt_midpoint = 0; |
| *ptr_is_inexact_gt_midpoint = 0; |
| } |
| } |
| // check for rounding overflow, which occurs if Cstar = 10^(q-x) |
| ind = q - x; // 1 <= ind <= q - 1 |
| if (ind <= 19) { |
| if (Cstar.w[3] == 0x0ULL && Cstar.w[2] == 0x0ULL && |
| Cstar.w[1] == 0x0ULL && Cstar.w[0] == ten2k64[ind]) { |
| // if Cstar = 10^(q-x) |
| Cstar.w[0] = ten2k64[ind - 1]; // Cstar = 10^(q-x-1) |
| *incr_exp = 1; |
| } else { |
| *incr_exp = 0; |
| } |
| } else if (ind == 20) { |
| // if ind = 20 |
| if (Cstar.w[3] == 0x0ULL && Cstar.w[2] == 0x0ULL && |
| Cstar.w[1] == ten2k128[0].w[1] |
| && Cstar.w[0] == ten2k128[0].w[0]) { |
| // if Cstar = 10^(q-x) |
| Cstar.w[0] = ten2k64[19]; // Cstar = 10^(q-x-1) |
| Cstar.w[1] = 0x0ULL; |
| *incr_exp = 1; |
| } else { |
| *incr_exp = 0; |
| } |
| } else if (ind <= 38) { // if 21 <= ind <= 38 |
| if (Cstar.w[3] == 0x0ULL && Cstar.w[2] == 0x0ULL && |
| Cstar.w[1] == ten2k128[ind - 20].w[1] && |
| Cstar.w[0] == ten2k128[ind - 20].w[0]) { |
| // if Cstar = 10^(q-x) |
| Cstar.w[0] = ten2k128[ind - 21].w[0]; // Cstar = 10^(q-x-1) |
| Cstar.w[1] = ten2k128[ind - 21].w[1]; |
| *incr_exp = 1; |
| } else { |
| *incr_exp = 0; |
| } |
| } else if (ind == 39) { |
| if (Cstar.w[3] == 0x0ULL && Cstar.w[2] == ten2k256[0].w[2] && |
| Cstar.w[1] == ten2k256[0].w[1] |
| && Cstar.w[0] == ten2k256[0].w[0]) { |
| // if Cstar = 10^(q-x) |
| Cstar.w[0] = ten2k128[18].w[0]; // Cstar = 10^(q-x-1) |
| Cstar.w[1] = ten2k128[18].w[1]; |
| Cstar.w[2] = 0x0ULL; |
| *incr_exp = 1; |
| } else { |
| *incr_exp = 0; |
| } |
| } else if (ind <= 57) { // if 40 <= ind <= 57 |
| if (Cstar.w[3] == 0x0ULL && Cstar.w[2] == ten2k256[ind - 39].w[2] && |
| Cstar.w[1] == ten2k256[ind - 39].w[1] && |
| Cstar.w[0] == ten2k256[ind - 39].w[0]) { |
| // if Cstar = 10^(q-x) |
| Cstar.w[0] = ten2k256[ind - 40].w[0]; // Cstar = 10^(q-x-1) |
| Cstar.w[1] = ten2k256[ind - 40].w[1]; |
| Cstar.w[2] = ten2k256[ind - 40].w[2]; |
| *incr_exp = 1; |
| } else { |
| *incr_exp = 0; |
| } |
| // else if (ind == 58) is not needed becauae we do not have ten2k192[] yet |
| } else { // if 58 <= ind <= 77 (actually 58 <= ind <= 74) |
| if (Cstar.w[3] == ten2k256[ind - 39].w[3] && |
| Cstar.w[2] == ten2k256[ind - 39].w[2] && |
| Cstar.w[1] == ten2k256[ind - 39].w[1] && |
| Cstar.w[0] == ten2k256[ind - 39].w[0]) { |
| // if Cstar = 10^(q-x) |
| Cstar.w[0] = ten2k256[ind - 40].w[0]; // Cstar = 10^(q-x-1) |
| Cstar.w[1] = ten2k256[ind - 40].w[1]; |
| Cstar.w[2] = ten2k256[ind - 40].w[2]; |
| Cstar.w[3] = ten2k256[ind - 40].w[3]; |
| *incr_exp = 1; |
| } else { |
| *incr_exp = 0; |
| } |
| } |
| ptr_Cstar->w[3] = Cstar.w[3]; |
| ptr_Cstar->w[2] = Cstar.w[2]; |
| ptr_Cstar->w[1] = Cstar.w[1]; |
| ptr_Cstar->w[0] = Cstar.w[0]; |
| |
| } |