| /* Control flow graph manipulation code for GNU compiler. |
| Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, |
| 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 |
| Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| /* This file contains low level functions to manipulate the CFG and analyze it |
| that are aware of the RTL intermediate language. |
| |
| Available functionality: |
| - Basic CFG/RTL manipulation API documented in cfghooks.h |
| - CFG-aware instruction chain manipulation |
| delete_insn, delete_insn_chain |
| - Edge splitting and committing to edges |
| insert_insn_on_edge, commit_edge_insertions |
| - CFG updating after insn simplification |
| purge_dead_edges, purge_all_dead_edges |
| |
| Functions not supposed for generic use: |
| - Infrastructure to determine quickly basic block for insn |
| compute_bb_for_insn, update_bb_for_insn, set_block_for_insn, |
| - Edge redirection with updating and optimizing of insn chain |
| block_label, tidy_fallthru_edge, force_nonfallthru */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| #include "tree.h" |
| #include "rtl.h" |
| #include "hard-reg-set.h" |
| #include "basic-block.h" |
| #include "regs.h" |
| #include "flags.h" |
| #include "output.h" |
| #include "function.h" |
| #include "except.h" |
| #include "toplev.h" |
| #include "tm_p.h" |
| #include "obstack.h" |
| #include "insn-attr.h" |
| #include "insn-config.h" |
| #include "cfglayout.h" |
| #include "expr.h" |
| #include "target.h" |
| #include "cfgloop.h" |
| #include "ggc.h" |
| #include "tree-pass.h" |
| #include "df.h" |
| |
| static int can_delete_note_p (const_rtx); |
| static int can_delete_label_p (const_rtx); |
| static void commit_one_edge_insertion (edge); |
| static basic_block rtl_split_edge (edge); |
| static bool rtl_move_block_after (basic_block, basic_block); |
| static int rtl_verify_flow_info (void); |
| static basic_block cfg_layout_split_block (basic_block, void *); |
| static edge cfg_layout_redirect_edge_and_branch (edge, basic_block); |
| static basic_block cfg_layout_redirect_edge_and_branch_force (edge, basic_block); |
| static void cfg_layout_delete_block (basic_block); |
| static void rtl_delete_block (basic_block); |
| static basic_block rtl_redirect_edge_and_branch_force (edge, basic_block); |
| static edge rtl_redirect_edge_and_branch (edge, basic_block); |
| static basic_block rtl_split_block (basic_block, void *); |
| static void rtl_dump_bb (basic_block, FILE *, int, int); |
| static int rtl_verify_flow_info_1 (void); |
| static void rtl_make_forwarder_block (edge); |
| |
| /* Return true if NOTE is not one of the ones that must be kept paired, |
| so that we may simply delete it. */ |
| |
| static int |
| can_delete_note_p (const_rtx note) |
| { |
| return (NOTE_KIND (note) == NOTE_INSN_DELETED |
| || NOTE_KIND (note) == NOTE_INSN_BASIC_BLOCK); |
| } |
| |
| /* True if a given label can be deleted. */ |
| |
| static int |
| can_delete_label_p (const_rtx label) |
| { |
| return (!LABEL_PRESERVE_P (label) |
| /* User declared labels must be preserved. */ |
| && LABEL_NAME (label) == 0 |
| && !in_expr_list_p (forced_labels, label)); |
| } |
| |
| /* Delete INSN by patching it out. Return the next insn. */ |
| |
| rtx |
| delete_insn (rtx insn) |
| { |
| rtx next = NEXT_INSN (insn); |
| rtx note; |
| bool really_delete = true; |
| |
| if (LABEL_P (insn)) |
| { |
| /* Some labels can't be directly removed from the INSN chain, as they |
| might be references via variables, constant pool etc. |
| Convert them to the special NOTE_INSN_DELETED_LABEL note. */ |
| if (! can_delete_label_p (insn)) |
| { |
| const char *name = LABEL_NAME (insn); |
| |
| really_delete = false; |
| PUT_CODE (insn, NOTE); |
| NOTE_KIND (insn) = NOTE_INSN_DELETED_LABEL; |
| NOTE_DELETED_LABEL_NAME (insn) = name; |
| } |
| |
| remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels); |
| } |
| |
| if (really_delete) |
| { |
| /* If this insn has already been deleted, something is very wrong. */ |
| gcc_assert (!INSN_DELETED_P (insn)); |
| remove_insn (insn); |
| INSN_DELETED_P (insn) = 1; |
| } |
| |
| /* If deleting a jump, decrement the use count of the label. Deleting |
| the label itself should happen in the normal course of block merging. */ |
| if (JUMP_P (insn)) |
| { |
| if (JUMP_LABEL (insn) |
| && LABEL_P (JUMP_LABEL (insn))) |
| LABEL_NUSES (JUMP_LABEL (insn))--; |
| |
| /* If there are more targets, remove them too. */ |
| while ((note |
| = find_reg_note (insn, REG_LABEL_TARGET, NULL_RTX)) != NULL_RTX |
| && LABEL_P (XEXP (note, 0))) |
| { |
| LABEL_NUSES (XEXP (note, 0))--; |
| remove_note (insn, note); |
| } |
| } |
| |
| /* Also if deleting any insn that references a label as an operand. */ |
| while ((note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX)) != NULL_RTX |
| && LABEL_P (XEXP (note, 0))) |
| { |
| LABEL_NUSES (XEXP (note, 0))--; |
| remove_note (insn, note); |
| } |
| |
| if (JUMP_P (insn) |
| && (GET_CODE (PATTERN (insn)) == ADDR_VEC |
| || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)) |
| { |
| rtx pat = PATTERN (insn); |
| int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC; |
| int len = XVECLEN (pat, diff_vec_p); |
| int i; |
| |
| for (i = 0; i < len; i++) |
| { |
| rtx label = XEXP (XVECEXP (pat, diff_vec_p, i), 0); |
| |
| /* When deleting code in bulk (e.g. removing many unreachable |
| blocks) we can delete a label that's a target of the vector |
| before deleting the vector itself. */ |
| if (!NOTE_P (label)) |
| LABEL_NUSES (label)--; |
| } |
| } |
| |
| return next; |
| } |
| |
| /* Like delete_insn but also purge dead edges from BB. */ |
| |
| rtx |
| delete_insn_and_edges (rtx insn) |
| { |
| rtx x; |
| bool purge = false; |
| |
| if (INSN_P (insn) |
| && BLOCK_FOR_INSN (insn) |
| && BB_END (BLOCK_FOR_INSN (insn)) == insn) |
| purge = true; |
| x = delete_insn (insn); |
| if (purge) |
| purge_dead_edges (BLOCK_FOR_INSN (insn)); |
| return x; |
| } |
| |
| /* Unlink a chain of insns between START and FINISH, leaving notes |
| that must be paired. If CLEAR_BB is true, we set bb field for |
| insns that cannot be removed to NULL. */ |
| |
| void |
| delete_insn_chain (rtx start, rtx finish, bool clear_bb) |
| { |
| rtx next; |
| |
| /* Unchain the insns one by one. It would be quicker to delete all of these |
| with a single unchaining, rather than one at a time, but we need to keep |
| the NOTE's. */ |
| while (1) |
| { |
| next = NEXT_INSN (start); |
| if (NOTE_P (start) && !can_delete_note_p (start)) |
| ; |
| else |
| next = delete_insn (start); |
| |
| if (clear_bb && !INSN_DELETED_P (start)) |
| set_block_for_insn (start, NULL); |
| |
| if (start == finish) |
| break; |
| start = next; |
| } |
| } |
| |
| /* Like delete_insn_chain but also purge dead edges from BB. */ |
| |
| void |
| delete_insn_chain_and_edges (rtx first, rtx last) |
| { |
| bool purge = false; |
| |
| if (INSN_P (last) |
| && BLOCK_FOR_INSN (last) |
| && BB_END (BLOCK_FOR_INSN (last)) == last) |
| purge = true; |
| delete_insn_chain (first, last, false); |
| if (purge) |
| purge_dead_edges (BLOCK_FOR_INSN (last)); |
| } |
| |
| /* Create a new basic block consisting of the instructions between HEAD and END |
| inclusive. This function is designed to allow fast BB construction - reuses |
| the note and basic block struct in BB_NOTE, if any and do not grow |
| BASIC_BLOCK chain and should be used directly only by CFG construction code. |
| END can be NULL in to create new empty basic block before HEAD. Both END |
| and HEAD can be NULL to create basic block at the end of INSN chain. |
| AFTER is the basic block we should be put after. */ |
| |
| basic_block |
| create_basic_block_structure (rtx head, rtx end, rtx bb_note, basic_block after) |
| { |
| basic_block bb; |
| |
| if (bb_note |
| && (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL |
| && bb->aux == NULL) |
| { |
| /* If we found an existing note, thread it back onto the chain. */ |
| |
| rtx after; |
| |
| if (LABEL_P (head)) |
| after = head; |
| else |
| { |
| after = PREV_INSN (head); |
| head = bb_note; |
| } |
| |
| if (after != bb_note && NEXT_INSN (after) != bb_note) |
| reorder_insns_nobb (bb_note, bb_note, after); |
| } |
| else |
| { |
| /* Otherwise we must create a note and a basic block structure. */ |
| |
| bb = alloc_block (); |
| |
| init_rtl_bb_info (bb); |
| if (!head && !end) |
| head = end = bb_note |
| = emit_note_after (NOTE_INSN_BASIC_BLOCK, get_last_insn ()); |
| else if (LABEL_P (head) && end) |
| { |
| bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head); |
| if (head == end) |
| end = bb_note; |
| } |
| else |
| { |
| bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head); |
| head = bb_note; |
| if (!end) |
| end = head; |
| } |
| |
| NOTE_BASIC_BLOCK (bb_note) = bb; |
| } |
| |
| /* Always include the bb note in the block. */ |
| if (NEXT_INSN (end) == bb_note) |
| end = bb_note; |
| |
| BB_HEAD (bb) = head; |
| BB_END (bb) = end; |
| bb->index = last_basic_block++; |
| bb->flags = BB_NEW | BB_RTL; |
| link_block (bb, after); |
| SET_BASIC_BLOCK (bb->index, bb); |
| df_bb_refs_record (bb->index, false); |
| update_bb_for_insn (bb); |
| BB_SET_PARTITION (bb, BB_UNPARTITIONED); |
| |
| /* Tag the block so that we know it has been used when considering |
| other basic block notes. */ |
| bb->aux = bb; |
| |
| return bb; |
| } |
| |
| /* Create new basic block consisting of instructions in between HEAD and END |
| and place it to the BB chain after block AFTER. END can be NULL in to |
| create new empty basic block before HEAD. Both END and HEAD can be NULL to |
| create basic block at the end of INSN chain. */ |
| |
| static basic_block |
| rtl_create_basic_block (void *headp, void *endp, basic_block after) |
| { |
| rtx head = (rtx) headp, end = (rtx) endp; |
| basic_block bb; |
| |
| /* Grow the basic block array if needed. */ |
| if ((size_t) last_basic_block >= VEC_length (basic_block, basic_block_info)) |
| { |
| size_t new_size = last_basic_block + (last_basic_block + 3) / 4; |
| VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size); |
| } |
| |
| n_basic_blocks++; |
| |
| bb = create_basic_block_structure (head, end, NULL, after); |
| bb->aux = NULL; |
| return bb; |
| } |
| |
| static basic_block |
| cfg_layout_create_basic_block (void *head, void *end, basic_block after) |
| { |
| basic_block newbb = rtl_create_basic_block (head, end, after); |
| |
| return newbb; |
| } |
| |
| /* Delete the insns in a (non-live) block. We physically delete every |
| non-deleted-note insn, and update the flow graph appropriately. |
| |
| Return nonzero if we deleted an exception handler. */ |
| |
| /* ??? Preserving all such notes strikes me as wrong. It would be nice |
| to post-process the stream to remove empty blocks, loops, ranges, etc. */ |
| |
| static void |
| rtl_delete_block (basic_block b) |
| { |
| rtx insn, end; |
| |
| /* If the head of this block is a CODE_LABEL, then it might be the |
| label for an exception handler which can't be reached. We need |
| to remove the label from the exception_handler_label list. */ |
| insn = BB_HEAD (b); |
| if (LABEL_P (insn)) |
| maybe_remove_eh_handler (insn); |
| |
| end = get_last_bb_insn (b); |
| |
| /* Selectively delete the entire chain. */ |
