blob: 6a9ed5ce54b8b01cd0c7732e0a458cf06393935b [file] [log] [blame]
/* Data structure for the modref pass.
Copyright (C) 2020-2021 Free Software Foundation, Inc.
Contributed by David Cepelik and Jan Hubicka
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* modref_tree represent a decision tree that can be used by alias analysis
oracle to determine whether given memory access can be affected by a function
call. For every function we collect two trees, one for loads and other
for stores. Tree consist of following levels:
1) Base: this level represent base alias set of the access and refers
to sons (ref nodes). Flag all_refs means that all possible references
are aliasing.
Because for LTO streaming we need to stream types rather than alias sets
modref_base_node is implemented as a template.
2) Ref: this level represent ref alias set and links to accesses unless
all_refs flag is set.
Again ref is an template to allow LTO streaming.
3) Access: this level represent info about individual accesses. Presently
we record whether access is through a dereference of a function parameter
and if so we record the access range.
*/
#ifndef GCC_MODREF_TREE_H
#define GCC_MODREF_TREE_H
struct ipa_modref_summary;
/* Memory access. */
struct GTY(()) modref_access_node
{
/* Access range information (in bits). */
poly_int64 offset;
poly_int64 size;
poly_int64 max_size;
/* Offset from parameter pointer to the base of the access (in bytes). */
poly_int64 parm_offset;
/* Index of parameter which specifies the base of access. -1 if base is not
a function parameter. */
int parm_index;
bool parm_offset_known;
/* Number of times interval was extended during dataflow.
This has to be limited in order to keep dataflow finite. */
unsigned char adjustments;
/* Return true if access node holds no useful info. */
bool useful_p () const
{
return parm_index != -1;
}
/* Return true if range info is useful. */
bool range_info_useful_p () const
{
return parm_index != -1 && parm_offset_known
&& (known_size_p (size)
|| known_size_p (max_size)
|| known_ge (offset, 0));
}
/* Return true if both accesses are the same. */
bool operator == (modref_access_node &a) const
{
if (parm_index != a.parm_index)
return false;
if (parm_index >= 0)
{
if (parm_offset_known != a.parm_offset_known)
return false;
if (parm_offset_known
&& !known_eq (parm_offset, a.parm_offset))
return false;
}
if (range_info_useful_p () != a.range_info_useful_p ())
return false;
if (range_info_useful_p ()
&& (!known_eq (a.offset, offset)
|| !known_eq (a.size, size)
|| !known_eq (a.max_size, max_size)))
return false;
return true;
}
/* Return true A is a subaccess. */
bool contains (const modref_access_node &a) const
{
poly_int64 aoffset_adj = 0;
if (parm_index >= 0)
{
if (parm_index != a.parm_index)
return false;
if (parm_offset_known)
{
if (!a.parm_offset_known)
return false;
/* Accesses are never below parm_offset, so look
for smaller offset. */
if (!known_le (parm_offset, a.parm_offset))
return false;
aoffset_adj = (a.parm_offset - parm_offset)
<< LOG2_BITS_PER_UNIT;
}
}
if (range_info_useful_p ())
{
if (!a.range_info_useful_p ())
return false;
/* Sizes of stores are used to check that object is big enough
to fit the store, so smaller or unknown sotre is more general
than large store. */
if (known_size_p (size)
&& (!known_size_p (a.size)
|| !known_le (size, a.size)))
return false;
if (known_size_p (max_size))
return known_subrange_p (a.offset + aoffset_adj,
a.max_size, offset, max_size);
else
return known_le (offset, a.offset + aoffset_adj);
}
return true;
}
/* Update access range to new parameters.
