| /* Alias analysis for GNU C |
| Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, |
| 2007, 2008, 2009 Free Software Foundation, Inc. |
| Contributed by John Carr (jfc@mit.edu). |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| #include "rtl.h" |
| #include "tree.h" |
| #include "tm_p.h" |
| #include "function.h" |
| #include "alias.h" |
| #include "emit-rtl.h" |
| #include "regs.h" |
| #include "hard-reg-set.h" |
| #include "basic-block.h" |
| #include "flags.h" |
| #include "output.h" |
| #include "toplev.h" |
| #include "cselib.h" |
| #include "splay-tree.h" |
| #include "ggc.h" |
| #include "langhooks.h" |
| #include "timevar.h" |
| #include "target.h" |
| #include "cgraph.h" |
| #include "varray.h" |
| #include "tree-pass.h" |
| #include "ipa-type-escape.h" |
| #include "df.h" |
| |
| /* The aliasing API provided here solves related but different problems: |
| |
| Say there exists (in c) |
| |
| struct X { |
| struct Y y1; |
| struct Z z2; |
| } x1, *px1, *px2; |
| |
| struct Y y2, *py; |
| struct Z z2, *pz; |
| |
| |
| py = &px1.y1; |
| px2 = &x1; |
| |
| Consider the four questions: |
| |
| Can a store to x1 interfere with px2->y1? |
| Can a store to x1 interfere with px2->z2? |
| (*px2).z2 |
| Can a store to x1 change the value pointed to by with py? |
| Can a store to x1 change the value pointed to by with pz? |
| |
| The answer to these questions can be yes, yes, yes, and maybe. |
| |
| The first two questions can be answered with a simple examination |
| of the type system. If structure X contains a field of type Y then |
| a store thru a pointer to an X can overwrite any field that is |
| contained (recursively) in an X (unless we know that px1 != px2). |
| |
| The last two of the questions can be solved in the same way as the |
| first two questions but this is too conservative. The observation |
| is that in some cases analysis we can know if which (if any) fields |
| are addressed and if those addresses are used in bad ways. This |
| analysis may be language specific. In C, arbitrary operations may |
| be applied to pointers. However, there is some indication that |
| this may be too conservative for some C++ types. |
| |
| The pass ipa-type-escape does this analysis for the types whose |
| instances do not escape across the compilation boundary. |
| |
| Historically in GCC, these two problems were combined and a single |
| data structure was used to represent the solution to these |
| problems. We now have two similar but different data structures, |
| The data structure to solve the last two question is similar to the |
| first, but does not contain have the fields in it whose address are |
| never taken. For types that do escape the compilation unit, the |
| data structures will have identical information. |
| */ |
| |
| /* The alias sets assigned to MEMs assist the back-end in determining |
| which MEMs can alias which other MEMs. In general, two MEMs in |
| different alias sets cannot alias each other, with one important |
| exception. Consider something like: |
| |
| struct S { int i; double d; }; |
| |
| a store to an `S' can alias something of either type `int' or type |
| `double'. (However, a store to an `int' cannot alias a `double' |
| and vice versa.) We indicate this via a tree structure that looks |
| like: |
| struct S |
| / \ |
| / \ |
| |/_ _\| |
| int double |
| |
| (The arrows are directed and point downwards.) |
| In this situation we say the alias set for `struct S' is the |
| `superset' and that those for `int' and `double' are `subsets'. |
| |
| To see whether two alias sets can point to the same memory, we must |
| see if either alias set is a subset of the other. We need not trace |
| past immediate descendants, however, since we propagate all |
| grandchildren up one level. |
| |
| Alias set zero is implicitly a superset of all other alias sets. |
| However, this is no actual entry for alias set zero. It is an |
| error to attempt to explicitly construct a subset of zero. */ |
| |
| struct alias_set_entry GTY(()) |
| { |
| /* The alias set number, as stored in MEM_ALIAS_SET. */ |
| alias_set_type alias_set; |
| |
| /* Nonzero if would have a child of zero: this effectively makes this |
| alias set the same as alias set zero. */ |
| int has_zero_child; |
| |
| /* The children of the alias set. These are not just the immediate |
| children, but, in fact, all descendants. So, if we have: |
| |
| struct T { struct S s; float f; } |
| |
| continuing our example above, the children here will be all of |
| `int', `double', `float', and `struct S'. */ |
| splay_tree GTY((param1_is (int), param2_is (int))) children; |
| }; |
| typedef struct alias_set_entry *alias_set_entry; |
| |
| static int rtx_equal_for_memref_p (const_rtx, const_rtx); |
| static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT); |
| static void record_set (rtx, const_rtx, void *); |
| static int base_alias_check (rtx, rtx, enum machine_mode, |
| enum machine_mode); |
| static rtx find_base_value (rtx); |
| static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx); |
| static int insert_subset_children (splay_tree_node, void*); |
| static tree find_base_decl (tree); |
| static alias_set_entry get_alias_set_entry (alias_set_type); |
| static const_rtx fixed_scalar_and_varying_struct_p (const_rtx, const_rtx, rtx, rtx, |
| bool (*) (const_rtx, bool)); |
| static int aliases_everything_p (const_rtx); |
| static bool nonoverlapping_component_refs_p (const_tree, const_tree); |
| static tree decl_for_component_ref (tree); |
| static rtx adjust_offset_for_component_ref (tree, rtx); |
| static int write_dependence_p (const_rtx, const_rtx, int); |
| |
| static void memory_modified_1 (rtx, const_rtx, void *); |
| |
| /* Set up all info needed to perform alias analysis on memory references. */ |
| |
| /* Returns the size in bytes of the mode of X. */ |
| #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X))) |
| |
| /* Returns nonzero if MEM1 and MEM2 do not alias because they are in |
| different alias sets. We ignore alias sets in functions making use |
| of variable arguments because the va_arg macros on some systems are |
| not legal ANSI C. */ |
| #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \ |
| mems_in_disjoint_alias_sets_p (MEM1, MEM2) |
| |
| /* Cap the number of passes we make over the insns propagating alias |
| information through set chains. 10 is a completely arbitrary choice. */ |
| #define MAX_ALIAS_LOOP_PASSES 10 |
| |
| /* reg_base_value[N] gives an address to which register N is related. |
| If all sets after the first add or subtract to the current value |
| or otherwise modify it so it does not point to a different top level |
| object, reg_base_value[N] is equal to the address part of the source |
| of the first set. |
| |
| A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS |
| expressions represent certain special values: function arguments and |
| the stack, frame, and argument pointers. |
| |
| The contents of an ADDRESS is not normally used, the mode of the |
| ADDRESS determines whether the ADDRESS is a function argument or some |
| other special value. Pointer equality, not rtx_equal_p, determines whether |
| two ADDRESS expressions refer to the same base address. |
| |
| The only use of the contents of an ADDRESS is for determining if the |
| current function performs nonlocal memory memory references for the |
| purposes of marking the function as a constant function. */ |
| |
| static GTY(()) VEC(rtx,gc) *reg_base_value; |
| static rtx *new_reg_base_value; |
| |
| /* We preserve the copy of old array around to avoid amount of garbage |
| produced. About 8% of garbage produced were attributed to this |
| array. */ |
| static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value; |
| |
| /* Static hunks of RTL used by the aliasing code; these are initialized |
| once per function to avoid unnecessary RTL allocations. */ |
| static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER]; |
| |
| #define REG_BASE_VALUE(X) \ |
| (REGNO (X) < VEC_length (rtx, reg_base_value) \ |
| ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0) |
| |
| /* Vector indexed by N giving the initial (unchanging) value known for |
| pseudo-register N. This array is initialized in init_alias_analysis, |
| and does not change until end_alias_analysis is called. */ |
| static GTY((length("reg_known_value_size"))) rtx *reg_known_value; |
| |
| /* Indicates number of valid entries in reg_known_value. */ |
| static GTY(()) unsigned int reg_known_value_size; |
| |
| /* Vector recording for each reg_known_value whether it is due to a |
| REG_EQUIV note. Future passes (viz., reload) may replace the |
| pseudo with the equivalent expression and so we account for the |
| dependences that would be introduced if that happens. |
| |
| The REG_EQUIV notes created in assign_parms may mention the arg |
| pointer, and there are explicit insns in the RTL that modify the |
| arg pointer. Thus we must ensure that such insns don't get |
| scheduled across each other because that would invalidate the |
| REG_EQUIV notes. One could argue that the REG_EQUIV notes are |
| wrong, but solving the problem in the scheduler will likely give |
| better code, so we do it here. */ |
| static bool *reg_known_equiv_p; |
| |
| /* True when scanning insns from the start of the rtl to the |
| NOTE_INSN_FUNCTION_BEG note. */ |
| static bool copying_arguments; |
| |
| DEF_VEC_P(alias_set_entry); |
| DEF_VEC_ALLOC_P(alias_set_entry,gc); |
| |
| /* The splay-tree used to store the various alias set entries. */ |
| static GTY (()) VEC(alias_set_entry,gc) *alias_sets; |
| |
| /* Returns a pointer to the alias set entry for ALIAS_SET, if there is |
| such an entry, or NULL otherwise. */ |
| |
| static inline alias_set_entry |
| get_alias_set_entry (alias_set_type alias_set) |
| { |
| return VEC_index (alias_set_entry, alias_sets, alias_set); |
| } |
| |
| /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that |
| the two MEMs cannot alias each other. */ |
| |
| static inline int |
| mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2) |
| { |
| /* Perform a basic sanity check. Namely, that there are no alias sets |
| if we're not using strict aliasing. This helps to catch bugs |
| whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or |
| where a MEM is allocated in some way other than by the use of |
| gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to |
| use alias sets to indicate that spilled registers cannot alias each |
| other, we might need to remove this check. */ |
| gcc_assert (flag_strict_aliasing |
| || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2))); |
| |
| return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2)); |
| } |
| |
| /* Insert the NODE into the splay tree given by DATA. Used by |
| record_alias_subset via splay_tree_foreach. */ |
| |
| static int |
| insert_subset_children (splay_tree_node node, void *data) |
| { |
| splay_tree_insert ((splay_tree) data, node->key, node->value); |
| |
| return 0; |
| } |
| |
| /* Return true if the first alias set is a subset of the second. */ |
| |
| bool |
| alias_set_subset_of (alias_set_type set1, alias_set_type set2) |
| { |
| alias_set_entry ase; |
| |
| /* Everything is a subset of the "aliases everything" set. */ |
| if (set2 == 0) |
| return true; |
| |
| /* Otherwise, check if set1 is a subset of set2. */ |
| ase = get_alias_set_entry (set2); |
| if (ase != 0 |
| && ((ase->has_zero_child && set1 == 0) |
| || splay_tree_lookup (ase->children, |
| (splay_tree_key) set1))) |
| return true; |
| return false; |
| } |
| |
| /* Return 1 if the two specified alias sets may conflict. */ |
| |
| int |
| alias_sets_conflict_p (alias_set_type set1, alias_set_type set2) |
| { |
| alias_set_entry ase; |
| |
| /* The easy case. */ |
| if (alias_sets_must_conflict_p (set1, set2)) |
| return 1; |
| |
| /* See if the first alias set is a subset of the second. */ |
| ase = get_alias_set_entry (set1); |
| if (ase != 0 |
| && (ase->has_zero_child |
| || splay_tree_lookup (ase->children, |
| (splay_tree_key) set2))) |
| return 1; |
| |
| /* Now do the same, but with the alias sets reversed. */ |
| ase = get_alias_set_entry (set2); |
| if (ase != 0 |
| && (ase->has_zero_child |
| || splay_tree_lookup (ase->children, |
| (splay_tree_key) set1))) |
| return 1; |
| |
| /* The two alias sets are distinct and neither one is the |
| child of the other. Therefore, they cannot conflict. */ |
| return 0; |
| } |
| |
| static int |
| walk_mems_2 (rtx *x, rtx mem) |
| { |
| if (MEM_P (*x)) |
| { |
| if (alias_sets_conflict_p (MEM_ALIAS_SET(*x), MEM_ALIAS_SET(mem))) |
| return 1; |
| |
| return -1; |
| } |
| return 0; |
| } |
| |
| static int |
| walk_mems_1 (rtx *x, rtx *pat) |
| { |
| if (MEM_P (*x)) |
| { |
| /* Visit all MEMs in *PAT and check indepedence. */ |
| if (for_each_rtx (pat, (rtx_function) walk_mems_2, *x)) |
| /* Indicate that dependence was determined and stop traversal. */ |
| return 1; |
| |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* Return 1 if two specified instructions have mem expr with conflict alias sets*/ |
| bool |
| insn_alias_sets_conflict_p (rtx insn1, rtx insn2) |
| { |
| /* For each pair of MEMs in INSN1 and INSN2 check their independence. */ |
| return for_each_rtx (&PATTERN (insn1), (rtx_function) walk_mems_1, |
| &PATTERN (insn2)); |
| } |
| |
| /* Return 1 if the two specified alias sets will always conflict. */ |
| |
| int |
| alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2) |
| { |
| if (set1 == 0 || set2 == 0 || set1 == set2) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* Return 1 if any MEM object of type T1 will always conflict (using the |
| dependency routines in this file) with any MEM object of type T2. |
| This is used when allocating temporary storage. If T1 and/or T2 are |
| NULL_TREE, it means we know nothing about the storage. */ |
| |
| int |
| objects_must_conflict_p (tree t1, tree t2) |
| { |
| alias_set_type set1, set2; |
| |
| /* If neither has a type specified, we don't know if they'll conflict |
| because we may be using them to store objects of various types, for |
| example the argument and local variables areas of inlined functions. */ |
| if (t1 == 0 && t2 == 0) |
| return 0; |
| |
| /* If they are the same type, they must conflict. */ |
| if (t1 == t2 |
| /* Likewise if both are volatile. */ |
| || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))) |
| return 1; |
| |
| set1 = t1 ? get_alias_set (t1) : 0; |
| set2 = t2 ? get_alias_set (t2) : 0; |
| |
| /* We can't use alias_sets_conflict_p because we must make sure |
| that every subtype of t1 will conflict with every subtype of |
| t2 for which a pair of subobjects of these respective subtypes |
| overlaps on the stack. */ |
| return alias_sets_must_conflict_p (set1, set2); |
| } |
| |
| /* T is an expression with pointer type. Find the DECL on which this |
| expression is based. (For example, in `a[i]' this would be `a'.) |
| If there is no such DECL, or a unique decl cannot be determined, |
| NULL_TREE is returned. */ |
| |
| static tree |
| find_base_decl (tree t) |
| { |
| tree d0, d1; |
| |
| if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t))) |
| return 0; |
| |
| /* If this is a declaration, return it. If T is based on a restrict |
| qualified decl, return that decl. */ |
| if (DECL_P (t)) |
| { |
| if (TREE_CODE (t) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (t)) |
| t = DECL_GET_RESTRICT_BASE (t); |
| return t; |
| } |
| |
| /* Handle general expressions. It would be nice to deal with |
| COMPONENT_REFs here. If we could tell that `a' and `b' were the |
| same, then `a->f' and `b->f' are also the same. */ |
| switch (TREE_CODE_CLASS (TREE_CODE (t))) |
| { |
| case tcc_unary: |
| return find_base_decl (TREE_OPERAND (t, 0)); |
| |
| case tcc_binary: |
| /* Return 0 if found in neither or both are the same. */ |
| d0 = find_base_decl (TREE_OPERAND (t, 0)); |
| d1 = find_base_decl (TREE_OPERAND (t, 1)); |
| if (d0 == d1) |
| return d0; |
| else if (d0 == 0) |
| return d1; |
| else if (d1 == 0) |
| return d0; |
| else |
| return 0; |
| |
| default: |
| return 0; |
| } |
| } |
| |
| /* Return true if all nested component references handled by |
| get_inner_reference in T are such that we should use the alias set |
| provided by the object at the heart of T. |
| |
| This is true for non-addressable components (which don't have their |
| own alias set), as well as components of objects in alias set zero. |
| This later point is a special case wherein we wish to override the |
| alias set used by the component, but we don't have per-FIELD_DECL |
| assignable alias sets. */ |
| |
| bool |
| component_uses_parent_alias_set (const_tree t) |
| { |
| while (1) |
| { |
| /* If we're at the end, it vacuously uses its own alias set. */ |
| if (!handled_component_p (t)) |
| return false; |
| |
| switch (TREE_CODE (t)) |
| { |
| case COMPONENT_REF: |
| if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1))) |
| return true; |
| break; |
| |
| case ARRAY_REF: |
| case ARRAY_RANGE_REF: |
| if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0)))) |
| return true; |
| break; |
| |
| case REALPART_EXPR: |
| case IMAGPART_EXPR: |
| break; |
| |
| default: |
| /* Bitfields and casts are never addressable. */ |
| return true; |
| } |
| |
| t = TREE_OPERAND (t, 0); |
| if (get_alias_set (TREE_TYPE (t)) == 0) |
| return true; |
| } |
| } |
| |
| /* Return the alias set for T, which may be either a type or an |
| expression. Call language-specific routine for help, if needed. */ |
| |
| alias_set_type |
| get_alias_set (tree t) |
| { |
| alias_set_type set; |
| |
| /* If we're not doing any alias analysis, just assume everything |
| aliases everything else. Also return 0 if this or its type is |
| an error. */ |
| if (! flag_strict_aliasing || t == error_mark_node |
| || (! TYPE_P (t) |
| && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node))) |
| return 0; |
| |
| /* We can be passed either an expression or a type. This and the |
| language-specific routine may make mutually-recursive calls to each other |
| to figure out what to do. At each juncture, we see if this is a tree |
| that the language may need to handle specially. First handle things that |
| aren't types. */ |
| if (! TYPE_P (t)) |
| { |
| tree inner = t; |
| |
| /* Remove any nops, then give the language a chance to do |
| something with this tree before we look at it. */ |
| STRIP_NOPS (t); |
| set = lang_hooks.get_alias_set (t); |
| if (set != -1) |
| return set; |
| |
| /* First see if the actual object referenced is an INDIRECT_REF from a |
| restrict-qualified pointer or a "void *". */ |
| while (handled_component_p (inner)) |
| { |
| inner = TREE_OPERAND (inner, 0); |
| STRIP_NOPS (inner); |
| } |
| |
| /* Check for accesses through restrict-qualified pointers. */ |
| if (INDIRECT_REF_P (inner)) |
| { |
| tree decl; |
| |
| if (TREE_CODE (TREE_OPERAND (inner, 0)) == SSA_NAME) |
| decl = SSA_NAME_VAR (TREE_OPERAND (inner, 0)); |
| else |
| decl = find_base_decl (TREE_OPERAND (inner, 0)); |
| |
| if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl)) |
| { |
| /* If we haven't computed the actual alias set, do it now. */ |
| if (DECL_POINTER_ALIAS_SET (decl) == -2) |
| { |
| tree pointed_to_type = TREE_TYPE (TREE_TYPE (decl)); |
| |
| /* No two restricted pointers can point at the same thing. |
| However, a restricted pointer can point at the same thing |
| as an unrestricted pointer, if that unrestricted pointer |
| is based on the restricted pointer. So, we make the |
| alias set for the restricted pointer a subset of the |
| alias set for the type pointed to by the type of the |
| decl. */ |
| alias_set_type pointed_to_alias_set |
| = get_alias_set (pointed_to_type); |
| |
| if (pointed_to_alias_set == 0) |
| /* It's not legal to make a subset of alias set zero. */ |
| DECL_POINTER_ALIAS_SET (decl) = 0; |
| else if (AGGREGATE_TYPE_P (pointed_to_type)) |
| /* For an aggregate, we must treat the restricted |
| pointer the same as an ordinary pointer. If we |
| were to make the type pointed to by the |
| restricted pointer a subset of the pointed-to |
| type, then we would believe that other subsets |
| of the pointed-to type (such as fields of that |
| type) do not conflict with the type pointed to |
| by the restricted pointer. */ |
| DECL_POINTER_ALIAS_SET (decl) |
| = pointed_to_alias_set; |
| else |
| { |
| DECL_POINTER_ALIAS_SET (decl) = new_alias_set (); |
| record_alias_subset (pointed_to_alias_set, |