| BB_HEAD (b) = NULL; |
| delete_insn_chain (insn, end, true); |
| |
| |
| if (dump_file) |
| fprintf (dump_file, "deleting block %d\n", b->index); |
| df_bb_delete (b->index); |
| } |
| |
| /* Records the basic block struct in BLOCK_FOR_INSN for every insn. */ |
| |
| void |
| compute_bb_for_insn (void) |
| { |
| basic_block bb; |
| |
| FOR_EACH_BB (bb) |
| { |
| rtx end = BB_END (bb); |
| rtx insn; |
| |
| for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn)) |
| { |
| BLOCK_FOR_INSN (insn) = bb; |
| if (insn == end) |
| break; |
| } |
| } |
| } |
| |
| /* Release the basic_block_for_insn array. */ |
| |
| unsigned int |
| free_bb_for_insn (void) |
| { |
| rtx insn; |
| for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) |
| if (!BARRIER_P (insn)) |
| BLOCK_FOR_INSN (insn) = NULL; |
| return 0; |
| } |
| |
| static unsigned int |
| rest_of_pass_free_cfg (void) |
| { |
| #ifdef DELAY_SLOTS |
| /* The resource.c machinery uses DF but the CFG isn't guaranteed to be |
| valid at that point so it would be too late to call df_analyze. */ |
| if (optimize > 0 && flag_delayed_branch) |
| df_analyze (); |
| #endif |
| |
| free_bb_for_insn (); |
| return 0; |
| } |
| |
| struct rtl_opt_pass pass_free_cfg = |
| { |
| { |
| RTL_PASS, |
| NULL, /* name */ |
| NULL, /* gate */ |
| rest_of_pass_free_cfg, /* execute */ |
| NULL, /* sub */ |
| NULL, /* next */ |
| 0, /* static_pass_number */ |
| 0, /* tv_id */ |
| 0, /* properties_required */ |
| 0, /* properties_provided */ |
| PROP_cfg, /* properties_destroyed */ |
| 0, /* todo_flags_start */ |
| 0, /* todo_flags_finish */ |
| } |
| }; |
| |
| /* Return RTX to emit after when we want to emit code on the entry of function. */ |
| rtx |
| entry_of_function (void) |
| { |
| return (n_basic_blocks > NUM_FIXED_BLOCKS ? |
| BB_HEAD (ENTRY_BLOCK_PTR->next_bb) : get_insns ()); |
| } |
| |
| /* Emit INSN at the entry point of the function, ensuring that it is only |
| executed once per function. */ |
| void |
| emit_insn_at_entry (rtx insn) |
| { |
| edge_iterator ei = ei_start (ENTRY_BLOCK_PTR->succs); |
| edge e = ei_safe_edge (ei); |
| gcc_assert (e->flags & EDGE_FALLTHRU); |
| |
| insert_insn_on_edge (insn, e); |
| commit_edge_insertions (); |
| } |
| |
| /* Update BLOCK_FOR_INSN of insns between BEGIN and END |
| (or BARRIER if found) and notify df of the bb change. |
| The insn chain range is inclusive |
| (i.e. both BEGIN and END will be updated. */ |
| |
| static void |
| update_bb_for_insn_chain (rtx begin, rtx end, basic_block bb) |
| { |
| rtx insn; |
| |
| end = NEXT_INSN (end); |
| for (insn = begin; insn != end; insn = NEXT_INSN (insn)) |
| if (!BARRIER_P (insn)) |
| df_insn_change_bb (insn, bb); |
| } |
| |
| /* Update BLOCK_FOR_INSN of insns in BB to BB, |
| and notify df of the change. */ |
| |
| void |
| update_bb_for_insn (basic_block bb) |
| { |
| update_bb_for_insn_chain (BB_HEAD (bb), BB_END (bb), bb); |
| } |
| |
| |
| /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK |
| note associated with the BLOCK. */ |
| |
| static rtx |
| first_insn_after_basic_block_note (basic_block block) |
| { |
| rtx insn; |
| |
| /* Get the first instruction in the block. */ |
| insn = BB_HEAD (block); |
| |
| if (insn == NULL_RTX) |
| return NULL_RTX; |
| if (LABEL_P (insn)) |
| insn = NEXT_INSN (insn); |
| gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn)); |
| |
| return NEXT_INSN (insn); |
| } |
| |
| /* Creates a new basic block just after basic block B by splitting |
| everything after specified instruction I. */ |
| |
| static basic_block |
| rtl_split_block (basic_block bb, void *insnp) |
| { |
| basic_block new_bb; |
| rtx insn = (rtx) insnp; |
| edge e; |
| edge_iterator ei; |
| |
| if (!insn) |
| { |
| insn = first_insn_after_basic_block_note (bb); |
| |
| if (insn) |
| insn = PREV_INSN (insn); |
| else |
| insn = get_last_insn (); |
| } |
| |
| /* We probably should check type of the insn so that we do not create |
| inconsistent cfg. It is checked in verify_flow_info anyway, so do not |
| bother. */ |
| if (insn == BB_END (bb)) |
| emit_note_after (NOTE_INSN_DELETED, insn); |
| |
| /* Create the new basic block. */ |
| new_bb = create_basic_block (NEXT_INSN (insn), BB_END (bb), bb); |
| BB_COPY_PARTITION (new_bb, bb); |
| BB_END (bb) = insn; |
| |
| /* Redirect the outgoing edges. */ |
| new_bb->succs = bb->succs; |
| bb->succs = NULL; |
| FOR_EACH_EDGE (e, ei, new_bb->succs) |
| e->src = new_bb; |
| |
| /* The new block starts off being dirty. */ |
| df_set_bb_dirty (bb); |
| return new_bb; |
| } |
| |
| /* Blocks A and B are to be merged into a single block A. The insns |
| are already contiguous. */ |
| |
| static void |
| rtl_merge_blocks (basic_block a, basic_block b) |
| { |
| rtx b_head = BB_HEAD (b), b_end = BB_END (b), a_end = BB_END (a); |
| rtx del_first = NULL_RTX, del_last = NULL_RTX; |
| int b_empty = 0; |
| |
| if (dump_file) |
| fprintf (dump_file, "merging block %d into block %d\n", b->index, a->index); |
| |
| /* If there was a CODE_LABEL beginning B, delete it. */ |
| if (LABEL_P (b_head)) |
| { |
| /* This might have been an EH label that no longer has incoming |
| EH edges. Update data structures to match. */ |
| maybe_remove_eh_handler (b_head); |
| |
| /* Detect basic blocks with nothing but a label. This can happen |
| in particular at the end of a function. */ |
| if (b_head == b_end) |
| b_empty = 1; |
| |
| del_first = del_last = b_head; |
| b_head = NEXT_INSN (b_head); |
| } |
| |
| /* Delete the basic block note and handle blocks containing just that |
| note. */ |
| if (NOTE_INSN_BASIC_BLOCK_P (b_head)) |
| { |
| if (b_head == b_end) |
| b_empty = 1; |
| if (! del_last) |
| del_first = b_head; |
| |
| del_last = b_head; |
| b_head = NEXT_INSN (b_head); |
| } |
| |
| /* If there was a jump out of A, delete it. */ |
| if (JUMP_P (a_end)) |
| { |
| rtx prev; |
| |
| for (prev = PREV_INSN (a_end); ; prev = PREV_INSN (prev)) |
| if (!NOTE_P (prev) |
| || NOTE_INSN_BASIC_BLOCK_P (prev) |
| || prev == BB_HEAD (a)) |
| break; |
| |
| del_first = a_end; |
| |
| #ifdef HAVE_cc0 |
| /* If this was a conditional jump, we need to also delete |
| the insn that set cc0. */ |
| if (only_sets_cc0_p (prev)) |
| { |
| rtx tmp = prev; |
| |
| prev = prev_nonnote_insn (prev); |
| if (!prev) |
| prev = BB_HEAD (a); |
| del_first = tmp; |
| } |
| #endif |
| |
| a_end = PREV_INSN (del_first); |
| } |
| else if (BARRIER_P (NEXT_INSN (a_end))) |
| del_first = NEXT_INSN (a_end); |
| |
| /* Delete everything marked above as well as crap that might be |
| hanging out between the two blocks. */ |
| BB_HEAD (b) = NULL; |
| delete_insn_chain (del_first, del_last, true); |
| |
| /* Reassociate the insns of B with A. */ |
| if (!b_empty) |
| { |
| update_bb_for_insn_chain (a_end, b_end, a); |
| |
| a_end = b_end; |
| } |
| |
| df_bb_delete (b->index); |
| BB_END (a) = a_end; |
| } |
| |
| |
| /* Return true when block A and B can be merged. */ |
| |
| static bool |
| rtl_can_merge_blocks (basic_block a, basic_block b) |
| { |
| /* If we are partitioning hot/cold basic blocks, we don't want to |
| mess up unconditional or indirect jumps that cross between hot |
| and cold sections. |
| |
| Basic block partitioning may result in some jumps that appear to |
| be optimizable (or blocks that appear to be mergeable), but which really |
| must be left untouched (they are required to make it safely across |
| partition boundaries). See the comments at the top of |
| bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */ |
| |
| if (BB_PARTITION (a) != BB_PARTITION (b)) |
| return false; |
| |
| /* There must be exactly one edge in between the blocks. */ |
| return (single_succ_p (a) |
| && single_succ (a) == b |
| && single_pred_p (b) |
| && a != b |
| /* Must be simple edge. */ |
| && !(single_succ_edge (a)->flags & EDGE_COMPLEX) |
| && a->next_bb == b |
| && a != ENTRY_BLOCK_PTR && b != EXIT_BLOCK_PTR |
| /* If the jump insn has side effects, |
| we can't kill the edge. */ |
| && (!JUMP_P (BB_END (a)) |
| || (reload_completed |
| ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a))))); |
| } |
| |
| /* Return the label in the head of basic block BLOCK. Create one if it doesn't |
| exist. */ |
| |
| rtx |
| block_label (basic_block block) |
| { |
| if (block == EXIT_BLOCK_PTR) |
| return NULL_RTX; |
| |
| if (!LABEL_P (BB_HEAD (block))) |
| { |
| BB_HEAD (block) = emit_label_before (gen_label_rtx (), BB_HEAD (block)); |
| } |
| |
| return BB_HEAD (block); |
| } |
| |
| /* Attempt to perform edge redirection by replacing possibly complex jump |
| instruction by unconditional jump or removing jump completely. This can |
| apply only if all edges now point to the same block. The parameters and |
| return values are equivalent to redirect_edge_and_branch. */ |
| |
| edge |
| try_redirect_by_replacing_jump (edge e, basic_block target, bool in_cfglayout) |
| { |
| basic_block src = e->src; |
| rtx insn = BB_END (src), kill_from; |
| rtx set; |
| int fallthru = 0; |
| |
| /* If we are partitioning hot/cold basic blocks, we don't want to |
| mess up unconditional or indirect jumps that cross between hot |
| and cold sections. |
| |
| Basic block partitioning may result in some jumps that appear to |
| be optimizable (or blocks that appear to be mergeable), but which really |
| must be left untouched (they are required to make it safely across |
| partition boundaries). See the comments at the top of |
| bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */ |
| |
| if (find_reg_note (insn, REG_CROSSING_JUMP, NULL_RTX) |
| || BB_PARTITION (src) != BB_PARTITION (target)) |
| return NULL; |
| |
| /* We can replace or remove a complex jump only when we have exactly |
| two edges. Also, if we have exactly one outgoing edge, we can |
| redirect that. */ |
| if (EDGE_COUNT (src->succs) >= 3 |
| /* Verify that all targets will be TARGET. Specifically, the |
| edge that is not E must also go to TARGET. */ |
| || (EDGE_COUNT (src->succs) == 2 |
| && EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)) |
| return NULL; |
| |
| if (!onlyjump_p (insn)) |
| return NULL; |
| if ((!optimize || reload_completed) && tablejump_p (insn, NULL, NULL)) |
| return NULL; |
| |
| /* Avoid removing branch with side effects. */ |
| set = single_set (insn); |
| if (!set || side_effects_p (set)) |
| return NULL; |
| |
| /* In case we zap a conditional jump, we'll need to kill |
| the cc0 setter too. */ |
| kill_from = insn; |
| #ifdef HAVE_cc0 |
| if (reg_mentioned_p (cc0_rtx, PATTERN (insn)) |
| && only_sets_cc0_p (PREV_INSN (insn))) |
| kill_from = PREV_INSN (insn); |
| #endif |
| |
| /* See if we can create the fallthru edge. */ |
| if (in_cfglayout || can_fallthru (src, target)) |
| { |
| if (dump_file) |
| fprintf (dump_file, "Removing jump %i.\n", INSN_UID (insn)); |
| fallthru = 1; |
| |
| /* Selectively unlink whole insn chain. */ |
| if (in_cfglayout) |
| { |
| rtx insn = src->il.rtl->footer; |
| |
| delete_insn_chain (kill_from, BB_END (src), false); |
| |
| /* Remove barriers but keep jumptables. */ |
| while (insn) |
| { |
| if (BARRIER_P (insn)) |
| { |
| if (PREV_INSN (insn)) |
| NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn); |
| else |
| src->il.rtl->footer = NEXT_INSN (insn); |
| if (NEXT_INSN (insn)) |
| PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn); |
| } |
| if (LABEL_P (insn)) |
| break; |
| insn = NEXT_INSN (insn); |
| } |
| } |
| else |
| delete_insn_chain (kill_from, PREV_INSN (BB_HEAD (target)), |
| false); |
| } |
| |
| /* If this already is simplejump, redirect it. */ |
| else if (simplejump_p (insn)) |
| { |
| if (e->dest == target) |
| return NULL; |
| if (dump_file) |
| fprintf (dump_file, "Redirecting jump %i from %i to %i.\n", |
| INSN_UID (insn), e->dest->index, target->index); |
| if (!redirect_jump (insn, block_label (target), 0)) |
| { |
| gcc_assert (target == EXIT_BLOCK_PTR); |
| return NULL; |
| } |
| } |
| |
| /* Cannot do anything for target exit block. */ |
| else if (target == EXIT_BLOCK_PTR) |
| return NULL; |
| |
| /* Or replace possibly complicated jump insn by simple jump insn. */ |
| else |
| { |
| rtx target_label = block_label (target); |
| rtx barrier, label, table; |
| |
| emit_jump_insn_after_noloc (gen_jump (target_label), insn); |
| JUMP_LABEL (BB_END (src)) = target_label; |
| LABEL_NUSES (target_label)++; |
| if (dump_file) |
| fprintf (dump_file, "Replacing insn %i by jump %i\n", |
| INSN_UID (insn), INSN_UID (BB_END (src))); |
| |
| |
| delete_insn_chain (kill_from, insn, false); |
| |
| /* Recognize a tablejump that we are converting to a |
| simple jump and remove its associated CODE_LABEL |
| and ADDR_VEC or ADDR_DIFF_VEC. */ |
| if (tablejump_p (insn, &label, &table)) |
| delete_insn_chain (label, table, false); |
| |
| barrier = next_nonnote_insn (BB_END (src)); |
| if (!barrier || !BARRIER_P (barrier)) |
| emit_barrier_after (BB_END (src)); |
| else |
| { |
| if (barrier != NEXT_INSN (BB_END (src))) |
| { |
| /* Move the jump before barrier so that the notes |
| which originally were or were created before jump table are |
| inside the basic block. */ |
| rtx new_insn = BB_END (src); |
| |
| update_bb_for_insn_chain (NEXT_INSN (BB_END (src)), |
| PREV_INSN (barrier), src); |
| |
| NEXT_INSN (PREV_INSN (new_insn)) = NEXT_INSN (new_insn); |
| PREV_INSN (NEXT_INSN (new_insn)) = PREV_INSN (new_insn); |
| |
| NEXT_INSN (new_insn) = barrier; |
| NEXT_INSN (PREV_INSN (barrier)) = new_insn; |
| |
| PREV_INSN (new_insn) = PREV_INSN (barrier); |
| PREV_INSN (barrier) = new_insn; |
| } |
| } |
| } |
| |
| /* Keep only one edge out and set proper flags. */ |
| if (!single_succ_p (src)) |
| remove_edge (e); |
| gcc_assert (single_succ_p (src)); |
| |
| e = single_succ_edge (src); |
| if (fallthru) |
| e->flags = EDGE_FALLTHRU; |
| else |
| e->flags = 0; |
| |
| e->probability = REG_BR_PROB_BASE; |
| e->count = src->count; |
| |
| if (e->dest != target) |
| redirect_edge_succ (e, target); |
| return e; |
| } |
| |
| /* Redirect edge representing branch of (un)conditional jump or tablejump, |
| NULL on failure */ |
| static edge |
| redirect_branch_edge (edge e, basic_block target) |
| { |
| rtx tmp; |
| rtx old_label = BB_HEAD (e->dest); |
| basic_block src = e->src; |
| rtx insn = BB_END (src); |
| |
| /* We can only redirect non-fallthru edges of jump insn. */ |
| if (e->flags & EDGE_FALLTHRU) |
| return NULL; |
| else if (!JUMP_P (insn)) |
| return NULL; |
| |
| /* Recognize a tablejump and adjust all matching cases. */ |
| if (tablejump_p (insn, NULL, &tmp)) |
| { |
| rtvec vec; |
| int j; |
| rtx new_label = block_label (target); |
| |
| if (target == EXIT_BLOCK_PTR) |
| return NULL; |
| if (GET_CODE (PATTERN (tmp)) == ADDR_VEC) |
| vec = XVEC (PATTERN (tmp), 0); |
| else |
| vec = XVEC (PATTERN (tmp), 1); |
| |
| for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j) |
| if (XEXP (RTVEC_ELT (vec, j), 0) == old_label) |
| { |
| RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (Pmode, new_label); |
| --LABEL_NUSES (old_label); |
| ++LABEL_NUSES (new_label); |
| } |
| |
| /* Handle casesi dispatch insns. */ |
| if ((tmp = single_set (insn)) != NULL |
| && SET_DEST (tmp) == pc_rtx |
| && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE |
| && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF |
| && XEXP (XEXP (SET_SRC (tmp), 2), 0) == old_label) |
| { |
| XEXP (SET_SRC (tmp), 2) = gen_rtx_LABEL_REF (Pmode, |
| new_label); |
| --LABEL_NUSES (old_label); |
| ++LABEL_NUSES (new_label); |
| } |
| } |
| else |
| { |
| /* ?? We may play the games with moving the named labels from |
| one basic block to the other in case only one computed_jump is |
| available. */ |
| if (computed_jump_p (insn) |
| /* A return instruction can't be redirected. */ |
| || returnjump_p (insn)) |
| return NULL; |
| |
| /* If the insn doesn't go where we think, we're confused. */ |
| gcc_assert (JUMP_LABEL (insn) == old_label); |
| |
| /* If the substitution doesn't succeed, die. This can happen |
| if the back end emitted unrecognizable instructions or if |
| target is exit block on some arches. */ |
| if (!redirect_jump (insn, block_label (target), 0)) |
| { |
| gcc_assert (target == EXIT_BLOCK_PTR); |
| return NULL; |
| } |
| } |
| |
| if (dump_file) |
| fprintf (dump_file, "Edge %i->%i redirected to %i\n", |
| e->src->index, e->dest->index, target->index); |
| |
| if (e->dest != target) |
| e = redirect_edge_succ_nodup (e, target); |
| |
| return e; |
| } |
| |
| /* Attempt to change code to redirect edge E to TARGET. Don't do that on |
| expense of adding new instructions or reordering basic blocks. |
| |
| Function can be also called with edge destination equivalent to the TARGET. |
| Then it should try the simplifications and do nothing if none is possible. |
| |
| Return edge representing the branch if transformation succeeded. Return NULL |
| on failure. |
| We still return NULL in case E already destinated TARGET and we didn't |
| managed to simplify instruction stream. */ |
| |
| static edge |
| rtl_redirect_edge_and_branch (edge e, basic_block target) |
| { |
| edge ret; |
| basic_block src = e->src; |
| |
| if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH)) |
| return NULL; |
| |
| if (e->dest == target) |
| return e; |
| |
| if ((ret = try_redirect_by_replacing_jump (e, target, false)) != NULL) |
| { |
| df_set_bb_dirty (src); |
| return ret; |
| } |
| |
| ret = redirect_branch_edge (e, target); |
| if (!ret) |
| return NULL; |
| |
| df_set_bb_dirty (src); |
| return ret; |
| } |
| |
| /* Like force_nonfallthru below, but additionally performs redirection |
| Used by redirect_edge_and_branch_force. */ |
| |
| static basic_block |
| force_nonfallthru_and_redirect (edge e, basic_block target) |
| { |
| basic_block jump_block, new_bb = NULL, src = e->src; |
| rtx note; |
| edge new_edge; |
| int abnormal_edge_flags = 0; |
| int loc; |
| |
| /* In the case the last instruction is conditional jump to the next |
| instruction, first redirect the jump itself and then continue |
| by creating a basic block afterwards to redirect fallthru edge. */ |
| if (e->src != ENTRY_BLOCK_PTR && e->dest != EXIT_BLOCK_PTR |
| && any_condjump_p (BB_END (e->src)) |
| && JUMP_LABEL (BB_END (e->src)) == BB_HEAD (e->dest)) |
| { |
| rtx note; |
| edge b = unchecked_make_edge (e->src, target, 0); |
| bool redirected; |
| |
| redirected = redirect_jump (BB_END (e->src), block_label (target), 0); |
| gcc_assert (redirected); |
| |
| note = find_reg_note (BB_END (e->src), REG_BR_PROB, NULL_RTX); |
| if (note) |
| { |
| int prob = INTVAL (XEXP (note, 0)); |
| |
| b->probability = prob; |
| b->count = e->count * prob / REG_BR_PROB_BASE; |
| e->probability -= e->probability; |
| e->count -= b->count; |
| if (e->probability < 0) |
| e->probability = 0; |
| if (e->count < 0) |
| e->count = 0; |
| } |
| } |
| |
| if (e->flags & EDGE_ABNORMAL) |
| { |
| /* Irritating special case - fallthru edge to the same block as abnormal |
| edge. |
| We can't redirect abnormal edge, but we still can split the fallthru |
| one and create separate abnormal edge to original destination. |
| This allows bb-reorder to make such edge non-fallthru. */ |
| gcc_assert (e->dest == target); |
| abnormal_edge_flags = e->flags & ~(EDGE_FALLTHRU | EDGE_CAN_FALLTHRU); |
| e->flags &= EDGE_FALLTHRU | EDGE_CAN_FALLTHRU; |
| } |
| else |
| { |
| gcc_assert (e->flags & EDGE_FALLTHRU); |
| if (e->src == ENTRY_BLOCK_PTR) |
| { |
| /* We can't redirect the entry block. Create an empty block |
| at the start of the function which we use to add the new |
| jump. */ |
| edge tmp; |
| edge_iterator ei; |
| bool found = false; |
| |
| basic_block bb = create_basic_block (BB_HEAD (e->dest), NULL, ENTRY_BLOCK_PTR); |
| |
| /* Change the existing edge's source to be the new block, and add |
| a new edge from the entry block to the new block. */ |
| e->src = bb; |
| for (ei = ei_start (ENTRY_BLOCK_PTR->succs); (tmp = ei_safe_edge (ei)); ) |
| { |
| if (tmp == e) |
| { |
| VEC_unordered_remove (edge, ENTRY_BLOCK_PTR->succs, ei.index); |
| found = true; |
| break; |
| } |
| else |
| ei_next (&ei); |
| } |
| |
| gcc_assert (found); |
| |
| VEC_safe_push (edge, gc, bb->succs, e); |
| make_single_succ_edge (ENTRY_BLOCK_PTR, bb, EDGE_FALLTHRU); |
| } |
| } |
| |
| if (EDGE_COUNT (e->src->succs) >= 2 || abnormal_edge_flags) |
| { |
| /* Create the new structures. */ |
| |
| /* If the old block ended with a tablejump, skip its table |
| by searching forward from there. Otherwise start searching |
| forward from the last instruction of the old block. */ |
| if (!tablejump_p (BB_END (e->src), NULL, ¬e)) |
| note = BB_END (e->src); |
| note = NEXT_INSN (note); |
| |
| jump_block = create_basic_block (note, NULL, e->src); |
| jump_block->count = e->count; |
| jump_block->frequency = EDGE_FREQUENCY (e); |
| jump_block->loop_depth = target->loop_depth; |
| |
| /* Make sure new block ends up in correct hot/cold section. */ |
| |
| BB_COPY_PARTITION (jump_block, e->src); |
| if (flag_reorder_blocks_and_partition |
| && targetm.have_named_sections |
| && JUMP_P (BB_END (jump_block)) |
| && !any_condjump_p (BB_END (jump_block)) |
| && (EDGE_SUCC (jump_block, 0)->flags & EDGE_CROSSING)) |
| add_reg_note (BB_END (jump_block), REG_CROSSING_JUMP, NULL_RTX); |
| |
| /* Wire edge in. */ |
| new_edge = make_edge (e->src, jump_block, EDGE_FALLTHRU); |
| new_edge->probability = e->probability; |
| new_edge->count = e->count; |
| |
| /* Redirect old edge. */ |
| redirect_edge_pred (e, jump_block); |
| e->probability = REG_BR_PROB_BASE; |
| |
| new_bb = jump_block; |
| } |
| else |
| jump_block = e->src; |
| |
| if (e->goto_locus && e->goto_block == NULL) |
| loc = e->goto_locus; |
| else |
| loc = 0; |
| e->flags &= ~EDGE_FALLTHRU; |
| if (target == EXIT_BLOCK_PTR) |
| { |
| #ifdef HAVE_return |
| emit_jump_insn_after_setloc (gen_return (), BB_END (jump_block), loc); |
| #else |
| gcc_unreachable (); |
| #endif |
| } |
| else |
| { |
| rtx label = block_label (target); |
| emit_jump_insn_after_setloc (gen_jump (label), BB_END (jump_block), loc); |
| JUMP_LABEL (BB_END (jump_block)) = label; |
| LABEL_NUSES (label)++; |
| } |
| |
| emit_barrier_after (BB_END (jump_block)); |
| redirect_edge_succ_nodup (e, target); |
| |
| if (abnormal_edge_flags) |
| make_edge (src, target, abnormal_edge_flags); |
| |
| df_mark_solutions_dirty (); |
| return new_bb; |
| } |
| |
| /* Edge E is assumed to be fallthru edge. Emit needed jump instruction |
| (and possibly create new basic block) to make edge non-fallthru. |
| Return newly created BB or NULL if none. */ |