If RECORD_ADJUSTMENTS is true, record number of changes in the access
and if threshold is exceeded start dropping precision
so only constantly many updates are possible. This makes dataflow
to converge. */
void update (poly_int64 parm_offset1,
poly_int64 offset1, poly_int64 size1, poly_int64 max_size1,
bool record_adjustments)
{
if (known_eq (offset, offset1)
&& known_eq (size, size1)
&& known_eq (max_size, max_size1))
return;
if (!record_adjustments
|| (++adjustments) < param_modref_max_adjustments)
{
parm_offset = parm_offset1;
offset = offset1;
size = size1;
max_size = max_size1;
}
else
{
if (dump_file)
fprintf (dump_file,
"--param param=modref-max-adjustments limit reached:");
if (!known_eq (parm_offset, parm_offset1))
{
if (dump_file)
fprintf (dump_file, " parm_offset cleared");
parm_offset_known = false;
}
if (!known_eq (size, size1))
{
size = -1;
if (dump_file)
fprintf (dump_file, " size cleared");
}
if (!known_eq (max_size, max_size1))
{
max_size = -1;
if (dump_file)
fprintf (dump_file, " max_size cleared");
}
if (!known_eq (offset, offset1))
{
offset = 0;
if (dump_file)
fprintf (dump_file, " offset cleared");
}
if (dump_file)
fprintf (dump_file, "\n");
}
}
/* Merge in access A if it is possible to do without losing
precision. Return true if successful.
If RECORD_ADJUSTMENTs is true, remember how many interval
was prolonged and punt when there are too many. */
bool merge (const modref_access_node &a, bool record_adjustments)
{
poly_int64 offset1 = 0;
poly_int64 aoffset1 = 0;
poly_int64 new_parm_offset = 0;
/* We assume that containment was tested earlier. */
gcc_checking_assert (!contains (a) && !a.contains (*this));
if (parm_index >= 0)
{
if (parm_index != a.parm_index)
return false;
if (parm_offset_known)
{
if (!a.parm_offset_known)
return false;
if (!combined_offsets (a, &new_parm_offset, &offset1, &aoffset1))
return false;
}
}
/* See if we can merge ranges. */
if (range_info_useful_p ())
{
/* In this case we have containment that should be
handled earlier. */
gcc_checking_assert (a.range_info_useful_p ());
/* If a.size is less specified than size, merge only
if intervals are otherwise equivalent. */
if (known_size_p (size)
&& (!known_size_p (a.size) || known_lt (a.size, size)))
{
if (((known_size_p (max_size) || known_size_p (a.max_size))
&& !known_eq (max_size, a.max_size))
|| !known_eq (offset1, aoffset1))
return false;
update (new_parm_offset, offset1, a.size, max_size,
record_adjustments);
return true;
}
/* If sizes are same, we can extend the interval. */
if ((known_size_p (size) || known_size_p (a.size))
&& !known_eq (size, a.size))
return false;
if (known_le (offset1, aoffset1))
{
if (!known_size_p (max_size)
|| known_ge (offset1 + max_size, aoffset1))
{
update2 (new_parm_offset, offset1, size, max_size,
aoffset1, a.size, a.max_size,
record_adjustments);
return true;
}
}
else if (known_le (aoffset1, offset1))
{
if (!known_size_p (a.max_size)
|| known_ge (aoffset1 + a.max_size, offset1))
{
update2 (new_parm_offset, offset1, size, max_size,
aoffset1, a.size, a.max_size,
record_adjustments);
return true;
}
}
return false;
}
update (new_parm_offset, offset1,
size, max_size, record_adjustments);
return true;
}
/* Return true if A1 and B1 can be merged with lower informatoin
less than A2 and B2.
