blob: ecbfc5857a87fe22c0b249d105078985f4b319d9 [file] [log] [blame]
@safe unittest
{
import std.algorithm.setops;
import std.algorithm.searching : canFind;
import std.range;
import std.typecons : tuple;
auto N = sequence!"n"(0); // the range of natural numbers
auto N2 = cartesianProduct(N, N); // the range of all pairs of natural numbers
// Various arbitrary number pairs can be found in the range in finite time.
assert(canFind(N2, tuple(0, 0)));
assert(canFind(N2, tuple(123, 321)));
assert(canFind(N2, tuple(11, 35)));
assert(canFind(N2, tuple(279, 172)));
}
@safe unittest
{
import std.algorithm.setops;
import std.algorithm.searching : canFind;
import std.typecons : tuple;
auto B = [ 1, 2, 3 ];
auto C = [ 4, 5, 6 ];
auto BC = cartesianProduct(B, C);
foreach (n; [[1, 4], [2, 4], [3, 4], [1, 5], [2, 5], [3, 5], [1, 6],
[2, 6], [3, 6]])
{
assert(canFind(BC, tuple(n[0], n[1])));
}
}
@safe unittest
{
import std.algorithm.setops;
import std.algorithm.comparison : equal;
import std.typecons : tuple;
auto A = [ 1, 2, 3 ];
auto B = [ 'a', 'b', 'c' ];
auto C = [ "x", "y", "z" ];
auto ABC = cartesianProduct(A, B, C);
assert(ABC.equal([
tuple(1, 'a', "x"), tuple(1, 'a', "y"), tuple(1, 'a', "z"),
tuple(1, 'b', "x"), tuple(1, 'b', "y"), tuple(1, 'b', "z"),
tuple(1, 'c', "x"), tuple(1, 'c', "y"), tuple(1, 'c', "z"),
tuple(2, 'a', "x"), tuple(2, 'a', "y"), tuple(2, 'a', "z"),
tuple(2, 'b', "x"), tuple(2, 'b', "y"), tuple(2, 'b', "z"),
tuple(2, 'c', "x"), tuple(2, 'c', "y"), tuple(2, 'c', "z"),
tuple(3, 'a', "x"), tuple(3, 'a', "y"), tuple(3, 'a', "z"),
tuple(3, 'b', "x"), tuple(3, 'b', "y"), tuple(3, 'b', "z"),
tuple(3, 'c', "x"), tuple(3, 'c', "y"), tuple(3, 'c', "z")
]));
}
@system unittest
{
import std.algorithm.setops;
import std.typecons : tuple, Tuple;
// Figure which number can be found in most arrays of the set of
// arrays below.
double[][] a =
[
[ 1, 4, 7, 8 ],
[ 1, 7 ],
[ 1, 7, 8],
[ 4 ],
[ 7 ],
];
auto b = new Tuple!(double, uint)[1];
// it will modify the input range, hence we need to create a duplicate
largestPartialIntersection(a.dup, b);
// First member is the item, second is the occurrence count
assert(b[0] == tuple(7.0, 4u));
// 7.0 occurs in 4 out of 5 inputs, more than any other number
// If more of the top-frequent numbers are needed, just create a larger
// tgt range
auto c = new Tuple!(double, uint)[2];
largestPartialIntersection(a, c);
assert(c[0] == tuple(1.0, 3u));
// 1.0 occurs in 3 inputs
// multiset
double[][] x =
[
[1, 1, 1, 1, 4, 7, 8],
[1, 7],
[1, 7, 8],
[4, 7],
[7]
];
auto y = new Tuple!(double, uint)[2];
largestPartialIntersection(x.dup, y);
// 7.0 occurs 5 times
assert(y[0] == tuple(7.0, 5u));
// 1.0 occurs 6 times
assert(y[1] == tuple(1.0, 6u));
}
@system unittest
{
import std.algorithm.setops;
import std.typecons : tuple, Tuple;
// Figure which number can be found in most arrays of the set of
// arrays below, with specific per-element weights
double[][] a =
[
[ 1, 4, 7, 8 ],
[ 1, 7 ],
[ 1, 7, 8],
[ 4 ],
[ 7 ],
];
auto b = new Tuple!(double, uint)[1];
