;; For the internal conditional math routines:

;; operand 0 is always the result ;; operand 1 is always the predicate ;; operand 2, 3, and sometimes 4 are the input values. ;; operand 4 or 5 is the floating point status register to use. ;; operand 5 or 6 is the rounding to do. (0 = single, 1 = double, 2 = none) ;; ;; addrf3_cond - F0 = F2 + F3 ;; subrf3_cond - F0 = F2 - F3 ;; mulrf3_cond - F0 = F2 * F3 ;; nmulrf3_cond - F0 = - (F2 * F3) ;; m1addrf4_cond - F0 = (F2 * F3) + F4 ;; m1subrf4_cond - F0 = (F2 * F3) - F4 ;; m2addrf4_cond - F0 = F2 + (F3 * F4) ;; m2subrf4_cond - F0 = F2 - (F3 * F4)

;; Basic plus/minus/mult operations

(define_insn “addrf3_cond” [(set (match_operand:RF 0 “fr_register_operand” “=f,f”) (if_then_else:RF (ne:RF (match_operand:BI 1 “register_operand” “c,c”) (const_int 0)) (plus:RF (match_operand:RF 2 “fr_reg_or_fp01_operand” “fG,fG”) (match_operand:RF 3 “fr_reg_or_fp01_operand” “fG,fG”)) (match_operand:RF 4 “fr_reg_or_0_operand” “0,H”))) (use (match_operand:SI 5 “const_int_operand” "")) (use (match_operand:SI 6 “const_int_operand” ""))] "" “(%1) fadd%R6.s%5 %0 = %F2, %F3” [(set_attr “itanium_class” “fmac”) (set_attr “predicable” “no”)])

(define_insn “subrf3_cond” [(set (match_operand:RF 0 “fr_register_operand” “=f,f”) (if_then_else:RF (ne:RF (match_operand:BI 1 “register_operand” “c,c”) (const_int 0)) (minus:RF (match_operand:RF 2 “fr_reg_or_fp01_operand” “fG,fG”) (match_operand:RF 3 “fr_reg_or_fp01_operand” “fG,fG”)) (match_operand:RF 4 “fr_reg_or_0_operand” “0,H”))) (use (match_operand:SI 5 “const_int_operand” "")) (use (match_operand:SI 6 “const_int_operand” ""))] "" “(%1) fsub%R6.s%5 %0 = %F2, %F3” [(set_attr “itanium_class” “fmac”) (set_attr “predicable” “no”)])

(define_insn “mulrf3_cond” [(set (match_operand:RF 0 “fr_register_operand” “=f,f”) (if_then_else:RF (ne:RF (match_operand:BI 1 “register_operand” “c,c”) (const_int 0)) (mult:RF (match_operand:RF 2 “fr_reg_or_fp01_operand” “fG,fG”) (match_operand:RF 3 “fr_reg_or_fp01_operand” “fG,fG”)) (match_operand:RF 4 “fr_reg_or_0_operand” “0,H”))) (use (match_operand:SI 5 “const_int_operand” "")) (use (match_operand:SI 6 “const_int_operand” ""))] "" “(%1) fmpy%R6.s%5 %0 = %F2, %F3” [(set_attr “itanium_class” “fmac”) (set_attr “predicable” “no”)])

;; neg-mult operation

(define_insn “nmulrf3_cond” [(set (match_operand:RF 0 “fr_register_operand” “=f,f”) (if_then_else:RF (ne:RF (match_operand:BI 1 “register_operand” “c,c”) (const_int 0)) (neg:RF (mult:RF (match_operand:RF 2 “fr_reg_or_fp01_operand” “fG,fG”) (match_operand:RF 3 “fr_reg_or_fp01_operand” “fG,fG”))) (match_operand:RF 4 “fr_reg_or_0_operand” “0,H”))) (use (match_operand:SI 5 “const_int_operand” "")) (use (match_operand:SI 6 “const_int_operand” ""))] "" “(%1) fnmpy%R6.s%5 %0 = %F2, %F3” [(set_attr “itanium_class” “fmac”) (set_attr “predicable” “no”)])