Assume that no containment or lossless merging is possible. */
static bool closer_pair_p (const modref_access_node &a1,
const modref_access_node &b1,
const modref_access_node &a2,
const modref_access_node &b2)
{
/* Merging different parm indexes comes to complete loss
of range info. */
if (a1.parm_index != b1.parm_index)
return false;
if (a2.parm_index != b2.parm_index)
return true;
/* If parm is known and parm indexes are the same we should
already have containment. */
gcc_checking_assert (a1.parm_offset_known && b1.parm_offset_known);
gcc_checking_assert (a2.parm_offset_known && b2.parm_offset_known);
/* First normalize offsets for parm offsets. */
poly_int64 new_parm_offset, offseta1, offsetb1, offseta2, offsetb2;
if (!a1.combined_offsets (b1, &new_parm_offset, &offseta1, &offsetb1)
|| !a2.combined_offsets (b2, &new_parm_offset, &offseta2, &offsetb2))
gcc_unreachable ();
/* Now compute distnace of the intervals. */
poly_int64 dist1, dist2;
if (known_le (offseta1, offsetb1))
{
if (!known_size_p (a1.max_size))
dist1 = 0;
else
dist1 = offsetb1 - offseta1 - a1.max_size;
}
else
{
if (!known_size_p (b1.max_size))
dist1 = 0;
else
dist1 = offseta1 - offsetb1 - b1.max_size;
}
if (known_le (offseta2, offsetb2))
{
if (!known_size_p (a2.max_size))
dist2 = 0;
else
dist2 = offsetb2 - offseta2 - a2.max_size;
}
else
{
if (!known_size_p (b2.max_size))
dist2 = 0;
else
dist2 = offseta2 - offsetb2 - b2.max_size;
}
/* It may happen that intervals overlap in case size
is different. Preffer the overlap to non-overlap. */
if (known_lt (dist1, 0) && known_ge (dist2, 0))
return true;
if (known_lt (dist2, 0) && known_ge (dist1, 0))
return false;
if (known_lt (dist1, 0))
/* If both overlaps minimize overlap. */
return known_le (dist2, dist1);
else
/* If both are disjoint look for smaller distance. */
return known_le (dist1, dist2);
}
/* Merge in access A while losing precision. */
void forced_merge (const modref_access_node &a, bool record_adjustments)
{
if (parm_index != a.parm_index)
{
gcc_checking_assert (parm_index != -1);
parm_index = -1;
return;
}
/* We assume that containment and lossless merging
was tested earlier. */
gcc_checking_assert (!contains (a) && !a.contains (*this)
&& !merge (a, record_adjustments));
gcc_checking_assert (parm_offset_known && a.parm_offset_known);
poly_int64 new_parm_offset, offset1, aoffset1;
if (!combined_offsets (a, &new_parm_offset, &offset1, &aoffset1))
{
parm_offset_known = false;
return;
}
gcc_checking_assert (range_info_useful_p ()
&& a.range_info_useful_p ());
if (record_adjustments)
adjustments += a.adjustments;
update2 (new_parm_offset,
offset1, size, max_size,
aoffset1, a.size, a.max_size,
record_adjustments);
}
private:
/* Merge two ranges both starting at parm_offset1 and update THIS
with result. */
void update2 (poly_int64 parm_offset1,
poly_int64 offset1, poly_int64 size1, poly_int64 max_size1,
poly_int64 offset2, poly_int64 size2, poly_int64 max_size2,
bool record_adjustments)
{
poly_int64 new_size = size1;
if (!known_size_p (size2)
|| known_le (size2, size1))
new_size = size2;
else
gcc_checking_assert (known_le (size1, size2));
if (known_le (offset1, offset2))
;
else if (known_le (offset2, offset1))
{
std::swap (offset1, offset2);
std::swap (max_size1, max_size2);
}
else
gcc_unreachable ();
poly_int64 new_max_size;
if (!known_size_p (max_size1))
new_max_size = max_size1;
else if (!known_size_p (max_size2))
new_max_size = max_size2;
else
{
max_size2 = max_size2 + offset2 - offset1;
if (known_le (max_size, max_size2))
new_max_size = max_size2;
else if (known_le (max_size2, max_size))
new_max_size = max_size;
else
gcc_unreachable ();
}
update (parm_offset1, offset1,
new_size, new_max_size, record_adjustments);
}
/* Given access nodes THIS and A, return true if they
can be done with common parm_offsets. In this case
return parm offset in new_parm_offset, new_offset
which is start of range in THIS and new_aoffset that
is start of range in A. */
bool combined_offsets (const modref_access_node &a,
poly_int64 *new_parm_offset,
poly_int64 *new_offset,
poly_int64 *new_aoffset) const
{
gcc_checking_assert (parm_offset_known && a.parm_offset_known);
if (known_le (a.parm_offset, parm_offset))
{
*new_offset = offset
+ ((parm_offset - a.parm_offset)
<< LOG2_BITS_PER_UNIT);
*new_aoffset = a.offset;
*new_parm_offset = a.parm_offset;
return true;
}
else if (known_le (parm_offset, a.parm_offset))
{
*new_aoffset = a.offset
+ ((a.parm_offset - parm_offset)
<< LOG2_BITS_PER_UNIT);
*new_offset = offset;
*new_parm_offset = parm_offset;
return true;
}
else
return false;
}
};
/* Access node specifying no useful info. */
const modref_access_node unspecified_modref_access_node
= {0, -1, -1, 0, -1, false, 0};
template <typename T>
struct GTY((user)) modref_ref_node
{
T ref;
bool every_access;
vec <modref_access_node, va_gc> *accesses;
modref_ref_node (T ref):
ref (ref),
every_access (false),
accesses (NULL)
{}
/* Collapse the tree. */
void collapse ()
{
vec_free (accesses);
accesses = NULL;
every_access = true;
}
/* Verify that list does not contain redundant accesses. */
void verify ()
{
size_t i, i2;
modref_access_node *a, *a2;
FOR_EACH_VEC_SAFE_ELT (accesses, i, a)
{
FOR_EACH_VEC_SAFE_ELT (accesses, i2, a2)
if (i != i2)
gcc_assert (!a->contains (*a2));
}
}
/* Insert access with OFFSET and SIZE.