| |
| basic_block |
| force_nonfallthru (edge e) |
| { |
| return force_nonfallthru_and_redirect (e, e->dest); |
| } |
| |
| /* Redirect edge even at the expense of creating new jump insn or |
| basic block. Return new basic block if created, NULL otherwise. |
| Conversion must be possible. */ |
| |
| static basic_block |
| rtl_redirect_edge_and_branch_force (edge e, basic_block target) |
| { |
| if (redirect_edge_and_branch (e, target) |
| || e->dest == target) |
| return NULL; |
| |
| /* In case the edge redirection failed, try to force it to be non-fallthru |
| and redirect newly created simplejump. */ |
| df_set_bb_dirty (e->src); |
| return force_nonfallthru_and_redirect (e, target); |
| } |
| |
| /* The given edge should potentially be a fallthru edge. If that is in |
| fact true, delete the jump and barriers that are in the way. */ |
| |
| static void |
| rtl_tidy_fallthru_edge (edge e) |
| { |
| rtx q; |
| basic_block b = e->src, c = b->next_bb; |
| |
| /* ??? In a late-running flow pass, other folks may have deleted basic |
| blocks by nopping out blocks, leaving multiple BARRIERs between here |
| and the target label. They ought to be chastised and fixed. |
| |
| We can also wind up with a sequence of undeletable labels between |
| one block and the next. |
| |
| So search through a sequence of barriers, labels, and notes for |
| the head of block C and assert that we really do fall through. */ |
| |
| for (q = NEXT_INSN (BB_END (b)); q != BB_HEAD (c); q = NEXT_INSN (q)) |
| if (INSN_P (q)) |
| return; |
| |
| /* Remove what will soon cease being the jump insn from the source block. |
| If block B consisted only of this single jump, turn it into a deleted |
| note. */ |
| q = BB_END (b); |
| if (JUMP_P (q) |
| && onlyjump_p (q) |
| && (any_uncondjump_p (q) |
| || single_succ_p (b))) |
| { |
| #ifdef HAVE_cc0 |
| /* If this was a conditional jump, we need to also delete |
| the insn that set cc0. */ |
| if (any_condjump_p (q) && only_sets_cc0_p (PREV_INSN (q))) |
| q = PREV_INSN (q); |
| #endif |
| |
| q = PREV_INSN (q); |
| } |
| |
| /* Selectively unlink the sequence. */ |
| if (q != PREV_INSN (BB_HEAD (c))) |
| delete_insn_chain (NEXT_INSN (q), PREV_INSN (BB_HEAD (c)), false); |
| |
| e->flags |= EDGE_FALLTHRU; |
| } |
| |
| /* Should move basic block BB after basic block AFTER. NIY. */ |
| |
| static bool |
| rtl_move_block_after (basic_block bb ATTRIBUTE_UNUSED, |
| basic_block after ATTRIBUTE_UNUSED) |
| { |
| return false; |
| } |
| |
| /* Split a (typically critical) edge. Return the new block. |
| The edge must not be abnormal. |
| |
| ??? The code generally expects to be called on critical edges. |
| The case of a block ending in an unconditional jump to a |
| block with multiple predecessors is not handled optimally. */ |
| |
| static basic_block |
| rtl_split_edge (edge edge_in) |
| { |
| basic_block bb; |
| rtx before; |
| |
| /* Abnormal edges cannot be split. */ |
| gcc_assert (!(edge_in->flags & EDGE_ABNORMAL)); |
| |
| /* We are going to place the new block in front of edge destination. |
| Avoid existence of fallthru predecessors. */ |
| if ((edge_in->flags & EDGE_FALLTHRU) == 0) |
| { |
| edge e; |
| edge_iterator ei; |
| |
| FOR_EACH_EDGE (e, ei, edge_in->dest->preds) |
| if (e->flags & EDGE_FALLTHRU) |
| break; |
| |
| if (e) |
| force_nonfallthru (e); |
| } |
| |
| /* Create the basic block note. */ |
| if (edge_in->dest != EXIT_BLOCK_PTR) |
| before = BB_HEAD (edge_in->dest); |
| else |
| before = NULL_RTX; |
| |
| /* If this is a fall through edge to the exit block, the blocks might be |
| not adjacent, and the right place is the after the source. */ |
| if (edge_in->flags & EDGE_FALLTHRU && edge_in->dest == EXIT_BLOCK_PTR) |
| { |
| before = NEXT_INSN (BB_END (edge_in->src)); |
| bb = create_basic_block (before, NULL, edge_in->src); |
| BB_COPY_PARTITION (bb, edge_in->src); |
| } |
| else |
| { |
| bb = create_basic_block (before, NULL, edge_in->dest->prev_bb); |
| /* ??? Why not edge_in->dest->prev_bb here? */ |
| BB_COPY_PARTITION (bb, edge_in->dest); |
| } |
| |
| make_single_succ_edge (bb, edge_in->dest, EDGE_FALLTHRU); |
| |
| /* For non-fallthru edges, we must adjust the predecessor's |
| jump instruction to target our new block. */ |
| if ((edge_in->flags & EDGE_FALLTHRU) == 0) |
| { |
| edge redirected = redirect_edge_and_branch (edge_in, bb); |
| gcc_assert (redirected); |
| } |
| else |
| redirect_edge_succ (edge_in, bb); |
| |
| return bb; |
| } |
| |
| /* Queue instructions for insertion on an edge between two basic blocks. |
| The new instructions and basic blocks (if any) will not appear in the |
| CFG until commit_edge_insertions is called. */ |
| |
| void |
| insert_insn_on_edge (rtx pattern, edge e) |
| { |
| /* We cannot insert instructions on an abnormal critical edge. |
| It will be easier to find the culprit if we die now. */ |
| gcc_assert (!((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e))); |
| |
| if (e->insns.r == NULL_RTX) |
| start_sequence (); |
| else |
| push_to_sequence (e->insns.r); |
| |
| emit_insn (pattern); |
| |
| e->insns.r = get_insns (); |
| end_sequence (); |
| } |
| |
| /* Update the CFG for the instructions queued on edge E. */ |
| |
| static void |
| commit_one_edge_insertion (edge e) |
| { |
| rtx before = NULL_RTX, after = NULL_RTX, insns, tmp, last; |
| basic_block bb = NULL; |
| |
| /* Pull the insns off the edge now since the edge might go away. */ |
| insns = e->insns.r; |
| e->insns.r = NULL_RTX; |
| |
| if (!before && !after) |
| { |
| /* Figure out where to put these things. If the destination has |
| one predecessor, insert there. Except for the exit block. */ |
| if (single_pred_p (e->dest) && e->dest != EXIT_BLOCK_PTR) |
| { |
| bb = e->dest; |
| |
| /* Get the location correct wrt a code label, and "nice" wrt |
| a basic block note, and before everything else. */ |
| tmp = BB_HEAD (bb); |
| if (LABEL_P (tmp)) |
| tmp = NEXT_INSN (tmp); |
| if (NOTE_INSN_BASIC_BLOCK_P (tmp)) |
| tmp = NEXT_INSN (tmp); |
| if (tmp == BB_HEAD (bb)) |
| before = tmp; |
| else if (tmp) |
| after = PREV_INSN (tmp); |
| else |
| after = get_last_insn (); |
| } |
| |
| /* If the source has one successor and the edge is not abnormal, |
| insert there. Except for the entry block. */ |
| else if ((e->flags & EDGE_ABNORMAL) == 0 |
| && single_succ_p (e->src) |
| && e->src != ENTRY_BLOCK_PTR) |
| { |
| bb = e->src; |
| |
| /* It is possible to have a non-simple jump here. Consider a target |
| where some forms of unconditional jumps clobber a register. This |
| happens on the fr30 for example. |
| |
| We know this block has a single successor, so we can just emit |
| the queued insns before the jump. */ |
| if (JUMP_P (BB_END (bb))) |
| before = BB_END (bb); |
| else |
| { |
| /* We'd better be fallthru, or we've lost track of |
| what's what. */ |
| gcc_assert (e->flags & EDGE_FALLTHRU); |
| |
| after = BB_END (bb); |
| } |
| } |
| /* Otherwise we must split the edge. */ |
| else |
| { |
| bb = split_edge (e); |
| after = BB_END (bb); |
| |
| if (flag_reorder_blocks_and_partition |
| && targetm.have_named_sections |
| && e->src != ENTRY_BLOCK_PTR |
| && BB_PARTITION (e->src) == BB_COLD_PARTITION |
| && !(e->flags & EDGE_CROSSING)) |
| { |
| rtx bb_note, cur_insn; |
| |
| bb_note = NULL_RTX; |
| for (cur_insn = BB_HEAD (bb); cur_insn != NEXT_INSN (BB_END (bb)); |
| cur_insn = NEXT_INSN (cur_insn)) |
| if (NOTE_INSN_BASIC_BLOCK_P (cur_insn)) |
| { |
| bb_note = cur_insn; |
| break; |
| } |
| |
| if (JUMP_P (BB_END (bb)) |
| && !any_condjump_p (BB_END (bb)) |
| && (single_succ_edge (bb)->flags & EDGE_CROSSING)) |
| add_reg_note (BB_END (bb), REG_CROSSING_JUMP, NULL_RTX); |
| } |
| } |
| } |
| |
| /* Now that we've found the spot, do the insertion. */ |
| |
| if (before) |
| { |
| emit_insn_before_noloc (insns, before, bb); |
| last = prev_nonnote_insn (before); |
| } |
| else |
| last = emit_insn_after_noloc (insns, after, bb); |
| |
| if (returnjump_p (last)) |
| { |
| /* ??? Remove all outgoing edges from BB and add one for EXIT. |
| This is not currently a problem because this only happens |
| for the (single) epilogue, which already has a fallthru edge |
| to EXIT. */ |
| |
| e = single_succ_edge (bb); |
| gcc_assert (e->dest == EXIT_BLOCK_PTR |
| && single_succ_p (bb) && (e->flags & EDGE_FALLTHRU)); |
| |
| e->flags &= ~EDGE_FALLTHRU; |
| emit_barrier_after (last); |
| |
| if (before) |
| delete_insn (before); |
| } |
| else |
| gcc_assert (!JUMP_P (last)); |
| |
| /* Mark the basic block for find_many_sub_basic_blocks. */ |
| if (current_ir_type () != IR_RTL_CFGLAYOUT) |
| bb->aux = &bb->aux; |
| } |
| |
| /* Update the CFG for all queued instructions. */ |
| |
| void |
| commit_edge_insertions (void) |
| { |
| basic_block bb; |
| sbitmap blocks; |
| bool changed = false; |
| |
| #ifdef ENABLE_CHECKING |
| verify_flow_info (); |
| #endif |
| |
| FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb) |
| { |
| edge e; |
| edge_iterator ei; |
| |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| if (e->insns.r) |
| { |
| changed = true; |
| commit_one_edge_insertion (e); |
| } |
| } |
| |
| if (!changed) |
| return; |
| |
| /* In the old rtl CFG API, it was OK to insert control flow on an |
| edge, apparently? In cfglayout mode, this will *not* work, and |
| the caller is responsible for making sure that control flow is |
| valid at all times. */ |
| if (current_ir_type () == IR_RTL_CFGLAYOUT) |
| return; |
| |
| blocks = sbitmap_alloc (last_basic_block); |
| sbitmap_zero (blocks); |
| FOR_EACH_BB (bb) |
| if (bb->aux) |
| { |
| SET_BIT (blocks, bb->index); |
| /* Check for forgotten bb->aux values before commit_edge_insertions |
| call. */ |
| gcc_assert (bb->aux == &bb->aux); |
| bb->aux = NULL; |
| } |
| find_many_sub_basic_blocks (blocks); |
| sbitmap_free (blocks); |
| } |
| |
| |
| /* Print out RTL-specific basic block information (live information |
| at start and end). */ |
| |
| static void |
| rtl_dump_bb (basic_block bb, FILE *outf, int indent, int flags ATTRIBUTE_UNUSED) |
| { |
| rtx insn; |
| rtx last; |
| char *s_indent; |
| |
| s_indent = (char *) alloca ((size_t) indent + 1); |
| memset (s_indent, ' ', (size_t) indent); |
| s_indent[indent] = '\0'; |
| |
| if (df) |
| { |
| df_dump_top (bb, outf); |
| putc ('\n', outf); |
| } |
| |
| for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb)); insn != last; |
| insn = NEXT_INSN (insn)) |
| print_rtl_single (outf, insn); |
| |
| if (df) |
| { |
| df_dump_bottom (bb, outf); |
| putc ('\n', outf); |
| } |
| |
| } |
| |
| /* Like print_rtl, but also print out live information for the start of each |
| basic block. */ |
| |
| void |
| print_rtl_with_bb (FILE *outf, const_rtx rtx_first) |
| { |
| const_rtx tmp_rtx; |
| if (rtx_first == 0) |
| fprintf (outf, "(nil)\n"); |
| else |
| { |
| enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB }; |
| int max_uid = get_max_uid (); |
| basic_block *start = XCNEWVEC (basic_block, max_uid); |
| basic_block *end = XCNEWVEC (basic_block, max_uid); |
| enum bb_state *in_bb_p = XCNEWVEC (enum bb_state, max_uid); |
| |
| basic_block bb; |
| |
| if (df) |
| df_dump_start (outf); |
| |
| FOR_EACH_BB_REVERSE (bb) |
| { |
| rtx x; |
| |
| start[INSN_UID (BB_HEAD (bb))] = bb; |
