| /* Decompose multiword subregs. |
| Copyright (C) 2007, 2008, 2009 Free Software Foundation, Inc. |
| Contributed by Richard Henderson <rth@redhat.com> |
| Ian Lance Taylor <iant@google.com> |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "machmode.h" |
| #include "tm.h" |
| #include "rtl.h" |
| #include "tm_p.h" |
| #include "timevar.h" |
| #include "flags.h" |
| #include "insn-config.h" |
| #include "obstack.h" |
| #include "basic-block.h" |
| #include "recog.h" |
| #include "bitmap.h" |
| #include "expr.h" |
| #include "except.h" |
| #include "regs.h" |
| #include "tree-pass.h" |
| #include "df.h" |
| |
| #ifdef STACK_GROWS_DOWNWARD |
| # undef STACK_GROWS_DOWNWARD |
| # define STACK_GROWS_DOWNWARD 1 |
| #else |
| # define STACK_GROWS_DOWNWARD 0 |
| #endif |
| |
| DEF_VEC_P (bitmap); |
| DEF_VEC_ALLOC_P (bitmap,heap); |
| |
| /* Decompose multi-word pseudo-registers into individual |
| pseudo-registers when possible. This is possible when all the uses |
| of a multi-word register are via SUBREG, or are copies of the |
| register to another location. Breaking apart the register permits |
| more CSE and permits better register allocation. */ |
| |
| /* Bit N in this bitmap is set if regno N is used in a context in |
| which we can decompose it. */ |
| static bitmap decomposable_context; |
| |
| /* Bit N in this bitmap is set if regno N is used in a context in |
| which it can not be decomposed. */ |
| static bitmap non_decomposable_context; |
| |
| /* Bit N in the bitmap in element M of this array is set if there is a |
| copy from reg M to reg N. */ |
| static VEC(bitmap,heap) *reg_copy_graph; |
| |
| /* Return whether X is a simple object which we can take a word_mode |
| subreg of. */ |
| |
| static bool |
| simple_move_operand (rtx x) |
| { |
| if (GET_CODE (x) == SUBREG) |
| x = SUBREG_REG (x); |
| |
| if (!OBJECT_P (x)) |
| return false; |
| |
| if (GET_CODE (x) == LABEL_REF |
| || GET_CODE (x) == SYMBOL_REF |
| || GET_CODE (x) == HIGH |
| || GET_CODE (x) == CONST) |
| return false; |
| |
| if (MEM_P (x) |
| && (MEM_VOLATILE_P (x) |
| || mode_dependent_address_p (XEXP (x, 0)))) |
| return false; |
| |
| return true; |
| } |
| |
| /* If INSN is a single set between two objects, return the single set. |
| Such an insn can always be decomposed. INSN should have been |
| passed to recog and extract_insn before this is called. */ |
| |
| static rtx |
| simple_move (rtx insn) |
| { |
| rtx x; |
| rtx set; |
| enum machine_mode mode; |
| |
| if (recog_data.n_operands != 2) |
| return NULL_RTX; |
| |
| set = single_set (insn); |
| if (!set) |
| return NULL_RTX; |
| |
| x = SET_DEST (set); |
| if (x != recog_data.operand[0] && x != recog_data.operand[1]) |
| return NULL_RTX; |
| if (!simple_move_operand (x)) |
| return NULL_RTX; |
| |
| x = SET_SRC (set); |
| if (x != recog_data.operand[0] && x != recog_data.operand[1]) |
| return NULL_RTX; |
| /* For the src we can handle ASM_OPERANDS, and it is beneficial for |
| things like x86 rdtsc which returns a DImode value. */ |
| if (GET_CODE (x) != ASM_OPERANDS |
| && !simple_move_operand (x)) |
| return NULL_RTX; |
| |
| /* We try to decompose in integer modes, to avoid generating |
| inefficient code copying between integer and floating point |
| registers. That means that we can't decompose if this is a |
| non-integer mode for which there is no integer mode of the same |
| size. */ |
| mode = GET_MODE (SET_SRC (set)); |
| if (!SCALAR_INT_MODE_P (mode) |
| && (mode_for_size (GET_MODE_SIZE (mode) * BITS_PER_UNIT, MODE_INT, 0) |
| == BLKmode)) |
| return NULL_RTX; |
| |
| /* Reject PARTIAL_INT modes. They are used for processor specific |
| purposes and it's probably best not to tamper with them. */ |
| if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT) |
| return NULL_RTX; |
| |
| return set; |
| } |
| |
| /* If SET is a copy from one multi-word pseudo-register to another, |