Collapse tree if it has more than MAX_ACCESSES entries.
If RECORD_ADJUSTMENTs is true avoid too many interval extensions.
Return true if record was changed. */
bool insert_access (modref_access_node a, size_t max_accesses,
bool record_adjustments)
{
/* If this base->ref pair has no access information, bail out. */
if (every_access)
return false;
/* Otherwise, insert a node for the ref of the access under the base. */
size_t i, j;
modref_access_node *a2;
if (flag_checking)
verify ();
if (!a.useful_p ())
{
if (!every_access)
{
collapse ();
return true;
}
return false;
}
FOR_EACH_VEC_SAFE_ELT (accesses, i, a2)
{
if (a2->contains (a))
return false;
if (a.contains (*a2))
{
a.adjustments = 0;
a2->parm_index = a.parm_index;
a2->parm_offset_known = a.parm_offset_known;
a2->update (a.parm_offset, a.offset, a.size, a.max_size,
record_adjustments);
try_merge_with (i);
return true;
}
if (a2->merge (a, record_adjustments))
{
try_merge_with (i);
return true;
}
gcc_checking_assert (!(a == *a2));
}
/* If this base->ref pair has too many accesses stored, we will clear
all accesses and bail out. */
if (accesses && accesses->length () >= max_accesses)
{
if (max_accesses < 2)
{
collapse ();
if (dump_file)
fprintf (dump_file,
"--param param=modref-max-accesses limit reached;"
" collapsing\n");
return true;
}
/* Find least harmful merge and perform it. */
int best1 = -1, best2 = -1;
FOR_EACH_VEC_SAFE_ELT (accesses, i, a2)
{
for (j = i + 1; j < accesses->length (); j++)
if (best1 < 0
|| modref_access_node::closer_pair_p
(*a2, (*accesses)[j],
(*accesses)[best1],
best2 < 0 ? a : (*accesses)[best2]))
{
best1 = i;
best2 = j;
}
if (modref_access_node::closer_pair_p
(*a2, a,
(*accesses)[best1],
best2 < 0 ? a : (*accesses)[best2]))
{
best1 = i;
best2 = -1;
}
}
(*accesses)[best1].forced_merge (best2 < 0 ? a : (*accesses)[best2],
record_adjustments);
if (!(*accesses)[best1].useful_p ())
{
collapse ();
if (dump_file)
fprintf (dump_file,
"--param param=modref-max-accesses limit reached;"
" collapsing\n");
return true;
}
if (dump_file && best2 >= 0)
fprintf (dump_file,
"--param param=modref-max-accesses limit reached;"
" merging %i and %i\n", best1, best2);
else if (dump_file)
fprintf (dump_file,
"--param param=modref-max-accesses limit reached;"
" merging with %i\n", best1);
try_merge_with (best1);
if (best2 >= 0)
insert_access (a, max_accesses, record_adjustments);
return 1;
}
a.adjustments = 0;
vec_safe_push (accesses, a);
return true;
}
private:
/* Try to optimize the access list after entry INDEX was modified. */
void
try_merge_with (size_t index)
{
size_t i;
for (i = 0; i < accesses->length ();)
if (i != index)
{
bool found = false, restart = false;
modref_access_node *a = &(*accesses)[i];
modref_access_node *n = &(*accesses)[index];
if (n->contains (*a))
found = true;
if (!found && n->merge (*a, false))
found = restart = true;
if (found)
{
accesses->unordered_remove (i);
if (index == accesses->length ())
{
index = i;
i++;
}
if (restart)
i = 0;
}
else
i++;
}
else
i++;
}
};
/* Base of an access. */
template <typename T>
struct GTY((user)) modref_base_node
{
T base;
vec <modref_ref_node <T> *, va_gc> *refs;
bool every_ref;
modref_base_node (T base):
base (base),
refs (NULL),
every_ref (false) {}
/* Search REF; return NULL if failed. */
modref_ref_node <T> *search (T ref)
{
size_t i;
modref_ref_node <T> *n;
FOR_EACH_VEC_SAFE_ELT (refs, i, n)
if (n->ref == ref)
return n;
return NULL;
}
/* Insert REF; collapse tree if there are more than MAX_REFS.