;; add-mult/sub-mult operations (mult as op1)

(define_insn “m1addrf4_cond” [(set (match_operand:RF 0 “fr_register_operand” “=f,f”) (if_then_else:RF (ne:RF (match_operand:BI 1 “register_operand” “c,c”) (const_int 0)) (plus:RF (mult:RF (match_operand:RF 2 “fr_reg_or_fp01_operand” “fG,fG”) (match_operand:RF 3 “fr_reg_or_fp01_operand” “fG,fG”)) (match_operand:RF 4 “fr_reg_or_fp01_operand” “fG,fG”)) (match_operand:RF 5 “fr_reg_or_0_operand” “0,H”))) (use (match_operand:SI 6 “const_int_operand” "")) (use (match_operand:SI 7 “const_int_operand” ""))] "" “(%1) fma%R7.s%6 %0 = %F2, %F3, %F4” [(set_attr “itanium_class” “fmac”) (set_attr “predicable” “no”)])

(define_insn “m1subrf4_cond” [(set (match_operand:RF 0 “fr_register_operand” “=f,f”) (if_then_else:RF (ne:RF (match_operand:BI 1 “register_operand” “c,c”) (const_int 0)) (minus:RF (mult:RF (match_operand:RF 2 “fr_reg_or_fp01_operand” “fG,fG”) (match_operand:RF 3 “fr_reg_or_fp01_operand” “fG,fG”)) (match_operand:RF 4 “fr_reg_or_fp01_operand” “fG,fG”)) (match_operand:RF 5 “fr_reg_or_0_operand” “0,H”))) (use (match_operand:SI 6 “const_int_operand” "")) (use (match_operand:SI 7 “const_int_operand” ""))] "" “(%1) fms%R7.s%6 %0 = %F2, %F3, %F4” [(set_attr “itanium_class” “fmac”) (set_attr “predicable” “no”)])

;; add-mult/sub-mult operations (mult as op2)

(define_insn “m2addrf4_cond” [(set (match_operand:RF 0 “fr_register_operand” “=f,f”) (if_then_else:RF (ne:RF (match_operand:BI 1 “register_operand” “c,c”) (const_int 0)) (plus:RF (match_operand:RF 2 “fr_reg_or_fp01_operand” “fG,fG”) (mult:RF (match_operand:RF 3 “fr_reg_or_fp01_operand” “fG,fG”) (match_operand:RF 4 “fr_reg_or_fp01_operand” “fG,fG”))) (match_operand:RF 5 “fr_reg_or_0_operand” “0,H”))) (use (match_operand:SI 6 “const_int_operand” "")) (use (match_operand:SI 7 “const_int_operand” ""))] "" “(%1) fma%R7.s%6 %0 = %F3, %F4, %F2” [(set_attr “itanium_class” “fmac”) (set_attr “predicable” “no”)])

(define_insn “m2subrf4_cond” [(set (match_operand:RF 0 “fr_register_operand” “=f,f”) (if_then_else:RF (ne:RF (match_operand:BI 1 “register_operand” “c,c”) (const_int 0)) (minus:RF (match_operand:RF 2 “fr_reg_or_fp01_operand” “fG,fG”) (mult:RF (match_operand:RF 3 “fr_reg_or_fp01_operand” “fG,fG”) (match_operand:RF 4 “fr_reg_or_fp01_operand” “fG,fG”))) (match_operand:RF 5 “fr_reg_or_0_operand” “0,H”))) (use (match_operand:SI 6 “const_int_operand” "")) (use (match_operand:SI 7 “const_int_operand” ""))] "" “(%1) fnma%R7.s%6 %0 = %F3, %F4, %F2” [(set_attr “itanium_class” “fmac”) (set_attr “predicable” “no”)])

;; Conversions to/from RF and SF/DF/XF ;; These conversions should not generate any code but make it possible ;; for all the instructions used to implement floating point division ;; to be written for RFmode only and to not have to handle multiple ;; modes or to have to handle a register in more than one mode.

