| /* Loop transformation code generation |
| Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 |
| Free Software Foundation, Inc. |
| Contributed by Daniel Berlin <dberlin@dberlin.org> |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| #include "ggc.h" |
| #include "tree.h" |
| #include "target.h" |
| #include "rtl.h" |
| #include "basic-block.h" |
| #include "diagnostic.h" |
| #include "obstack.h" |
| #include "tree-flow.h" |
| #include "tree-dump.h" |
| #include "timevar.h" |
| #include "cfgloop.h" |
| #include "expr.h" |
| #include "optabs.h" |
| #include "tree-chrec.h" |
| #include "tree-data-ref.h" |
| #include "tree-pass.h" |
| #include "tree-scalar-evolution.h" |
| #include "vec.h" |
| #include "lambda.h" |
| #include "vecprim.h" |
| #include "pointer-set.h" |
| |
| /* This loop nest code generation is based on non-singular matrix |
| math. |
| |
| A little terminology and a general sketch of the algorithm. See "A singular |
| loop transformation framework based on non-singular matrices" by Wei Li and |
| Keshav Pingali for formal proofs that the various statements below are |
| correct. |
| |
| A loop iteration space represents the points traversed by the loop. A point in the |
| iteration space can be represented by a vector of size <loop depth>. You can |
| therefore represent the iteration space as an integral combinations of a set |
| of basis vectors. |
| |
| A loop iteration space is dense if every integer point between the loop |
| bounds is a point in the iteration space. Every loop with a step of 1 |
| therefore has a dense iteration space. |
| |
| for i = 1 to 3, step 1 is a dense iteration space. |
| |
| A loop iteration space is sparse if it is not dense. That is, the iteration |
| space skips integer points that are within the loop bounds. |
| |
| for i = 1 to 3, step 2 is a sparse iteration space, because the integer point |
| 2 is skipped. |
| |
| Dense source spaces are easy to transform, because they don't skip any |
| points to begin with. Thus we can compute the exact bounds of the target |
| space using min/max and floor/ceil. |
| |
| For a dense source space, we take the transformation matrix, decompose it |
| into a lower triangular part (H) and a unimodular part (U). |
| We then compute the auxiliary space from the unimodular part (source loop |
| nest . U = auxiliary space) , which has two important properties: |
| 1. It traverses the iterations in the same lexicographic order as the source |
| space. |
| 2. It is a dense space when the source is a dense space (even if the target |
| space is going to be sparse). |
| |
| Given the auxiliary space, we use the lower triangular part to compute the |
| bounds in the target space by simple matrix multiplication. |
| The gaps in the target space (IE the new loop step sizes) will be the |
| diagonals of the H matrix. |
| |
| Sparse source spaces require another step, because you can't directly compute |
| the exact bounds of the auxiliary and target space from the sparse space. |
| Rather than try to come up with a separate algorithm to handle sparse source |
| spaces directly, we just find a legal transformation matrix that gives you |
| the sparse source space, from a dense space, and then transform the dense |
| space. |
| |
| For a regular sparse space, you can represent the source space as an integer |
| lattice, and the base space of that lattice will always be dense. Thus, we |
| effectively use the lattice to figure out the transformation from the lattice |
| base space, to the sparse iteration space (IE what transform was applied to |
| the dense space to make it sparse). We then compose this transform with the |
| transformation matrix specified by the user (since our matrix transformations |
| are closed under composition, this is okay). We can then use the base space |
| (which is dense) plus the composed transformation matrix, to compute the rest |
| of the transform using the dense space algorithm above. |
| |
| In other words, our sparse source space (B) is decomposed into a dense base |
| space (A), and a matrix (L) that transforms A into B, such that A.L = B. |
| We then compute the composition of L and the user transformation matrix (T), |
| so that T is now a transform from A to the result, instead of from B to the |
| result. |
| IE A.(LT) = result instead of B.T = result |
| Since A is now a dense source space, we can use the dense source space |
| algorithm above to compute the result of applying transform (LT) to A. |
| |
| Fourier-Motzkin elimination is used to compute the bounds of the base space |
| of the lattice. */ |
| |
| static bool perfect_nestify (struct loop *, VEC(tree,heap) *, |
| VEC(tree,heap) *, VEC(int,heap) *, |
| VEC(tree,heap) *); |
| /* Lattice stuff that is internal to the code generation algorithm. */ |
| |
| typedef struct lambda_lattice_s |
| { |
| /* Lattice base matrix. */ |
| lambda_matrix base; |
| /* Lattice dimension. */ |
| int dimension; |
| /* Origin vector for the coefficients. */ |
| lambda_vector origin; |
| /* Origin matrix for the invariants. */ |
| lambda_matrix origin_invariants; |
| /* Number of invariants. */ |
| int invariants; |
| } *lambda_lattice; |
| |
| #define LATTICE_BASE(T) ((T)->base) |
| #define LATTICE_DIMENSION(T) ((T)->dimension) |
| #define LATTICE_ORIGIN(T) ((T)->origin) |
| #define LATTICE_ORIGIN_INVARIANTS(T) ((T)->origin_invariants) |
| #define LATTICE_INVARIANTS(T) ((T)->invariants) |
| |
| static bool lle_equal (lambda_linear_expression, lambda_linear_expression, |
| int, int); |
| static lambda_lattice lambda_lattice_new (int, int, struct obstack *); |
| static lambda_lattice lambda_lattice_compute_base (lambda_loopnest, |
| struct obstack *); |
| |
| static bool can_convert_to_perfect_nest (struct loop *); |
| |
| /* Create a new lambda body vector. */ |
| |
| lambda_body_vector |
| lambda_body_vector_new (int size, struct obstack * lambda_obstack) |
| { |
| lambda_body_vector ret; |
| |
| ret = (lambda_body_vector)obstack_alloc (lambda_obstack, sizeof (*ret)); |
| LBV_COEFFICIENTS (ret) = lambda_vector_new (size); |
| LBV_SIZE (ret) = size; |
| LBV_DENOMINATOR (ret) = 1; |
| return ret; |
| } |
| |
| /* Compute the new coefficients for the vector based on the |
| *inverse* of the transformation matrix. */ |
| |
| lambda_body_vector |
| lambda_body_vector_compute_new (lambda_trans_matrix transform, |
| lambda_body_vector vect, |
| struct obstack * lambda_obstack) |
| { |
| lambda_body_vector temp; |
| int depth; |
| |
| /* Make sure the matrix is square. */ |
| gcc_assert (LTM_ROWSIZE (transform) == LTM_COLSIZE (transform)); |
| |
| depth = LTM_ROWSIZE (transform); |
| |
| temp = lambda_body_vector_new (depth, lambda_obstack); |
| LBV_DENOMINATOR (temp) = |
| LBV_DENOMINATOR (vect) * LTM_DENOMINATOR (transform); |
| lambda_vector_matrix_mult (LBV_COEFFICIENTS (vect), depth, |
| LTM_MATRIX (transform), depth, |
| LBV_COEFFICIENTS (temp)); |
| LBV_SIZE (temp) = LBV_SIZE (vect); |
| return temp; |
| } |
| |
| /* Print out a lambda body vector. */ |
| |
| void |
| print_lambda_body_vector (FILE * outfile, lambda_body_vector body) |
| { |
| print_lambda_vector (outfile, LBV_COEFFICIENTS (body), LBV_SIZE (body)); |
| } |
| |
| /* Return TRUE if two linear expressions are equal. */ |
| |
| static bool |
| lle_equal (lambda_linear_expression lle1, lambda_linear_expression lle2, |
| int depth, int invariants) |
| { |
| int i; |
| |
| if (lle1 == NULL || lle2 == NULL) |
| return false; |
| if (LLE_CONSTANT (lle1) != LLE_CONSTANT (lle2)) |
| return false; |
| if (LLE_DENOMINATOR (lle1) != LLE_DENOMINATOR (lle2)) |
| return false; |
| for (i = 0; i < depth; i++) |
| if (LLE_COEFFICIENTS (lle1)[i] != LLE_COEFFICIENTS (lle2)[i]) |
| return false; |
| for (i = 0; i < invariants; i++) |
| if (LLE_INVARIANT_COEFFICIENTS (lle1)[i] != |
| LLE_INVARIANT_COEFFICIENTS (lle2)[i]) |
| return false; |
| return true; |
| } |
| |
| /* Create a new linear expression with dimension DIM, and total number |
| of invariants INVARIANTS. */ |
| |
| lambda_linear_expression |
| lambda_linear_expression_new (int dim, int invariants, |
| struct obstack * lambda_obstack) |
| { |
| lambda_linear_expression ret; |
| |
| ret = (lambda_linear_expression)obstack_alloc (lambda_obstack, |
| sizeof (*ret)); |
| LLE_COEFFICIENTS (ret) = lambda_vector_new (dim); |
| LLE_CONSTANT (ret) = 0; |
| LLE_INVARIANT_COEFFICIENTS (ret) = lambda_vector_new (invariants); |
| LLE_DENOMINATOR (ret) = 1; |
| LLE_NEXT (ret) = NULL; |
| |
| return ret; |
| } |
| |
| /* Print out a linear expression EXPR, with SIZE coefficients, to OUTFILE. |
| The starting letter used for variable names is START. */ |
| |
| static void |
| print_linear_expression (FILE * outfile, lambda_vector expr, int size, |
| char start) |
| { |
| int i; |
| bool first = true; |
| for (i = 0; i < size; i++) |
| { |
| if (expr[i] != 0) |
| { |
| if (first) |
| { |
| if (expr[i] < 0) |
| fprintf (outfile, "-"); |
| first = false; |
| } |
| else if (expr[i] > 0) |
| fprintf (outfile, " + "); |
| else |
| fprintf (outfile, " - "); |
| if (abs (expr[i]) == 1) |
| fprintf (outfile, "%c", start + i); |
| else |
| fprintf (outfile, "%d%c", abs (expr[i]), start + i); |
| } |
| } |
| } |
| |
| /* Print out a lambda linear expression structure, EXPR, to OUTFILE. The |
| depth/number of coefficients is given by DEPTH, the number of invariants is |
| given by INVARIANTS, and the character to start variable names with is given |
| by START. */ |
| |
| void |
| print_lambda_linear_expression (FILE * outfile, |
| lambda_linear_expression expr, |
| int depth, int invariants, char start) |
| { |
| fprintf (outfile, "\tLinear expression: "); |
| print_linear_expression (outfile, LLE_COEFFICIENTS (expr), depth, start); |
| fprintf (outfile, " constant: %d ", LLE_CONSTANT (expr)); |
| fprintf (outfile, " invariants: "); |
| print_linear_expression (outfile, LLE_INVARIANT_COEFFICIENTS (expr), |
| invariants, 'A'); |
| fprintf (outfile, " denominator: %d\n", LLE_DENOMINATOR (expr)); |
| } |
| |
| /* Print a lambda loop structure LOOP to OUTFILE. The depth/number of |
| coefficients is given by DEPTH, the number of invariants is |
| given by INVARIANTS, and the character to start variable names with is given |
| by START. */ |
| |
| void |
| print_lambda_loop (FILE * outfile, lambda_loop loop, int depth, |
| int invariants, char start) |
| { |
| int step; |
| lambda_linear_expression expr; |
| |
| gcc_assert (loop); |
| |
| expr = LL_LINEAR_OFFSET (loop); |
| step = LL_STEP (loop); |
| fprintf (outfile, " step size = %d \n", step); |
| |
| if (expr) |
| { |
| fprintf (outfile, " linear offset: \n"); |
| print_lambda_linear_expression (outfile, expr, depth, invariants, |
| start); |
| } |
| |
| fprintf (outfile, " lower bound: \n"); |
| for (expr = LL_LOWER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr)) |
| print_lambda_linear_expression (outfile, expr, depth, invariants, start); |
| fprintf (outfile, " upper bound: \n"); |
| for (expr = LL_UPPER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr)) |