Return inserted ref and if CHANGED is non-null set it to true if
something changed. */
modref_ref_node <T> *insert_ref (T ref, size_t max_refs,
bool *changed = NULL)
{
modref_ref_node <T> *ref_node;
/* If the node is collapsed, don't do anything. */
if (every_ref)
return NULL;
/* Otherwise, insert a node for the ref of the access under the base. */
ref_node = search (ref);
if (ref_node)
return ref_node;
/* We always allow inserting ref 0. For non-0 refs there is upper
limit on number of entries and if exceeded,
drop ref conservatively to 0. */
if (ref && refs && refs->length () >= max_refs)
{
if (dump_file)
fprintf (dump_file, "--param param=modref-max-refs limit reached;"
" using 0\n");
ref = 0;
ref_node = search (ref);
if (ref_node)
return ref_node;
}
if (changed)
*changed = true;
ref_node = new (ggc_alloc <modref_ref_node <T> > ())modref_ref_node <T>
(ref);
vec_safe_push (refs, ref_node);
return ref_node;
}
void collapse ()
{
size_t i;
modref_ref_node <T> *r;
if (refs)
{
FOR_EACH_VEC_SAFE_ELT (refs, i, r)
{
r->collapse ();
ggc_free (r);
}
vec_free (refs);
}
refs = NULL;
every_ref = true;
}
};
/* Map translating parameters across function call. */
struct modref_parm_map
{
/* Index of parameter we translate to.
-1 indicates that parameter is unknown
-2 indicates that parameter points to local memory and access can be
discarded. */
int parm_index;
bool parm_offset_known;
poly_int64 parm_offset;
};
/* Access tree for a single function. */
template <typename T>
struct GTY((user)) modref_tree
{
vec <modref_base_node <T> *, va_gc> *bases;
size_t max_bases;
size_t max_refs;
size_t max_accesses;
bool every_base;
modref_tree (size_t max_bases, size_t max_refs, size_t max_accesses):
bases (NULL),
max_bases (max_bases),
max_refs (max_refs),
max_accesses (max_accesses),
every_base (false) {}
/* Insert BASE; collapse tree if there are more than MAX_REFS.
Return inserted base and if CHANGED is non-null set it to true if
something changed.
If table gets full, try to insert REF instead. */
modref_base_node <T> *insert_base (T base, T ref, bool *changed = NULL)
{
modref_base_node <T> *base_node;
/* If the node is collapsed, don't do anything. */
if (every_base)
return NULL;
/* Otherwise, insert a node for the base of the access into the tree. */
base_node = search (base);
if (base_node)
return base_node;
/* We always allow inserting base 0. For non-0 base there is upper
limit on number of entries and if exceeded,
drop base conservatively to ref and if it still does not fit to 0. */
if (base && bases && bases->length () >= max_bases)
{
base_node = search (ref);
if (base_node)
{
if (dump_file)
fprintf (dump_file, "--param param=modref-max-bases"
" limit reached; using ref\n");
return base_node;
}
if (dump_file)
fprintf (dump_file, "--param param=modref-max-bases"
" limit reached; using 0\n");
base = 0;
base_node = search (base);
if (base_node)
return base_node;
}
if (changed)
*changed = true;
base_node = new (ggc_alloc <modref_base_node <T> > ())
modref_base_node <T> (base);
vec_safe_push (bases, base_node);
return base_node;
}
/* Insert memory access to the tree.