| DECL_POINTER_ALIAS_SET (decl)); |
| } |
| } |
| |
| /* We use the alias set indicated in the declaration. */ |
| return DECL_POINTER_ALIAS_SET (decl); |
| } |
| |
| /* If we have an INDIRECT_REF via a void pointer, we don't |
| know anything about what that might alias. Likewise if the |
| pointer is marked that way. */ |
| else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE |
| || (TYPE_REF_CAN_ALIAS_ALL |
| (TREE_TYPE (TREE_OPERAND (inner, 0))))) |
| return 0; |
| } |
| |
| /* Otherwise, pick up the outermost object that we could have a pointer |
| to, processing conversions as above. */ |
| while (component_uses_parent_alias_set (t)) |
| { |
| t = TREE_OPERAND (t, 0); |
| STRIP_NOPS (t); |
| } |
| |
| /* If we've already determined the alias set for a decl, just return |
| it. This is necessary for C++ anonymous unions, whose component |
| variables don't look like union members (boo!). */ |
| if (TREE_CODE (t) == VAR_DECL |
| && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t))) |
| return MEM_ALIAS_SET (DECL_RTL (t)); |
| |
| /* Now all we care about is the type. */ |
| t = TREE_TYPE (t); |
| } |
| |
| /* Variant qualifiers don't affect the alias set, so get the main |
| variant. Always use the canonical type as well. |
| If this is a type with a known alias set, return it. */ |
| t = TYPE_MAIN_VARIANT (t); |
| if (TYPE_CANONICAL (t)) |
| t = TYPE_CANONICAL (t); |
| if (TYPE_ALIAS_SET_KNOWN_P (t)) |
| return TYPE_ALIAS_SET (t); |
| |
| /* We don't want to set TYPE_ALIAS_SET for incomplete types. */ |
| if (!COMPLETE_TYPE_P (t)) |
| { |
| /* For arrays with unknown size the conservative answer is the |
| alias set of the element type. */ |
| if (TREE_CODE (t) == ARRAY_TYPE) |
| return get_alias_set (TREE_TYPE (t)); |
| |
| /* But return zero as a conservative answer for incomplete types. */ |
| return 0; |
| } |
| |
| /* See if the language has special handling for this type. */ |
| set = lang_hooks.get_alias_set (t); |
| if (set != -1) |
| return set; |
| |
| /* There are no objects of FUNCTION_TYPE, so there's no point in |
| using up an alias set for them. (There are, of course, pointers |
| and references to functions, but that's different.) */ |
| else if (TREE_CODE (t) == FUNCTION_TYPE |
| || TREE_CODE (t) == METHOD_TYPE) |
| set = 0; |
| |
| /* Unless the language specifies otherwise, let vector types alias |
| their components. This avoids some nasty type punning issues in |
| normal usage. And indeed lets vectors be treated more like an |
| array slice. */ |
| else if (TREE_CODE (t) == VECTOR_TYPE) |
| set = get_alias_set (TREE_TYPE (t)); |
| |
| /* Unless the language specifies otherwise, treat array types the |
| same as their components. This avoids the asymmetry we get |
| through recording the components. Consider accessing a |
| character(kind=1) through a reference to a character(kind=1)[1:1]. |
| Or consider if we want to assign integer(kind=4)[0:D.1387] and |
| integer(kind=4)[4] the same alias set or not. |
| Just be pragmatic here and make sure the array and its element |
| type get the same alias set assigned. */ |
| else if (TREE_CODE (t) == ARRAY_TYPE |
| && !TYPE_NONALIASED_COMPONENT (t)) |
| set = get_alias_set (TREE_TYPE (t)); |
| |
| else |
| /* Otherwise make a new alias set for this type. */ |
| set = new_alias_set (); |
| |
| TYPE_ALIAS_SET (t) = set; |
| |
| /* If this is an aggregate type, we must record any component aliasing |
| information. */ |
| if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE) |
| record_component_aliases (t); |
| |
| return set; |
| } |
| |
| /* Return a brand-new alias set. */ |
| |
| alias_set_type |
| new_alias_set (void) |
| { |
| if (flag_strict_aliasing) |
| { |
| if (alias_sets == 0) |
| VEC_safe_push (alias_set_entry, gc, alias_sets, 0); |
| VEC_safe_push (alias_set_entry, gc, alias_sets, 0); |
| return VEC_length (alias_set_entry, alias_sets) - 1; |
| } |
| else |
| return 0; |
| } |
| |
| /* Indicate that things in SUBSET can alias things in SUPERSET, but that |
| not everything that aliases SUPERSET also aliases SUBSET. For example, |
| in C, a store to an `int' can alias a load of a structure containing an |
| `int', and vice versa. But it can't alias a load of a 'double' member |
| of the same structure. Here, the structure would be the SUPERSET and |
| `int' the SUBSET. This relationship is also described in the comment at |
| the beginning of this file. |
| |
| This function should be called only once per SUPERSET/SUBSET pair. |
| |
| It is illegal for SUPERSET to be zero; everything is implicitly a |
| subset of alias set zero. */ |
| |
| void |
| record_alias_subset (alias_set_type superset, alias_set_type subset) |
| { |
| alias_set_entry superset_entry; |
| alias_set_entry subset_entry; |
| |
| /* It is possible in complex type situations for both sets to be the same, |
| in which case we can ignore this operation. */ |
| if (superset == subset) |
| return; |
| |
| gcc_assert (superset); |
| |
| superset_entry = get_alias_set_entry (superset); |
| if (superset_entry == 0) |
| { |
| /* Create an entry for the SUPERSET, so that we have a place to |
| attach the SUBSET. */ |
| superset_entry = GGC_NEW (struct alias_set_entry); |
| superset_entry->alias_set = superset; |
| superset_entry->children |
| = splay_tree_new_ggc (splay_tree_compare_ints); |
| superset_entry->has_zero_child = 0; |
| VEC_replace (alias_set_entry, alias_sets, superset, superset_entry); |
| } |
| |
| if (subset == 0) |
| superset_entry->has_zero_child = 1; |
| else |
| { |
| subset_entry = get_alias_set_entry (subset); |
| /* If there is an entry for the subset, enter all of its children |
| (if they are not already present) as children of the SUPERSET. */ |
| if (subset_entry) |
| { |
| if (subset_entry->has_zero_child) |
| superset_entry->has_zero_child = 1; |
| |
| splay_tree_foreach (subset_entry->children, insert_subset_children, |
| superset_entry->children); |
| } |
| |
| /* Enter the SUBSET itself as a child of the SUPERSET. */ |
| splay_tree_insert (superset_entry->children, |
| (splay_tree_key) subset, 0); |
| } |
| } |
| |
| /* Record that component types of TYPE, if any, are part of that type for |
| aliasing purposes. For record types, we only record component types |
| for fields that are not marked non-addressable. For array types, we |
| only record the component type if it is not marked non-aliased. */ |
| |
| void |
| record_component_aliases (tree type) |
| { |
| alias_set_type superset = get_alias_set (type); |
| tree field; |
| |
| if (superset == 0) |
| return; |
| |
| switch (TREE_CODE (type)) |
| { |
| case RECORD_TYPE: |
| case UNION_TYPE: |
| case QUAL_UNION_TYPE: |
| /* Recursively record aliases for the base classes, if there are any. */ |
| if (TYPE_BINFO (type)) |
| { |
| int i; |
| tree binfo, base_binfo; |
| |
| for (binfo = TYPE_BINFO (type), i = 0; |
| BINFO_BASE_ITERATE (binfo, i, base_binfo); i++) |
| record_alias_subset (superset, |
| get_alias_set (BINFO_TYPE (base_binfo))); |
| } |
| for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field)) |
| if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field)) |
| record_alias_subset (superset, get_alias_set (TREE_TYPE (field))); |
| break; |
| |
| case COMPLEX_TYPE: |
| record_alias_subset (superset, get_alias_set (TREE_TYPE (type))); |
| break; |
| |
| /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their |
| element type. */ |
| |
| default: |
| break; |
| } |
| } |
| |
| /* Allocate an alias set for use in storing and reading from the varargs |
| spill area. */ |
| |
| static GTY(()) alias_set_type varargs_set = -1; |
| |
| alias_set_type |
| get_varargs_alias_set (void) |
| { |
| #if 1 |
| /* We now lower VA_ARG_EXPR, and there's currently no way to attach the |
| varargs alias set to an INDIRECT_REF (FIXME!), so we can't |
| consistently use the varargs alias set for loads from the varargs |
| area. So don't use it anywhere. */ |
| return 0; |
| #else |
| if (varargs_set == -1) |
| varargs_set = new_alias_set (); |
| |
| return varargs_set; |
| #endif |
| } |
| |
| /* Likewise, but used for the fixed portions of the frame, e.g., register |
| save areas. */ |
| |
| static GTY(()) alias_set_type frame_set = -1; |
| |
| alias_set_type |
| get_frame_alias_set (void) |
| { |
| if (frame_set == -1) |
| frame_set = new_alias_set (); |
| |
| return frame_set; |
| } |
| |
| /* Inside SRC, the source of a SET, find a base address. */ |
| |
| static rtx |
| find_base_value (rtx src) |
| { |
| unsigned int regno; |
| |
| #if defined (FIND_BASE_TERM) |
| /* Try machine-dependent ways to find the base term. */ |
| src = FIND_BASE_TERM (src); |
| #endif |
| |
| switch (GET_CODE (src)) |
| { |
| case SYMBOL_REF: |
| case LABEL_REF: |
| return src; |
| |
| case REG: |
| regno = REGNO (src); |
| /* At the start of a function, argument registers have known base |
| values which may be lost later. Returning an ADDRESS |
| expression here allows optimization based on argument values |
| even when the argument registers are used for other purposes. */ |
| if (regno < FIRST_PSEUDO_REGISTER && copying_arguments) |
| return new_reg_base_value[regno]; |
| |
| /* If a pseudo has a known base value, return it. Do not do this |
| for non-fixed hard regs since it can result in a circular |
| dependency chain for registers which have values at function entry. |
| |
| The test above is not sufficient because the scheduler may move |
| a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */ |
| if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno]) |
| && regno < VEC_length (rtx, reg_base_value)) |
| { |
| /* If we're inside init_alias_analysis, use new_reg_base_value |
| to reduce the number of relaxation iterations. */ |
| if (new_reg_base_value && new_reg_base_value[regno] |
| && DF_REG_DEF_COUNT (regno) == 1) |
| return new_reg_base_value[regno]; |
| |
| if (VEC_index (rtx, reg_base_value, regno)) |
| return VEC_index (rtx, reg_base_value, regno); |
| } |
| |
| return 0; |
| |
| case MEM: |
| /* Check for an argument passed in memory. Only record in the |
| copying-arguments block; it is too hard to track changes |
| otherwise. */ |
| if (copying_arguments |
| && (XEXP (src, 0) == arg_pointer_rtx |
| || (GET_CODE (XEXP (src, 0)) == PLUS |
| && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx))) |
| return gen_rtx_ADDRESS (VOIDmode, src); |
| return 0; |
| |
| case CONST: |
| src = XEXP (src, 0); |
| if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS) |
| break; |
| |
| /* ... fall through ... */ |
| |
| case PLUS: |
| case MINUS: |
| { |
| rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1); |
| |
| /* If either operand is a REG that is a known pointer, then it |
| is the base. */ |
| if (REG_P (src_0) && REG_POINTER (src_0)) |
| return find_base_value (src_0); |
| if (REG_P (src_1) && REG_POINTER (src_1)) |
| return find_base_value (src_1); |
| |
| /* If either operand is a REG, then see if we already have |
| a known value for it. */ |
| if (REG_P (src_0)) |
| { |
| temp = find_base_value (src_0); |
| if (temp != 0) |
| src_0 = temp; |
| } |
| |
| if (REG_P (src_1)) |
| { |
| temp = find_base_value (src_1); |
| if (temp!= 0) |
| src_1 = temp; |
| } |
| |
| /* If either base is named object or a special address |
| (like an argument or stack reference), then use it for the |
| base term. */ |
| if (src_0 != 0 |
| && (GET_CODE (src_0) == SYMBOL_REF |
| || GET_CODE (src_0) == LABEL_REF |
| || (GET_CODE (src_0) == ADDRESS |
| && GET_MODE (src_0) != VOIDmode))) |
| return src_0; |
| |
| if (src_1 != 0 |
| && (GET_CODE (src_1) == SYMBOL_REF |
| || GET_CODE (src_1) == LABEL_REF |
| || (GET_CODE (src_1) == ADDRESS |
| && GET_MODE (src_1) != VOIDmode))) |
| return src_1; |
| |
| /* Guess which operand is the base address: |
| If either operand is a symbol, then it is the base. If |
| either operand is a CONST_INT, then the other is the base. */ |
| if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0)) |
| return find_base_value (src_0); |
| else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1)) |
| return find_base_value (src_1); |
| |
| return 0; |
| } |
| |
| case LO_SUM: |
| /* The standard form is (lo_sum reg sym) so look only at the |
| second operand. */ |
| return find_base_value (XEXP (src, 1)); |
| |
| case AND: |
| /* If the second operand is constant set the base |
| address to the first operand. */ |
| if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0) |
| return find_base_value (XEXP (src, 0)); |
| return 0; |
| |
| case TRUNCATE: |
| if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode)) |
| break; |
| /* Fall through. */ |
| case HIGH: |
| case PRE_INC: |
| case PRE_DEC: |
| case POST_INC: |
| case POST_DEC: |
| case PRE_MODIFY: |
| case POST_MODIFY: |
| return find_base_value (XEXP (src, 0)); |
| |
| case ZERO_EXTEND: |
| case SIGN_EXTEND: /* used for NT/Alpha pointers */ |
| { |
| rtx temp = find_base_value (XEXP (src, 0)); |
| |
| if (temp != 0 && CONSTANT_P (temp)) |
| temp = convert_memory_address (Pmode, temp); |
| |
| return temp; |
| } |
| |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /* Called from init_alias_analysis indirectly through note_stores. */ |
| |
| /* While scanning insns to find base values, reg_seen[N] is nonzero if |
| register N has been set in this function. */ |
| static char *reg_seen; |
| |
| /* Addresses which are known not to alias anything else are identified |
| by a unique integer. */ |
| static int unique_id; |
| |
| static void |
| record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED) |
| { |
| unsigned regno; |
| rtx src; |
| int n; |
| |
| if (!REG_P (dest)) |
| return; |
| |
| regno = REGNO (dest); |
| |
| gcc_assert (regno < VEC_length (rtx, reg_base_value)); |
| |
| /* If this spans multiple hard registers, then we must indicate that every |
| register has an unusable value. */ |
| if (regno < FIRST_PSEUDO_REGISTER) |
| n = hard_regno_nregs[regno][GET_MODE (dest)]; |
| else |
| n = 1; |
| if (n != 1) |
| { |
| while (--n >= 0) |
| { |
| reg_seen[regno + n] = 1; |
| new_reg_base_value[regno + n] = 0; |
| } |
| return; |
| } |
| |
| if (set) |
| { |
| /* A CLOBBER wipes out any old value but does not prevent a previously |
| unset register from acquiring a base address (i.e. reg_seen is not |
| set). */ |
| if (GET_CODE (set) == CLOBBER) |
| { |
| new_reg_base_value[regno] = 0; |
| return; |
| } |
| src = SET_SRC (set); |
| } |
| else |
| { |
| if (reg_seen[regno]) |
| { |
| new_reg_base_value[regno] = 0; |
| return; |
| } |
| reg_seen[regno] = 1; |
| new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode, |
| GEN_INT (unique_id++)); |
| return; |
| } |
| |
| /* If this is not the first set of REGNO, see whether the new value |
| is related to the old one. There are two cases of interest: |
| |
| (1) The register might be assigned an entirely new value |
| that has the same base term as the original set. |
| |
| (2) The set might be a simple self-modification that |
| cannot change REGNO's base value. |
| |
| If neither case holds, reject the original base value as invalid. |
| Note that the following situation is not detected: |
| |
| extern int x, y; int *p = &x; p += (&y-&x); |
| |
| ANSI C does not allow computing the difference of addresses |
| of distinct top level objects. */ |
| if (new_reg_base_value[regno] != 0 |
| && find_base_value (src) != new_reg_base_value[regno]) |
| switch (GET_CODE (src)) |
| { |
| case LO_SUM: |
| case MINUS: |
| if (XEXP (src, 0) != dest && XEXP (src, 1) != dest) |
| new_reg_base_value[regno] = 0; |
| break; |
| case PLUS: |
| /* If the value we add in the PLUS is also a valid base value, |
| this might be the actual base value, and the original value |
| an index. */ |
| { |
| rtx other = NULL_RTX; |
| |
| if (XEXP (src, 0) == dest) |
| other = XEXP (src, 1); |
| else if (XEXP (src, 1) == dest) |
| other = XEXP (src, 0); |
| |
| if (! other || find_base_value (other)) |
| new_reg_base_value[regno] = 0; |
| break; |
| } |
| case AND: |
| if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT) |
| new_reg_base_value[regno] = 0; |
| break; |
| default: |
| new_reg_base_value[regno] = 0; |
| break; |
| } |
| /* If this is the first set of a register, record the value. */ |
| else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno]) |
| && ! reg_seen[regno] && new_reg_base_value[regno] == 0) |
| new_reg_base_value[regno] = find_base_value (src); |
| |
| reg_seen[regno] = 1; |
| } |
| |
| /* If a value is known for REGNO, return it. */ |
| |
| rtx |
| get_reg_known_value (unsigned int regno) |
| { |
| if (regno >= FIRST_PSEUDO_REGISTER) |
| { |
| regno -= FIRST_PSEUDO_REGISTER; |
| if (regno < reg_known_value_size) |
| return reg_known_value[regno]; |
| } |
| return NULL; |
| } |
| |
| /* Set it. */ |
| |
| static void |
| set_reg_known_value (unsigned int regno, rtx val) |
| { |
| if (regno >= FIRST_PSEUDO_REGISTER) |
| { |
| regno -= FIRST_PSEUDO_REGISTER; |
| if (regno < reg_known_value_size) |
| reg_known_value[regno] = val; |
| } |
| } |
| |
| /* Similarly for reg_known_equiv_p. */ |
| |
| bool |
| get_reg_known_equiv_p (unsigned int regno) |
| { |
| if (regno >= FIRST_PSEUDO_REGISTER) |
| { |
| regno -= FIRST_PSEUDO_REGISTER; |
| if (regno < reg_known_value_size) |
| return reg_known_equiv_p[regno]; |
| } |
| return false; |
| } |
| |
| static void |
| set_reg_known_equiv_p (unsigned int regno, bool val) |
| { |
| if (regno >= FIRST_PSEUDO_REGISTER) |
| { |
| regno -= FIRST_PSEUDO_REGISTER; |
| if (regno < reg_known_value_size) |
| reg_known_equiv_p[regno] = val; |
| } |
| } |
| |
| |
| /* Returns a canonical version of X, from the point of view alias |
| analysis. (For example, if X is a MEM whose address is a register, |
| and the register has a known value (say a SYMBOL_REF), then a MEM |
| whose address is the SYMBOL_REF is returned.) */ |
| |
| rtx |
| canon_rtx (rtx x) |
| { |
| /* Recursively look for equivalences. */ |
| if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER) |
| { |
| rtx t = get_reg_known_value (REGNO (x)); |
| if (t == x) |
| return x; |
| if (t) |
| return canon_rtx (t); |
| } |
| |
| if (GET_CODE (x) == PLUS) |
| { |
| rtx x0 = canon_rtx (XEXP (x, 0)); |
| rtx x1 = canon_rtx (XEXP (x, 1)); |
| |
| if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1)) |
| { |
| if (GET_CODE (x0) == CONST_INT) |
| return plus_constant (x1, INTVAL (x0)); |
| else if (GET_CODE (x1) == CONST_INT) |
| return plus_constant (x0, INTVAL (x1)); |
| return gen_rtx_PLUS (GET_MODE (x), x0, x1); |
| } |
| } |
| |
| /* This gives us much better alias analysis when called from |
| the loop optimizer. Note we want to leave the original |
| MEM alone, but need to return the canonicalized MEM with |
| all the flags with their original values. */ |
| else if (MEM_P (x)) |
| x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0))); |
| |
| return x; |
| } |
| |
| /* Return 1 if X and Y are identical-looking rtx's. |
| Expect that X and Y has been already canonicalized. |
| |
| We use the data in reg_known_value above to see if two registers with |
| different numbers are, in fact, equivalent. */ |
| |
| static int |
| rtx_equal_for_memref_p (const_rtx x, const_rtx y) |
| { |
| int i; |
| int j; |
| enum rtx_code code; |
| const char *fmt; |
| |
| if (x == 0 && y == 0) |
| return 1; |
| if (x == 0 || y == 0) |
| return 0; |
| |
| if (x == y) |
| return 1; |
| |
| code = GET_CODE (x); |
| /* Rtx's of different codes cannot be equal. */ |
| if (code != GET_CODE (y)) |
| return 0; |
| |
| /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. |
| (REG:SI x) and (REG:HI x) are NOT equivalent. */ |
| |
| if (GET_MODE (x) != GET_MODE (y)) |
| return 0; |
| |
| /* Some RTL can be compared without a recursive examination. */ |
| switch (code) |
| { |
| case REG: |
| return REGNO (x) == REGNO (y); |
| |
| case LABEL_REF: |
| return XEXP (x, 0) == XEXP (y, 0); |
| |
| case SYMBOL_REF: |
| return XSTR (x, 0) == XSTR (y, 0); |
| |
| case VALUE: |
| case CONST_INT: |
| case CONST_DOUBLE: |
| case CONST_FIXED: |
| /* There's no need to compare the contents of CONST_DOUBLEs or |
| CONST_INTs because pointer equality is a good enough |
| comparison for these nodes. */ |
| return 0; |
| |
| default: |
| break; |
| } |
| |
| /* canon_rtx knows how to handle plus. No need to canonicalize. */ |
| if (code == PLUS) |
| return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0)) |
| && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1))) |
| || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1)) |
| && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0)))); |
| /* For commutative operations, the RTX match if the operand match in any |
| order. Also handle the simple binary and unary cases without a loop. */ |
| if (COMMUTATIVE_P (x)) |
| { |
| rtx xop0 = canon_rtx (XEXP (x, 0)); |
| rtx yop0 = canon_rtx (XEXP (y, 0)); |
| rtx yop1 = canon_rtx (XEXP (y, 1)); |
| |
| return ((rtx_equal_for_memref_p (xop0, yop0) |
| && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1)) |
| || (rtx_equal_for_memref_p (xop0, yop1) |
| && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0))); |
| } |
| else if (NON_COMMUTATIVE_P (x)) |
| { |
| return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)), |
| canon_rtx (XEXP (y, 0))) |
| && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), |
| canon_rtx (XEXP (y, 1)))); |
| } |
| else if (UNARY_P (x)) |
| return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)), |
| canon_rtx (XEXP (y, 0))); |
| |
| /* Compare the elements. If any pair of corresponding elements |
| fail to match, return 0 for the whole things. |
| |
| Limit cases to types which actually appear in addresses. */ |
| |
| fmt = GET_RTX_FORMAT (code); |
| for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) |
| { |
| switch (fmt[i]) |
| { |
| case 'i': |
| if (XINT (x, i) != XINT (y, i)) |
| return 0; |
| break; |
| |
| case 'E': |
| /* Two vectors must have the same length. */ |
| if (XVECLEN (x, i) != XVECLEN (y, i)) |
| return 0; |
| |
| /* And the corresponding elements must match. */ |
| for (j = 0; j < XVECLEN (x, i); j++) |
| if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)), |
| canon_rtx (XVECEXP (y, i, j))) == 0) |
| return 0; |
| break; |
| |
| case 'e': |
| if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)), |
| canon_rtx (XEXP (y, i))) == 0) |
| return 0; |
| break; |
| |
| /* This can happen for asm operands. */ |
| case 's': |
| if (strcmp (XSTR (x, i), XSTR (y, i))) |
| return 0; |
| break; |
| |
| /* This can happen for an asm which clobbers memory. */ |
| case '0': |
| break; |
| |
| /* It is believed that rtx's at this level will never |
| contain anything but integers and other rtx's, |
| except for within LABEL_REFs and SYMBOL_REFs. */ |
| default: |
| gcc_unreachable (); |
| } |
| } |
| return 1; |
| } |
| |
| rtx |
| find_base_term (rtx x) |
| { |
| cselib_val *val; |
| struct elt_loc_list *l; |
| |
| #if defined (FIND_BASE_TERM) |
| /* Try machine-dependent ways to find the base term. */ |
| x = FIND_BASE_TERM (x); |
| #endif |
| |
| switch (GET_CODE (x)) |
| { |
| case REG: |
| return REG_BASE_VALUE (x); |
| |
| case TRUNCATE: |
| if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode)) |
| return 0; |
| /* Fall through. */ |
| case HIGH: |
| case PRE_INC: |
| case PRE_DEC: |
| case POST_INC: |
| case POST_DEC: |
| case PRE_MODIFY: |
| case POST_MODIFY: |
| return find_base_term (XEXP (x, 0)); |
| |
| case ZERO_EXTEND: |
| case SIGN_EXTEND: /* Used for Alpha/NT pointers */ |
| { |
| rtx temp = find_base_term (XEXP (x, 0)); |
| |
| if (temp != 0 && CONSTANT_P (temp)) |
| temp = convert_memory_address (Pmode, temp); |
| |
| return temp; |
| } |
| |
| case VALUE: |
| val = CSELIB_VAL_PTR (x); |
| if (!val) |
| return 0; |
| for (l = val->locs; l; l = l->next) |
| if ((x = find_base_term (l->loc)) != 0) |
| return x; |
| return 0; |
| |
| case LO_SUM: |
| /* The standard form is (lo_sum reg sym) so look only at the |
| second operand. */ |
| return find_base_term (XEXP (x, 1)); |
| |
| case CONST: |
| x = XEXP (x, 0); |
| if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS) |
| return 0; |
| /* Fall through. */ |
| case PLUS: |
| case MINUS: |
| { |
| rtx tmp1 = XEXP (x, 0); |
| rtx tmp2 = XEXP (x, 1); |
| |
| /* This is a little bit tricky since we have to determine which of |
| the two operands represents the real base address. Otherwise this |
| routine may return the index register instead of the base register. |
| |
| That may cause us to believe no aliasing was possible, when in |
| fact aliasing is possible. |
| |
| We use a few simple tests to guess the base register. Additional |
| tests can certainly be added. For example, if one of the operands |
| is a shift or multiply, then it must be the index register and the |
| other operand is the base register. */ |
| |
| if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2)) |
| return find_base_term (tmp2); |
| |
| /* If either operand is known to be a pointer, then use it |
| to determine the base term. */ |
| if (REG_P (tmp1) && REG_POINTER (tmp1)) |
| return find_base_term (tmp1); |
| |
| if (REG_P (tmp2) && REG_POINTER (tmp2)) |
| return find_base_term (tmp2); |
| |
| /* Neither operand was known to be a pointer. Go ahead and find the |
| base term for both operands. */ |
| tmp1 = find_base_term (tmp1); |
| tmp2 = find_base_term (tmp2); |
| |
| /* If either base term is named object or a special address |
| (like an argument or stack reference), then use it for the |
| base term. */ |
| if (tmp1 != 0 |
| && (GET_CODE (tmp1) == SYMBOL_REF |
| || GET_CODE (tmp1) == LABEL_REF |
| || (GET_CODE (tmp1) == ADDRESS |
| && GET_MODE (tmp1) != VOIDmode))) |
| return tmp1; |
| |
| if (tmp2 != 0 |
| && (GET_CODE (tmp2) == SYMBOL_REF |
| || GET_CODE (tmp2) == LABEL_REF |
| || (GET_CODE (tmp2) == ADDRESS |
| && GET_MODE (tmp2) != VOIDmode))) |
| return tmp2; |
| |
| /* We could not determine which of the two operands was the |
| base register and which was the index. So we can determine |
| nothing from the base alias check. */ |
| return 0; |
| } |
| |
| case AND: |
| if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0) |
| return find_base_term (XEXP (x, 0)); |
| return 0; |
| |
| case SYMBOL_REF: |
| case LABEL_REF: |
| return x; |
| |
| default: |
| return 0; |
| } |
| } |
| |
| /* Return 0 if the addresses X and Y are known to point to different |
| objects, 1 if they might be pointers to the same object. */ |
| |
| static int |
| base_alias_check (rtx x, rtx y, enum machine_mode x_mode, |
| enum machine_mode y_mode) |
| { |
| rtx x_base = find_base_term (x); |
| rtx y_base = find_base_term (y); |
| |
| /* If the address itself has no known base see if a known equivalent |
| value has one. If either address still has no known base, nothing |
| is known about aliasing. */ |
| if (x_base == 0) |
| { |
| rtx x_c; |
| |
| if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x) |
| return 1; |
| |
| x_base = find_base_term (x_c); |
| if (x_base == 0) |
| return 1; |
| } |
| |
| if (y_base == 0) |
| { |
| rtx y_c; |
| if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y) |
| return 1; |
| |
| y_base = find_base_term (y_c); |
| if (y_base == 0) |
| return 1; |
| } |
| |
| /* If the base addresses are equal nothing is known about aliasing. */ |
| if (rtx_equal_p (x_base, y_base)) |
| return 1; |
| |
| /* The base addresses are different expressions. If they are not accessed |
| via AND, there is no conflict. We can bring knowledge of object |
| alignment into play here. For example, on alpha, "char a, b;" can |
| alias one another, though "char a; long b;" cannot. AND addesses may |
| implicitly alias surrounding objects; i.e. unaligned access in DImode |
| via AND address can alias all surrounding object types except those |
| with aligment 8 or higher. */ |
| if (GET_CODE (x) == AND && GET_CODE (y) == AND) |
| return 1; |
| if (GET_CODE (x) == AND |
| && (GET_CODE (XEXP (x, 1)) != CONST_INT |
| || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1)))) |
| return 1; |
| if (GET_CODE (y) == AND |
| && (GET_CODE (XEXP (y, 1)) != CONST_INT |
| || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1)))) |
| return 1; |
| |
| /* Differing symbols not accessed via AND never alias. */ |
| if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS) |
| return 0; |
| |
| /* If one address is a stack reference there can be no alias: |
| stack references using different base registers do not alias, |
| a stack reference can not alias a parameter, and a stack reference |
| can not alias a global. */ |
| if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode) |
| || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode)) |
| return 0; |
| |
| if (! flag_argument_noalias) |
| return 1; |
| |
| if (flag_argument_noalias > 1) |
| return 0; |
| |
| /* Weak noalias assertion (arguments are distinct, but may match globals). */ |
| return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode); |
| } |
| |
| /* Convert the address X into something we can use. This is done by returning |
| it unchanged unless it is a value; in the latter case we call cselib to get |
| a more useful rtx. */ |
| |
| rtx |
| get_addr (rtx x) |
| { |
| cselib_val *v; |
| struct elt_loc_list *l; |
| |
| if (GET_CODE (x) != VALUE) |
| return x; |
| v = CSELIB_VAL_PTR (x); |
| if (v) |
| { |
| for (l = v->locs; l; l = l->next) |
| if (CONSTANT_P (l->loc)) |
| return l->loc; |
| for (l = v->locs; l; l = l->next) |
| if (!REG_P (l->loc) && !MEM_P (l->loc)) |
| return l->loc; |
| if (v->locs) |
| return v->locs->loc; |
| } |
| return x; |
| } |
| |
| /* Return the address of the (N_REFS + 1)th memory reference to ADDR |
| where SIZE is the size in bytes of the memory reference. If ADDR |
| is not modified by the memory reference then ADDR is returned. */ |
| |
| static rtx |
| addr_side_effect_eval (rtx addr, int size, int n_refs) |
| { |
| int offset = 0; |
| |
| switch (GET_CODE (addr)) |
| { |
| case PRE_INC: |
| offset = (n_refs + 1) * size; |
| break; |
| case PRE_DEC: |
| offset = -(n_refs + 1) * size; |
| break; |
| case POST_INC: |
| offset = n_refs * size; |
| break; |
| case POST_DEC: |
| offset = -n_refs * size; |
| break; |
| |
| default: |
| return addr; |
| } |
| |
| if (offset) |
| addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0), |
| GEN_INT (offset)); |
| else |
| addr = XEXP (addr, 0); |
| addr = canon_rtx (addr); |
| |
| return addr; |
| } |
| |
| /* Return nonzero if X and Y (memory addresses) could reference the |
| same location in memory. C is an offset accumulator. When |
| C is nonzero, we are testing aliases between X and Y + C. |
| XSIZE is the size in bytes of the X reference, |
| similarly YSIZE is the size in bytes for Y. |
| Expect that canon_rtx has been already called for X and Y. |
| |