| print_lambda_linear_expression (outfile, expr, depth, invariants, start); |
| } |
| |
| /* Create a new loop nest structure with DEPTH loops, and INVARIANTS as the |
| number of invariants. */ |
| |
| lambda_loopnest |
| lambda_loopnest_new (int depth, int invariants, |
| struct obstack * lambda_obstack) |
| { |
| lambda_loopnest ret; |
| ret = (lambda_loopnest)obstack_alloc (lambda_obstack, sizeof (*ret)); |
| |
| LN_LOOPS (ret) = (lambda_loop *) |
| obstack_alloc (lambda_obstack, depth * sizeof(LN_LOOPS(ret))); |
| LN_DEPTH (ret) = depth; |
| LN_INVARIANTS (ret) = invariants; |
| |
| return ret; |
| } |
| |
| /* Print a lambda loopnest structure, NEST, to OUTFILE. The starting |
| character to use for loop names is given by START. */ |
| |
| void |
| print_lambda_loopnest (FILE * outfile, lambda_loopnest nest, char start) |
| { |
| int i; |
| for (i = 0; i < LN_DEPTH (nest); i++) |
| { |
| fprintf (outfile, "Loop %c\n", start + i); |
| print_lambda_loop (outfile, LN_LOOPS (nest)[i], LN_DEPTH (nest), |
| LN_INVARIANTS (nest), 'i'); |
| fprintf (outfile, "\n"); |
| } |
| } |
| |
| /* Allocate a new lattice structure of DEPTH x DEPTH, with INVARIANTS number |
| of invariants. */ |
| |
| static lambda_lattice |
| lambda_lattice_new (int depth, int invariants, struct obstack * lambda_obstack) |
| { |
| lambda_lattice ret |
| = (lambda_lattice)obstack_alloc (lambda_obstack, sizeof (*ret)); |
| LATTICE_BASE (ret) = lambda_matrix_new (depth, depth); |
| LATTICE_ORIGIN (ret) = lambda_vector_new (depth); |
| LATTICE_ORIGIN_INVARIANTS (ret) = lambda_matrix_new (depth, invariants); |
| LATTICE_DIMENSION (ret) = depth; |
| LATTICE_INVARIANTS (ret) = invariants; |
| return ret; |
| } |
| |
| /* Compute the lattice base for NEST. The lattice base is essentially a |
| non-singular transform from a dense base space to a sparse iteration space. |
| We use it so that we don't have to specially handle the case of a sparse |
| iteration space in other parts of the algorithm. As a result, this routine |
| only does something interesting (IE produce a matrix that isn't the |
| identity matrix) if NEST is a sparse space. */ |
| |
| static lambda_lattice |
| lambda_lattice_compute_base (lambda_loopnest nest, |
| struct obstack * lambda_obstack) |
| { |
| lambda_lattice ret; |
| int depth, invariants; |
| lambda_matrix base; |
| |
| int i, j, step; |
| lambda_loop loop; |
| lambda_linear_expression expression; |
| |
| depth = LN_DEPTH (nest); |
| invariants = LN_INVARIANTS (nest); |
| |
| ret = lambda_lattice_new (depth, invariants, lambda_obstack); |
| base = LATTICE_BASE (ret); |
| for (i = 0; i < depth; i++) |
| { |
| loop = LN_LOOPS (nest)[i]; |
| gcc_assert (loop); |
| step = LL_STEP (loop); |
| /* If we have a step of 1, then the base is one, and the |
| origin and invariant coefficients are 0. */ |
| if (step == 1) |
| { |
| for (j = 0; j < depth; j++) |
| base[i][j] = 0; |
| base[i][i] = 1; |
| LATTICE_ORIGIN (ret)[i] = 0; |
| for (j = 0; j < invariants; j++) |
| LATTICE_ORIGIN_INVARIANTS (ret)[i][j] = 0; |
| } |
| else |
| { |
| /* Otherwise, we need the lower bound expression (which must |
| be an affine function) to determine the base. */ |
| expression = LL_LOWER_BOUND (loop); |
| gcc_assert (expression && !LLE_NEXT (expression) |
| && LLE_DENOMINATOR (expression) == 1); |
| |
| /* The lower triangular portion of the base is going to be the |
| coefficient times the step */ |
| for (j = 0; j < i; j++) |
| base[i][j] = LLE_COEFFICIENTS (expression)[j] |
| * LL_STEP (LN_LOOPS (nest)[j]); |
| base[i][i] = step; |
| for (j = i + 1; j < depth; j++) |
| base[i][j] = 0; |
| |
| /* Origin for this loop is the constant of the lower bound |
| expression. */ |
| LATTICE_ORIGIN (ret)[i] = LLE_CONSTANT (expression); |
| |
| /* Coefficient for the invariants are equal to the invariant |
| coefficients in the expression. */ |
| for (j = 0; j < invariants; j++) |
| LATTICE_ORIGIN_INVARIANTS (ret)[i][j] = |
| LLE_INVARIANT_COEFFICIENTS (expression)[j]; |
| } |
| } |
| return ret; |
| } |
| |
| /* Compute the least common multiple of two numbers A and B . */ |
| |
| int |
| least_common_multiple (int a, int b) |
| { |
| return (abs (a) * abs (b) / gcd (a, b)); |
| } |
| |
| /* Perform Fourier-Motzkin elimination to calculate the bounds of the |
| auxiliary nest. |
| Fourier-Motzkin is a way of reducing systems of linear inequalities so that |
| it is easy to calculate the answer and bounds. |
| A sketch of how it works: |
| Given a system of linear inequalities, ai * xj >= bk, you can always |
| rewrite the constraints so they are all of the form |
| a <= x, or x <= b, or x >= constant for some x in x1 ... xj (and some b |
| in b1 ... bk, and some a in a1...ai) |
| You can then eliminate this x from the non-constant inequalities by |
| rewriting these as a <= b, x >= constant, and delete the x variable. |
| You can then repeat this for any remaining x variables, and then we have |
| an easy to use variable <= constant (or no variables at all) form that we |
| can construct our bounds from. |
| |
| In our case, each time we eliminate, we construct part of the bound from |
| the ith variable, then delete the ith variable. |
| |
| Remember the constant are in our vector a, our coefficient matrix is A, |
| and our invariant coefficient matrix is B. |
| |
| SIZE is the size of the matrices being passed. |
| DEPTH is the loop nest depth. |
| INVARIANTS is the number of loop invariants. |
| A, B, and a are the coefficient matrix, invariant coefficient, and a |
| vector of constants, respectively. */ |
| |
| static lambda_loopnest |
| compute_nest_using_fourier_motzkin (int size, |
| int depth, |
| int invariants, |
| lambda_matrix A, |
| lambda_matrix B, |
| lambda_vector a, |
| struct obstack * lambda_obstack) |
| { |
| |
| int multiple, f1, f2; |
| int i, j, k; |
| lambda_linear_expression expression; |
| lambda_loop loop; |
| lambda_loopnest auxillary_nest; |
| lambda_matrix swapmatrix, A1, B1; |
| lambda_vector swapvector, a1; |
| int newsize; |
| |
| A1 = lambda_matrix_new (128, depth); |
| B1 = lambda_matrix_new (128, invariants); |
| a1 = lambda_vector_new (128); |
| |
| auxillary_nest = lambda_loopnest_new (depth, invariants, lambda_obstack); |
| |
| for (i = depth - 1; i >= 0; i--) |
| { |
| loop = lambda_loop_new (); |
| LN_LOOPS (auxillary_nest)[i] = loop; |
| LL_STEP (loop) = 1; |
| |
| for (j = 0; j < size; j++) |
| { |
| if (A[j][i] < 0) |
| { |
| /* Any linear expression in the matrix with a coefficient less |
| than 0 becomes part of the new lower bound. */ |
| expression = lambda_linear_expression_new (depth, invariants, |
| lambda_obstack); |
| |
| for (k = 0; k < i; k++) |
| LLE_COEFFICIENTS (expression)[k] = A[j][k]; |
| |
| for (k = 0; k < invariants; k++) |
| LLE_INVARIANT_COEFFICIENTS (expression)[k] = -1 * B[j][k]; |
| |
| LLE_DENOMINATOR (expression) = -1 * A[j][i]; |
| LLE_CONSTANT (expression) = -1 * a[j]; |
| |
| /* Ignore if identical to the existing lower bound. */ |
| if (!lle_equal (LL_LOWER_BOUND (loop), |
| expression, depth, invariants)) |
| { |
| LLE_NEXT (expression) = LL_LOWER_BOUND (loop); |
| LL_LOWER_BOUND (loop) = expression; |
| } |
| |
| } |
| else if (A[j][i] > 0) |
| { |
| /* Any linear expression with a coefficient greater than 0 |
| becomes part of the new upper bound. */ |
| expression = lambda_linear_expression_new (depth, invariants, |
| lambda_obstack); |
| for (k = 0; k < i; k++) |
| LLE_COEFFICIENTS (expression)[k] = -1 * A[j][k]; |
| |
| for (k = 0; k < invariants; k++) |
| LLE_INVARIANT_COEFFICIENTS (expression)[k] = B[j][k]; |
| |
| LLE_DENOMINATOR (expression) = A[j][i]; |
| LLE_CONSTANT (expression) = a[j]; |
| |
| /* Ignore if identical to the existing upper bound. */ |
| if (!lle_equal (LL_UPPER_BOUND (loop), |
| expression, depth, invariants)) |
| { |
| LLE_NEXT (expression) = LL_UPPER_BOUND (loop); |
| LL_UPPER_BOUND (loop) = expression; |
| } |
| |
| } |
| } |
| |
| /* This portion creates a new system of linear inequalities by deleting |
| the i'th variable, reducing the system by one variable. */ |
| newsize = 0; |
| for (j = 0; j < size; j++) |
| { |
| /* If the coefficient for the i'th variable is 0, then we can just |
| eliminate the variable straightaway. Otherwise, we have to |
| multiply through by the coefficients we are eliminating. */ |
| if (A[j][i] == 0) |
| { |
| lambda_vector_copy (A[j], A1[newsize], depth); |
| lambda_vector_copy (B[j], B1[newsize], invariants); |
| a1[newsize] = a[j]; |
| newsize++; |
| } |
| else if (A[j][i] > 0) |
| { |
| for (k = 0; k < size; k++) |
| { |
| if (A[k][i] < 0) |
| { |
| multiple = least_common_multiple (A[j][i], A[k][i]); |
| f1 = multiple / A[j][i]; |
| f2 = -1 * multiple / A[k][i]; |
| |
| lambda_vector_add_mc (A[j], f1, A[k], f2, |
| A1[newsize], depth); |
| lambda_vector_add_mc (B[j], f1, B[k], f2, |
| B1[newsize], invariants); |
| a1[newsize] = f1 * a[j] + f2 * a[k]; |
| newsize++; |
| } |
| } |
| } |
| } |
| |
| swapmatrix = A; |
| A = A1; |
| A1 = swapmatrix; |
| |
| swapmatrix = B; |
| B = B1; |
| B1 = swapmatrix; |
| |
| swapvector = a; |
| a = a1; |
| a1 = swapvector; |
| |
| size = newsize; |
| } |
| |
| return auxillary_nest; |
| } |
| |
| /* Compute the loop bounds for the auxiliary space NEST. |
| Input system used is Ax <= b. TRANS is the unimodular transformation. |
| Given the original nest, this function will |
| 1. Convert the nest into matrix form, which consists of a matrix for the |
| coefficients, a matrix for the |
| invariant coefficients, and a vector for the constants. |
| 2. Use the matrix form to calculate the lattice base for the nest (which is |
| a dense space) |
| 3. Compose the dense space transform with the user specified transform, to |
| get a transform we can easily calculate transformed bounds for. |
| 4. Multiply the composed transformation matrix times the matrix form of the |
| loop. |
| 5. Transform the newly created matrix (from step 4) back into a loop nest |
| using Fourier-Motzkin elimination to figure out the bounds. */ |
| |
| static lambda_loopnest |
| lambda_compute_auxillary_space (lambda_loopnest nest, |
| lambda_trans_matrix trans, |
| struct obstack * lambda_obstack) |
| { |
| lambda_matrix A, B, A1, B1; |
| lambda_vector a, a1; |
| lambda_matrix invertedtrans; |
| int depth, invariants, size; |
| int i, j; |
| lambda_loop loop; |
| lambda_linear_expression expression; |
| lambda_lattice lattice; |
| |
| depth = LN_DEPTH (nest); |
| invariants = LN_INVARIANTS (nest); |
| |
| /* Unfortunately, we can't know the number of constraints we'll have |
| ahead of time, but this should be enough even in ridiculous loop nest |
| cases. We must not go over this limit. */ |
| A = lambda_matrix_new (128, depth); |
| B = lambda_matrix_new (128, invariants); |
| a = lambda_vector_new (128); |
| |
| A1 = lambda_matrix_new (128, depth); |
| B1 = lambda_matrix_new (128, invariants); |
| a1 = lambda_vector_new (128); |
| |
| /* Store the bounds in the equation matrix A, constant vector a, and |
| invariant matrix B, so that we have Ax <= a + B. |
| This requires a little equation rearranging so that everything is on the |