Return true if something changed. */
bool insert (T base, T ref, modref_access_node a,
bool record_adjustments)
{
if (every_base)
return false;
bool changed = false;
/* No useful information tracked; collapse everything. */
if (!base && !ref && !a.useful_p ())
{
collapse ();
return true;
}
modref_base_node <T> *base_node = insert_base (base, ref, &changed);
base = base_node->base;
/* If table got full we may end up with useless base. */
if (!base && !ref && !a.useful_p ())
{
collapse ();
return true;
}
if (base_node->every_ref)
return changed;
gcc_checking_assert (search (base) != NULL);
/* No useful ref info tracked; collapse base. */
if (!ref && !a.useful_p ())
{
base_node->collapse ();
return true;
}
modref_ref_node <T> *ref_node = base_node->insert_ref (ref, max_refs,
&changed);
ref = ref_node->ref;
if (ref_node->every_access)
return changed;
changed |= ref_node->insert_access (a, max_accesses,
record_adjustments);
/* See if we failed to add useful access. */
if (ref_node->every_access)
{
/* Collapse everything if there is no useful base and ref. */
if (!base && !ref)
{
collapse ();
gcc_checking_assert (changed);
}
/* Collapse base if there is no useful ref. */
else if (!ref)
{
base_node->collapse ();
gcc_checking_assert (changed);
}
}
return changed;
}
/* Remove tree branches that are not useful (i.e. they will always pass). */
void cleanup ()
{
size_t i, j;
modref_base_node <T> *base_node;
modref_ref_node <T> *ref_node;
if (!bases)
return;
for (i = 0; vec_safe_iterate (bases, i, &base_node);)
{
if (base_node->refs)
for (j = 0; vec_safe_iterate (base_node->refs, j, &ref_node);)
{
if (!ref_node->every_access
&& (!ref_node->accesses
|| !ref_node->accesses->length ()))
{
base_node->refs->unordered_remove (j);
vec_free (ref_node->accesses);
ggc_delete (ref_node);
}
else
j++;
}
if (!base_node->every_ref
&& (!base_node->refs || !base_node->refs->length ()))
{
bases->unordered_remove (i);
vec_free (base_node->refs);
ggc_delete (base_node);
}
else
i++;
}
if (bases && !bases->length ())
{
vec_free (bases);
bases = NULL;
}
}
/* Merge OTHER into the tree.
PARM_MAP, if non-NULL, maps parm indexes of callee to caller. -2 is used
to signalize that parameter is local and does not need to be tracked.
Return true if something has changed. */
bool merge (modref_tree <T> *other, vec <modref_parm_map> *parm_map,
bool record_accesses)
{
if (!other || every_base)
return false;
if (other->every_base)
{
collapse ();
return true;
}
bool changed = false;
size_t i, j, k;
modref_base_node <T> *base_node, *my_base_node;
modref_ref_node <T> *ref_node;
modref_access_node *access_node;
bool release = false;
/* For self-recursive functions we may end up merging summary into itself;
produce copy first so we do not modify summary under our own hands. */
if (other == this)
{
release = true;
other = modref_tree<T>::create_ggc (max_bases, max_refs, max_accesses);
other->copy_from (this);
}
FOR_EACH_VEC_SAFE_ELT (other->bases, i, base_node)
{
if (base_node->every_ref)
{
my_base_node = insert_base (base_node->base, 0, &changed);
if (my_base_node && !my_base_node->every_ref)
{
my_base_node->collapse ();
cleanup ();
changed = true;
}
}
else
FOR_EACH_VEC_SAFE_ELT (base_node->refs, j, ref_node)
{
if (ref_node->every_access)
{
changed |= insert (base_node->base,
ref_node->ref,
unspecified_modref_access_node,
