blob: 7479d35f2a594416c776e296c8309449aa44901e [file] [log] [blame]
//===-- sanitizer_mutex.h ---------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer/AddressSanitizer runtime.
//
//===----------------------------------------------------------------------===//
#ifndef SANITIZER_MUTEX_H
#define SANITIZER_MUTEX_H
#include "sanitizer_atomic.h"
#include "sanitizer_internal_defs.h"
#include "sanitizer_libc.h"
#include "sanitizer_thread_safety.h"
namespace __sanitizer {
class MUTEX StaticSpinMutex {
public:
void Init() {
atomic_store(&state_, 0, memory_order_relaxed);
}
void Lock() ACQUIRE() {
if (LIKELY(TryLock()))
return;
LockSlow();
}
bool TryLock() TRY_ACQUIRE(true) {
return atomic_exchange(&state_, 1, memory_order_acquire) == 0;
}
void Unlock() RELEASE() { atomic_store(&state_, 0, memory_order_release); }
void CheckLocked() const CHECK_LOCKED() {
CHECK_EQ(atomic_load(&state_, memory_order_relaxed), 1);
}
private:
atomic_uint8_t state_;
void LockSlow();
};
class MUTEX SpinMutex : public StaticSpinMutex {
public:
SpinMutex() {
Init();
}
SpinMutex(const SpinMutex &) = delete;
void operator=(const SpinMutex &) = delete;
};
// Semaphore provides an OS-dependent way to park/unpark threads.
// The last thread returned from Wait can destroy the object
// (destruction-safety).
class Semaphore {
public:
constexpr Semaphore() {}
Semaphore(const Semaphore &) = delete;
void operator=(const Semaphore &) = delete;
void Wait();
void Post(u32 count = 1);
private:
atomic_uint32_t state_ = {0};
};
typedef int MutexType;
enum {
// Used as sentinel and to catch unassigned types
// (should not be used as real Mutex type).
MutexInvalid = 0,
MutexThreadRegistry,
// Each tool own mutexes must start at this number.
MutexLastCommon,
// Type for legacy mutexes that are not checked for deadlocks.
MutexUnchecked = -1,
// Special marks that can be used in MutexMeta::can_lock table.
// The leaf mutexes can be locked under any other non-leaf mutex,
// but no other mutex can be locked while under a leaf mutex.
MutexLeaf = -1,
// Multiple mutexes of this type can be locked at the same time.
MutexMulti = -3,
};
// Go linker does not support THREADLOCAL variables,
// so we can't use per-thread state.
#define SANITIZER_CHECK_DEADLOCKS \
(SANITIZER_DEBUG && !SANITIZER_GO && SANITIZER_SUPPORTS_THREADLOCAL)
#if SANITIZER_CHECK_DEADLOCKS
struct MutexMeta {
MutexType type;
const char *name;
// The table fixes what mutexes can be locked under what mutexes.
// If the entry for MutexTypeFoo contains MutexTypeBar,
// then Bar mutex can be locked while under Foo mutex.
// Can also contain the special MutexLeaf/MutexMulti marks.
MutexType can_lock[10];
};
#endif
class CheckedMutex {
public:
explicit constexpr CheckedMutex(MutexType type)
#if SANITIZER_CHECK_DEADLOCKS
: type_(type)
#endif
{
}
ALWAYS_INLINE void Lock() {
#if SANITIZER_CHECK_DEADLOCKS
LockImpl(GET_CALLER_PC());
#endif
}
ALWAYS_INLINE void Unlock() {
#if SANITIZER_CHECK_DEADLOCKS
UnlockImpl();
#endif
}
// Checks that the current thread does not hold any mutexes
// (e.g. when returning from a runtime function to user code).
static void CheckNoLocks() {
#if SANITIZER_CHECK_DEADLOCKS
CheckNoLocksImpl();
#endif
}
private:
#if SANITIZER_CHECK_DEADLOCKS
const MutexType type_;
void LockImpl(uptr pc);
void UnlockImpl();
static void CheckNoLocksImpl();
#endif
};
// Reader-writer mutex.
// Derive from CheckedMutex for the purposes of EBO.
// We could make it a field marked with [[no_unique_address]],
// but this attribute is not supported by some older compilers.
class MUTEX Mutex : CheckedMutex {
public:
explicit constexpr Mutex(MutexType type = MutexUnchecked)
: CheckedMutex(type) {}
void Lock() ACQUIRE() {
CheckedMutex::Lock();
u64 reset_mask = ~0ull;
u64 state = atomic_load_relaxed(&state_);
for (uptr spin_iters = 0;; spin_iters++) {
u64 new_state;
bool locked = (state & (kWriterLock | kReaderLockMask)) != 0;
if (LIKELY(!locked)) {
// The mutex is not read-/write-locked, try to lock.
new_state = (state | kWriterLock) & reset_mask;
} else if (spin_iters > kMaxSpinIters) {
// We've spun enough, increment waiting writers count and block.