| correct side of the inequality. */ |
| size = 0; |
| for (i = 0; i < depth; i++) |
| { |
| loop = LN_LOOPS (nest)[i]; |
| |
| /* First we do the lower bound. */ |
| if (LL_STEP (loop) > 0) |
| expression = LL_LOWER_BOUND (loop); |
| else |
| expression = LL_UPPER_BOUND (loop); |
| |
| for (; expression != NULL; expression = LLE_NEXT (expression)) |
| { |
| /* Fill in the coefficient. */ |
| for (j = 0; j < i; j++) |
| A[size][j] = LLE_COEFFICIENTS (expression)[j]; |
| |
| /* And the invariant coefficient. */ |
| for (j = 0; j < invariants; j++) |
| B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j]; |
| |
| /* And the constant. */ |
| a[size] = LLE_CONSTANT (expression); |
| |
| /* Convert (2x+3y+2+b)/4 <= z to 2x+3y-4z <= -2-b. IE put all |
| constants and single variables on */ |
| A[size][i] = -1 * LLE_DENOMINATOR (expression); |
| a[size] *= -1; |
| for (j = 0; j < invariants; j++) |
| B[size][j] *= -1; |
| |
| size++; |
| /* Need to increase matrix sizes above. */ |
| gcc_assert (size <= 127); |
| |
| } |
| |
| /* Then do the exact same thing for the upper bounds. */ |
| if (LL_STEP (loop) > 0) |
| expression = LL_UPPER_BOUND (loop); |
| else |
| expression = LL_LOWER_BOUND (loop); |
| |
| for (; expression != NULL; expression = LLE_NEXT (expression)) |
| { |
| /* Fill in the coefficient. */ |
| for (j = 0; j < i; j++) |
| A[size][j] = LLE_COEFFICIENTS (expression)[j]; |
| |
| /* And the invariant coefficient. */ |
| for (j = 0; j < invariants; j++) |
| B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j]; |
| |
| /* And the constant. */ |
| a[size] = LLE_CONSTANT (expression); |
| |
| /* Convert z <= (2x+3y+2+b)/4 to -2x-3y+4z <= 2+b. */ |
| for (j = 0; j < i; j++) |
| A[size][j] *= -1; |
| A[size][i] = LLE_DENOMINATOR (expression); |
| size++; |
| /* Need to increase matrix sizes above. */ |
| gcc_assert (size <= 127); |
| |
| } |
| } |
| |
| /* Compute the lattice base x = base * y + origin, where y is the |
| base space. */ |
| lattice = lambda_lattice_compute_base (nest, lambda_obstack); |
| |
| /* Ax <= a + B then becomes ALy <= a+B - A*origin. L is the lattice base */ |
| |
| /* A1 = A * L */ |
| lambda_matrix_mult (A, LATTICE_BASE (lattice), A1, size, depth, depth); |
| |
| /* a1 = a - A * origin constant. */ |
| lambda_matrix_vector_mult (A, size, depth, LATTICE_ORIGIN (lattice), a1); |
| lambda_vector_add_mc (a, 1, a1, -1, a1, size); |
| |
| /* B1 = B - A * origin invariant. */ |
| lambda_matrix_mult (A, LATTICE_ORIGIN_INVARIANTS (lattice), B1, size, depth, |
| invariants); |
| lambda_matrix_add_mc (B, 1, B1, -1, B1, size, invariants); |
| |
| /* Now compute the auxiliary space bounds by first inverting U, multiplying |
| it by A1, then performing Fourier-Motzkin. */ |
| |
| invertedtrans = lambda_matrix_new (depth, depth); |
| |
| /* Compute the inverse of U. */ |
| lambda_matrix_inverse (LTM_MATRIX (trans), |
| invertedtrans, depth); |
| |
| /* A = A1 inv(U). */ |
| lambda_matrix_mult (A1, invertedtrans, A, size, depth, depth); |
| |
| return compute_nest_using_fourier_motzkin (size, depth, invariants, |
| A, B1, a1, lambda_obstack); |
| } |
| |
| /* Compute the loop bounds for the target space, using the bounds of |
| the auxiliary nest AUXILLARY_NEST, and the triangular matrix H. |
| The target space loop bounds are computed by multiplying the triangular |
| matrix H by the auxiliary nest, to get the new loop bounds. The sign of |
| the loop steps (positive or negative) is then used to swap the bounds if |
| the loop counts downwards. |
| Return the target loopnest. */ |
| |
| static lambda_loopnest |
| lambda_compute_target_space (lambda_loopnest auxillary_nest, |
| lambda_trans_matrix H, lambda_vector stepsigns, |
| struct obstack * lambda_obstack) |
| { |
| lambda_matrix inverse, H1; |
| int determinant, i, j; |
| int gcd1, gcd2; |
| int factor; |
| |
| lambda_loopnest target_nest; |
| int depth, invariants; |
| lambda_matrix target; |
| |
| lambda_loop auxillary_loop, target_loop; |
| lambda_linear_expression expression, auxillary_expr, target_expr, tmp_expr; |
| |
| depth = LN_DEPTH (auxillary_nest); |
| invariants = LN_INVARIANTS (auxillary_nest); |
| |
| inverse = lambda_matrix_new (depth, depth); |
| determinant = lambda_matrix_inverse (LTM_MATRIX (H), inverse, depth); |
| |
| /* H1 is H excluding its diagonal. */ |
| H1 = lambda_matrix_new (depth, depth); |
| lambda_matrix_copy (LTM_MATRIX (H), H1, depth, depth); |
| |
| for (i = 0; i < depth; i++) |
| H1[i][i] = 0; |
| |
| /* Computes the linear offsets of the loop bounds. */ |
| target = lambda_matrix_new (depth, depth); |
| lambda_matrix_mult (H1, inverse, target, depth, depth, depth); |
| |
| target_nest = lambda_loopnest_new (depth, invariants, lambda_obstack); |
| |
| for (i = 0; i < depth; i++) |
| { |
| |
| /* Get a new loop structure. */ |
| target_loop = lambda_loop_new (); |
| LN_LOOPS (target_nest)[i] = target_loop; |
| |
| /* Computes the gcd of the coefficients of the linear part. */ |
| gcd1 = lambda_vector_gcd (target[i], i); |
| |
| /* Include the denominator in the GCD. */ |
| gcd1 = gcd (gcd1, determinant); |
| |
| /* Now divide through by the gcd. */ |
| for (j = 0; j < i; j++) |
| target[i][j] = target[i][j] / gcd1; |
| |
| expression = lambda_linear_expression_new (depth, invariants, |
| lambda_obstack); |
| lambda_vector_copy (target[i], LLE_COEFFICIENTS (expression), depth); |
| LLE_DENOMINATOR (expression) = determinant / gcd1; |
| LLE_CONSTANT (expression) = 0; |
| lambda_vector_clear (LLE_INVARIANT_COEFFICIENTS (expression), |
| invariants); |
| LL_LINEAR_OFFSET (target_loop) = expression; |
| } |
| |
| /* For each loop, compute the new bounds from H. */ |
| for (i = 0; i < depth; i++) |
| { |
| auxillary_loop = LN_LOOPS (auxillary_nest)[i]; |
| target_loop = LN_LOOPS (target_nest)[i]; |
| LL_STEP (target_loop) = LTM_MATRIX (H)[i][i]; |
| factor = LTM_MATRIX (H)[i][i]; |
| |
| /* First we do the lower bound. */ |
| auxillary_expr = LL_LOWER_BOUND (auxillary_loop); |
| |
| for (; auxillary_expr != NULL; |
| auxillary_expr = LLE_NEXT (auxillary_expr)) |
| { |
| target_expr = lambda_linear_expression_new (depth, invariants, |
| lambda_obstack); |
| lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr), |
| depth, inverse, depth, |
| LLE_COEFFICIENTS (target_expr)); |
| lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr), |
| LLE_COEFFICIENTS (target_expr), depth, |
| factor); |
| |
| LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor; |
| lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr), |
| LLE_INVARIANT_COEFFICIENTS (target_expr), |
| invariants); |
| lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr), |
| LLE_INVARIANT_COEFFICIENTS (target_expr), |
| invariants, factor); |
| LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr); |
| |
| if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth)) |
| { |
| LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr) |
| * determinant; |
| lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS |
| (target_expr), |
| LLE_INVARIANT_COEFFICIENTS |
| (target_expr), invariants, |
| determinant); |
| LLE_DENOMINATOR (target_expr) = |
| LLE_DENOMINATOR (target_expr) * determinant; |
| } |
| /* Find the gcd and divide by it here, rather than doing it |
| at the tree level. */ |
| gcd1 = lambda_vector_gcd (LLE_COEFFICIENTS (target_expr), depth); |
| gcd2 = lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr), |
| invariants); |
| gcd1 = gcd (gcd1, gcd2); |
| gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr)); |
| gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr)); |
| for (j = 0; j < depth; j++) |
| LLE_COEFFICIENTS (target_expr)[j] /= gcd1; |
| for (j = 0; j < invariants; j++) |
| LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1; |
| LLE_CONSTANT (target_expr) /= gcd1; |
| LLE_DENOMINATOR (target_expr) /= gcd1; |
| /* Ignore if identical to existing bound. */ |
| if (!lle_equal (LL_LOWER_BOUND (target_loop), target_expr, depth, |
| invariants)) |
| { |
| LLE_NEXT (target_expr) = LL_LOWER_BOUND (target_loop); |
| LL_LOWER_BOUND (target_loop) = target_expr; |
| } |
| } |
| /* Now do the upper bound. */ |
| auxillary_expr = LL_UPPER_BOUND (auxillary_loop); |
| |
| for (; auxillary_expr != NULL; |
| auxillary_expr = LLE_NEXT (auxillary_expr)) |
| { |
| target_expr = lambda_linear_expression_new (depth, invariants, |
| lambda_obstack); |
| lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr), |
| depth, inverse, depth, |
| LLE_COEFFICIENTS (target_expr)); |
| lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr), |
| LLE_COEFFICIENTS (target_expr), depth, |
| factor); |
| LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor; |
| lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr), |
| LLE_INVARIANT_COEFFICIENTS (target_expr), |
| invariants); |
| lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr), |
| LLE_INVARIANT_COEFFICIENTS (target_expr), |
| invariants, factor); |
| LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr); |
| |
| if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth)) |
| { |
| LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr) |
| * determinant; |
| lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS |
| (target_expr), |
| LLE_INVARIANT_COEFFICIENTS |
| (target_expr), invariants, |
| determinant); |
| LLE_DENOMINATOR (target_expr) = |
| LLE_DENOMINATOR (target_expr) * determinant; |
| } |
| /* Find the gcd and divide by it here, instead of at the |
| tree level. */ |
| gcd1 = lambda_vector_gcd (LLE_COEFFICIENTS (target_expr), depth); |
| gcd2 = lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr), |
| invariants); |
| gcd1 = gcd (gcd1, gcd2); |
| gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr)); |
| gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr)); |
| for (j = 0; j < depth; j++) |
| LLE_COEFFICIENTS (target_expr)[j] /= gcd1; |
| for (j = 0; j < invariants; j++) |
| LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1; |
| LLE_CONSTANT (target_expr) /= gcd1; |
| LLE_DENOMINATOR (target_expr) /= gcd1; |
| /* Ignore if equal to existing bound. */ |
| if (!lle_equal (LL_UPPER_BOUND (target_loop), target_expr, depth, |
| invariants)) |
| { |
| LLE_NEXT (target_expr) = LL_UPPER_BOUND (target_loop); |
| LL_UPPER_BOUND (target_loop) = target_expr; |
| } |
| } |
| } |
| for (i = 0; i < depth; i++) |
| { |
| target_loop = LN_LOOPS (target_nest)[i]; |
| /* If necessary, exchange the upper and lower bounds and negate |
| the step size. */ |
| if (stepsigns[i] < 0) |
| { |
| LL_STEP (target_loop) *= -1; |
| tmp_expr = LL_LOWER_BOUND (target_loop); |
| LL_LOWER_BOUND (target_loop) = LL_UPPER_BOUND (target_loop); |
| LL_UPPER_BOUND (target_loop) = tmp_expr; |
| } |
| } |
| return target_nest; |
| } |
| |
| /* Compute the step signs of TRANS, using TRANS and stepsigns. Return the new |
| result. */ |
| |
| static lambda_vector |
| lambda_compute_step_signs (lambda_trans_matrix trans, lambda_vector stepsigns) |
| { |
| lambda_matrix matrix, H; |
| int size; |
| lambda_vector newsteps; |
| int i, j, factor, minimum_column; |
| int temp; |