(define_mode_iterator SDX_F [SF DF XF])

(define_insn “extendrf2” [(set (match_operand:RF 0 “fr_register_operand” “=f”) (float_extend:RF (match_operand:SDX_F 1 “fr_register_operand” “f”)))] "" “#” [(set_attr “itanium_class” “fmisc”) (set_attr “predicable” “yes”)])

(define_split [(set (match_operand:RF 0 “fr_register_operand” "") (float_extend:RF (match_operand:SDX_F 1 “fr_register_operand” "")))] “reload_completed” [(set (match_dup 0) (match_dup 2))] { operands[2] = gen_rtx_REG (RFmode, REGNO (operands[1])); })

(define_insn “truncrf2” [(set (match_operand:SDX_F 0 “fr_register_operand” “=f”) (float_truncate:SDX_F (match_operand:RF 1 “fr_register_operand” “f”)))] "" “#” [(set_attr “itanium_class” “fmisc”) (set_attr “predicable” “yes”)])

(define_split [(set (match_operand:SDX_F 0 “fr_register_operand” "") (float_truncate:SDX_F (match_operand:RF 1 “fr_register_operand” "")))] “reload_completed” [(set (match_dup 0) (match_dup 2))] { operands[2] = gen_rtx_REG (mode, REGNO (operands[1])); })

;; Reciprocal approximation

(define_insn “recip_approx_rf” [(set (match_operand:RF 0 “fr_register_operand” “=f”) (unspec:RF [(match_operand:RF 1 “fr_register_operand” “f”) (match_operand:RF 2 “fr_register_operand” “f”)] UNSPEC_FR_RECIP_APPROX_RES)) (set (match_operand:BI 3 “register_operand” “=c”) (unspec:BI [(match_dup 1) (match_dup 2)] UNSPEC_FR_RECIP_APPROX)) (use (match_operand:SI 4 “const_int_operand” ""))] "" “frcpa.s%4 %0, %3 = %1, %2” [(set_attr “itanium_class” “fmisc”) (set_attr “predicable” “no”)])

;; Single precision floating point division (maximum throughput algorithm).

(define_expand “divsf3_internal_thr” [(set (match_operand:SF 0 “fr_register_operand” "") (div:SF (match_operand:SF 1 “fr_register_operand” "") (match_operand:SF 2 “fr_register_operand” "")))] “TARGET_INLINE_FLOAT_DIV” { rtx y = gen_reg_rtx (RFmode); rtx a = gen_reg_rtx (RFmode); rtx b = gen_reg_rtx (RFmode); rtx e = gen_reg_rtx (RFmode); rtx y1 = gen_reg_rtx (RFmode); rtx y2 = gen_reg_rtx (RFmode); rtx q = gen_reg_rtx (RFmode); rtx r = gen_reg_rtx (RFmode); rtx q_res = gen_reg_rtx (RFmode); rtx cond = gen_reg_rtx (BImode); rtx zero = CONST0_RTX (RFmode); rtx one = CONST1_RTX (RFmode); rtx status0 = CONST0_RTX (SImode); rtx status1 = CONST1_RTX (SImode); rtx trunc_sgl = CONST0_RTX (SImode); rtx trunc_off = CONST2_RTX (SImode);