| end[INSN_UID (BB_END (bb))] = bb; |
| for (x = BB_HEAD (bb); x != NULL_RTX; x = NEXT_INSN (x)) |
| { |
| enum bb_state state = IN_MULTIPLE_BB; |
| |
| if (in_bb_p[INSN_UID (x)] == NOT_IN_BB) |
| state = IN_ONE_BB; |
| in_bb_p[INSN_UID (x)] = state; |
| |
| if (x == BB_END (bb)) |
| break; |
| } |
| } |
| |
| for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx)) |
| { |
| int did_output; |
| if ((bb = start[INSN_UID (tmp_rtx)]) != NULL) |
| { |
| edge e; |
| edge_iterator ei; |
| |
| fprintf (outf, ";; Start of basic block ("); |
| FOR_EACH_EDGE (e, ei, bb->preds) |
| fprintf (outf, " %d", e->src->index); |
| fprintf (outf, ") -> %d\n", bb->index); |
| |
| if (df) |
| { |
| df_dump_top (bb, outf); |
| putc ('\n', outf); |
| } |
| FOR_EACH_EDGE (e, ei, bb->preds) |
| { |
| fputs (";; Pred edge ", outf); |
| dump_edge_info (outf, e, 0); |
| fputc ('\n', outf); |
| } |
| } |
| |
| if (in_bb_p[INSN_UID (tmp_rtx)] == NOT_IN_BB |
| && !NOTE_P (tmp_rtx) |
| && !BARRIER_P (tmp_rtx)) |
| fprintf (outf, ";; Insn is not within a basic block\n"); |
| else if (in_bb_p[INSN_UID (tmp_rtx)] == IN_MULTIPLE_BB) |
| fprintf (outf, ";; Insn is in multiple basic blocks\n"); |
| |
| did_output = print_rtl_single (outf, tmp_rtx); |
| |
| if ((bb = end[INSN_UID (tmp_rtx)]) != NULL) |
| { |
| edge e; |
| edge_iterator ei; |
| |
| fprintf (outf, ";; End of basic block %d -> (", bb->index); |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| fprintf (outf, " %d", e->dest->index); |
| fprintf (outf, ")\n"); |
| |
| if (df) |
| { |
| df_dump_bottom (bb, outf); |
| putc ('\n', outf); |
| } |
| putc ('\n', outf); |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| { |
| fputs (";; Succ edge ", outf); |
| dump_edge_info (outf, e, 1); |
| fputc ('\n', outf); |
| } |
| } |
| if (did_output) |
| putc ('\n', outf); |
| } |
| |
| free (start); |
| free (end); |
| free (in_bb_p); |
| } |
| |
| if (crtl->epilogue_delay_list != 0) |
| { |
| fprintf (outf, "\n;; Insns in epilogue delay list:\n\n"); |
| for (tmp_rtx = crtl->epilogue_delay_list; tmp_rtx != 0; |
| tmp_rtx = XEXP (tmp_rtx, 1)) |
| print_rtl_single (outf, XEXP (tmp_rtx, 0)); |
| } |
| } |
| |
| void |
| update_br_prob_note (basic_block bb) |
| { |
| rtx note; |
| if (!JUMP_P (BB_END (bb))) |
| return; |
| note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX); |
| if (!note || INTVAL (XEXP (note, 0)) == BRANCH_EDGE (bb)->probability) |
| return; |
| XEXP (note, 0) = GEN_INT (BRANCH_EDGE (bb)->probability); |
| } |
| |
| /* Get the last insn associated with block BB (that includes barriers and |
| tablejumps after BB). */ |
| rtx |
| get_last_bb_insn (basic_block bb) |
| { |
| rtx tmp; |
| rtx end = BB_END (bb); |
| |
| /* Include any jump table following the basic block. */ |
| if (tablejump_p (end, NULL, &tmp)) |
| end = tmp; |
| |
| /* Include any barriers that may follow the basic block. */ |
| tmp = next_nonnote_insn (end); |
| while (tmp && BARRIER_P (tmp)) |
| { |
| end = tmp; |
| tmp = next_nonnote_insn (end); |
| } |
| |
| return end; |
| } |
| |
| /* Verify the CFG and RTL consistency common for both underlying RTL and |
| cfglayout RTL. |
| |
| Currently it does following checks: |
| |
| - overlapping of basic blocks |
| - insns with wrong BLOCK_FOR_INSN pointers |
| - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note) |
| - tails of basic blocks (ensure that boundary is necessary) |
| - scans body of the basic block for JUMP_INSN, CODE_LABEL |
| and NOTE_INSN_BASIC_BLOCK |
| - verify that no fall_thru edge crosses hot/cold partition boundaries |
| - verify that there are no pending RTL branch predictions |
| |
| In future it can be extended check a lot of other stuff as well |
| (reachability of basic blocks, life information, etc. etc.). */ |
| |
| static int |
| rtl_verify_flow_info_1 (void) |
| { |
| rtx x; |
| int err = 0; |
| basic_block bb; |
| |
| /* Check the general integrity of the basic blocks. */ |
| FOR_EACH_BB_REVERSE (bb) |
| { |
| rtx insn; |
| |
| if (!(bb->flags & BB_RTL)) |
| { |
| error ("BB_RTL flag not set for block %d", bb->index); |
| err = 1; |
| } |
| |
| FOR_BB_INSNS (bb, insn) |
| if (BLOCK_FOR_INSN (insn) != bb) |
| { |
| error ("insn %d basic block pointer is %d, should be %d", |
| INSN_UID (insn), |
| BLOCK_FOR_INSN (insn) ? BLOCK_FOR_INSN (insn)->index : 0, |
| bb->index); |
| err = 1; |
| } |
| |
| for (insn = bb->il.rtl->header; insn; insn = NEXT_INSN (insn)) |
| if (!BARRIER_P (insn) |
| && BLOCK_FOR_INSN (insn) != NULL) |
| { |
| error ("insn %d in header of bb %d has non-NULL basic block", |
| INSN_UID (insn), bb->index); |
| err = 1; |
| } |
| for (insn = bb->il.rtl->footer; insn; insn = NEXT_INSN (insn)) |
| if (!BARRIER_P (insn) |
| && BLOCK_FOR_INSN (insn) != NULL) |
| { |
| error ("insn %d in footer of bb %d has non-NULL basic block", |
| INSN_UID (insn), bb->index); |
| err = 1; |
| } |
| } |
| |
| /* Now check the basic blocks (boundaries etc.) */ |
| FOR_EACH_BB_REVERSE (bb) |
| { |
| int n_fallthru = 0, n_eh = 0, n_call = 0, n_abnormal = 0, n_branch = 0; |
| edge e, fallthru = NULL; |
| rtx note; |
| edge_iterator ei; |
| |
| if (JUMP_P (BB_END (bb)) |
| && (note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX)) |
| && EDGE_COUNT (bb->succs) >= 2 |
| && any_condjump_p (BB_END (bb))) |
| { |
| if (INTVAL (XEXP (note, 0)) != BRANCH_EDGE (bb)->probability |
| && profile_status != PROFILE_ABSENT) |
| { |
| error ("verify_flow_info: REG_BR_PROB does not match cfg %wi %i", |
| INTVAL (XEXP (note, 0)), BRANCH_EDGE (bb)->probability); |
| err = 1; |
| } |
| } |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| { |
| if (e->flags & EDGE_FALLTHRU) |
| { |
| n_fallthru++, fallthru = e; |
| if ((e->flags & EDGE_CROSSING) |
| || (BB_PARTITION (e->src) != BB_PARTITION (e->dest) |
| && e->src != ENTRY_BLOCK_PTR |
| && e->dest != EXIT_BLOCK_PTR)) |
| { |
| error ("fallthru edge crosses section boundary (bb %i)", |
| e->src->index); |
| err = 1; |
| } |
| } |
| |
| if ((e->flags & ~(EDGE_DFS_BACK |
| | EDGE_CAN_FALLTHRU |
| | EDGE_IRREDUCIBLE_LOOP |
| | EDGE_LOOP_EXIT |
| | EDGE_CROSSING)) == 0) |
| n_branch++; |
| |
| if (e->flags & EDGE_ABNORMAL_CALL) |
| n_call++; |
| |
| if (e->flags & EDGE_EH) |
| n_eh++; |
| else if (e->flags & EDGE_ABNORMAL) |
| n_abnormal++; |
| } |
| |
| if (n_eh && GET_CODE (PATTERN (BB_END (bb))) != RESX |
| && !find_reg_note (BB_END (bb), REG_EH_REGION, NULL_RTX)) |
| { |
| error ("missing REG_EH_REGION note in the end of bb %i", bb->index); |
| err = 1; |
| } |
| if (n_branch |
| && (!JUMP_P (BB_END (bb)) |
| || (n_branch > 1 && (any_uncondjump_p (BB_END (bb)) |
| || any_condjump_p (BB_END (bb)))))) |
| { |
| error ("too many outgoing branch edges from bb %i", bb->index); |
| err = 1; |
| } |
| if (n_fallthru && any_uncondjump_p (BB_END (bb))) |
| { |
| error ("fallthru edge after unconditional jump %i", bb->index); |
| err = 1; |
| } |
| if (n_branch != 1 && any_uncondjump_p (BB_END (bb))) |
| { |
| error ("wrong amount of branch edges after unconditional jump %i", bb->index); |
| err = 1; |
| } |
| if (n_branch != 1 && any_condjump_p (BB_END (bb)) |
| && JUMP_LABEL (BB_END (bb)) != BB_HEAD (fallthru->dest)) |
| { |
| error ("wrong amount of branch edges after conditional jump %i", |
| bb->index); |
| err = 1; |
| } |
| if (n_call && !CALL_P (BB_END (bb))) |
| { |
| error ("call edges for non-call insn in bb %i", bb->index); |
| err = 1; |
| } |
| if (n_abnormal |
| && (!CALL_P (BB_END (bb)) && n_call != n_abnormal) |
| && (!JUMP_P (BB_END (bb)) |
| || any_condjump_p (BB_END (bb)) |
| || any_uncondjump_p (BB_END (bb)))) |
| { |
| error ("abnormal edges for no purpose in bb %i", bb->index); |
| err = 1; |
| } |
| |
| for (x = BB_HEAD (bb); x != NEXT_INSN (BB_END (bb)); x = NEXT_INSN (x)) |
| /* We may have a barrier inside a basic block before dead code |
| elimination. There is no BLOCK_FOR_INSN field in a barrier. */ |
| if (!BARRIER_P (x) && BLOCK_FOR_INSN (x) != bb) |
| { |
| debug_rtx (x); |
| if (! BLOCK_FOR_INSN (x)) |
| error |
| ("insn %d inside basic block %d but block_for_insn is NULL", |
| INSN_UID (x), bb->index); |
| else |
| error |
| ("insn %d inside basic block %d but block_for_insn is %i", |
| INSN_UID (x), bb->index, BLOCK_FOR_INSN (x)->index); |
| |
| err = 1; |
| } |
| |
| /* OK pointers are correct. Now check the header of basic |
| block. It ought to contain optional CODE_LABEL followed |
| by NOTE_BASIC_BLOCK. */ |
| x = BB_HEAD (bb); |
| if (LABEL_P (x)) |
| { |
| if (BB_END (bb) == x) |
| { |
| error ("NOTE_INSN_BASIC_BLOCK is missing for block %d", |
| bb->index); |
| err = 1; |
| } |
| |
| x = NEXT_INSN (x); |
| } |
| |
| if (!NOTE_INSN_BASIC_BLOCK_P (x) || NOTE_BASIC_BLOCK (x) != bb) |
| { |
| error ("NOTE_INSN_BASIC_BLOCK is missing for block %d", |
| bb->index); |
| err = 1; |
| } |
| |
| if (BB_END (bb) == x) |
| /* Do checks for empty blocks here. */ |
| ; |
| else |
| for (x = NEXT_INSN (x); x; x = NEXT_INSN (x)) |
| { |
| if (NOTE_INSN_BASIC_BLOCK_P (x)) |
| { |
| error ("NOTE_INSN_BASIC_BLOCK %d in middle of basic block %d", |
| INSN_UID (x), bb->index); |
| err = 1; |
| } |
| |
| if (x == BB_END (bb)) |
| break; |
| |
| if (control_flow_insn_p (x)) |
| { |
| error ("in basic block %d:", bb->index); |
| fatal_insn ("flow control insn inside a basic block", x); |
| } |
| } |
| } |
| |
| /* Clean up. */ |
| return err; |
| } |
| |
| /* Verify the CFG and RTL consistency common for both underlying RTL and |
| cfglayout RTL. |
| |
| Currently it does following checks: |
| - all checks of rtl_verify_flow_info_1 |
| - test head/end pointers |
| - check that all insns are in the basic blocks |
| (except the switch handling code, barriers and notes) |
| - check that all returns are followed by barriers |
| - check that all fallthru edge points to the adjacent blocks. */ |
| |
| static int |
| rtl_verify_flow_info (void) |
| { |
| basic_block bb; |
| int err = rtl_verify_flow_info_1 (); |
| rtx x; |
| rtx last_head = get_last_insn (); |
| basic_block *bb_info; |
| int num_bb_notes; |
| const rtx rtx_first = get_insns (); |
| basic_block last_bb_seen = ENTRY_BLOCK_PTR, curr_bb = NULL; |
| const int max_uid = get_max_uid (); |
| |
| bb_info = XCNEWVEC (basic_block, max_uid); |
| |
| FOR_EACH_BB_REVERSE (bb) |
| { |
| edge e; |
| edge_iterator ei; |
| rtx head = BB_HEAD (bb); |
| rtx end = BB_END (bb); |
| |
| for (x = last_head; x != NULL_RTX; x = PREV_INSN (x)) |
| { |
| /* Verify the end of the basic block is in the INSN chain. */ |
| if (x == end) |
| break; |
| |
| /* And that the code outside of basic blocks has NULL bb field. */ |
| if (!BARRIER_P (x) |
| && BLOCK_FOR_INSN (x) != NULL) |
| { |
| error ("insn %d outside of basic blocks has non-NULL bb field", |
| INSN_UID (x)); |
| err = 1; |
| } |
| } |
| |
| if (!x) |
| { |
| error ("end insn %d for block %d not found in the insn stream", |
| INSN_UID (end), bb->index); |
| err = 1; |
| } |
| |
| /* Work backwards from the end to the head of the basic block |
| to verify the head is in the RTL chain. */ |
| for (; x != NULL_RTX; x = PREV_INSN (x)) |
| { |
| /* While walking over the insn chain, verify insns appear |
| in only one basic block. */ |
| if (bb_info[INSN_UID (x)] != NULL) |
| { |
| error ("insn %d is in multiple basic blocks (%d and %d)", |
| INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index); |
| err = 1; |
| } |
| |
| bb_info[INSN_UID (x)] = bb; |
| |
| if (x == head) |
| break; |
| } |
| if (!x) |
| { |
| error ("head insn %d for block %d not found in the insn stream", |
| INSN_UID (head), bb->index); |
| err = 1; |
| } |
| |
| last_head = PREV_INSN (x); |
| |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| if (e->flags & EDGE_FALLTHRU) |
| break; |
| if (!e) |
| { |
| rtx insn; |
| |
| /* Ensure existence of barrier in BB with no fallthru edges. */ |
| for (insn = BB_END (bb); !insn || !BARRIER_P (insn); |
| insn = NEXT_INSN (insn)) |
| if (!insn |
| || NOTE_INSN_BASIC_BLOCK_P (insn)) |
| { |
| error ("missing barrier after block %i", bb->index); |
| err = 1; |
| break; |
| } |
| } |
| else if (e->src != ENTRY_BLOCK_PTR |
| && e->dest != EXIT_BLOCK_PTR) |
| { |
| rtx insn; |
| |
| if (e->src->next_bb != e->dest) |
| { |
| error |
| ("verify_flow_info: Incorrect blocks for fallthru %i->%i", |
| e->src->index, e->dest->index); |
| err = 1; |
| } |
| else |
| for (insn = NEXT_INSN (BB_END (e->src)); insn != BB_HEAD (e->dest); |
| insn = NEXT_INSN (insn)) |
| if (BARRIER_P (insn) || INSN_P (insn)) |
| { |
| error ("verify_flow_info: Incorrect fallthru %i->%i", |
| e->src->index, e->dest->index); |
| fatal_insn ("wrong insn in the fallthru edge", insn); |
| err = 1; |
| } |
| } |
| } |
| |
| for (x = last_head; x != NULL_RTX; x = PREV_INSN (x)) |
| { |
| /* Check that the code before the first basic block has NULL |
| bb field. */ |
| if (!BARRIER_P (x) |
| && BLOCK_FOR_INSN (x) != NULL) |
| { |
| error ("insn %d outside of basic blocks has non-NULL bb field", |
| INSN_UID (x)); |
| err = 1; |
| } |
| } |
| free (bb_info); |
| |
| num_bb_notes = 0; |
| last_bb_seen = ENTRY_BLOCK_PTR; |
| |
| for (x = rtx_first; x; x = NEXT_INSN (x)) |
| { |
| if (NOTE_INSN_BASIC_BLOCK_P (x)) |
| { |
| bb = NOTE_BASIC_BLOCK (x); |
| |
| num_bb_notes++; |
| if (bb != last_bb_seen->next_bb) |
| internal_error ("basic blocks not laid down consecutively"); |
| |
| curr_bb = last_bb_seen = bb; |
| } |
| |
| if (!curr_bb) |
| { |
| switch (GET_CODE (x)) |
| { |
| case BARRIER: |
| case NOTE: |
| break; |
| |
| case CODE_LABEL: |
| /* An addr_vec is placed outside any basic block. */ |
| if (NEXT_INSN (x) |
| && JUMP_P (NEXT_INSN (x)) |
| && (GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_DIFF_VEC |
| || GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_VEC)) |
| x = NEXT_INSN (x); |
| |
| /* But in any case, non-deletable labels can appear anywhere. */ |
| break; |
| |
| default: |
| fatal_insn ("insn outside basic block", x); |
| } |
| } |
| |
| if (JUMP_P (x) |
| && returnjump_p (x) && ! condjump_p (x) |
| && ! (next_nonnote_insn (x) && BARRIER_P (next_nonnote_insn (x)))) |
| fatal_insn ("return not followed by barrier", x); |
| if (curr_bb && x == BB_END (curr_bb)) |
| curr_bb = NULL; |
| } |
| |
| if (num_bb_notes != n_basic_blocks - NUM_FIXED_BLOCKS) |
| internal_error |
| ("number of bb notes in insn chain (%d) != n_basic_blocks (%d)", |
| num_bb_notes, n_basic_blocks); |
| |
| return err; |
| } |
| |
| /* Assume that the preceding pass has possibly eliminated jump instructions |
| or converted the unconditional jumps. Eliminate the edges from CFG. |
| Return true if any edges are eliminated. */ |
| |
| bool |
| purge_dead_edges (basic_block bb) |
| { |
| edge e; |
| rtx insn = BB_END (bb), note; |
| bool purged = false; |
| bool found; |
| edge_iterator ei; |
| |
| /* If this instruction cannot trap, remove REG_EH_REGION notes. */ |
| if (NONJUMP_INSN_P (insn) |
| && (note = find_reg_note (insn, REG_EH_REGION, NULL))) |
| { |
| rtx eqnote; |
| |
| if (! may_trap_p (PATTERN (insn)) |
| || ((eqnote = find_reg_equal_equiv_note (insn)) |
| && ! may_trap_p (XEXP (eqnote, 0)))) |
| remove_note (insn, note); |
| } |
| |
| /* Cleanup abnormal edges caused by exceptions or non-local gotos. */ |
| for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); ) |
| { |
| /* There are three types of edges we need to handle correctly here: EH |
| edges, abnormal call EH edges, and abnormal call non-EH edges. The |
| latter can appear when nonlocal gotos are used. */ |
| if (e->flags & EDGE_EH) |
| { |
| if (can_throw_internal (BB_END (bb)) |
| /* If this is a call edge, verify that this is a call insn. */ |
| && (! (e->flags & EDGE_ABNORMAL_CALL) |
| || CALL_P (BB_END (bb)))) |
| { |
| ei_next (&ei); |
| continue; |
| } |
| } |
| else if (e->flags & EDGE_ABNORMAL_CALL) |
| { |
| if (CALL_P (BB_END (bb)) |
| && (! (note = find_reg_note (insn, REG_EH_REGION, NULL)) |
| || INTVAL (XEXP (note, 0)) >= 0)) |
| { |
| ei_next (&ei); |
| continue; |
| } |
| } |
| else |
| { |
| ei_next (&ei); |
| continue; |
| } |
| |
| remove_edge (e); |
| df_set_bb_dirty (bb); |
| purged = true; |
| } |
| |
| if (JUMP_P (insn)) |
| { |
| rtx note; |
| edge b,f; |
| edge_iterator ei; |
| |
| /* We do care only about conditional jumps and simplejumps. */ |
| if (!any_condjump_p (insn) |
| && !returnjump_p (insn) |
| && !simplejump_p (insn)) |
| return purged; |
| |
| /* Branch probability/prediction notes are defined only for |
| condjumps. We've possibly turned condjump into simplejump. */ |
| if (simplejump_p (insn)) |
| { |
| note = find_reg_note (insn, REG_BR_PROB, NULL); |
| if (note) |
| remove_note (insn, note); |
| while ((note = find_reg_note (insn, REG_BR_PRED, NULL))) |
| remove_note (insn, note); |
| } |
| |
| for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); ) |
| { |
| /* Avoid abnormal flags to leak from computed jumps turned |
| into simplejumps. */ |
| |
| e->flags &= ~EDGE_ABNORMAL; |
| |
| /* See if this edge is one we should keep. */ |
| if ((e->flags & EDGE_FALLTHRU) && any_condjump_p (insn)) |
| /* A conditional jump can fall through into the next |
| block, so we should keep the edge. */ |
| { |
| ei_next (&ei); |
| continue; |
| } |
| else if (e->dest != EXIT_BLOCK_PTR |
| && BB_HEAD (e->dest) == JUMP_LABEL (insn)) |
| /* If the destination block is the target of the jump, |
| keep the edge. */ |
| { |
| ei_next (&ei); |
| continue; |
| } |
| else if (e->dest == EXIT_BLOCK_PTR && returnjump_p (insn)) |
| /* If the destination block is the exit block, and this |
| instruction is a return, then keep the edge. */ |
| { |
| ei_next (&ei); |
| continue; |
| } |
| else if ((e->flags & EDGE_EH) && can_throw_internal (insn)) |
| /* Keep the edges that correspond to exceptions thrown by |
| this instruction and rematerialize the EDGE_ABNORMAL |
| flag we just cleared above. */ |
| { |
| e->flags |= EDGE_ABNORMAL; |
| ei_next (&ei); |
| continue; |
| } |
| |
| /* We do not need this edge. */ |
| df_set_bb_dirty (bb); |
| purged = true; |
| remove_edge (e); |
| } |
| |
| if (EDGE_COUNT (bb->succs) == 0 || !purged) |
| return purged; |
| |
| if (dump_file) |
| fprintf (dump_file, "Purged edges from bb %i\n", bb->index); |
| |
| if (!optimize) |
| return purged; |
| |
| /* Redistribute probabilities. */ |
| if (single_succ_p (bb)) |
| { |
| single_succ_edge (bb)->probability = REG_BR_PROB_BASE; |
| single_succ_edge (bb)->count = bb->count; |
| } |
| else |
| { |
| note = find_reg_note (insn, REG_BR_PROB, NULL); |
| if (!note) |
| return purged; |
| |
| b = BRANCH_EDGE (bb); |
| f = FALLTHRU_EDGE (bb); |
| b->probability = INTVAL (XEXP (note, 0)); |
| f->probability = REG_BR_PROB_BASE - b->probability; |
| b->count = bb->count * b->probability / REG_BR_PROB_BASE; |
| f->count = bb->count * f->probability / REG_BR_PROB_BASE; |
| } |
| |
| return purged; |
| } |
| else if (CALL_P (insn) && SIBLING_CALL_P (insn)) |
| { |
| /* First, there should not be any EH or ABCALL edges resulting |
| from non-local gotos and the like. If there were, we shouldn't |
| have created the sibcall in the first place. Second, there |
| should of course never have been a fallthru edge. */ |
| gcc_assert (single_succ_p (bb)); |
| gcc_assert (single_succ_edge (bb)->flags |
| == (EDGE_SIBCALL | EDGE_ABNORMAL)); |
| |
| return 0; |
| } |
| |
| /* If we don't see a jump insn, we don't know exactly why the block would |
| have been broken at this point. Look for a simple, non-fallthru edge, |
| as these are only created by conditional branches. If we find such an |
| edge we know that there used to be a jump here and can then safely |
| remove all non-fallthru edges. */ |
| found = false; |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| if (! (e->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))) |
| { |
| found = true; |
| break; |
| } |
| |
| if (!found) |
| return purged; |
| |
| /* Remove all but the fake and fallthru edges. The fake edge may be |
| the only successor for this block in the case of noreturn |
| calls. */ |
| for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); ) |
| { |
| if (!(e->flags & (EDGE_FALLTHRU | EDGE_FAKE))) |
| { |
| df_set_bb_dirty (bb); |
| remove_edge (e); |
| purged = true; |
| } |
| else |
| ei_next (&ei); |
| } |
| |
| gcc_assert (single_succ_p (bb)); |
| |
| single_succ_edge (bb)->probability = REG_BR_PROB_BASE; |
| single_succ_edge (bb)->count = bb->count; |
| |
| if (dump_file) |
| fprintf (dump_file, "Purged non-fallthru edges from bb %i\n", |
| bb->index); |
| return purged; |
| } |
| |
| /* Search all basic blocks for potentially dead edges and purge them. Return |
| true if some edge has been eliminated. */ |
| |
| bool |
| purge_all_dead_edges (void) |
| { |
| int purged = false; |
| basic_block bb; |
| |
| FOR_EACH_BB (bb) |
| { |
| bool purged_here = purge_dead_edges (bb); |
| |
| purged |= purged_here; |
| } |
| |
| return purged; |
| } |
| |
| /* Same as split_block but update cfg_layout structures. */ |
| |
| static basic_block |
| cfg_layout_split_block (basic_block bb, void *insnp) |
| { |
| rtx insn = (rtx) insnp; |
| basic_block new_bb = rtl_split_block (bb, insn); |
| |
| new_bb->il.rtl->footer = bb->il.rtl->footer; |
| bb->il.rtl->footer = NULL; |
| |
| return new_bb; |
| } |
| |
| /* Redirect Edge to DEST. */ |
| static edge |
| cfg_layout_redirect_edge_and_branch (edge e, basic_block dest) |
| { |
| basic_block src = e->src; |
| edge ret; |
| |
| if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH)) |
| return NULL; |
| |
| if (e->dest == dest) |
| return e; |
| |
| if (e->src != ENTRY_BLOCK_PTR |
| && (ret = try_redirect_by_replacing_jump (e, dest, true))) |
| { |
| df_set_bb_dirty (src); |
| return ret; |
| } |
| |
| if (e->src == ENTRY_BLOCK_PTR |
| && (e->flags & EDGE_FALLTHRU) && !(e->flags & EDGE_COMPLEX)) |
| { |
| if (dump_file) |
| fprintf (dump_file, "Redirecting entry edge from bb %i to %i\n", |
| e->src->index, dest->index); |
| |
| df_set_bb_dirty (e->src); |
| redirect_edge_succ (e, dest); |
| return e; |
| } |
| |
| /* Redirect_edge_and_branch may decide to turn branch into fallthru edge |
| in the case the basic block appears to be in sequence. Avoid this |
| transformation. */ |
| |
| if (e->flags & EDGE_FALLTHRU) |
| { |
| /* Redirect any branch edges unified with the fallthru one. */ |
| if (JUMP_P (BB_END (src)) |
| && label_is_jump_target_p (BB_HEAD (e->dest), |
| BB_END (src))) |
| { |
| edge redirected; |
| |
| if (dump_file) |
| fprintf (dump_file, "Fallthru edge unified with branch " |
| "%i->%i redirected to %i\n", |
| e->src->index, e->dest->index, dest->index); |