| |
| matrix = LTM_MATRIX (trans); |
| size = LTM_ROWSIZE (trans); |
| H = lambda_matrix_new (size, size); |
| |
| newsteps = lambda_vector_new (size); |
| lambda_vector_copy (stepsigns, newsteps, size); |
| |
| lambda_matrix_copy (matrix, H, size, size); |
| |
| for (j = 0; j < size; j++) |
| { |
| lambda_vector row; |
| row = H[j]; |
| for (i = j; i < size; i++) |
| if (row[i] < 0) |
| lambda_matrix_col_negate (H, size, i); |
| while (lambda_vector_first_nz (row, size, j + 1) < size) |
| { |
| minimum_column = lambda_vector_min_nz (row, size, j); |
| lambda_matrix_col_exchange (H, size, j, minimum_column); |
| |
| temp = newsteps[j]; |
| newsteps[j] = newsteps[minimum_column]; |
| newsteps[minimum_column] = temp; |
| |
| for (i = j + 1; i < size; i++) |
| { |
| factor = row[i] / row[j]; |
| lambda_matrix_col_add (H, size, j, i, -1 * factor); |
| } |
| } |
| } |
| return newsteps; |
| } |
| |
| /* Transform NEST according to TRANS, and return the new loopnest. |
| This involves |
| 1. Computing a lattice base for the transformation |
| 2. Composing the dense base with the specified transformation (TRANS) |
| 3. Decomposing the combined transformation into a lower triangular portion, |
| and a unimodular portion. |
| 4. Computing the auxiliary nest using the unimodular portion. |
| 5. Computing the target nest using the auxiliary nest and the lower |
| triangular portion. */ |
| |
| lambda_loopnest |
| lambda_loopnest_transform (lambda_loopnest nest, lambda_trans_matrix trans, |
| struct obstack * lambda_obstack) |
| { |
| lambda_loopnest auxillary_nest, target_nest; |
| |
| int depth, invariants; |
| int i, j; |
| lambda_lattice lattice; |
| lambda_trans_matrix trans1, H, U; |
| lambda_loop loop; |
| lambda_linear_expression expression; |
| lambda_vector origin; |
| lambda_matrix origin_invariants; |
| lambda_vector stepsigns; |
| int f; |
| |
| depth = LN_DEPTH (nest); |
| invariants = LN_INVARIANTS (nest); |
| |
| /* Keep track of the signs of the loop steps. */ |
| stepsigns = lambda_vector_new (depth); |
| for (i = 0; i < depth; i++) |
| { |
| if (LL_STEP (LN_LOOPS (nest)[i]) > 0) |
| stepsigns[i] = 1; |
| else |
| stepsigns[i] = -1; |
| } |
| |
| /* Compute the lattice base. */ |
| lattice = lambda_lattice_compute_base (nest, lambda_obstack); |
| trans1 = lambda_trans_matrix_new (depth, depth); |
| |
| /* Multiply the transformation matrix by the lattice base. */ |
| |
| lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_BASE (lattice), |
| LTM_MATRIX (trans1), depth, depth, depth); |
| |
| /* Compute the Hermite normal form for the new transformation matrix. */ |
| H = lambda_trans_matrix_new (depth, depth); |
| U = lambda_trans_matrix_new (depth, depth); |
| lambda_matrix_hermite (LTM_MATRIX (trans1), depth, LTM_MATRIX (H), |
| LTM_MATRIX (U)); |
| |
| /* Compute the auxiliary loop nest's space from the unimodular |
| portion. */ |
| auxillary_nest = lambda_compute_auxillary_space (nest, U, lambda_obstack); |
| |
| /* Compute the loop step signs from the old step signs and the |
| transformation matrix. */ |
| stepsigns = lambda_compute_step_signs (trans1, stepsigns); |
| |
| /* Compute the target loop nest space from the auxiliary nest and |
| the lower triangular matrix H. */ |
| target_nest = lambda_compute_target_space (auxillary_nest, H, stepsigns, |
| lambda_obstack); |
| origin = lambda_vector_new (depth); |
| origin_invariants = lambda_matrix_new (depth, invariants); |
| lambda_matrix_vector_mult (LTM_MATRIX (trans), depth, depth, |
| LATTICE_ORIGIN (lattice), origin); |
| lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_ORIGIN_INVARIANTS (lattice), |
| origin_invariants, depth, depth, invariants); |
| |
| for (i = 0; i < depth; i++) |
| { |
| loop = LN_LOOPS (target_nest)[i]; |
| expression = LL_LINEAR_OFFSET (loop); |
| if (lambda_vector_zerop (LLE_COEFFICIENTS (expression), depth)) |
| f = 1; |
| else |
| f = LLE_DENOMINATOR (expression); |
| |
| LLE_CONSTANT (expression) += f * origin[i]; |
| |
| for (j = 0; j < invariants; j++) |
| LLE_INVARIANT_COEFFICIENTS (expression)[j] += |
| f * origin_invariants[i][j]; |
| } |
| |
| return target_nest; |
| |
| } |
| |
| /* Convert a gcc tree expression EXPR to a lambda linear expression, and |
| return the new expression. DEPTH is the depth of the loopnest. |
| OUTERINDUCTIONVARS is an array of the induction variables for outer loops |
| in this nest. INVARIANTS is the array of invariants for the loop. EXTRA |
| is the amount we have to add/subtract from the expression because of the |
| type of comparison it is used in. */ |
| |
| static lambda_linear_expression |
| gcc_tree_to_linear_expression (int depth, tree expr, |
| VEC(tree,heap) *outerinductionvars, |
| VEC(tree,heap) *invariants, int extra, |
| struct obstack * lambda_obstack) |
| { |
| lambda_linear_expression lle = NULL; |
| switch (TREE_CODE (expr)) |
| { |
| case INTEGER_CST: |
| { |
| lle = lambda_linear_expression_new (depth, 2 * depth, lambda_obstack); |
| LLE_CONSTANT (lle) = TREE_INT_CST_LOW (expr); |
| if (extra != 0) |
| LLE_CONSTANT (lle) += extra; |
| |
| LLE_DENOMINATOR (lle) = 1; |
| } |
| break; |
| case SSA_NAME: |
| { |
| tree iv, invar; |
| size_t i; |
| for (i = 0; VEC_iterate (tree, outerinductionvars, i, iv); i++) |
| if (iv != NULL) |
| { |
| if (SSA_NAME_VAR (iv) == SSA_NAME_VAR (expr)) |
| { |
| lle = lambda_linear_expression_new (depth, 2 * depth, |
| lambda_obstack); |
| LLE_COEFFICIENTS (lle)[i] = 1; |
| if (extra != 0) |
| LLE_CONSTANT (lle) = extra; |
| |
| LLE_DENOMINATOR (lle) = 1; |
| } |
| } |
| for (i = 0; VEC_iterate (tree, invariants, i, invar); i++) |
| if (invar != NULL) |
| { |
| if (SSA_NAME_VAR (invar) == SSA_NAME_VAR (expr)) |
| { |
| lle = lambda_linear_expression_new (depth, 2 * depth, |
| lambda_obstack); |
| LLE_INVARIANT_COEFFICIENTS (lle)[i] = 1; |
| if (extra != 0) |
| LLE_CONSTANT (lle) = extra; |
| LLE_DENOMINATOR (lle) = 1; |
| } |
| } |
| } |
| break; |
| default: |
| return NULL; |
| } |
| |
| return lle; |
| } |
| |
| /* Return the depth of the loopnest NEST */ |
| |
| static int |
| depth_of_nest (struct loop *nest) |
| { |
| size_t depth = 0; |
| while (nest) |
| { |
| depth++; |
| nest = nest->inner; |
| } |
| return depth; |
| } |
| |
| |
| /* Return true if OP is invariant in LOOP and all outer loops. */ |
| |
| static bool |
| invariant_in_loop_and_outer_loops (struct loop *loop, tree op) |
| { |
| if (is_gimple_min_invariant (op)) |
| return true; |
| if (loop_depth (loop) == 0) |
| return true; |
| if (!expr_invariant_in_loop_p (loop, op)) |
| return false; |
| if (!invariant_in_loop_and_outer_loops (loop_outer (loop), op)) |
| return false; |
| return true; |
| } |
| |
| /* Generate a lambda loop from a gcc loop LOOP. Return the new lambda loop, |
| or NULL if it could not be converted. |
| DEPTH is the depth of the loop. |
| INVARIANTS is a pointer to the array of loop invariants. |
| The induction variable for this loop should be stored in the parameter |
| OURINDUCTIONVAR. |
| OUTERINDUCTIONVARS is an array of induction variables for outer loops. */ |
| |
| static lambda_loop |
| gcc_loop_to_lambda_loop (struct loop *loop, int depth, |
| VEC(tree,heap) ** invariants, |
| tree * ourinductionvar, |
| VEC(tree,heap) * outerinductionvars, |
| VEC(tree,heap) ** lboundvars, |
| VEC(tree,heap) ** uboundvars, |
| VEC(int,heap) ** steps, |
| struct obstack * lambda_obstack) |
| { |
| gimple phi; |
| gimple exit_cond; |
| tree access_fn, inductionvar; |
| tree step; |
| lambda_loop lloop = NULL; |
| lambda_linear_expression lbound, ubound; |
| tree test_lhs, test_rhs; |
| int stepint; |
| int extra = 0; |
| tree lboundvar, uboundvar, uboundresult; |
| |
| /* Find out induction var and exit condition. */ |
| inductionvar = find_induction_var_from_exit_cond (loop); |
| exit_cond = get_loop_exit_condition (loop); |
| |
| if (inductionvar == NULL || exit_cond == NULL) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, |
| "Unable to convert loop: Cannot determine exit condition or induction variable for loop.\n"); |
| return NULL; |
| } |
| |
| if (SSA_NAME_DEF_STMT (inductionvar) == NULL) |
| { |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, |
| "Unable to convert loop: Cannot find PHI node for induction variable\n"); |
| |
| return NULL; |
| } |
| |
| phi = SSA_NAME_DEF_STMT (inductionvar); |
| if (gimple_code (phi) != GIMPLE_PHI) |
| { |
| tree op = SINGLE_SSA_TREE_OPERAND (phi, SSA_OP_USE); |
| if (!op) |
| { |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, |
| "Unable to convert loop: Cannot find PHI node for induction variable\n"); |
| |
| return NULL; |
| } |
| |
| phi = SSA_NAME_DEF_STMT (op); |
| if (gimple_code (phi) != GIMPLE_PHI) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, |
| "Unable to convert loop: Cannot find PHI node for induction variable\n"); |
| return NULL; |
| } |
| } |
| |
| /* The induction variable name/version we want to put in the array is the |
| result of the induction variable phi node. */ |
| *ourinductionvar = PHI_RESULT (phi); |
| access_fn = instantiate_parameters |
| (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi))); |
| if (access_fn == chrec_dont_know) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, |
| "Unable to convert loop: Access function for induction variable phi is unknown\n"); |
| |
| return NULL; |
| } |
| |
| step = evolution_part_in_loop_num (access_fn, loop->num); |
| if (!step || step == chrec_dont_know) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, |
| "Unable to convert loop: Cannot determine step of loop.\n"); |
| |
| return NULL; |
| } |
| if (TREE_CODE (step) != INTEGER_CST) |
| { |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, |
| "Unable to convert loop: Step of loop is not integer.\n"); |
| return NULL; |
| } |
| |
| stepint = TREE_INT_CST_LOW (step); |
| |
| /* Only want phis for induction vars, which will have two |
| arguments. */ |
| if (gimple_phi_num_args (phi) != 2) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, |
| "Unable to convert loop: PHI node for induction variable has >2 arguments\n"); |
| return NULL; |
| } |
| |
| /* Another induction variable check. One argument's source should be |
| in the loop, one outside the loop. */ |
| if (flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, 0)->src) |
| && flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, 1)->src)) |
| { |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, |
| "Unable to convert loop: PHI edges both inside loop, or both outside loop.\n"); |
| |
| return NULL; |
| } |
| |
| if (flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, 0)->src)) |
| { |
| lboundvar = PHI_ARG_DEF (phi, 1); |
| lbound = gcc_tree_to_linear_expression (depth, lboundvar, |
| outerinductionvars, *invariants, |
| 0, lambda_obstack); |
| } |
| else |
| { |
| lboundvar = PHI_ARG_DEF (phi, 0); |
| lbound = gcc_tree_to_linear_expression (depth, lboundvar, |
| outerinductionvars, *invariants, |
| 0, lambda_obstack); |
| } |
| |
| if (!lbound) |
| { |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, |