| If XSIZE or YSIZE is zero, we do not know the amount of memory being |
| referenced (the reference was BLKmode), so make the most pessimistic |
| assumptions. |
| |
| If XSIZE or YSIZE is negative, we may access memory outside the object |
| being referenced as a side effect. This can happen when using AND to |
| align memory references, as is done on the Alpha. |
| |
| Nice to notice that varying addresses cannot conflict with fp if no |
| local variables had their addresses taken, but that's too hard now. */ |
| |
| static int |
| memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c) |
| { |
| if (GET_CODE (x) == VALUE) |
| x = get_addr (x); |
| if (GET_CODE (y) == VALUE) |
| y = get_addr (y); |
| if (GET_CODE (x) == HIGH) |
| x = XEXP (x, 0); |
| else if (GET_CODE (x) == LO_SUM) |
| x = XEXP (x, 1); |
| else |
| x = addr_side_effect_eval (x, xsize, 0); |
| if (GET_CODE (y) == HIGH) |
| y = XEXP (y, 0); |
| else if (GET_CODE (y) == LO_SUM) |
| y = XEXP (y, 1); |
| else |
| y = addr_side_effect_eval (y, ysize, 0); |
| |
| if (rtx_equal_for_memref_p (x, y)) |
| { |
| if (xsize <= 0 || ysize <= 0) |
| return 1; |
| if (c >= 0 && xsize > c) |
| return 1; |
| if (c < 0 && ysize+c > 0) |
| return 1; |
| return 0; |
| } |
| |
| /* This code used to check for conflicts involving stack references and |
| globals but the base address alias code now handles these cases. */ |
| |
| if (GET_CODE (x) == PLUS) |
| { |
| /* The fact that X is canonicalized means that this |
| PLUS rtx is canonicalized. */ |
| rtx x0 = XEXP (x, 0); |
| rtx x1 = XEXP (x, 1); |
| |
| if (GET_CODE (y) == PLUS) |
| { |
| /* The fact that Y is canonicalized means that this |
| PLUS rtx is canonicalized. */ |
| rtx y0 = XEXP (y, 0); |
| rtx y1 = XEXP (y, 1); |
| |
| if (rtx_equal_for_memref_p (x1, y1)) |
| return memrefs_conflict_p (xsize, x0, ysize, y0, c); |
| if (rtx_equal_for_memref_p (x0, y0)) |
| return memrefs_conflict_p (xsize, x1, ysize, y1, c); |
| if (GET_CODE (x1) == CONST_INT) |
| { |
| if (GET_CODE (y1) == CONST_INT) |
| return memrefs_conflict_p (xsize, x0, ysize, y0, |
| c - INTVAL (x1) + INTVAL (y1)); |
| else |
| return memrefs_conflict_p (xsize, x0, ysize, y, |
| c - INTVAL (x1)); |
| } |
| else if (GET_CODE (y1) == CONST_INT) |
| return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1)); |
| |
| return 1; |
| } |
| else if (GET_CODE (x1) == CONST_INT) |
| return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1)); |
| } |
| else if (GET_CODE (y) == PLUS) |
| { |
| /* The fact that Y is canonicalized means that this |
| PLUS rtx is canonicalized. */ |
| rtx y0 = XEXP (y, 0); |
| rtx y1 = XEXP (y, 1); |
| |
| if (GET_CODE (y1) == CONST_INT) |
| return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1)); |
| else |
| return 1; |
| } |
| |
| if (GET_CODE (x) == GET_CODE (y)) |
| switch (GET_CODE (x)) |
| { |
| case MULT: |
| { |
| /* Handle cases where we expect the second operands to be the |
| same, and check only whether the first operand would conflict |
| or not. */ |
| rtx x0, y0; |
| rtx x1 = canon_rtx (XEXP (x, 1)); |
| rtx y1 = canon_rtx (XEXP (y, 1)); |
| if (! rtx_equal_for_memref_p (x1, y1)) |
| return 1; |
| x0 = canon_rtx (XEXP (x, 0)); |
| y0 = canon_rtx (XEXP (y, 0)); |
| if (rtx_equal_for_memref_p (x0, y0)) |
| return (xsize == 0 || ysize == 0 |
| || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0)); |
| |
| /* Can't properly adjust our sizes. */ |
| if (GET_CODE (x1) != CONST_INT) |
| return 1; |
| xsize /= INTVAL (x1); |
| ysize /= INTVAL (x1); |
| c /= INTVAL (x1); |
| return memrefs_conflict_p (xsize, x0, ysize, y0, c); |
| } |
| |
| default: |
| break; |
| } |
| |
| /* Treat an access through an AND (e.g. a subword access on an Alpha) |
| as an access with indeterminate size. Assume that references |
| besides AND are aligned, so if the size of the other reference is |
| at least as large as the alignment, assume no other overlap. */ |
| if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT) |
| { |
| if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1))) |
| xsize = -1; |
| return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c); |
| } |
| if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT) |
| { |
| /* ??? If we are indexing far enough into the array/structure, we |
| may yet be able to determine that we can not overlap. But we |
| also need to that we are far enough from the end not to overlap |
| a following reference, so we do nothing with that for now. */ |
| if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1))) |
| ysize = -1; |
| return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c); |
| } |
| |
| if (CONSTANT_P (x)) |
| { |
| if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT) |
| { |
| c += (INTVAL (y) - INTVAL (x)); |
| return (xsize <= 0 || ysize <= 0 |
| || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0)); |
| } |
| |
| if (GET_CODE (x) == CONST) |
| { |
| if (GET_CODE (y) == CONST) |
| return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), |
| ysize, canon_rtx (XEXP (y, 0)), c); |
| else |
| return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), |
| ysize, y, c); |
| } |
| if (GET_CODE (y) == CONST) |
| return memrefs_conflict_p (xsize, x, ysize, |
| canon_rtx (XEXP (y, 0)), c); |
| |
| if (CONSTANT_P (y)) |
| return (xsize <= 0 || ysize <= 0 |
| || (rtx_equal_for_memref_p (x, y) |
| && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0)))); |
| |
| return 1; |
| } |
| return 1; |
| } |
| |
| /* Functions to compute memory dependencies. |
| |
| Since we process the insns in execution order, we can build tables |
| to keep track of what registers are fixed (and not aliased), what registers |
| are varying in known ways, and what registers are varying in unknown |
| ways. |
| |
| If both memory references are volatile, then there must always be a |
| dependence between the two references, since their order can not be |
| changed. A volatile and non-volatile reference can be interchanged |
| though. |
| |
| A MEM_IN_STRUCT reference at a non-AND varying address can never |
| conflict with a non-MEM_IN_STRUCT reference at a fixed address. We |
| also must allow AND addresses, because they may generate accesses |
| outside the object being referenced. This is used to generate |
| aligned addresses from unaligned addresses, for instance, the alpha |
| storeqi_unaligned pattern. */ |
| |
| /* Read dependence: X is read after read in MEM takes place. There can |
| only be a dependence here if both reads are volatile. */ |
| |
| int |
| read_dependence (const_rtx mem, const_rtx x) |
| { |
| return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem); |
| } |
| |
| /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and |
| MEM2 is a reference to a structure at a varying address, or returns |
| MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL |
| value is returned MEM1 and MEM2 can never alias. VARIES_P is used |
| to decide whether or not an address may vary; it should return |
| nonzero whenever variation is possible. |
| MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */ |
| |
| static const_rtx |
| fixed_scalar_and_varying_struct_p (const_rtx mem1, const_rtx mem2, rtx mem1_addr, |
| rtx mem2_addr, |
| bool (*varies_p) (const_rtx, bool)) |
| { |
| if (! flag_strict_aliasing) |
| return NULL_RTX; |
| |
| if (MEM_ALIAS_SET (mem2) |
| && MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2) |
| && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1)) |
| /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a |
| varying address. */ |
| return mem1; |
| |
| if (MEM_ALIAS_SET (mem1) |
| && MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2) |
| && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1)) |
| /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a |
| varying address. */ |
| return mem2; |
| |
| return NULL_RTX; |
| } |
| |
| /* Returns nonzero if something about the mode or address format MEM1 |
| indicates that it might well alias *anything*. */ |
| |
| static int |
| aliases_everything_p (const_rtx mem) |
| { |
| if (GET_CODE (XEXP (mem, 0)) == AND) |
| /* If the address is an AND, it's very hard to know at what it is |
| actually pointing. */ |
| return 1; |
| |
| return 0; |
| } |
| |
| /* Return true if we can determine that the fields referenced cannot |
| overlap for any pair of objects. */ |
| |
| static bool |
| nonoverlapping_component_refs_p (const_tree x, const_tree y) |
| { |
| const_tree fieldx, fieldy, typex, typey, orig_y; |
| |
| if (!flag_strict_aliasing) |
| return false; |
| |
| do |
| { |
| /* The comparison has to be done at a common type, since we don't |
| know how the inheritance hierarchy works. */ |
| orig_y = y; |
| do |
| { |
| fieldx = TREE_OPERAND (x, 1); |
| typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx)); |
| |
| y = orig_y; |
| do |
| { |
| fieldy = TREE_OPERAND (y, 1); |
| typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy)); |
| |
| if (typex == typey) |
| goto found; |
| |
| y = TREE_OPERAND (y, 0); |
| } |
| while (y && TREE_CODE (y) == COMPONENT_REF); |
| |
| x = TREE_OPERAND (x, 0); |
| } |
| while (x && TREE_CODE (x) == COMPONENT_REF); |
| /* Never found a common type. */ |
| return false; |
| |
| found: |
| /* If we're left with accessing different fields of a structure, |
| then no overlap. */ |
| if (TREE_CODE (typex) == RECORD_TYPE |
| && fieldx != fieldy) |
| return true; |
| |
| /* The comparison on the current field failed. If we're accessing |
| a very nested structure, look at the next outer level. */ |
| x = TREE_OPERAND (x, 0); |
| y = TREE_OPERAND (y, 0); |
| } |
| while (x && y |
| && TREE_CODE (x) == COMPONENT_REF |
| && TREE_CODE (y) == COMPONENT_REF); |
| |
| return false; |
| } |
| |
| /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */ |
| |
| static tree |
| decl_for_component_ref (tree x) |
| { |
| do |
| { |
| x = TREE_OPERAND (x, 0); |
| } |
| while (x && TREE_CODE (x) == COMPONENT_REF); |
| |
| return x && DECL_P (x) ? x : NULL_TREE; |
| } |
| |
| /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the |
| offset of the field reference. */ |
| |
| static rtx |
| adjust_offset_for_component_ref (tree x, rtx offset) |
| { |
| HOST_WIDE_INT ioffset; |
| |
| if (! offset) |