| e->flags &= ~EDGE_FALLTHRU; |
| redirected = redirect_branch_edge (e, dest); |
| gcc_assert (redirected); |
| e->flags |= EDGE_FALLTHRU; |
| df_set_bb_dirty (e->src); |
| return e; |
| } |
| /* In case we are redirecting fallthru edge to the branch edge |
| of conditional jump, remove it. */ |
| if (EDGE_COUNT (src->succs) == 2) |
| { |
| /* Find the edge that is different from E. */ |
| edge s = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e); |
| |
| if (s->dest == dest |
| && any_condjump_p (BB_END (src)) |
| && onlyjump_p (BB_END (src))) |
| delete_insn (BB_END (src)); |
| } |
| ret = redirect_edge_succ_nodup (e, dest); |
| if (dump_file) |
| fprintf (dump_file, "Fallthru edge %i->%i redirected to %i\n", |
| e->src->index, e->dest->index, dest->index); |
| } |
| else |
| ret = redirect_branch_edge (e, dest); |
| |
| /* We don't want simplejumps in the insn stream during cfglayout. */ |
| gcc_assert (!simplejump_p (BB_END (src))); |
| |
| df_set_bb_dirty (src); |
| return ret; |
| } |
| |
| /* Simple wrapper as we always can redirect fallthru edges. */ |
| static basic_block |
| cfg_layout_redirect_edge_and_branch_force (edge e, basic_block dest) |
| { |
| edge redirected = cfg_layout_redirect_edge_and_branch (e, dest); |
| |
| gcc_assert (redirected); |
| return NULL; |
| } |
| |
| /* Same as delete_basic_block but update cfg_layout structures. */ |
| |
| static void |
| cfg_layout_delete_block (basic_block bb) |
| { |
| rtx insn, next, prev = PREV_INSN (BB_HEAD (bb)), *to, remaints; |
| |
| if (bb->il.rtl->header) |
| { |
| next = BB_HEAD (bb); |
| if (prev) |
| NEXT_INSN (prev) = bb->il.rtl->header; |
| else |
| set_first_insn (bb->il.rtl->header); |
| PREV_INSN (bb->il.rtl->header) = prev; |
| insn = bb->il.rtl->header; |
| while (NEXT_INSN (insn)) |
| insn = NEXT_INSN (insn); |
| NEXT_INSN (insn) = next; |
| PREV_INSN (next) = insn; |
| } |
| next = NEXT_INSN (BB_END (bb)); |
| if (bb->il.rtl->footer) |
| { |
| insn = bb->il.rtl->footer; |
| while (insn) |
| { |
| if (BARRIER_P (insn)) |
| { |
| if (PREV_INSN (insn)) |
| NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn); |
| else |
| bb->il.rtl->footer = NEXT_INSN (insn); |
| if (NEXT_INSN (insn)) |
| PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn); |
| } |
| if (LABEL_P (insn)) |
| break; |
| insn = NEXT_INSN (insn); |
| } |
| if (bb->il.rtl->footer) |
| { |
| insn = BB_END (bb); |
| NEXT_INSN (insn) = bb->il.rtl->footer; |
| PREV_INSN (bb->il.rtl->footer) = insn; |
| while (NEXT_INSN (insn)) |
| insn = NEXT_INSN (insn); |
| NEXT_INSN (insn) = next; |
| if (next) |
| PREV_INSN (next) = insn; |
| else |
| set_last_insn (insn); |
| } |
| } |
| if (bb->next_bb != EXIT_BLOCK_PTR) |
| to = &bb->next_bb->il.rtl->header; |
| else |
| to = &cfg_layout_function_footer; |
| |
| rtl_delete_block (bb); |
| |
| if (prev) |
| prev = NEXT_INSN (prev); |
| else |
| prev = get_insns (); |
| if (next) |
| next = PREV_INSN (next); |
| else |
| next = get_last_insn (); |
| |
| if (next && NEXT_INSN (next) != prev) |
| { |
| remaints = unlink_insn_chain (prev, next); |
| insn = remaints; |
| while (NEXT_INSN (insn)) |
| insn = NEXT_INSN (insn); |
| NEXT_INSN (insn) = *to; |
| if (*to) |
| PREV_INSN (*to) = insn; |
| *to = remaints; |
| } |
| } |
| |
| /* Return true when blocks A and B can be safely merged. */ |
| |
| static bool |
| cfg_layout_can_merge_blocks_p (basic_block a, basic_block b) |
| { |
| /* If we are partitioning hot/cold basic blocks, we don't want to |
| mess up unconditional or indirect jumps that cross between hot |
| and cold sections. |
| |
| Basic block partitioning may result in some jumps that appear to |
| be optimizable (or blocks that appear to be mergeable), but which really |
| must be left untouched (they are required to make it safely across |
| partition boundaries). See the comments at the top of |
| bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */ |
| |
| if (BB_PARTITION (a) != BB_PARTITION (b)) |
| return false; |
| |
| /* There must be exactly one edge in between the blocks. */ |
| return (single_succ_p (a) |
| && single_succ (a) == b |
| && single_pred_p (b) == 1 |
| && a != b |
| /* Must be simple edge. */ |
| && !(single_succ_edge (a)->flags & EDGE_COMPLEX) |
| && a != ENTRY_BLOCK_PTR && b != EXIT_BLOCK_PTR |
| /* If the jump insn has side effects, we can't kill the edge. |
| When not optimizing, try_redirect_by_replacing_jump will |
| not allow us to redirect an edge by replacing a table jump. */ |
| && (!JUMP_P (BB_END (a)) |
| || ((!optimize || reload_completed) |
| ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a))))); |
| } |
| |
| /* Merge block A and B. The blocks must be mergeable. */ |
| |
| static void |
| cfg_layout_merge_blocks (basic_block a, basic_block b) |
| { |
| #ifdef ENABLE_CHECKING |
| gcc_assert (cfg_layout_can_merge_blocks_p (a, b)); |
| #endif |
| |
| if (dump_file) |
| fprintf (dump_file, "merging block %d into block %d\n", b->index, a->index); |
| |
| /* If there was a CODE_LABEL beginning B, delete it. */ |
| if (LABEL_P (BB_HEAD (b))) |
| { |
| /* This might have been an EH label that no longer has incoming |
| EH edges. Update data structures to match. */ |
| maybe_remove_eh_handler (BB_HEAD (b)); |
| |
| delete_insn (BB_HEAD (b)); |
| } |
| |
| /* We should have fallthru edge in a, or we can do dummy redirection to get |
| it cleaned up. */ |
| if (JUMP_P (BB_END (a))) |
| try_redirect_by_replacing_jump (EDGE_SUCC (a, 0), b, true); |
| gcc_assert (!JUMP_P (BB_END (a))); |
| |
| /* When not optimizing and the edge is the only place in RTL which holds |
| some unique locus, emit a nop with that locus in between. */ |
| if (!optimize && EDGE_SUCC (a, 0)->goto_locus) |
| { |
| rtx insn = BB_END (a), end = PREV_INSN (BB_HEAD (a)); |
| int goto_locus = EDGE_SUCC (a, 0)->goto_locus; |
| |
| while (insn != end && (!INSN_P (insn) || INSN_LOCATOR (insn) == 0)) |
| insn = PREV_INSN (insn); |
| if (insn != end && locator_eq (INSN_LOCATOR (insn), goto_locus)) |
| goto_locus = 0; |
| else |
| { |
| insn = BB_HEAD (b); |
| end = NEXT_INSN (BB_END (b)); |
| while (insn != end && !INSN_P (insn)) |
| insn = NEXT_INSN (insn); |
| if (insn != end && INSN_LOCATOR (insn) != 0 |
| && locator_eq (INSN_LOCATOR (insn), goto_locus)) |
| goto_locus = 0; |
| } |
| if (goto_locus) |
| { |
| BB_END (a) = emit_insn_after_noloc (gen_nop (), BB_END (a), a); |
| INSN_LOCATOR (BB_END (a)) = goto_locus; |
| } |
| } |
| |
| /* Possible line number notes should appear in between. */ |
| if (b->il.rtl->header) |
| { |
| rtx first = BB_END (a), last; |
| |
| last = emit_insn_after_noloc (b->il.rtl->header, BB_END (a), a); |
| delete_insn_chain (NEXT_INSN (first), last, false); |
| b->il.rtl->header = NULL; |
| } |
| |
| /* In the case basic blocks are not adjacent, move them around. */ |
| if (NEXT_INSN (BB_END (a)) != BB_HEAD (b)) |
| { |
| rtx first = unlink_insn_chain (BB_HEAD (b), BB_END (b)); |
| |
| emit_insn_after_noloc (first, BB_END (a), a); |
| /* Skip possible DELETED_LABEL insn. */ |
| if (!NOTE_INSN_BASIC_BLOCK_P (first)) |
| first = NEXT_INSN (first); |
| gcc_assert (NOTE_INSN_BASIC_BLOCK_P (first)); |
| BB_HEAD (b) = NULL; |
| |
| /* emit_insn_after_noloc doesn't call df_insn_change_bb. |
| We need to explicitly call. */ |
| update_bb_for_insn_chain (NEXT_INSN (first), |
| BB_END (b), |
| a); |
| |
| delete_insn (first); |
| } |
| /* Otherwise just re-associate the instructions. */ |
| else |
| { |
| rtx insn; |
| |
| update_bb_for_insn_chain (BB_HEAD (b), BB_END (b), a); |
| |
| insn = BB_HEAD (b); |
| /* Skip possible DELETED_LABEL insn. */ |
| if (!NOTE_INSN_BASIC_BLOCK_P (insn)) |
| insn = NEXT_INSN (insn); |
| gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn)); |
| BB_HEAD (b) = NULL; |
| BB_END (a) = BB_END (b); |
| delete_insn (insn); |
| } |
| |
| df_bb_delete (b->index); |
| |
| /* Possible tablejumps and barriers should appear after the block. */ |
| if (b->il.rtl->footer) |
| { |
| if (!a->il.rtl->footer) |
| a->il.rtl->footer = b->il.rtl->footer; |
| else |
| { |
| rtx last = a->il.rtl->footer; |
| |
| while (NEXT_INSN (last)) |
| last = NEXT_INSN (last); |
| NEXT_INSN (last) = b->il.rtl->footer; |
| PREV_INSN (b->il.rtl->footer) = last; |
| } |
| b->il.rtl->footer = NULL; |
| } |
| |
| if (dump_file) |
| fprintf (dump_file, "Merged blocks %d and %d.\n", |
| a->index, b->index); |
| } |
| |
| /* Split edge E. */ |
| |
| static basic_block |
| cfg_layout_split_edge (edge e) |
| { |
| basic_block new_bb = |
| create_basic_block (e->src != ENTRY_BLOCK_PTR |
| ? NEXT_INSN (BB_END (e->src)) : get_insns (), |
| NULL_RTX, e->src); |
| |
| if (e->dest == EXIT_BLOCK_PTR) |
| BB_COPY_PARTITION (new_bb, e->src); |
| else |
| BB_COPY_PARTITION (new_bb, e->dest); |
| make_edge (new_bb, e->dest, EDGE_FALLTHRU); |
| redirect_edge_and_branch_force (e, new_bb); |
| |
| return new_bb; |
| } |
| |
| /* Do postprocessing after making a forwarder block joined by edge FALLTHRU. */ |
| |
| static void |
| rtl_make_forwarder_block (edge fallthru ATTRIBUTE_UNUSED) |
| { |
| } |
| |
| /* Return 1 if BB ends with a call, possibly followed by some |
| instructions that must stay with the call, 0 otherwise. */ |
| |
| static bool |
| rtl_block_ends_with_call_p (basic_block bb) |
| { |
| rtx insn = BB_END (bb); |
| |
| while (!CALL_P (insn) |
| && insn != BB_HEAD (bb) |
| && (keep_with_call_p (insn) |
| || NOTE_P (insn))) |
| insn = PREV_INSN (insn); |
| return (CALL_P (insn)); |
| } |
| |
| /* Return 1 if BB ends with a conditional branch, 0 otherwise. */ |
| |
| static bool |
| rtl_block_ends_with_condjump_p (const_basic_block bb) |
| { |
| return any_condjump_p (BB_END (bb)); |
| } |
| |
| /* Return true if we need to add fake edge to exit. |
| Helper function for rtl_flow_call_edges_add. */ |
| |
| static bool |
| need_fake_edge_p (const_rtx insn) |
| { |
| if (!INSN_P (insn)) |
| return false; |
| |
| if ((CALL_P (insn) |
| && !SIBLING_CALL_P (insn) |
| && !find_reg_note (insn, REG_NORETURN, NULL) |
| && !(RTL_CONST_OR_PURE_CALL_P (insn)))) |
| return true; |
| |
| return ((GET_CODE (PATTERN (insn)) == ASM_OPERANDS |
| && MEM_VOLATILE_P (PATTERN (insn))) |
| || (GET_CODE (PATTERN (insn)) == PARALLEL |
| && asm_noperands (insn) != -1 |
| && MEM_VOLATILE_P (XVECEXP (PATTERN (insn), 0, 0))) |
| || GET_CODE (PATTERN (insn)) == ASM_INPUT); |
| } |
| |
| /* Add fake edges to the function exit for any non constant and non noreturn |
| calls, volatile inline assembly in the bitmap of blocks specified by |
| BLOCKS or to the whole CFG if BLOCKS is zero. Return the number of blocks |
| that were split. |
| |
| The goal is to expose cases in which entering a basic block does not imply |
| that all subsequent instructions must be executed. */ |
| |
| static int |
| rtl_flow_call_edges_add (sbitmap blocks) |
| { |
| int i; |
| int blocks_split = 0; |
| int last_bb = last_basic_block; |
| bool check_last_block = false; |
| |
| if (n_basic_blocks == NUM_FIXED_BLOCKS) |
| return 0; |
| |
| if (! blocks) |
| check_last_block = true; |
| else |
| check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index); |
| |
| /* In the last basic block, before epilogue generation, there will be |
| a fallthru edge to EXIT. Special care is required if the last insn |