| "Unable to convert loop: Cannot convert lower bound to linear expression\n"); |
| |
| return NULL; |
| } |
| /* One part of the test may be a loop invariant tree. */ |
| VEC_reserve (tree, heap, *invariants, 1); |
| test_lhs = gimple_cond_lhs (exit_cond); |
| test_rhs = gimple_cond_rhs (exit_cond); |
| |
| if (TREE_CODE (test_rhs) == SSA_NAME |
| && invariant_in_loop_and_outer_loops (loop, test_rhs)) |
| VEC_quick_push (tree, *invariants, test_rhs); |
| else if (TREE_CODE (test_lhs) == SSA_NAME |
| && invariant_in_loop_and_outer_loops (loop, test_lhs)) |
| VEC_quick_push (tree, *invariants, test_lhs); |
| |
| /* The non-induction variable part of the test is the upper bound variable. |
| */ |
| if (test_lhs == inductionvar) |
| uboundvar = test_rhs; |
| else |
| uboundvar = test_lhs; |
| |
| /* We only size the vectors assuming we have, at max, 2 times as many |
| invariants as we do loops (one for each bound). |
| This is just an arbitrary number, but it has to be matched against the |
| code below. */ |
| gcc_assert (VEC_length (tree, *invariants) <= (unsigned int) (2 * depth)); |
| |
| |
| /* We might have some leftover. */ |
| if (gimple_cond_code (exit_cond) == LT_EXPR) |
| extra = -1 * stepint; |
| else if (gimple_cond_code (exit_cond) == NE_EXPR) |
| extra = -1 * stepint; |
| else if (gimple_cond_code (exit_cond) == GT_EXPR) |
| extra = -1 * stepint; |
| else if (gimple_cond_code (exit_cond) == EQ_EXPR) |
| extra = 1 * stepint; |
| |
| ubound = gcc_tree_to_linear_expression (depth, uboundvar, |
| outerinductionvars, |
| *invariants, extra, lambda_obstack); |
| uboundresult = build2 (PLUS_EXPR, TREE_TYPE (uboundvar), uboundvar, |
| build_int_cst (TREE_TYPE (uboundvar), extra)); |
| VEC_safe_push (tree, heap, *uboundvars, uboundresult); |
| VEC_safe_push (tree, heap, *lboundvars, lboundvar); |
| VEC_safe_push (int, heap, *steps, stepint); |
| if (!ubound) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, |
| "Unable to convert loop: Cannot convert upper bound to linear expression\n"); |
| return NULL; |
| } |
| |
| lloop = lambda_loop_new (); |
| LL_STEP (lloop) = stepint; |
| LL_LOWER_BOUND (lloop) = lbound; |
| LL_UPPER_BOUND (lloop) = ubound; |
| return lloop; |
| } |
| |
| /* Given a LOOP, find the induction variable it is testing against in the exit |
| condition. Return the induction variable if found, NULL otherwise. */ |
| |
| tree |
| find_induction_var_from_exit_cond (struct loop *loop) |
| { |
| gimple expr = get_loop_exit_condition (loop); |
| tree ivarop; |
| tree test_lhs, test_rhs; |
| if (expr == NULL) |
| return NULL_TREE; |
| if (gimple_code (expr) != GIMPLE_COND) |
| return NULL_TREE; |
| test_lhs = gimple_cond_lhs (expr); |
| test_rhs = gimple_cond_rhs (expr); |
| |
| /* Find the side that is invariant in this loop. The ivar must be the other |
| side. */ |
| |
| if (expr_invariant_in_loop_p (loop, test_lhs)) |
| ivarop = test_rhs; |
| else if (expr_invariant_in_loop_p (loop, test_rhs)) |
| ivarop = test_lhs; |
| else |
| return NULL_TREE; |
| |
| if (TREE_CODE (ivarop) != SSA_NAME) |
| return NULL_TREE; |
| return ivarop; |
| } |
| |
| DEF_VEC_P(lambda_loop); |
| DEF_VEC_ALLOC_P(lambda_loop,heap); |
| |
| /* Generate a lambda loopnest from a gcc loopnest LOOP_NEST. |
| Return the new loop nest. |
| INDUCTIONVARS is a pointer to an array of induction variables for the |
| loopnest that will be filled in during this process. |
| INVARIANTS is a pointer to an array of invariants that will be filled in |
| during this process. */ |
| |
| lambda_loopnest |
| gcc_loopnest_to_lambda_loopnest (struct loop *loop_nest, |
| VEC(tree,heap) **inductionvars, |
| VEC(tree,heap) **invariants, |
| struct obstack * lambda_obstack) |
| { |
| lambda_loopnest ret = NULL; |
| struct loop *temp = loop_nest; |
| int depth = depth_of_nest (loop_nest); |
| size_t i; |
| VEC(lambda_loop,heap) *loops = NULL; |
| VEC(tree,heap) *uboundvars = NULL; |
| VEC(tree,heap) *lboundvars = NULL; |
| VEC(int,heap) *steps = NULL; |
| lambda_loop newloop; |
| tree inductionvar = NULL; |
| bool perfect_nest = perfect_nest_p (loop_nest); |
| |
| if (!perfect_nest && !can_convert_to_perfect_nest (loop_nest)) |
| goto fail; |
| |
| while (temp) |
| { |
| newloop = gcc_loop_to_lambda_loop (temp, depth, invariants, |
| &inductionvar, *inductionvars, |
| &lboundvars, &uboundvars, |
| &steps, lambda_obstack); |
| if (!newloop) |
| goto fail; |
| |
| VEC_safe_push (tree, heap, *inductionvars, inductionvar); |
| VEC_safe_push (lambda_loop, heap, loops, newloop); |
| temp = temp->inner; |
| } |
| |
| if (!perfect_nest) |
| { |
| if (!perfect_nestify (loop_nest, lboundvars, uboundvars, steps, |
| *inductionvars)) |
| { |
| if (dump_file) |
| fprintf (dump_file, |
| "Not a perfect loop nest and couldn't convert to one.\n"); |
| goto fail; |
| } |
| else if (dump_file) |
| fprintf (dump_file, |
| "Successfully converted loop nest to perfect loop nest.\n"); |
| } |
| |
| ret = lambda_loopnest_new (depth, 2 * depth, lambda_obstack); |
| |
| for (i = 0; VEC_iterate (lambda_loop, loops, i, newloop); i++) |
| LN_LOOPS (ret)[i] = newloop; |
| |
| fail: |
| VEC_free (lambda_loop, heap, loops); |
| VEC_free (tree, heap, uboundvars); |
| VEC_free (tree, heap, lboundvars); |
| VEC_free (int, heap, steps); |
| |
| return ret; |
| } |
| |
| /* Convert a lambda body vector LBV to a gcc tree, and return the new tree. |
| STMTS_TO_INSERT is a pointer to a tree where the statements we need to be |
| inserted for us are stored. INDUCTION_VARS is the array of induction |
| variables for the loop this LBV is from. TYPE is the tree type to use for |
| the variables and trees involved. */ |
| |
| static tree |
| lbv_to_gcc_expression (lambda_body_vector lbv, |
| tree type, VEC(tree,heap) *induction_vars, |
| gimple_seq *stmts_to_insert) |
| { |
| int k; |
| tree resvar; |
| tree expr = build_linear_expr (type, LBV_COEFFICIENTS (lbv), induction_vars); |
| |
| k = LBV_DENOMINATOR (lbv); |
| gcc_assert (k != 0); |
| if (k != 1) |
| expr = fold_build2 (CEIL_DIV_EXPR, type, expr, build_int_cst (type, k)); |
| |
| resvar = create_tmp_var (type, "lbvtmp"); |
| add_referenced_var (resvar); |
| return force_gimple_operand (fold (expr), stmts_to_insert, true, resvar); |
| } |
| |
| /* Convert a linear expression from coefficient and constant form to a |
| gcc tree. |
| Return the tree that represents the final value of the expression. |
| LLE is the linear expression to convert. |
| OFFSET is the linear offset to apply to the expression. |
| TYPE is the tree type to use for the variables and math. |
| INDUCTION_VARS is a vector of induction variables for the loops. |
| INVARIANTS is a vector of the loop nest invariants. |
| WRAP specifies what tree code to wrap the results in, if there is more than |
| one (it is either MAX_EXPR, or MIN_EXPR). |
| STMTS_TO_INSERT Is a pointer to the statement list we fill in with |
| statements that need to be inserted for the linear expression. */ |
| |
| static tree |
| lle_to_gcc_expression (lambda_linear_expression lle, |
| lambda_linear_expression offset, |
| tree type, |
| VEC(tree,heap) *induction_vars, |
| VEC(tree,heap) *invariants, |
| enum tree_code wrap, gimple_seq *stmts_to_insert) |
| { |
| int k; |
| tree resvar; |
| tree expr = NULL_TREE; |
| VEC(tree,heap) *results = NULL; |
| |
| gcc_assert (wrap == MAX_EXPR || wrap == MIN_EXPR); |
| |
| /* Build up the linear expressions. */ |
| for (; lle != NULL; lle = LLE_NEXT (lle)) |
| { |
| expr = build_linear_expr (type, LLE_COEFFICIENTS (lle), induction_vars); |
| expr = fold_build2 (PLUS_EXPR, type, expr, |
| build_linear_expr (type, |
| LLE_INVARIANT_COEFFICIENTS (lle), |
| invariants)); |
| |
| k = LLE_CONSTANT (lle); |
| if (k) |
| expr = fold_build2 (PLUS_EXPR, type, expr, build_int_cst (type, k)); |
| |
| k = LLE_CONSTANT (offset); |
| if (k) |
| expr = fold_build2 (PLUS_EXPR, type, expr, build_int_cst (type, k)); |
| |
| k = LLE_DENOMINATOR (lle); |
| if (k != 1) |
| expr = fold_build2 (wrap == MAX_EXPR ? CEIL_DIV_EXPR : FLOOR_DIV_EXPR, |
| type, expr, build_int_cst (type, k)); |
| |
| expr = fold (expr); |
| VEC_safe_push (tree, heap, results, expr); |
| } |
| |
| gcc_assert (expr); |
| |
| /* We may need to wrap the results in a MAX_EXPR or MIN_EXPR. */ |
| if (VEC_length (tree, results) > 1) |
| { |
| size_t i; |
| tree op; |
| |
| expr = VEC_index (tree, results, 0); |
| for (i = 1; VEC_iterate (tree, results, i, op); i++) |
| expr = fold_build2 (wrap, type, expr, op); |
| } |
| |
| VEC_free (tree, heap, results); |
| |
| resvar = create_tmp_var (type, "lletmp"); |
| add_referenced_var (resvar); |
| return force_gimple_operand (fold (expr), stmts_to_insert, true, resvar); |
| } |
| |
| /* Remove the induction variable defined at IV_STMT. */ |
| |
| void |
| remove_iv (gimple iv_stmt) |
| { |
| gimple_stmt_iterator si = gsi_for_stmt (iv_stmt); |
| |
| if (gimple_code (iv_stmt) == GIMPLE_PHI) |
| { |
| unsigned i; |
| |
| for (i = 0; i < gimple_phi_num_args (iv_stmt); i++) |
| { |
| gimple stmt; |
| imm_use_iterator imm_iter; |
| tree arg = gimple_phi_arg_def (iv_stmt, i); |
| bool used = false; |
| |
| if (TREE_CODE (arg) != SSA_NAME) |
| continue; |
| |
| FOR_EACH_IMM_USE_STMT (stmt, imm_iter, arg) |
| if (stmt != iv_stmt) |
| used = true; |
| |
| if (!used) |
| remove_iv (SSA_NAME_DEF_STMT (arg)); |
| } |
| |
| remove_phi_node (&si, true); |
| } |
| else |
| { |
| gsi_remove (&si, true); |
| release_defs (iv_stmt); |
| } |
| } |
| |
| /* Transform a lambda loopnest NEW_LOOPNEST, which had TRANSFORM applied to |
| it, back into gcc code. This changes the |
| loops, their induction variables, and their bodies, so that they |
| match the transformed loopnest. |
| OLD_LOOPNEST is the loopnest before we've replaced it with the new |
| loopnest. |
| OLD_IVS is a vector of induction variables from the old loopnest. |
| INVARIANTS is a vector of loop invariants from the old loopnest. |
| NEW_LOOPNEST is the new lambda loopnest to replace OLD_LOOPNEST with. |
| TRANSFORM is the matrix transform that was applied to OLD_LOOPNEST to get |
| NEW_LOOPNEST. */ |
| |
| void |
| lambda_loopnest_to_gcc_loopnest (struct loop *old_loopnest, |
| VEC(tree,heap) *old_ivs, |
| VEC(tree,heap) *invariants, |
| VEC(gimple,heap) **remove_ivs, |
| lambda_loopnest new_loopnest, |
| lambda_trans_matrix transform, |
| struct obstack * lambda_obstack) |
| { |
| struct loop *temp; |
| size_t i = 0; |
| unsigned j; |
| size_t depth = 0; |
| VEC(tree,heap) *new_ivs = NULL; |
| tree oldiv; |
| gimple_stmt_iterator bsi; |
| |
| transform = lambda_trans_matrix_inverse (transform); |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "Inverse of transformation matrix:\n"); |
| print_lambda_trans_matrix (dump_file, transform); |
| } |
| depth = depth_of_nest (old_loopnest); |
| temp = old_loopnest; |
| |
| while (temp) |
| { |
| lambda_loop newloop; |
| basic_block bb; |
| edge exit; |
| tree ivvar, ivvarinced; |
| gimple exitcond; |
| gimple_seq stmts; |
| enum tree_code testtype; |
| tree newupperbound, newlowerbound; |
| lambda_linear_expression offset; |
| tree type; |
| bool insert_after; |
| gimple inc_stmt; |
| |