/* Empty conversions to put inputs into RFmode. / emit_insn (gen_extendsfrf2 (a, operands[1])); emit_insn (gen_extendsfrf2 (b, operands[2])); / y = 1 / b / emit_insn (gen_recip_approx_rf (y, a, b, cond, status0)); / e = 1 - (b * y) / emit_insn (gen_m2subrf4_cond (e, cond, one, b, y, zero, status1, trunc_off)); / y1 = y + (y * e) / emit_insn (gen_m2addrf4_cond (y1, cond, y, y, e, zero, status1, trunc_off)); / y2 = y + (y1 * e) / emit_insn (gen_m2addrf4_cond (y2, cond, y, y1, e, zero, status1, trunc_off)); / q = single(a * y2) / emit_insn (gen_mulrf3_cond (q, cond, a, y2, zero, status1, trunc_sgl)); / r = a - (q * b) / emit_insn (gen_m2subrf4_cond (r, cond, a, q, b, zero, status1, trunc_off)); / Q = single (q + (r * y2)) / emit_insn (gen_m2addrf4_cond (q_res, cond, q, r, y2, y, status0, trunc_sgl)); / Conversion back into SFmode. */ emit_insn (gen_truncrfsf2 (operands[0], q_res)); DONE; })

;; Double precision floating point division (maximum throughput algorithm).

(define_expand “divdf3_internal_thr” [(set (match_operand:DF 0 “fr_register_operand” "") (div:DF (match_operand:DF 1 “fr_register_operand” "") (match_operand:DF 2 “fr_register_operand” "")))] “TARGET_INLINE_FLOAT_DIV” { rtx q_res = gen_reg_rtx (RFmode); rtx a = gen_reg_rtx (RFmode); rtx b = gen_reg_rtx (RFmode); rtx y = gen_reg_rtx (RFmode); rtx e = gen_reg_rtx (RFmode); rtx y1 = gen_reg_rtx (RFmode); rtx e1 = gen_reg_rtx (RFmode); rtx y2 = gen_reg_rtx (RFmode); rtx e2 = gen_reg_rtx (RFmode); rtx y3 = gen_reg_rtx (RFmode); rtx q = gen_reg_rtx (RFmode); rtx r = gen_reg_rtx (RFmode); rtx cond = gen_reg_rtx (BImode); rtx zero = CONST0_RTX (RFmode); rtx one = CONST1_RTX (RFmode); rtx status0 = CONST0_RTX (SImode); rtx status1 = CONST1_RTX (SImode); rtx trunc_dbl = CONST1_RTX (SImode); rtx trunc_off = CONST2_RTX (SImode); /* Empty conversions to put inputs into RFmode / emit_insn (gen_extenddfrf2 (a, operands[1])); emit_insn (gen_extenddfrf2 (b, operands[2])); / y = 1 / b / emit_insn (gen_recip_approx_rf (y, a, b, cond, status0)); / e = 1 - (b * y) / emit_insn (gen_m2subrf4_cond (e, cond, one, b, y, zero, status1, trunc_off)); / y1 = y + (y * e) / emit_insn (gen_m2addrf4_cond (y1, cond, y, y, e, zero, status1, trunc_off)); / e1 = e * e / emit_insn (gen_mulrf3_cond (e1, cond, e, e, zero, status1, trunc_off)); / y2 = y1 + (y1 * e1) / emit_insn (gen_m2addrf4_cond (y2, cond, y1, y1, e1, zero, status1, trunc_off)); / e2 = e1 * e1 / emit_insn (gen_mulrf3_cond (e2, cond, e1, e1, zero, status1, trunc_off)); / y3 = y2 + (y2 * e2) / emit_insn (gen_m2addrf4_cond (y3, cond, y2, y2, e2, zero, status1, trunc_off)); / q = double (a * y3) / emit_insn (gen_mulrf3_cond (q, cond, a, y3, zero, status1, trunc_dbl)); / r = a - (b * q) / emit_insn (gen_m2subrf4_cond (r, cond, a, b, q, zero, status1, trunc_off)); / Q = double (q + (r * y3)) / emit_insn (gen_m2addrf4_cond (q_res, cond, q, r, y3, y, status0, trunc_dbl)); / Conversion back into DFmode */ emit_insn (gen_truncrfdf2 (operands[0], q_res)); DONE; })