| of the last basic block is a call because make_edge folds duplicate |
| edges, which would result in the fallthru edge also being marked |
| fake, which would result in the fallthru edge being removed by |
| remove_fake_edges, which would result in an invalid CFG. |
| |
| Moreover, we can't elide the outgoing fake edge, since the block |
| profiler needs to take this into account in order to solve the minimal |
| spanning tree in the case that the call doesn't return. |
| |
| Handle this by adding a dummy instruction in a new last basic block. */ |
| if (check_last_block) |
| { |
| basic_block bb = EXIT_BLOCK_PTR->prev_bb; |
| rtx insn = BB_END (bb); |
| |
| /* Back up past insns that must be kept in the same block as a call. */ |
| while (insn != BB_HEAD (bb) |
| && keep_with_call_p (insn)) |
| insn = PREV_INSN (insn); |
| |
| if (need_fake_edge_p (insn)) |
| { |
| edge e; |
| |
| e = find_edge (bb, EXIT_BLOCK_PTR); |
| if (e) |
| { |
| insert_insn_on_edge (gen_use (const0_rtx), e); |
| commit_edge_insertions (); |
| } |
| } |
| } |
| |
| /* Now add fake edges to the function exit for any non constant |
| calls since there is no way that we can determine if they will |
| return or not... */ |
| |
| for (i = NUM_FIXED_BLOCKS; i < last_bb; i++) |
| { |
| basic_block bb = BASIC_BLOCK (i); |
| rtx insn; |
| rtx prev_insn; |
| |
| if (!bb) |
| continue; |
| |
| if (blocks && !TEST_BIT (blocks, i)) |
| continue; |
| |
| for (insn = BB_END (bb); ; insn = prev_insn) |
| { |
| prev_insn = PREV_INSN (insn); |
| if (need_fake_edge_p (insn)) |
| { |
| edge e; |
| rtx split_at_insn = insn; |
| |
| /* Don't split the block between a call and an insn that should |
| remain in the same block as the call. */ |
| if (CALL_P (insn)) |
| while (split_at_insn != BB_END (bb) |
| && keep_with_call_p (NEXT_INSN (split_at_insn))) |
| split_at_insn = NEXT_INSN (split_at_insn); |
| |
| /* The handling above of the final block before the epilogue |
| should be enough to verify that there is no edge to the exit |
| block in CFG already. Calling make_edge in such case would |
| cause us to mark that edge as fake and remove it later. */ |
| |
| #ifdef ENABLE_CHECKING |
| if (split_at_insn == BB_END (bb)) |
| { |
| e = find_edge (bb, EXIT_BLOCK_PTR); |
| gcc_assert (e == NULL); |
| } |
| #endif |
| |
| /* Note that the following may create a new basic block |
| and renumber the existing basic blocks. */ |
| if (split_at_insn != BB_END (bb)) |
| { |
| e = split_block (bb, split_at_insn); |
| if (e) |
| blocks_split++; |
| } |
| |
| make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE); |
| } |
| |
| if (insn == BB_HEAD (bb)) |
| break; |
| } |
| } |
| |
| if (blocks_split) |
| verify_flow_info (); |
| |
| return blocks_split; |
| } |
| |
| /* Add COMP_RTX as a condition at end of COND_BB. FIRST_HEAD is |
| the conditional branch target, SECOND_HEAD should be the fall-thru |
| there is no need to handle this here the loop versioning code handles |
| this. the reason for SECON_HEAD is that it is needed for condition |
| in trees, and this should be of the same type since it is a hook. */ |
| static void |
| rtl_lv_add_condition_to_bb (basic_block first_head , |
| basic_block second_head ATTRIBUTE_UNUSED, |
| basic_block cond_bb, void *comp_rtx) |
| { |
| rtx label, seq, jump; |
| rtx op0 = XEXP ((rtx)comp_rtx, 0); |
| rtx op1 = XEXP ((rtx)comp_rtx, 1); |
| enum rtx_code comp = GET_CODE ((rtx)comp_rtx); |
| enum machine_mode mode; |
| |
| |
| label = block_label (first_head); |
| mode = GET_MODE (op0); |
| if (mode == VOIDmode) |
| mode = GET_MODE (op1); |
| |
| start_sequence (); |
| op0 = force_operand (op0, NULL_RTX); |
| op1 = force_operand (op1, NULL_RTX); |
| do_compare_rtx_and_jump (op0, op1, comp, 0, |
| mode, NULL_RTX, NULL_RTX, label); |
| jump = get_last_insn (); |
| JUMP_LABEL (jump) = label; |
| LABEL_NUSES (label)++; |
| seq = get_insns (); |
| end_sequence (); |
| |
| /* Add the new cond , in the new head. */ |
| emit_insn_after(seq, BB_END(cond_bb)); |
| } |
| |
| |
| /* Given a block B with unconditional branch at its end, get the |
| store the return the branch edge and the fall-thru edge in |
| BRANCH_EDGE and FALLTHRU_EDGE respectively. */ |
| static void |
| rtl_extract_cond_bb_edges (basic_block b, edge *branch_edge, |
| edge *fallthru_edge) |
| { |
| edge e = EDGE_SUCC (b, 0); |
| |
| if (e->flags & EDGE_FALLTHRU) |
| { |
| *fallthru_edge = e; |
| *branch_edge = EDGE_SUCC (b, 1); |
| } |
| else |
| { |
| *branch_edge = e; |
| *fallthru_edge = EDGE_SUCC (b, 1); |
| } |
| } |
| |
| void |
| init_rtl_bb_info (basic_block bb) |
| { |
| gcc_assert (!bb->il.rtl); |
| bb->il.rtl = GGC_CNEW (struct rtl_bb_info); |
| } |
| |
| |
| /* Add EXPR to the end of basic block BB. */ |
| |
| rtx |
| insert_insn_end_bb_new (rtx pat, basic_block bb) |
| { |
| rtx insn = BB_END (bb); |
| rtx new_insn; |
| rtx pat_end = pat; |
| |
| while (NEXT_INSN (pat_end) != NULL_RTX) |
| pat_end = NEXT_INSN (pat_end); |
| |
| /* If the last insn is a jump, insert EXPR in front [taking care to |
| handle cc0, etc. properly]. Similarly we need to care trapping |
| instructions in presence of non-call exceptions. */ |
| |
| if (JUMP_P (insn) |
| || (NONJUMP_INSN_P (insn) |
| && (!single_succ_p (bb) |
| || single_succ_edge (bb)->flags & EDGE_ABNORMAL))) |
| { |
| #ifdef HAVE_cc0 |
| rtx note; |
| #endif |
| /* If this is a jump table, then we can't insert stuff here. Since |
| we know the previous real insn must be the tablejump, we insert |
| the new instruction just before the tablejump. */ |
| if (GET_CODE (PATTERN (insn)) == ADDR_VEC |
| || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC) |
| insn = prev_real_insn (insn); |
| |
| #ifdef HAVE_cc0 |
| /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts |
| if cc0 isn't set. */ |
| note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX); |
| if (note) |
| insn = XEXP (note, 0); |
| else |
| { |
| rtx maybe_cc0_setter = prev_nonnote_insn (insn); |
| if (maybe_cc0_setter |
| && INSN_P (maybe_cc0_setter) |
| && sets_cc0_p (PATTERN (maybe_cc0_setter))) |
| insn = maybe_cc0_setter; |
| } |
| #endif |
| /* FIXME: What if something in cc0/jump uses value set in new |
| insn? */ |
| new_insn = emit_insn_before_noloc (pat, insn, bb); |
| } |
| |
| /* Likewise if the last insn is a call, as will happen in the presence |
| of exception handling. */ |
| else if (CALL_P (insn) |
| && (!single_succ_p (bb) |
| || single_succ_edge (bb)->flags & EDGE_ABNORMAL)) |
| { |
| /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers, |
| we search backward and place the instructions before the first |
| parameter is loaded. Do this for everyone for consistency and a |
| presumption that we'll get better code elsewhere as well. */ |
| |
| /* Since different machines initialize their parameter registers |
| in different orders, assume nothing. Collect the set of all |
| parameter registers. */ |
| insn = find_first_parameter_load (insn, BB_HEAD (bb)); |
| |
| /* If we found all the parameter loads, then we want to insert |
| before the first parameter load. |
| |
| If we did not find all the parameter loads, then we might have |
| stopped on the head of the block, which could be a CODE_LABEL. |
| If we inserted before the CODE_LABEL, then we would be putting |
| the insn in the wrong basic block. In that case, put the insn |
| after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */ |
| while (LABEL_P (insn) |
| || NOTE_INSN_BASIC_BLOCK_P (insn)) |
| insn = NEXT_INSN (insn); |
| |
| new_insn = emit_insn_before_noloc (pat, insn, bb); |
| } |
| else |
| new_insn = emit_insn_after_noloc (pat, insn, bb); |
| |
| return new_insn; |
| } |
| |
| /* Returns true if it is possible to remove edge E by redirecting |
| it to the destination of the other edge from E->src. */ |
| |
| static bool |
| rtl_can_remove_branch_p (const_edge e) |
| { |
| const_basic_block src = e->src; |
| const_basic_block target = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest; |
| const_rtx insn = BB_END (src), set; |
| |
| /* The conditions are taken from try_redirect_by_replacing_jump. */ |
| if (target == EXIT_BLOCK_PTR) |
| return false; |
| |
| if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH)) |
| return false; |
| |
| if (find_reg_note (insn, REG_CROSSING_JUMP, NULL_RTX) |
| || BB_PARTITION (src) != BB_PARTITION (target)) |
| return false; |
| |
| if (!onlyjump_p (insn) |
| || tablejump_p (insn, NULL, NULL)) |
| return false; |
| |
| set = single_set (insn); |
| if (!set || side_effects_p (set)) |
| return false; |
| |
| return true; |
| } |
| |
| /* Implementation of CFG manipulation for linearized RTL. */ |
| struct cfg_hooks rtl_cfg_hooks = { |
| "rtl", |
| rtl_verify_flow_info, |
| rtl_dump_bb, |
| rtl_create_basic_block, |
| rtl_redirect_edge_and_branch, |
| rtl_redirect_edge_and_branch_force, |
| rtl_can_remove_branch_p, |
| rtl_delete_block, |
| rtl_split_block, |
| rtl_move_block_after, |
| rtl_can_merge_blocks, /* can_merge_blocks_p */ |
| rtl_merge_blocks, |
| rtl_predict_edge, |
| rtl_predicted_by_p, |
| NULL, /* can_duplicate_block_p */ |
| NULL, /* duplicate_block */ |
| rtl_split_edge, |
| rtl_make_forwarder_block, |
| rtl_tidy_fallthru_edge, |
| rtl_block_ends_with_call_p, |
| rtl_block_ends_with_condjump_p, |
| rtl_flow_call_edges_add, |
| NULL, /* execute_on_growing_pred */ |
| NULL, /* execute_on_shrinking_pred */ |
| NULL, /* duplicate loop for trees */ |
| NULL, /* lv_add_condition_to_bb */ |
| NULL, /* lv_adjust_loop_header_phi*/ |
| NULL, /* extract_cond_bb_edges */ |
| NULL /* flush_pending_stmts */ |
| }; |
| |
| /* Implementation of CFG manipulation for cfg layout RTL, where |
| basic block connected via fallthru edges does not have to be adjacent. |
| This representation will hopefully become the default one in future |
| version of the compiler. */ |
| |
| /* We do not want to declare these functions in a header file, since they |
| should only be used through the cfghooks interface, and we do not want to |
| move them here since it would require also moving quite a lot of related |
| code. They are in cfglayout.c. */ |
| extern bool cfg_layout_can_duplicate_bb_p (const_basic_block); |
| extern basic_block cfg_layout_duplicate_bb (basic_block); |
| |
| struct cfg_hooks cfg_layout_rtl_cfg_hooks = { |
| "cfglayout mode", |
| rtl_verify_flow_info_1, |
| rtl_dump_bb, |
| cfg_layout_create_basic_block, |
| cfg_layout_redirect_edge_and_branch, |
| cfg_layout_redirect_edge_and_branch_force, |
| rtl_can_remove_branch_p, |
| cfg_layout_delete_block, |
| cfg_layout_split_block, |
| rtl_move_block_after, |
| cfg_layout_can_merge_blocks_p, |
| cfg_layout_merge_blocks, |
| rtl_predict_edge, |
| rtl_predicted_by_p, |
| cfg_layout_can_duplicate_bb_p, |
| cfg_layout_duplicate_bb, |
| cfg_layout_split_edge, |
| rtl_make_forwarder_block, |
| NULL, |
| rtl_block_ends_with_call_p, |
| rtl_block_ends_with_condjump_p, |
| rtl_flow_call_edges_add, |
| NULL, /* execute_on_growing_pred */ |
| NULL, /* execute_on_shrinking_pred */ |
| duplicate_loop_to_header_edge, /* duplicate loop for trees */ |
| rtl_lv_add_condition_to_bb, /* lv_add_condition_to_bb */ |
| NULL, /* lv_adjust_loop_header_phi*/ |
| rtl_extract_cond_bb_edges, /* extract_cond_bb_edges */ |
| NULL /* flush_pending_stmts */ |
| }; |