| oldiv = VEC_index (tree, old_ivs, i); |
| type = TREE_TYPE (oldiv); |
| |
| /* First, build the new induction variable temporary */ |
| |
| ivvar = create_tmp_var (type, "lnivtmp"); |
| add_referenced_var (ivvar); |
| |
| VEC_safe_push (tree, heap, new_ivs, ivvar); |
| |
| newloop = LN_LOOPS (new_loopnest)[i]; |
| |
| /* Linear offset is a bit tricky to handle. Punt on the unhandled |
| cases for now. */ |
| offset = LL_LINEAR_OFFSET (newloop); |
| |
| gcc_assert (LLE_DENOMINATOR (offset) == 1 && |
| lambda_vector_zerop (LLE_COEFFICIENTS (offset), depth)); |
| |
| /* Now build the new lower bounds, and insert the statements |
| necessary to generate it on the loop preheader. */ |
| stmts = NULL; |
| newlowerbound = lle_to_gcc_expression (LL_LOWER_BOUND (newloop), |
| LL_LINEAR_OFFSET (newloop), |
| type, |
| new_ivs, |
| invariants, MAX_EXPR, &stmts); |
| |
| if (stmts) |
| { |
| gsi_insert_seq_on_edge (loop_preheader_edge (temp), stmts); |
| gsi_commit_edge_inserts (); |
| } |
| /* Build the new upper bound and insert its statements in the |
| basic block of the exit condition */ |
| stmts = NULL; |
| newupperbound = lle_to_gcc_expression (LL_UPPER_BOUND (newloop), |
| LL_LINEAR_OFFSET (newloop), |
| type, |
| new_ivs, |
| invariants, MIN_EXPR, &stmts); |
| exit = single_exit (temp); |
| exitcond = get_loop_exit_condition (temp); |
| bb = gimple_bb (exitcond); |
| bsi = gsi_after_labels (bb); |
| if (stmts) |
| gsi_insert_seq_before (&bsi, stmts, GSI_NEW_STMT); |
| |
| /* Create the new iv. */ |
| |
| standard_iv_increment_position (temp, &bsi, &insert_after); |
| create_iv (newlowerbound, |
| build_int_cst (type, LL_STEP (newloop)), |
| ivvar, temp, &bsi, insert_after, &ivvar, |
| NULL); |
| |
| /* Unfortunately, the incremented ivvar that create_iv inserted may not |
| dominate the block containing the exit condition. |
| So we simply create our own incremented iv to use in the new exit |
| test, and let redundancy elimination sort it out. */ |
| inc_stmt = gimple_build_assign_with_ops (PLUS_EXPR, SSA_NAME_VAR (ivvar), |
| ivvar, |
| build_int_cst (type, LL_STEP (newloop))); |
| |
| ivvarinced = make_ssa_name (SSA_NAME_VAR (ivvar), inc_stmt); |
| gimple_assign_set_lhs (inc_stmt, ivvarinced); |
| bsi = gsi_for_stmt (exitcond); |
| gsi_insert_before (&bsi, inc_stmt, GSI_SAME_STMT); |
| |
| /* Replace the exit condition with the new upper bound |
| comparison. */ |
| |
| testtype = LL_STEP (newloop) >= 0 ? LE_EXPR : GE_EXPR; |
| |
| /* We want to build a conditional where true means exit the loop, and |
| false means continue the loop. |
| So swap the testtype if this isn't the way things are.*/ |
| |
| if (exit->flags & EDGE_FALSE_VALUE) |
| testtype = swap_tree_comparison (testtype); |
| |
| gimple_cond_set_condition (exitcond, testtype, newupperbound, ivvarinced); |
| update_stmt (exitcond); |
| VEC_replace (tree, new_ivs, i, ivvar); |
| |
| i++; |
| temp = temp->inner; |
| } |
| |
| /* Rewrite uses of the old ivs so that they are now specified in terms of |
| the new ivs. */ |
| |
| for (i = 0; VEC_iterate (tree, old_ivs, i, oldiv); i++) |
| { |
| imm_use_iterator imm_iter; |
| use_operand_p use_p; |
| tree oldiv_def; |
| gimple oldiv_stmt = SSA_NAME_DEF_STMT (oldiv); |
| gimple stmt; |
| |
| if (gimple_code (oldiv_stmt) == GIMPLE_PHI) |
| oldiv_def = PHI_RESULT (oldiv_stmt); |
| else |
| oldiv_def = SINGLE_SSA_TREE_OPERAND (oldiv_stmt, SSA_OP_DEF); |
| gcc_assert (oldiv_def != NULL_TREE); |
| |
| FOR_EACH_IMM_USE_STMT (stmt, imm_iter, oldiv_def) |
| { |
| tree newiv; |
| gimple_seq stmts; |
| lambda_body_vector lbv, newlbv; |
| |
| /* Compute the new expression for the induction |
| variable. */ |
| depth = VEC_length (tree, new_ivs); |
| lbv = lambda_body_vector_new (depth, lambda_obstack); |
| LBV_COEFFICIENTS (lbv)[i] = 1; |
| |
| newlbv = lambda_body_vector_compute_new (transform, lbv, |
| lambda_obstack); |
| |
| stmts = NULL; |
| newiv = lbv_to_gcc_expression (newlbv, TREE_TYPE (oldiv), |
| new_ivs, &stmts); |
| |
| if (stmts && gimple_code (stmt) != GIMPLE_PHI) |
| { |
| bsi = gsi_for_stmt (stmt); |
| gsi_insert_seq_before (&bsi, stmts, GSI_SAME_STMT); |
| } |
| |
| FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter) |
| propagate_value (use_p, newiv); |
| |
| if (stmts && gimple_code (stmt) == GIMPLE_PHI) |
| for (j = 0; j < gimple_phi_num_args (stmt); j++) |
| if (gimple_phi_arg_def (stmt, j) == newiv) |
| gsi_insert_seq_on_edge (gimple_phi_arg_edge (stmt, j), stmts); |
| |
| update_stmt (stmt); |
| } |
| |
| /* Remove the now unused induction variable. */ |
| VEC_safe_push (gimple, heap, *remove_ivs, oldiv_stmt); |
| } |
| VEC_free (tree, heap, new_ivs); |
| } |
| |
| /* Return TRUE if this is not interesting statement from the perspective of |
| determining if we have a perfect loop nest. */ |
| |
| static bool |
| not_interesting_stmt (gimple stmt) |
| { |
| /* Note that COND_EXPR's aren't interesting because if they were exiting the |
| loop, we would have already failed the number of exits tests. */ |
| if (gimple_code (stmt) == GIMPLE_LABEL |
| || gimple_code (stmt) == GIMPLE_GOTO |
| || gimple_code (stmt) == GIMPLE_COND) |
| return true; |
| return false; |
| } |
| |
| /* Return TRUE if PHI uses DEF for it's in-the-loop edge for LOOP. */ |
| |
| static bool |
| phi_loop_edge_uses_def (struct loop *loop, gimple phi, tree def) |
| { |
| unsigned i; |
| for (i = 0; i < gimple_phi_num_args (phi); i++) |
| if (flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, i)->src)) |
| if (PHI_ARG_DEF (phi, i) == def) |
| return true; |
| return false; |
| } |
| |
| /* Return TRUE if STMT is a use of PHI_RESULT. */ |
| |
| static bool |
| stmt_uses_phi_result (gimple stmt, tree phi_result) |
| { |
| tree use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE); |
| |
| /* This is conservatively true, because we only want SIMPLE bumpers |
| of the form x +- constant for our pass. */ |
| return (use == phi_result); |
| } |
| |
| /* STMT is a bumper stmt for LOOP if the version it defines is used in the |
| in-loop-edge in a phi node, and the operand it uses is the result of that |
| phi node. |
| I.E. i_29 = i_3 + 1 |
| i_3 = PHI (0, i_29); */ |
| |
| static bool |
| stmt_is_bumper_for_loop (struct loop *loop, gimple stmt) |
| { |
| gimple use; |
| tree def; |
| imm_use_iterator iter; |
| use_operand_p use_p; |
| |
| def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF); |
| if (!def) |
| return false; |
| |
| FOR_EACH_IMM_USE_FAST (use_p, iter, def) |
| { |
| use = USE_STMT (use_p); |
| if (gimple_code (use) == GIMPLE_PHI) |
| { |
| if (phi_loop_edge_uses_def (loop, use, def)) |
| if (stmt_uses_phi_result (stmt, PHI_RESULT (use))) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| |
| /* Return true if LOOP is a perfect loop nest. |
| Perfect loop nests are those loop nests where all code occurs in the |
| innermost loop body. |
| If S is a program statement, then |
| |
| i.e. |
| DO I = 1, 20 |
| S1 |
| DO J = 1, 20 |
| ... |
| END DO |
| END DO |
| is not a perfect loop nest because of S1. |
| |
| DO I = 1, 20 |
| DO J = 1, 20 |
| S1 |
| ... |
| END DO |
| END DO |
| is a perfect loop nest. |
| |
| Since we don't have high level loops anymore, we basically have to walk our |
| statements and ignore those that are there because the loop needs them (IE |
| the induction variable increment, and jump back to the top of the loop). */ |
| |
| bool |
| perfect_nest_p (struct loop *loop) |
| { |
| basic_block *bbs; |
| size_t i; |
| gimple exit_cond; |
| |
| /* Loops at depth 0 are perfect nests. */ |
| if (!loop->inner) |
| return true; |
| |
| bbs = get_loop_body (loop); |
| exit_cond = get_loop_exit_condition (loop); |
| |
| for (i = 0; i < loop->num_nodes; i++) |
| { |
| if (bbs[i]->loop_father == loop) |
| { |
| gimple_stmt_iterator bsi; |
| |
| for (bsi = gsi_start_bb (bbs[i]); !gsi_end_p (bsi); gsi_next (&bsi)) |
| { |
| gimple stmt = gsi_stmt (bsi); |
| |
| if (gimple_code (stmt) == GIMPLE_COND |
| && exit_cond != stmt) |
| goto non_perfectly_nested; |
| |
| if (stmt == exit_cond |
| || not_interesting_stmt (stmt) |
| || stmt_is_bumper_for_loop (loop, stmt)) |
| continue; |
| |
| non_perfectly_nested: |
| free (bbs); |
| return false; |
| } |
| } |
| } |
| |
| free (bbs); |
| |
| return perfect_nest_p (loop->inner); |
| } |
| |
| /* Replace the USES of X in STMT, or uses with the same step as X with Y. |
| YINIT is the initial value of Y, REPLACEMENTS is a hash table to |
| avoid creating duplicate temporaries and FIRSTBSI is statement |
| iterator where new temporaries should be inserted at the beginning |
| of body basic block. */ |
| |
| static void |
| replace_uses_equiv_to_x_with_y (struct loop *loop, gimple stmt, tree x, |
| int xstep, tree y, tree yinit, |
| htab_t replacements, |
| gimple_stmt_iterator *firstbsi) |
| { |
| ssa_op_iter iter; |
| use_operand_p use_p; |
| |
| FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE) |
| { |
| tree use = USE_FROM_PTR (use_p); |
| tree step = NULL_TREE; |
| tree scev, init, val, var; |
| gimple setstmt; |
| struct tree_map *h, in; |
| void **loc; |
| |
| /* Replace uses of X with Y right away. */ |
| if (use == x) |
| { |
| SET_USE (use_p, y); |
| continue; |
| } |
| |
| scev = instantiate_parameters (loop, |
| analyze_scalar_evolution (loop, use)); |
| |
| if (scev == NULL || scev == chrec_dont_know) |
| continue; |
| |
| step = evolution_part_in_loop_num (scev, loop->num); |
| if (step == NULL |
| || step == chrec_dont_know |
| || TREE_CODE (step) != INTEGER_CST |
| || int_cst_value (step) != xstep) |
| continue; |
| |
| /* Use REPLACEMENTS hash table to cache already created |
| temporaries. */ |
| in.hash = htab_hash_pointer (use); |
| in.base.from = use; |
| h = (struct tree_map *) htab_find_with_hash (replacements, &in, in.hash); |
| if (h != NULL) |
| { |
| SET_USE (use_p, h->to); |
| continue; |
| } |
| |
| /* USE which has the same step as X should be replaced |
| with a temporary set to Y + YINIT - INIT. */ |
| init = initial_condition_in_loop_num (scev, loop->num); |
| gcc_assert (init != NULL && init != chrec_dont_know); |
| if (TREE_TYPE (use) == TREE_TYPE (y)) |
| { |
| val = fold_build2 (MINUS_EXPR, TREE_TYPE (y), init, yinit); |
| val = fold_build2 (PLUS_EXPR, TREE_TYPE (y), y, val); |
| if (val == y) |
| { |
| /* If X has the same type as USE, the same step |
| and same initial value, it can be replaced by Y. */ |
| SET_USE (use_p, y); |
| continue; |
| } |
| } |
| else |
| { |
| val = fold_build2 (MINUS_EXPR, TREE_TYPE (y), y, yinit); |
| val = fold_convert (TREE_TYPE (use), val); |
| val = fold_build2 (PLUS_EXPR, TREE_TYPE (use), val, init); |
| } |
| |
| /* Create a temporary variable and insert it at the beginning |
| of the loop body basic block, right after the PHI node |
| which sets Y. */ |
| var = create_tmp_var (TREE_TYPE (use), "perfecttmp"); |
| add_referenced_var (var); |
| val = force_gimple_operand_gsi (firstbsi, val, false, NULL, |
| true, GSI_SAME_STMT); |
| setstmt = gimple_build_assign (var, val); |
| var = make_ssa_name (var, setstmt); |
| gimple_assign_set_lhs (setstmt, var); |