// The counter will be decremented by whoever wakes us.
new_state = (state + kWaitingWriterInc) & reset_mask;
} else if ((state & kWriterSpinWait) == 0) {
// Active spinning, but denote our presence so that unlocking
// thread does not wake up other threads.
new_state = state | kWriterSpinWait;
} else {
// Active spinning.
state = atomic_load(&state_, memory_order_relaxed);
continue;
}
if (UNLIKELY(!atomic_compare_exchange_weak(&state_, &state, new_state,
memory_order_acquire)))
continue;
if (LIKELY(!locked))
return; // We've locked the mutex.
if (spin_iters > kMaxSpinIters) {
// We've incremented waiting writers, so now block.
writers_.Wait();
spin_iters = 0;
} else {
// We've set kWriterSpinWait, but we are still in active spinning.
}
// We either blocked and were unblocked,
// or we just spun but set kWriterSpinWait.
// Either way we need to reset kWriterSpinWait
// next time we take the lock or block again.
reset_mask = ~kWriterSpinWait;
state = atomic_load(&state_, memory_order_relaxed);
DCHECK_NE(state & kWriterSpinWait, 0);
}
}
void Unlock() RELEASE() {
CheckedMutex::Unlock();
bool wake_writer;
u64 wake_readers;
u64 new_state;
u64 state = atomic_load_relaxed(&state_);
do {
DCHECK_NE(state & kWriterLock, 0);
DCHECK_EQ(state & kReaderLockMask, 0);
new_state = state & ~kWriterLock;
wake_writer = (state & (kWriterSpinWait | kReaderSpinWait)) == 0 &&
(state & kWaitingWriterMask) != 0;
if (wake_writer)
new_state = (new_state - kWaitingWriterInc) | kWriterSpinWait;
wake_readers =
wake_writer || (state & kWriterSpinWait) != 0
? 0
: ((state & kWaitingReaderMask) >> kWaitingReaderShift);
if (wake_readers)
new_state = (new_state & ~kWaitingReaderMask) | kReaderSpinWait;
} while (UNLIKELY(!atomic_compare_exchange_weak(&state_, &state, new_state,
memory_order_release)));
if (UNLIKELY(wake_writer))
writers_.Post();
else if (UNLIKELY(wake_readers))
readers_.Post(wake_readers);
}
void ReadLock() ACQUIRE_SHARED() {
CheckedMutex::Lock();
u64 reset_mask = ~0ull;
u64 state = atomic_load_relaxed(&state_);
for (uptr spin_iters = 0;; spin_iters++) {
bool locked = (state & kWriterLock) != 0;
u64 new_state;
if (LIKELY(!locked)) {
new_state = (state + kReaderLockInc) & reset_mask;
} else if (spin_iters > kMaxSpinIters) {
new_state = (state + kWaitingReaderInc) & reset_mask;
} else if ((state & kReaderSpinWait) == 0) {
// Active spinning, but denote our presence so that unlocking
// thread does not wake up other threads.
new_state = state | kReaderSpinWait;
} else {
// Active spinning.
state = atomic_load(&state_, memory_order_relaxed);
continue;
}
if (UNLIKELY(!atomic_compare_exchange_weak(&state_, &state, new_state,
memory_order_acquire)))
continue;
if (LIKELY(!locked))
return; // We've locked the mutex.
if (spin_iters > kMaxSpinIters) {
// We've incremented waiting readers, so now block.
readers_.Wait();
spin_iters = 0;
} else {
// We've set kReaderSpinWait, but we are still in active spinning.
}
reset_mask = ~kReaderSpinWait;
state = atomic_load(&state_, memory_order_relaxed);
}
}
void ReadUnlock() RELEASE_SHARED() {
CheckedMutex::Unlock();
bool wake;
u64 new_state;
u64 state = atomic_load_relaxed(&state_);
do {
DCHECK_NE(state & kReaderLockMask, 0);
DCHECK_EQ(state & kWriterLock, 0);
new_state = state - kReaderLockInc;
wake = (new_state &
(kReaderLockMask | kWriterSpinWait | kReaderSpinWait)) == 0 &&
(new_state & kWaitingWriterMask) != 0;
if (wake)
new_state = (new_state - kWaitingWriterInc) | kWriterSpinWait;
} while (UNLIKELY(!atomic_compare_exchange_weak(&state_, &state, new_state,
memory_order_release)));
if (UNLIKELY(wake))
writers_.Post();
}
// This function does not guarantee an explicit check that the calling thread
// is the thread which owns the mutex. This behavior, while more strictly
// correct, causes problems in cases like StopTheWorld, where a parent thread
// owns the mutex but a child checks that it is locked. Rather than
// maintaining complex state to work around those situations, the check only
// checks that the mutex is owned.