double[double] weights = [ 1:1.2, 4:2.3, 7:1.1, 8:1.1 ];
largestPartialIntersectionWeighted(a, b, weights);
// First member is the item, second is the occurrence count
assert(b[0] == tuple(4.0, 2u));
// 4.0 occurs 2 times -> 4.6 (2 * 2.3)
// 7.0 occurs 3 times -> 4.4 (3 * 1.1)
// multiset
double[][] x =
[
[ 1, 1, 1, 4, 7, 8 ],
[ 1, 7 ],
[ 1, 7, 8],
[ 4 ],
[ 7 ],
];
auto y = new Tuple!(double, uint)[1];
largestPartialIntersectionWeighted(x, y, weights);
assert(y[0] == tuple(1.0, 5u));
// 1.0 occurs 5 times -> 1.2 * 5 = 6
}
@system unittest
{
import std.algorithm.setops;
import std.algorithm.comparison : equal;
double[][] a =
[
[ 1, 4, 7, 8 ],
[ 1, 7 ],
[ 1, 7, 8],
[ 4 ],
[ 7 ],
];
auto witness = [
1, 1, 1, 4, 4, 7, 7, 7, 7, 8, 8
];
assert(equal(multiwayMerge(a), witness));
double[][] b =
[
// range with duplicates
[ 1, 1, 4, 7, 8 ],
[ 7 ],
[ 1, 7, 8],
[ 4 ],
[ 7 ],
];
// duplicates are propagated to the resulting range
assert(equal(multiwayMerge(b), witness));
}
@system unittest
{
import std.algorithm.setops;
import std.algorithm.comparison : equal;
// sets
double[][] a =
[
[ 1, 4, 7, 8 ],
[ 1, 7 ],
[ 1, 7, 8],
[ 4 ],
[ 7 ],
];
auto witness = [1, 4, 7, 8];
assert(equal(multiwayUnion(a), witness));
// multisets
double[][] b =
[
[ 1, 1, 1, 4, 7, 8 ],
[ 1, 7 ],
[ 1, 7, 7, 8],
[ 4 ],
[ 7 ],
];
assert(equal(multiwayUnion(b), witness));
double[][] c =
[
[9, 8, 8, 8, 7, 6],
[9, 8, 6],
[9, 8, 5]
];
auto witness2 = [9, 8, 7, 6, 5];
assert(equal(multiwayUnion!"a > b"(c), witness2));
}
@safe unittest
{
import std.algorithm.setops;
import std.algorithm.comparison : equal;
import std.range.primitives : isForwardRange;
//sets
int[] a = [ 1, 2, 4, 5, 7, 9 ];
int[] b = [ 0, 1, 2, 4, 7, 8 ];
assert(equal(setDifference(a, b), [5, 9]));
static assert(isForwardRange!(typeof(setDifference(a, b))));
// multisets
int[] x = [1, 1, 1, 2, 3];
int[] y = [1, 1, 2, 4, 5];
auto r = setDifference(x, y);
assert(equal(r, [1, 3]));
assert(setDifference(r, x).empty);
}
@safe unittest
{
import std.algorithm.setops;
import std.algorithm.comparison : equal;
// sets
int[] a = [ 1, 2, 4, 5, 7, 9 ];
int[] b = [ 0, 1, 2, 4, 7, 8 ];
int[] c = [ 0, 1, 4, 5, 7, 8 ];
assert(equal(setIntersection(a, a), a));
assert(equal(setIntersection(a, b), [1, 2, 4, 7]));
assert(equal(setIntersection(a, b, c), [1, 4, 7]));
// multisets
int[] d = [ 1, 1, 2, 2, 7, 7 ];
int[] e = [ 1, 1, 1, 7];
assert(equal(setIntersection(a, d), [1, 2, 7]));
assert(equal(setIntersection(d, e), [1, 1, 7]));
}
@safe unittest
{
import std.algorithm.setops;
import std.algorithm.comparison : equal;
import std.range.primitives : isForwardRange;
// sets
int[] a = [ 1, 2, 4, 5, 7, 9 ];
int[] b = [ 0, 1, 2, 4, 7, 8 ];
assert(equal(setSymmetricDifference(a, b), [0, 5, 8, 9][]));
static assert(isForwardRange!(typeof(setSymmetricDifference(a, b))));
//mutisets
int[] c = [1, 1, 1, 1, 2, 2, 2, 4, 5, 6];
int[] d = [1, 1, 2, 2, 2, 2, 4, 7, 9];
assert(equal(setSymmetricDifference(c, d), setSymmetricDifference(d, c)));
assert(equal(setSymmetricDifference(c, d), [1, 1, 2, 5, 6, 7, 9]));
}