| gsi_insert_before (firstbsi, setstmt, GSI_SAME_STMT); |
| update_stmt (setstmt); |
| SET_USE (use_p, var); |
| h = GGC_NEW (struct tree_map); |
| h->hash = in.hash; |
| h->base.from = use; |
| h->to = var; |
| loc = htab_find_slot_with_hash (replacements, h, in.hash, INSERT); |
| gcc_assert ((*(struct tree_map **)loc) == NULL); |
| *(struct tree_map **) loc = h; |
| } |
| } |
| |
| /* Return true if STMT is an exit PHI for LOOP */ |
| |
| static bool |
| exit_phi_for_loop_p (struct loop *loop, gimple stmt) |
| { |
| if (gimple_code (stmt) != GIMPLE_PHI |
| || gimple_phi_num_args (stmt) != 1 |
| || gimple_bb (stmt) != single_exit (loop)->dest) |
| return false; |
| |
| return true; |
| } |
| |
| /* Return true if STMT can be put back into the loop INNER, by |
| copying it to the beginning of that loop and changing the uses. */ |
| |
| static bool |
| can_put_in_inner_loop (struct loop *inner, gimple stmt) |
| { |
| imm_use_iterator imm_iter; |
| use_operand_p use_p; |
| |
| gcc_assert (is_gimple_assign (stmt)); |
| if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS) |
| || !stmt_invariant_in_loop_p (inner, stmt)) |
| return false; |
| |
| FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_assign_lhs (stmt)) |
| { |
| if (!exit_phi_for_loop_p (inner, USE_STMT (use_p))) |
| { |
| basic_block immbb = gimple_bb (USE_STMT (use_p)); |
| |
| if (!flow_bb_inside_loop_p (inner, immbb)) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /* Return true if STMT can be put *after* the inner loop of LOOP. */ |
| |
| static bool |
| can_put_after_inner_loop (struct loop *loop, gimple stmt) |
| { |
| imm_use_iterator imm_iter; |
| use_operand_p use_p; |
| |
| if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)) |
| return false; |
| |
| FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_assign_lhs (stmt)) |
| { |
| if (!exit_phi_for_loop_p (loop, USE_STMT (use_p))) |
| { |
| basic_block immbb = gimple_bb (USE_STMT (use_p)); |
| |
| if (!dominated_by_p (CDI_DOMINATORS, |
| immbb, |
| loop->inner->header) |
| && !can_put_in_inner_loop (loop->inner, stmt)) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /* Return true when the induction variable IV is simple enough to be |
| re-synthesized. */ |
| |
| static bool |
| can_duplicate_iv (tree iv, struct loop *loop) |
| { |
| tree scev = instantiate_parameters |
| (loop, analyze_scalar_evolution (loop, iv)); |
| |
| if (!automatically_generated_chrec_p (scev)) |
| { |
| tree step = evolution_part_in_loop_num (scev, loop->num); |
| |
| if (step && step != chrec_dont_know && TREE_CODE (step) == INTEGER_CST) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* If this is a scalar operation that can be put back into the inner |
| loop, or after the inner loop, through copying, then do so. This |
| works on the theory that any amount of scalar code we have to |
| reduplicate into or after the loops is less expensive that the win |
| we get from rearranging the memory walk the loop is doing so that |
| it has better cache behavior. */ |
| |
| static bool |
| cannot_convert_modify_to_perfect_nest (gimple stmt, struct loop *loop) |
| { |
| use_operand_p use_a, use_b; |
| imm_use_iterator imm_iter; |
| ssa_op_iter op_iter, op_iter1; |
| tree op0 = gimple_assign_lhs (stmt); |
| |
| /* The statement should not define a variable used in the inner |
| loop. */ |
| if (TREE_CODE (op0) == SSA_NAME |
| && !can_duplicate_iv (op0, loop)) |
| FOR_EACH_IMM_USE_FAST (use_a, imm_iter, op0) |
| if (gimple_bb (USE_STMT (use_a))->loop_father == loop->inner) |
| return true; |
| |
| FOR_EACH_SSA_USE_OPERAND (use_a, stmt, op_iter, SSA_OP_USE) |
| { |
| gimple node; |
| tree op = USE_FROM_PTR (use_a); |
| |
| /* The variables should not be used in both loops. */ |
| if (!can_duplicate_iv (op, loop)) |
| FOR_EACH_IMM_USE_FAST (use_b, imm_iter, op) |
| if (gimple_bb (USE_STMT (use_b))->loop_father == loop->inner) |
| return true; |
| |
| /* The statement should not use the value of a scalar that was |
| modified in the loop. */ |
| node = SSA_NAME_DEF_STMT (op); |
| if (gimple_code (node) == GIMPLE_PHI) |
| FOR_EACH_PHI_ARG (use_b, node, op_iter1, SSA_OP_USE) |
| { |
| tree arg = USE_FROM_PTR (use_b); |
| |
| if (TREE_CODE (arg) == SSA_NAME) |
| { |
| gimple arg_stmt = SSA_NAME_DEF_STMT (arg); |
| |
| if (gimple_bb (arg_stmt) |
| && (gimple_bb (arg_stmt)->loop_father == loop->inner)) |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| /* Return true when BB contains statements that can harm the transform |
| to a perfect loop nest. */ |
| |
| static bool |
| cannot_convert_bb_to_perfect_nest (basic_block bb, struct loop *loop) |
| { |
| gimple_stmt_iterator bsi; |
| gimple exit_condition = get_loop_exit_condition (loop); |
| |
| for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi)) |
| { |
| gimple stmt = gsi_stmt (bsi); |
| |
| if (stmt == exit_condition |
| || not_interesting_stmt (stmt) |
| || stmt_is_bumper_for_loop (loop, stmt)) |
| continue; |
| |
| if (is_gimple_assign (stmt)) |
| { |
| if (cannot_convert_modify_to_perfect_nest (stmt, loop)) |
| return true; |
| |
| if (can_duplicate_iv (gimple_assign_lhs (stmt), loop)) |
| continue; |
| |
| if (can_put_in_inner_loop (loop->inner, stmt) |
| || can_put_after_inner_loop (loop, stmt)) |
| continue; |
| } |
| |
| /* If the bb of a statement we care about isn't dominated by the |
| header of the inner loop, then we can't handle this case |
| right now. This test ensures that the statement comes |
| completely *after* the inner loop. */ |
| if (!dominated_by_p (CDI_DOMINATORS, |
| gimple_bb (stmt), |
| loop->inner->header)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| |
| /* Return TRUE if LOOP is an imperfect nest that we can convert to a |
| perfect one. At the moment, we only handle imperfect nests of |
| depth 2, where all of the statements occur after the inner loop. */ |
| |
| static bool |
| can_convert_to_perfect_nest (struct loop *loop) |
| { |
| basic_block *bbs; |
| size_t i; |
| gimple_stmt_iterator si; |
| |
| /* Can't handle triply nested+ loops yet. */ |
| if (!loop->inner || loop->inner->inner) |
| return false; |
| |
| bbs = get_loop_body (loop); |
| for (i = 0; i < loop->num_nodes; i++) |
| if (bbs[i]->loop_father == loop |
| && cannot_convert_bb_to_perfect_nest (bbs[i], loop)) |
| goto fail; |
| |
| /* We also need to make sure the loop exit only has simple copy phis in it, |
| otherwise we don't know how to transform it into a perfect nest. */ |
| for (si = gsi_start_phis (single_exit (loop)->dest); |
| !gsi_end_p (si); |
| gsi_next (&si)) |
| if (gimple_phi_num_args (gsi_stmt (si)) != 1) |
| goto fail; |
| |
| free (bbs); |
| return true; |
| |
| fail: |
| free (bbs); |
| return false; |
| } |
| |
| /* Transform the loop nest into a perfect nest, if possible. |
| LOOP is the loop nest to transform into a perfect nest |
| LBOUNDS are the lower bounds for the loops to transform |
| UBOUNDS are the upper bounds for the loops to transform |
| STEPS is the STEPS for the loops to transform. |
| LOOPIVS is the induction variables for the loops to transform. |
| |
| Basically, for the case of |
| |
| FOR (i = 0; i < 50; i++) |
| { |
| FOR (j =0; j < 50; j++) |
| { |
| <whatever> |
| } |
| <some code> |
| } |
| |
| This function will transform it into a perfect loop nest by splitting the |
| outer loop into two loops, like so: |
| |
| FOR (i = 0; i < 50; i++) |
| { |
| FOR (j = 0; j < 50; j++) |
| { |
| <whatever> |
| } |
| } |
| |
| FOR (i = 0; i < 50; i ++) |
| { |
| <some code> |
| } |
| |
| Return FALSE if we can't make this loop into a perfect nest. */ |
| |
| static bool |
| perfect_nestify (struct loop *loop, |
| VEC(tree,heap) *lbounds, |
| VEC(tree,heap) *ubounds, |
| VEC(int,heap) *steps, |
| VEC(tree,heap) *loopivs) |
| { |
| basic_block *bbs; |
| gimple exit_condition; |
| gimple cond_stmt; |
| basic_block preheaderbb, headerbb, bodybb, latchbb, olddest; |
| int i; |
| gimple_stmt_iterator bsi, firstbsi; |
| bool insert_after; |
| edge e; |
| struct loop *newloop; |
| gimple phi; |
| tree uboundvar; |
| gimple stmt; |
| tree oldivvar, ivvar, ivvarinced; |
| VEC(tree,heap) *phis = NULL; |
| htab_t replacements = NULL; |
| |
| /* Create the new loop. */ |
| olddest = single_exit (loop)->dest; |
| preheaderbb = split_edge (single_exit (loop)); |
| headerbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb); |
| |
| /* Push the exit phi nodes that we are moving. */ |
| for (bsi = gsi_start_phis (olddest); !gsi_end_p (bsi); gsi_next (&bsi)) |
| { |
| phi = gsi_stmt (bsi); |
| VEC_reserve (tree, heap, phis, 2); |
| VEC_quick_push (tree, phis, PHI_RESULT (phi)); |
| VEC_quick_push (tree, phis, PHI_ARG_DEF (phi, 0)); |
| } |
| e = redirect_edge_and_branch (single_succ_edge (preheaderbb), headerbb); |
| |
| /* Remove the exit phis from the old basic block. */ |
| for (bsi = gsi_start_phis (olddest); !gsi_end_p (bsi); ) |
| remove_phi_node (&bsi, false); |
| |
| /* and add them back to the new basic block. */ |
| while (VEC_length (tree, phis) != 0) |
| { |
| tree def; |
| tree phiname; |
| def = VEC_pop (tree, phis); |
| phiname = VEC_pop (tree, phis); |
| phi = create_phi_node (phiname, preheaderbb); |
| add_phi_arg (phi, def, single_pred_edge (preheaderbb)); |
| } |
| flush_pending_stmts (e); |
| VEC_free (tree, heap, phis); |
| |
| bodybb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb); |
| latchbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb); |
| make_edge (headerbb, bodybb, EDGE_FALLTHRU); |
| cond_stmt = gimple_build_cond (NE_EXPR, integer_one_node, integer_zero_node, |
| NULL_TREE, NULL_TREE); |
| bsi = gsi_start_bb (bodybb); |
| gsi_insert_after (&bsi, cond_stmt, GSI_NEW_STMT); |
| e = make_edge (bodybb, olddest, EDGE_FALSE_VALUE); |
| make_edge (bodybb, latchbb, EDGE_TRUE_VALUE); |
| make_edge (latchbb, headerbb, EDGE_FALLTHRU); |
| |
| /* Update the loop structures. */ |
| newloop = duplicate_loop (loop, olddest->loop_father); |
| newloop->header = headerbb; |
| newloop->latch = latchbb; |
| add_bb_to_loop (latchbb, newloop); |
| add_bb_to_loop (bodybb, newloop); |
| add_bb_to_loop (headerbb, newloop); |
| set_immediate_dominator (CDI_DOMINATORS, bodybb, headerbb); |
| set_immediate_dominator (CDI_DOMINATORS, headerbb, preheaderbb); |
| set_immediate_dominator (CDI_DOMINATORS, preheaderbb, |
| single_exit (loop)->src); |
| set_immediate_dominator (CDI_DOMINATORS, latchbb, bodybb); |
| set_immediate_dominator (CDI_DOMINATORS, olddest, |
| recompute_dominator (CDI_DOMINATORS, olddest)); |
| /* Create the new iv. */ |
| oldivvar = VEC_index (tree, loopivs, 0); |
| ivvar = create_tmp_var (TREE_TYPE (oldivvar), "perfectiv"); |
| add_referenced_var (ivvar); |
| standard_iv_increment_position (newloop, &bsi, &insert_after); |
| create_iv (VEC_index (tree, lbounds, 0), |
| build_int_cst (TREE_TYPE (oldivvar), VEC_index (int, steps, 0)), |
| ivvar, newloop, &bsi, insert_after, &ivvar, &ivvarinced); |
| |
| /* Create the new upper bound. This may be not just a variable, so we copy |
| it to one just in case. */ |
| |
| exit_condition = get_loop_exit_condition (newloop); |