| return NULL_RTX; |
| |
| ioffset = INTVAL (offset); |
| do |
| { |
| tree offset = component_ref_field_offset (x); |
| tree field = TREE_OPERAND (x, 1); |
| |
| if (! host_integerp (offset, 1)) |
| return NULL_RTX; |
| ioffset += (tree_low_cst (offset, 1) |
| + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1) |
| / BITS_PER_UNIT)); |
| |
| x = TREE_OPERAND (x, 0); |
| } |
| while (x && TREE_CODE (x) == COMPONENT_REF); |
| |
| return GEN_INT (ioffset); |
| } |
| |
| /* Return nonzero if we can determine the exprs corresponding to memrefs |
| X and Y and they do not overlap. */ |
| |
| int |
| nonoverlapping_memrefs_p (const_rtx x, const_rtx y) |
| { |
| tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y); |
| rtx rtlx, rtly; |
| rtx basex, basey; |
| rtx moffsetx, moffsety; |
| HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem; |
| |
| /* Unless both have exprs, we can't tell anything. */ |
| if (exprx == 0 || expry == 0) |
| return 0; |
| |
| /* If both are field references, we may be able to determine something. */ |
| if (TREE_CODE (exprx) == COMPONENT_REF |
| && TREE_CODE (expry) == COMPONENT_REF |
| && nonoverlapping_component_refs_p (exprx, expry)) |
| return 1; |
| |
| |
| /* If the field reference test failed, look at the DECLs involved. */ |
| moffsetx = MEM_OFFSET (x); |
| if (TREE_CODE (exprx) == COMPONENT_REF) |
| { |
| if (TREE_CODE (expry) == VAR_DECL |
| && POINTER_TYPE_P (TREE_TYPE (expry))) |
| { |
| tree field = TREE_OPERAND (exprx, 1); |
| tree fieldcontext = DECL_FIELD_CONTEXT (field); |
| if (ipa_type_escape_field_does_not_clobber_p (fieldcontext, |
| TREE_TYPE (field))) |
| return 1; |
| } |
| { |
| tree t = decl_for_component_ref (exprx); |
| if (! t) |
| return 0; |
| moffsetx = adjust_offset_for_component_ref (exprx, moffsetx); |
| exprx = t; |
| } |
| } |
| else if (INDIRECT_REF_P (exprx)) |
| { |
| exprx = TREE_OPERAND (exprx, 0); |
| if (flag_argument_noalias < 2 |
| || TREE_CODE (exprx) != PARM_DECL) |
| return 0; |
| } |
| |
| moffsety = MEM_OFFSET (y); |
| if (TREE_CODE (expry) == COMPONENT_REF) |
| { |
| if (TREE_CODE (exprx) == VAR_DECL |
| && POINTER_TYPE_P (TREE_TYPE (exprx))) |
| { |
| tree field = TREE_OPERAND (expry, 1); |
| tree fieldcontext = DECL_FIELD_CONTEXT (field); |
| if (ipa_type_escape_field_does_not_clobber_p (fieldcontext, |
| TREE_TYPE (field))) |
| return 1; |
| } |
| { |
| tree t = decl_for_component_ref (expry); |
| if (! t) |
| return 0; |
| moffsety = adjust_offset_for_component_ref (expry, moffsety); |
| expry = t; |
| } |
| } |
| else if (INDIRECT_REF_P (expry)) |
| { |
| expry = TREE_OPERAND (expry, 0); |
| if (flag_argument_noalias < 2 |
| || TREE_CODE (expry) != PARM_DECL) |
| return 0; |
| } |
| |
| if (! DECL_P (exprx) || ! DECL_P (expry)) |
| return 0; |
| |
| rtlx = DECL_RTL (exprx); |
| rtly = DECL_RTL (expry); |
| |
| /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they |
| can't overlap unless they are the same because we never reuse that part |
| of the stack frame used for locals for spilled pseudos. */ |
| if ((!MEM_P (rtlx) || !MEM_P (rtly)) |
| && ! rtx_equal_p (rtlx, rtly)) |
| return 1; |
| |
| /* Get the base and offsets of both decls. If either is a register, we |
| know both are and are the same, so use that as the base. The only |
| we can avoid overlap is if we can deduce that they are nonoverlapping |
| pieces of that decl, which is very rare. */ |
| basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx; |
| if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT) |
| offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0); |
| |
| basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly; |
| if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT) |
| offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0); |
| |
| /* If the bases are different, we know they do not overlap if both |
| are constants or if one is a constant and the other a pointer into the |
| stack frame. Otherwise a different base means we can't tell if they |
| overlap or not. */ |
| if (! rtx_equal_p (basex, basey)) |
| return ((CONSTANT_P (basex) && CONSTANT_P (basey)) |
| || (CONSTANT_P (basex) && REG_P (basey) |
| && REGNO_PTR_FRAME_P (REGNO (basey))) |
| || (CONSTANT_P (basey) && REG_P (basex) |
| && REGNO_PTR_FRAME_P (REGNO (basex)))); |
| |
| sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx)) |
| : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx)) |
| : -1); |
| sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly)) |
| : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) : |
| -1); |
| |
| /* If we have an offset for either memref, it can update the values computed |
| above. */ |
| if (moffsetx) |
| offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx); |
| if (moffsety) |
| offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety); |
| |
| /* If a memref has both a size and an offset, we can use the smaller size. |
| We can't do this if the offset isn't known because we must view this |
| memref as being anywhere inside the DECL's MEM. */ |
| if (MEM_SIZE (x) && moffsetx) |
| sizex = INTVAL (MEM_SIZE (x)); |
| if (MEM_SIZE (y) && moffsety) |
| sizey = INTVAL (MEM_SIZE (y)); |
| |
| /* Put the values of the memref with the lower offset in X's values. */ |
| if (offsetx > offsety) |
| { |
| tem = offsetx, offsetx = offsety, offsety = tem; |
| tem = sizex, sizex = sizey, sizey = tem; |
| } |
| |
| /* If we don't know the size of the lower-offset value, we can't tell |
| if they conflict. Otherwise, we do the test. */ |
| return sizex >= 0 && offsety >= offsetx + sizex; |
| } |
| |
| /* True dependence: X is read after store in MEM takes place. */ |
| |
| int |
| true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x, |
| bool (*varies) (const_rtx, bool)) |
| { |
| rtx x_addr, mem_addr; |
| rtx base; |
| |
| if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem)) |
| return 1; |
| |
| /* (mem:BLK (scratch)) is a special mechanism to conflict with everything. |
| This is used in epilogue deallocation functions, and in cselib. */ |
| if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH) |
| return 1; |
| if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH) |
| return 1; |
| if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER |
| || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER) |
| return 1; |
| |
| if (DIFFERENT_ALIAS_SETS_P (x, mem)) |
| return 0; |
| |
| /* Read-only memory is by definition never modified, and therefore can't |
| conflict with anything. We don't expect to find read-only set on MEM, |
| but stupid user tricks can produce them, so don't die. */ |
| if (MEM_READONLY_P (x)) |
| return 0; |
| |
| if (nonoverlapping_memrefs_p (mem, x)) |
| return 0; |
| |
| if (mem_mode == VOIDmode) |
| mem_mode = GET_MODE (mem); |
| |
| x_addr = get_addr (XEXP (x, 0)); |
| mem_addr = get_addr (XEXP (mem, 0)); |
| |
| base = find_base_term (x_addr); |
| if (base && (GET_CODE (base) == LABEL_REF |
| || (GET_CODE (base) == SYMBOL_REF |
| && CONSTANT_POOL_ADDRESS_P (base)))) |
| return 0; |
| |
| if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode)) |
| return 0; |
| |
| x_addr = canon_rtx (x_addr); |
| mem_addr = canon_rtx (mem_addr); |
| |
| if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr, |
| SIZE_FOR_MODE (x), x_addr, 0)) |
| return 0; |
| |
| if (aliases_everything_p (x)) |
| return 1; |
| |
| /* We cannot use aliases_everything_p to test MEM, since we must look |
| at MEM_MODE, rather than GET_MODE (MEM). */ |
| if (mem_mode == QImode || GET_CODE (mem_addr) == AND) |
| return 1; |
| |
| /* In true_dependence we also allow BLKmode to alias anything. Why |
| don't we do this in anti_dependence and output_dependence? */ |
| if (mem_mode == BLKmode || GET_MODE (x) == BLKmode) |
| return 1; |
| |
| return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr, |
| varies); |
| } |
| |
| /* Canonical true dependence: X is read after store in MEM takes place. |
| Variant of true_dependence which assumes MEM has already been |
| canonicalized (hence we no longer do that here). |
| The mem_addr argument has been added, since true_dependence computed |
| this value prior to canonicalizing. |
| If x_addr is non-NULL, it is used in preference of XEXP (x, 0). */ |
| |
| int |
| canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr, |
| const_rtx x, rtx x_addr, bool (*varies) (const_rtx, bool)) |
| { |
| if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem)) |
| return 1; |
| |
| /* (mem:BLK (scratch)) is a special mechanism to conflict with everything. |
| This is used in epilogue deallocation functions. */ |
| if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH) |
| return 1; |
| if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH) |
| return 1; |
| if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER |
| || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER) |
| return 1; |
| |
| if (DIFFERENT_ALIAS_SETS_P (x, mem)) |
| return 0; |
| |
| /* Read-only memory is by definition never modified, and therefore can't |
| conflict with anything. We don't expect to find read-only set on MEM, |
| but stupid user tricks can produce them, so don't die. */ |
| if (MEM_READONLY_P (x)) |
| return 0; |
| |
| if (nonoverlapping_memrefs_p (x, mem)) |
| return 0; |
| |
| if (! x_addr) |
| x_addr = get_addr (XEXP (x, 0)); |
| |
| if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode)) |
| return 0; |
| |
| x_addr = canon_rtx (x_addr); |
| if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr, |
| SIZE_FOR_MODE (x), x_addr, 0)) |
| return 0; |
| |
| if (aliases_everything_p (x)) |
| return 1; |
| |
| /* We cannot use aliases_everything_p to test MEM, since we must look |
| at MEM_MODE, rather than GET_MODE (MEM). */ |
| if (mem_mode == QImode || GET_CODE (mem_addr) == AND) |
| return 1; |
| |
| /* In true_dependence we also allow BLKmode to alias anything. Why |
| don't we do this in anti_dependence and output_dependence? */ |
| if (mem_mode == BLKmode || GET_MODE (x) == BLKmode) |
| return 1; |
| |
| return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr, |
| varies); |
| } |
| |
| /* Returns nonzero if a write to X might alias a previous read from |
| (or, if WRITEP is nonzero, a write to) MEM. */ |
| |
| static int |