record_accesses);
}
else
FOR_EACH_VEC_SAFE_ELT (ref_node->accesses, k, access_node)
{
modref_access_node a = *access_node;
if (a.parm_index != -1 && parm_map)
{
if (a.parm_index >= (int)parm_map->length ())
a.parm_index = -1;
else if ((*parm_map) [a.parm_index].parm_index == -2)
continue;
else
{
a.parm_offset
+= (*parm_map) [a.parm_index].parm_offset;
a.parm_offset_known
&= (*parm_map)
[a.parm_index].parm_offset_known;
a.parm_index
= (*parm_map) [a.parm_index].parm_index;
}
}
changed |= insert (base_node->base, ref_node->ref, a,
record_accesses);
}
}
}
if (release)
ggc_delete (other);
return changed;
}
/* Copy OTHER to THIS. */
void copy_from (modref_tree <T> *other)
{
merge (other, NULL, false);
}
/* Search BASE in tree; return NULL if failed. */
modref_base_node <T> *search (T base)
{
size_t i;
modref_base_node <T> *n;
FOR_EACH_VEC_SAFE_ELT (bases, i, n)
if (n->base == base)
return n;
return NULL;
}
/* Return ggc allocated instance. We explicitly call destructors via
ggc_delete and do not want finalizers to be registered and
called at the garbage collection time. */
static modref_tree<T> *create_ggc (size_t max_bases, size_t max_refs,
size_t max_accesses)
{
return new (ggc_alloc_no_dtor<modref_tree<T>> ())
modref_tree<T> (max_bases, max_refs, max_accesses);
}
/* Remove all records and mark tree to alias with everything. */
void collapse ()
{
size_t i;
modref_base_node <T> *n;
if (bases)
{
FOR_EACH_VEC_SAFE_ELT (bases, i, n)
{
n->collapse ();
ggc_free (n);
}
vec_free (bases);
}
bases = NULL;
every_base = true;
}
/* Release memory. */
~modref_tree ()
{
collapse ();
}
/* Update parameter indexes in TT according to MAP. */
void
remap_params (vec <int> *map)
{
size_t i;
modref_base_node <T> *base_node;
FOR_EACH_VEC_SAFE_ELT (bases, i, base_node)
{
size_t j;
modref_ref_node <T> *ref_node;
FOR_EACH_VEC_SAFE_ELT (base_node->refs, j, ref_node)
{
size_t k;
modref_access_node *access_node;
FOR_EACH_VEC_SAFE_ELT (ref_node->accesses, k, access_node)
if (access_node->parm_index > 0)
{
if (access_node->parm_index < (int)map->length ())
access_node->parm_index = (*map)[access_node->parm_index];
else
access_node->parm_index = -1;
}
}
}
}
};
void modref_c_tests ();
void gt_ggc_mx (modref_tree <int>* const&);
void gt_ggc_mx (modref_tree <tree_node*>* const&);
void gt_pch_nx (modref_tree <int>* const&);
void gt_pch_nx (modref_tree <tree_node*>* const&);
void gt_pch_nx (modref_tree <int>* const&, gt_pointer_operator op, void *cookie);
void gt_pch_nx (modref_tree <tree_node*>* const&, gt_pointer_operator op,
void *cookie);
void gt_ggc_mx (modref_base_node <int>*);
void gt_ggc_mx (modref_base_node <tree_node*>* &);
void gt_pch_nx (modref_base_node <int>* const&);
void gt_pch_nx (modref_base_node <tree_node*>* const&);
void gt_pch_nx (modref_base_node <int>* const&, gt_pointer_operator op,
void *cookie);
void gt_pch_nx (modref_base_node <tree_node*>* const&, gt_pointer_operator op,
void *cookie);
void gt_ggc_mx (modref_ref_node <int>*);
void gt_ggc_mx (modref_ref_node <tree_node*>* &);
void gt_pch_nx (modref_ref_node <int>* const&);
void gt_pch_nx (modref_ref_node <tree_node*>* const&);
void gt_pch_nx (modref_ref_node <int>* const&, gt_pointer_operator op,
void *cookie);
void gt_pch_nx (modref_ref_node <tree_node*>* const&, gt_pointer_operator op,
void *cookie);
#endif