void CheckWriteLocked() const CHECK_LOCKED() {
CHECK(atomic_load(&state_, memory_order_relaxed) & kWriterLock);
}
void CheckLocked() const CHECK_LOCKED() { CheckWriteLocked(); }
void CheckReadLocked() const CHECK_LOCKED() {
CHECK(atomic_load(&state_, memory_order_relaxed) & kReaderLockMask);
}
private:
atomic_uint64_t state_ = {0};
Semaphore writers_;
Semaphore readers_;
// The state has 3 counters:
// - number of readers holding the lock,
// if non zero, the mutex is read-locked
// - number of waiting readers,
// if not zero, the mutex is write-locked
// - number of waiting writers,
// if non zero, the mutex is read- or write-locked
// And 2 flags:
// - writer lock
// if set, the mutex is write-locked
// - a writer is awake and spin-waiting
// the flag is used to prevent thundering herd problem
// (new writers are not woken if this flag is set)
// - a reader is awake and spin-waiting
//
// Both writers and readers use active spinning before blocking.
// But readers are more aggressive and always take the mutex
// if there are any other readers.
// After wake up both writers and readers compete to lock the
// mutex again. This is needed to allow repeated locks even in presence
// of other blocked threads.
static constexpr u64 kCounterWidth = 20;
static constexpr u64 kReaderLockShift = 0;
static constexpr u64 kReaderLockInc = 1ull << kReaderLockShift;
static constexpr u64 kReaderLockMask = ((1ull << kCounterWidth) - 1)
<< kReaderLockShift;
static constexpr u64 kWaitingReaderShift = kCounterWidth;
static constexpr u64 kWaitingReaderInc = 1ull << kWaitingReaderShift;
static constexpr u64 kWaitingReaderMask = ((1ull << kCounterWidth) - 1)
<< kWaitingReaderShift;
static constexpr u64 kWaitingWriterShift = 2 * kCounterWidth;
static constexpr u64 kWaitingWriterInc = 1ull << kWaitingWriterShift;
static constexpr u64 kWaitingWriterMask = ((1ull << kCounterWidth) - 1)
<< kWaitingWriterShift;
static constexpr u64 kWriterLock = 1ull << (3 * kCounterWidth);
static constexpr u64 kWriterSpinWait = 1ull << (3 * kCounterWidth + 1);
static constexpr u64 kReaderSpinWait = 1ull << (3 * kCounterWidth + 2);
static constexpr uptr kMaxSpinIters = 1500;
Mutex(LinkerInitialized) = delete;
Mutex(const Mutex &) = delete;
void operator=(const Mutex &) = delete;
};
void FutexWait(atomic_uint32_t *p, u32 cmp);
void FutexWake(atomic_uint32_t *p, u32 count);
template <typename MutexType>
class SCOPED_LOCK GenericScopedLock {
public:
explicit GenericScopedLock(MutexType *mu) ACQUIRE(mu) : mu_(mu) {
mu_->Lock();
}
~GenericScopedLock() RELEASE() { mu_->Unlock(); }
private:
MutexType *mu_;
GenericScopedLock(const GenericScopedLock &) = delete;
void operator=(const GenericScopedLock &) = delete;
};
template <typename MutexType>
class SCOPED_LOCK GenericScopedReadLock {
public:
explicit GenericScopedReadLock(MutexType *mu) ACQUIRE(mu) : mu_(mu) {
mu_->ReadLock();
}
~GenericScopedReadLock() RELEASE() { mu_->ReadUnlock(); }
private:
MutexType *mu_;
GenericScopedReadLock(const GenericScopedReadLock &) = delete;
void operator=(const GenericScopedReadLock &) = delete;
};
template <typename MutexType>
class SCOPED_LOCK GenericScopedRWLock {
public:
ALWAYS_INLINE explicit GenericScopedRWLock(MutexType *mu, bool write)
ACQUIRE(mu)
: mu_(mu), write_(write) {
if (write_)
mu_->Lock();
else
mu_->ReadLock();
}
ALWAYS_INLINE ~GenericScopedRWLock() RELEASE() {
if (write_)
mu_->Unlock();
else
mu_->ReadUnlock();
}
private:
MutexType *mu_;
bool write_;
GenericScopedRWLock(const GenericScopedRWLock &) = delete;
void operator=(const GenericScopedRWLock &) = delete;
};
typedef GenericScopedLock<StaticSpinMutex> SpinMutexLock;
typedef GenericScopedLock<Mutex> Lock;
typedef GenericScopedReadLock<Mutex> ReadLock;
typedef GenericScopedRWLock<Mutex> RWLock;
} // namespace __sanitizer
#endif // SANITIZER_MUTEX_H