| uboundvar = create_tmp_var (TREE_TYPE (VEC_index (tree, ubounds, 0)), |
| "uboundvar"); |
| add_referenced_var (uboundvar); |
| stmt = gimple_build_assign (uboundvar, VEC_index (tree, ubounds, 0)); |
| uboundvar = make_ssa_name (uboundvar, stmt); |
| gimple_assign_set_lhs (stmt, uboundvar); |
| |
| if (insert_after) |
| gsi_insert_after (&bsi, stmt, GSI_SAME_STMT); |
| else |
| gsi_insert_before (&bsi, stmt, GSI_SAME_STMT); |
| update_stmt (stmt); |
| gimple_cond_set_condition (exit_condition, GE_EXPR, uboundvar, ivvarinced); |
| update_stmt (exit_condition); |
| replacements = htab_create_ggc (20, tree_map_hash, |
| tree_map_eq, NULL); |
| bbs = get_loop_body_in_dom_order (loop); |
| /* Now move the statements, and replace the induction variable in the moved |
| statements with the correct loop induction variable. */ |
| oldivvar = VEC_index (tree, loopivs, 0); |
| firstbsi = gsi_start_bb (bodybb); |
| for (i = loop->num_nodes - 1; i >= 0 ; i--) |
| { |
| gimple_stmt_iterator tobsi = gsi_last_bb (bodybb); |
| if (bbs[i]->loop_father == loop) |
| { |
| /* If this is true, we are *before* the inner loop. |
| If this isn't true, we are *after* it. |
| |
| The only time can_convert_to_perfect_nest returns true when we |
| have statements before the inner loop is if they can be moved |
| into the inner loop. |
| |
| The only time can_convert_to_perfect_nest returns true when we |
| have statements after the inner loop is if they can be moved into |
| the new split loop. */ |
| |
| if (dominated_by_p (CDI_DOMINATORS, loop->inner->header, bbs[i])) |
| { |
| gimple_stmt_iterator header_bsi |
| = gsi_after_labels (loop->inner->header); |
| |
| for (bsi = gsi_start_bb (bbs[i]); !gsi_end_p (bsi);) |
| { |
| gimple stmt = gsi_stmt (bsi); |
| |
| if (stmt == exit_condition |
| || not_interesting_stmt (stmt) |
| || stmt_is_bumper_for_loop (loop, stmt)) |
| { |
| gsi_next (&bsi); |
| continue; |
| } |
| |
| gsi_move_before (&bsi, &header_bsi); |
| } |
| } |
| else |
| { |
| /* Note that the bsi only needs to be explicitly incremented |
| when we don't move something, since it is automatically |
| incremented when we do. */ |
| for (bsi = gsi_start_bb (bbs[i]); !gsi_end_p (bsi);) |
| { |
| ssa_op_iter i; |
| tree n; |
| gimple stmt = gsi_stmt (bsi); |
| |
| if (stmt == exit_condition |
| || not_interesting_stmt (stmt) |
| || stmt_is_bumper_for_loop (loop, stmt)) |
| { |
| gsi_next (&bsi); |
| continue; |
| } |
| |
| replace_uses_equiv_to_x_with_y |
| (loop, stmt, oldivvar, VEC_index (int, steps, 0), ivvar, |
| VEC_index (tree, lbounds, 0), replacements, &firstbsi); |
| |
| gsi_move_before (&bsi, &tobsi); |
| |
| /* If the statement has any virtual operands, they may |
| need to be rewired because the original loop may |
| still reference them. */ |
| FOR_EACH_SSA_TREE_OPERAND (n, stmt, i, SSA_OP_ALL_VIRTUALS) |
| mark_sym_for_renaming (SSA_NAME_VAR (n)); |
| } |
| } |
| |
| } |
| } |
| |
| free (bbs); |
| htab_delete (replacements); |
| return perfect_nest_p (loop); |
| } |
| |
| /* Return true if TRANS is a legal transformation matrix that respects |
| the dependence vectors in DISTS and DIRS. The conservative answer |
| is false. |
| |
| "Wolfe proves that a unimodular transformation represented by the |
| matrix T is legal when applied to a loop nest with a set of |
| lexicographically non-negative distance vectors RDG if and only if |
| for each vector d in RDG, (T.d >= 0) is lexicographically positive. |
| i.e.: if and only if it transforms the lexicographically positive |
| distance vectors to lexicographically positive vectors. Note that |
| a unimodular matrix must transform the zero vector (and only it) to |
| the zero vector." S.Muchnick. */ |
| |
| bool |
| lambda_transform_legal_p (lambda_trans_matrix trans, |
| int nb_loops, |
| VEC (ddr_p, heap) *dependence_relations) |
| { |
| unsigned int i, j; |
| lambda_vector distres; |
| struct data_dependence_relation *ddr; |
| |
| gcc_assert (LTM_COLSIZE (trans) == nb_loops |
| && LTM_ROWSIZE (trans) == nb_loops); |
| |
| /* When there are no dependences, the transformation is correct. */ |
| if (VEC_length (ddr_p, dependence_relations) == 0) |
| return true; |
| |
| ddr = VEC_index (ddr_p, dependence_relations, 0); |
| if (ddr == NULL) |
| return true; |
| |
| /* When there is an unknown relation in the dependence_relations, we |
| know that it is no worth looking at this loop nest: give up. */ |
| if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know) |
| return false; |
| |
| distres = lambda_vector_new (nb_loops); |
| |
| /* For each distance vector in the dependence graph. */ |
| for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++) |
| { |
| /* Don't care about relations for which we know that there is no |
| dependence, nor about read-read (aka. output-dependences): |
| these data accesses can happen in any order. */ |
| if (DDR_ARE_DEPENDENT (ddr) == chrec_known |
| || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr)))) |
| continue; |
| |
| /* Conservatively answer: "this transformation is not valid". */ |
| if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know) |
| return false; |
| |
| /* If the dependence could not be captured by a distance vector, |
| conservatively answer that the transform is not valid. */ |
| if (DDR_NUM_DIST_VECTS (ddr) == 0) |
| return false; |
| |
| /* Compute trans.dist_vect */ |
| for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++) |
| { |
| lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops, |
| DDR_DIST_VECT (ddr, j), distres); |
| |
| if (!lambda_vector_lexico_pos (distres, nb_loops)) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| |
| /* Collects parameters from affine function ACCESS_FUNCTION, and push |
| them in PARAMETERS. */ |
| |
| static void |
| lambda_collect_parameters_from_af (tree access_function, |
| struct pointer_set_t *param_set, |
| VEC (tree, heap) **parameters) |
| { |
| if (access_function == NULL) |
| return; |
| |
| if (TREE_CODE (access_function) == SSA_NAME |
| && pointer_set_contains (param_set, access_function) == 0) |
| { |
| pointer_set_insert (param_set, access_function); |
| VEC_safe_push (tree, heap, *parameters, access_function); |
| } |
| else |
| { |
| int i, num_operands = tree_operand_length (access_function); |
| |
| for (i = 0; i < num_operands; i++) |
| lambda_collect_parameters_from_af (TREE_OPERAND (access_function, i), |
| param_set, parameters); |
| } |
| } |
| |
| /* Collects parameters from DATAREFS, and push them in PARAMETERS. */ |
| |
| void |
| lambda_collect_parameters (VEC (data_reference_p, heap) *datarefs, |
| VEC (tree, heap) **parameters) |
| { |
| unsigned i, j; |
| struct pointer_set_t *parameter_set = pointer_set_create (); |
| data_reference_p data_reference; |
| |
| for (i = 0; VEC_iterate (data_reference_p, datarefs, i, data_reference); i++) |
| for (j = 0; j < DR_NUM_DIMENSIONS (data_reference); j++) |
| lambda_collect_parameters_from_af (DR_ACCESS_FN (data_reference, j), |
| parameter_set, parameters); |
| pointer_set_destroy (parameter_set); |
| } |
| |
| /* Translates BASE_EXPR to vector CY. AM is needed for inferring |
| indexing positions in the data access vector. CST is the analyzed |
| integer constant. */ |
| |
| static bool |
| av_for_af_base (tree base_expr, lambda_vector cy, struct access_matrix *am, |
| int cst) |
| { |
| bool result = true; |
| |
| switch (TREE_CODE (base_expr)) |
| { |
| case INTEGER_CST: |
| /* Constant part. */ |
| cy[AM_CONST_COLUMN_INDEX (am)] += int_cst_value (base_expr) * cst; |
| return true; |
| |
| case SSA_NAME: |
| { |
| int param_index = |
| access_matrix_get_index_for_parameter (base_expr, am); |
| |
| if (param_index >= 0) |
| { |
| cy[param_index] = cst + cy[param_index]; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| case PLUS_EXPR: |
| return av_for_af_base (TREE_OPERAND (base_expr, 0), cy, am, cst) |
| && av_for_af_base (TREE_OPERAND (base_expr, 1), cy, am, cst); |
| |
| case MINUS_EXPR: |
| return av_for_af_base (TREE_OPERAND (base_expr, 0), cy, am, cst) |
| && av_for_af_base (TREE_OPERAND (base_expr, 1), cy, am, -1 * cst); |
| |
| case MULT_EXPR: |
| if (TREE_CODE (TREE_OPERAND (base_expr, 0)) == INTEGER_CST) |
| result = av_for_af_base (TREE_OPERAND (base_expr, 1), |
| cy, am, cst * |
| int_cst_value (TREE_OPERAND (base_expr, 0))); |
| else if (TREE_CODE (TREE_OPERAND (base_expr, 1)) == INTEGER_CST) |
| result = av_for_af_base (TREE_OPERAND (base_expr, 0), |
| cy, am, cst * |
| int_cst_value (TREE_OPERAND (base_expr, 1))); |
| else |
| result = false; |
| |
| return result; |
| |
| case NEGATE_EXPR: |
| return av_for_af_base (TREE_OPERAND (base_expr, 0), cy, am, -1 * cst); |
| |
| default: |
| return false; |
| } |
| |
| return result; |
| } |
| |
| /* Translates ACCESS_FUN to vector CY. AM is needed for inferring |
| indexing positions in the data access vector. */ |
| |
| static bool |
| av_for_af (tree access_fun, lambda_vector cy, struct access_matrix *am) |
| { |
| switch (TREE_CODE (access_fun)) |
| { |
| case POLYNOMIAL_CHREC: |
| { |
| tree left = CHREC_LEFT (access_fun); |
| tree right = CHREC_RIGHT (access_fun); |
| unsigned var; |
| |
| if (TREE_CODE (right) != INTEGER_CST) |
| return false; |
| |
| var = am_vector_index_for_loop (am, CHREC_VARIABLE (access_fun)); |
| cy[var] = int_cst_value (right); |
| |
| if (TREE_CODE (left) == POLYNOMIAL_CHREC) |
| return av_for_af (left, cy, am); |
| else |
| return av_for_af_base (left, cy, am, 1); |
| } |
| |
| case INTEGER_CST: |
| /* Constant part. */ |
| return av_for_af_base (access_fun, cy, am, 1); |
| |
| default: |
| return false; |
| } |
| } |
| |
| /* Initializes the access matrix for DATA_REFERENCE. */ |
| |
| static bool |
| build_access_matrix (data_reference_p data_reference, |
| VEC (tree, heap) *parameters, VEC (loop_p, heap) *nest) |
| { |
| struct access_matrix *am = GGC_NEW (struct access_matrix); |
| unsigned i, ndim = DR_NUM_DIMENSIONS (data_reference); |
| unsigned nivs = VEC_length (loop_p, nest); |
| unsigned lambda_nb_columns; |
| |
| AM_LOOP_NEST (am) = nest; |
| AM_NB_INDUCTION_VARS (am) = nivs; |
| AM_PARAMETERS (am) = parameters; |
| |
| lambda_nb_columns = AM_NB_COLUMNS (am); |
| AM_MATRIX (am) = VEC_alloc (lambda_vector, gc, ndim); |
| |
| for (i = 0; i < ndim; i++) |
| { |
| lambda_vector access_vector = lambda_vector_new (lambda_nb_columns); |
| tree access_function = DR_ACCESS_FN (data_reference, i); |
| |
| if (!av_for_af (access_function, access_vector, am)) |
| return false; |
| |
| VEC_quick_push (lambda_vector, AM_MATRIX (am), access_vector); |
| } |
| |
| DR_ACCESS_MATRIX (data_reference) = am; |
| return true; |
| } |
| |
| /* Returns false when one of the access matrices cannot be built. */ |
| |
| bool |
| lambda_compute_access_matrices (VEC (data_reference_p, heap) *datarefs, |
| VEC (tree, heap) *parameters, |
| VEC (loop_p, heap) *nest) |
| { |
| data_reference_p dataref; |
| unsigned ix; |
| |
| for (ix = 0; VEC_iterate (data_reference_p, datarefs, ix, dataref); ix++) |
| if (!build_access_matrix (dataref, parameters, nest)) |
| return false; |
| |
| return true; |
| } |