| write_dependence_p (const_rtx mem, const_rtx x, int writep) |
| { |
| rtx x_addr, mem_addr; |
| const_rtx fixed_scalar; |
| rtx base; |
| |
| if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem)) |
| return 1; |
| |
| /* (mem:BLK (scratch)) is a special mechanism to conflict with everything. |
| This is used in epilogue deallocation functions. */ |
| if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH) |
| return 1; |
| if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH) |
| return 1; |
| if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER |
| || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER) |
| return 1; |
| |
| if (DIFFERENT_ALIAS_SETS_P (x, mem)) |
| return 0; |
| |
| /* A read from read-only memory can't conflict with read-write memory. */ |
| if (!writep && MEM_READONLY_P (mem)) |
| return 0; |
| |
| if (nonoverlapping_memrefs_p (x, mem)) |
| return 0; |
| |
| x_addr = get_addr (XEXP (x, 0)); |
| mem_addr = get_addr (XEXP (mem, 0)); |
| |
| if (! writep) |
| { |
| base = find_base_term (mem_addr); |
| if (base && (GET_CODE (base) == LABEL_REF |
| || (GET_CODE (base) == SYMBOL_REF |
| && CONSTANT_POOL_ADDRESS_P (base)))) |
| return 0; |
| } |
| |
| if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), |
| GET_MODE (mem))) |
| return 0; |
| |
| x_addr = canon_rtx (x_addr); |
| mem_addr = canon_rtx (mem_addr); |
| |
| if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr, |
| SIZE_FOR_MODE (x), x_addr, 0)) |
| return 0; |
| |
| fixed_scalar |
| = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr, |
| rtx_addr_varies_p); |
| |
| return (!(fixed_scalar == mem && !aliases_everything_p (x)) |
| && !(fixed_scalar == x && !aliases_everything_p (mem))); |
| } |
| |
| /* Anti dependence: X is written after read in MEM takes place. */ |
| |
| int |
| anti_dependence (const_rtx mem, const_rtx x) |
| { |
| return write_dependence_p (mem, x, /*writep=*/0); |
| } |
| |
| /* Output dependence: X is written after store in MEM takes place. */ |
| |
| int |
| output_dependence (const_rtx mem, const_rtx x) |
| { |
| return write_dependence_p (mem, x, /*writep=*/1); |
| } |
| |
| |
| void |
| init_alias_target (void) |
| { |
| int i; |
| |
| memset (static_reg_base_value, 0, sizeof static_reg_base_value); |
| |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| /* Check whether this register can hold an incoming pointer |
| argument. FUNCTION_ARG_REGNO_P tests outgoing register |
| numbers, so translate if necessary due to register windows. */ |
| if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i)) |
| && HARD_REGNO_MODE_OK (i, Pmode)) |
| static_reg_base_value[i] |
| = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i)); |
| |
| static_reg_base_value[STACK_POINTER_REGNUM] |
| = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx); |
| static_reg_base_value[ARG_POINTER_REGNUM] |
| = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx); |
| static_reg_base_value[FRAME_POINTER_REGNUM] |
| = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx); |
| #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM |
| static_reg_base_value[HARD_FRAME_POINTER_REGNUM] |
| = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx); |
| #endif |
| } |
| |
| /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed |
| to be memory reference. */ |
| static bool memory_modified; |
| static void |
| memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data) |
| { |
| if (MEM_P (x)) |
| { |
| if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data)) |
| memory_modified = true; |
| } |
| } |
| |
| |
| /* Return true when INSN possibly modify memory contents of MEM |
| (i.e. address can be modified). */ |
| bool |
| memory_modified_in_insn_p (const_rtx mem, const_rtx insn) |
| { |
| if (!INSN_P (insn)) |
| return false; |
| memory_modified = false; |
| note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem)); |
| return memory_modified; |
| } |
| |
| /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE |
| array. */ |
| |
| void |
| init_alias_analysis (void) |
| { |
| unsigned int maxreg = max_reg_num (); |
| int changed, pass; |
| int i; |
| unsigned int ui; |
| rtx insn; |
| |
| timevar_push (TV_ALIAS_ANALYSIS); |
| |
| reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER; |
| reg_known_value = GGC_CNEWVEC (rtx, reg_known_value_size); |
| reg_known_equiv_p = XCNEWVEC (bool, reg_known_value_size); |
| |
| /* If we have memory allocated from the previous run, use it. */ |
| if (old_reg_base_value) |
| reg_base_value = old_reg_base_value; |
| |
| if (reg_base_value) |
| VEC_truncate (rtx, reg_base_value, 0); |
| |
| VEC_safe_grow_cleared (rtx, gc, reg_base_value, maxreg); |
| |
| new_reg_base_value = XNEWVEC (rtx, maxreg); |
| reg_seen = XNEWVEC (char, maxreg); |
| |
| /* The basic idea is that each pass through this loop will use the |
| "constant" information from the previous pass to propagate alias |
| information through another level of assignments. |
| |
| This could get expensive if the assignment chains are long. Maybe |
| we should throttle the number of iterations, possibly based on |
| the optimization level or flag_expensive_optimizations. |
| |
| We could propagate more information in the first pass by making use |
| of DF_REG_DEF_COUNT to determine immediately that the alias information |
| for a pseudo is "constant". |
| |
| A program with an uninitialized variable can cause an infinite loop |
| here. Instead of doing a full dataflow analysis to detect such problems |
| we just cap the number of iterations for the loop. |
| |
| The state of the arrays for the set chain in question does not matter |
| since the program has undefined behavior. */ |
| |
| pass = 0; |
| do |
| { |
| /* Assume nothing will change this iteration of the loop. */ |
| changed = 0; |
| |
| /* We want to assign the same IDs each iteration of this loop, so |
| start counting from zero each iteration of the loop. */ |
| unique_id = 0; |
| |
| /* We're at the start of the function each iteration through the |
| loop, so we're copying arguments. */ |
| copying_arguments = true; |
| |
| /* Wipe the potential alias information clean for this pass. */ |
| memset (new_reg_base_value, 0, maxreg * sizeof (rtx)); |
| |
| /* Wipe the reg_seen array clean. */ |
| memset (reg_seen, 0, maxreg); |
| |
| /* Mark all hard registers which may contain an address. |
| The stack, frame and argument pointers may contain an address. |
| An argument register which can hold a Pmode value may contain |
| an address even if it is not in BASE_REGS. |
| |
| The address expression is VOIDmode for an argument and |
| Pmode for other registers. */ |
| |
| memcpy (new_reg_base_value, static_reg_base_value, |
| FIRST_PSEUDO_REGISTER * sizeof (rtx)); |
| |
| /* Walk the insns adding values to the new_reg_base_value array. */ |
| for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) |
| { |
| if (INSN_P (insn)) |
| { |
| rtx note, set; |
| |
| #if defined (HAVE_prologue) || defined (HAVE_epilogue) |
| /* The prologue/epilogue insns are not threaded onto the |
| insn chain until after reload has completed. Thus, |
| there is no sense wasting time checking if INSN is in |
| the prologue/epilogue until after reload has completed. */ |
| if (reload_completed |
| && prologue_epilogue_contains (insn)) |
| continue; |
| #endif |
| |
| /* If this insn has a noalias note, process it, Otherwise, |
| scan for sets. A simple set will have no side effects |
| which could change the base value of any other register. */ |
| |
| if (GET_CODE (PATTERN (insn)) == SET |
| && REG_NOTES (insn) != 0 |
| && find_reg_note (insn, REG_NOALIAS, NULL_RTX)) |
| record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL); |
| else |
| note_stores (PATTERN (insn), record_set, NULL); |
| |
| set = single_set (insn); |
| |
| if (set != 0 |
| && REG_P (SET_DEST (set)) |
| && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER) |
| { |
| unsigned int regno = REGNO (SET_DEST (set)); |
| rtx src = SET_SRC (set); |
| rtx t; |
| |
| note = find_reg_equal_equiv_note (insn); |
| if (note && REG_NOTE_KIND (note) == REG_EQUAL |
| && DF_REG_DEF_COUNT (regno) != 1) |
| note = NULL_RTX; |
| |
| if (note != NULL_RTX |
| && GET_CODE (XEXP (note, 0)) != EXPR_LIST |
| && ! rtx_varies_p (XEXP (note, 0), 1) |
| && ! reg_overlap_mentioned_p (SET_DEST (set), |
| XEXP (note, 0))) |
| { |
| set_reg_known_value (regno, XEXP (note, 0)); |
| set_reg_known_equiv_p (regno, |
| REG_NOTE_KIND (note) == REG_EQUIV); |
| } |
| else if (DF_REG_DEF_COUNT (regno) == 1 |
| && GET_CODE (src) == PLUS |
| && REG_P (XEXP (src, 0)) |
| && (t = get_reg_known_value (REGNO (XEXP (src, 0)))) |
| && GET_CODE (XEXP (src, 1)) == CONST_INT) |
| { |
| t = plus_constant (t, INTVAL (XEXP (src, 1))); |
| set_reg_known_value (regno, t); |
| set_reg_known_equiv_p (regno, 0); |
| } |
| else if (DF_REG_DEF_COUNT (regno) == 1 |
| && ! rtx_varies_p (src, 1)) |
| { |
| set_reg_known_value (regno, src); |
| set_reg_known_equiv_p (regno, 0); |
| } |
| } |
| } |
| else if (NOTE_P (insn) |
| && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG) |
| copying_arguments = false; |
| } |
| |
| /* Now propagate values from new_reg_base_value to reg_base_value. */ |
| gcc_assert (maxreg == (unsigned int) max_reg_num ()); |
| |
| for (ui = 0; ui < maxreg; ui++) |
| { |
| if (new_reg_base_value[ui] |
| && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui) |
| && ! rtx_equal_p (new_reg_base_value[ui], |
| VEC_index (rtx, reg_base_value, ui))) |
| { |
| VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]); |
| changed = 1; |
| } |
| } |
| } |
| while (changed && ++pass < MAX_ALIAS_LOOP_PASSES); |
| |
| /* Fill in the remaining entries. */ |
| for (i = 0; i < (int)reg_known_value_size; i++) |
| if (reg_known_value[i] == 0) |
| reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER]; |
| |
| /* Clean up. */ |
| free (new_reg_base_value); |
| new_reg_base_value = 0; |
| free (reg_seen); |
| reg_seen = 0; |
| timevar_pop (TV_ALIAS_ANALYSIS); |
| } |
| |
| void |
| end_alias_analysis (void) |
| { |
| old_reg_base_value = reg_base_value; |
| ggc_free (reg_known_value); |
| reg_known_value = 0; |
| reg_known_value_size = 0; |
| free (reg_known_equiv_p); |
| reg_known_equiv_p = 0; |
| } |
| |
| #include "gt-alias.h" |