| record that in reg_copy_graph. Return whether it is such a |
| copy. */ |
| |
| static bool |
| find_pseudo_copy (rtx set) |
| { |
| rtx dest = SET_DEST (set); |
| rtx src = SET_SRC (set); |
| unsigned int rd, rs; |
| bitmap b; |
| |
| if (!REG_P (dest) || !REG_P (src)) |
| return false; |
| |
| rd = REGNO (dest); |
| rs = REGNO (src); |
| if (HARD_REGISTER_NUM_P (rd) || HARD_REGISTER_NUM_P (rs)) |
| return false; |
| |
| if (GET_MODE_SIZE (GET_MODE (dest)) <= UNITS_PER_WORD) |
| return false; |
| |
| b = VEC_index (bitmap, reg_copy_graph, rs); |
| if (b == NULL) |
| { |
| b = BITMAP_ALLOC (NULL); |
| VEC_replace (bitmap, reg_copy_graph, rs, b); |
| } |
| |
| bitmap_set_bit (b, rd); |
| |
| return true; |
| } |
| |
| /* Look through the registers in DECOMPOSABLE_CONTEXT. For each case |
| where they are copied to another register, add the register to |
| which they are copied to DECOMPOSABLE_CONTEXT. Use |
| NON_DECOMPOSABLE_CONTEXT to limit this--we don't bother to track |
| copies of registers which are in NON_DECOMPOSABLE_CONTEXT. */ |
| |
| static void |
| propagate_pseudo_copies (void) |
| { |
| bitmap queue, propagate; |
| |
| queue = BITMAP_ALLOC (NULL); |
| propagate = BITMAP_ALLOC (NULL); |
| |
| bitmap_copy (queue, decomposable_context); |
| do |
| { |
| bitmap_iterator iter; |
| unsigned int i; |
| |
| bitmap_clear (propagate); |
| |
| EXECUTE_IF_SET_IN_BITMAP (queue, 0, i, iter) |
| { |
| bitmap b = VEC_index (bitmap, reg_copy_graph, i); |
| if (b) |
| bitmap_ior_and_compl_into (propagate, b, non_decomposable_context); |
| } |
| |
| bitmap_and_compl (queue, propagate, decomposable_context); |
| bitmap_ior_into (decomposable_context, propagate); |
| } |
| while (!bitmap_empty_p (queue)); |
| |
| BITMAP_FREE (queue); |
| BITMAP_FREE (propagate); |
| } |
| |
| /* A pointer to one of these values is passed to |
| find_decomposable_subregs via for_each_rtx. */ |
| |
| enum classify_move_insn |
| { |
| /* Not a simple move from one location to another. */ |
| NOT_SIMPLE_MOVE, |
| /* A simple move from one pseudo-register to another. */ |
| SIMPLE_PSEUDO_REG_MOVE, |
| /* A simple move involving a non-pseudo-register. */ |
| SIMPLE_MOVE |
| }; |
| |
| /* This is called via for_each_rtx. If we find a SUBREG which we |
| could use to decompose a pseudo-register, set a bit in |
| DECOMPOSABLE_CONTEXT. If we find an unadorned register which is |
| not a simple pseudo-register copy, DATA will point at the type of |
| move, and we set a bit in DECOMPOSABLE_CONTEXT or |
| NON_DECOMPOSABLE_CONTEXT as appropriate. */ |
| |
| static int |
| find_decomposable_subregs (rtx *px, void *data) |
| { |
| enum classify_move_insn *pcmi = (enum classify_move_insn *) data; |
| rtx x = *px; |
| |
| if (x == NULL_RTX) |
| return 0; |
| |
| if (GET_CODE (x) == SUBREG) |
| { |
| rtx inner = SUBREG_REG (x); |
| unsigned int regno, outer_size, inner_size, outer_words, inner_words; |
| |
| if (!REG_P (inner)) |
| return 0; |
| |
| regno = REGNO (inner); |
| if (HARD_REGISTER_NUM_P (regno)) |
| return -1; |
| |
| outer_size = GET_MODE_SIZE (GET_MODE (x)); |
| inner_size = GET_MODE_SIZE (GET_MODE (inner)); |
| outer_words = (outer_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD; |
| inner_words = (inner_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD; |
| |
| /* We only try to decompose single word subregs of multi-word |
| registers. When we find one, we return -1 to avoid iterating |
| over the inner register. |
| |
| ??? This doesn't allow, e.g., DImode subregs of TImode values |
| on 32-bit targets. We would need to record the way the |
| pseudo-register was used, and only decompose if all the uses |
| were the same number and size of pieces. Hopefully this |
| doesn't happen much. */ |
| |
| if (outer_words == 1 && inner_words > 1) |
| { |
| bitmap_set_bit (decomposable_context, regno); |
| return -1; |
| } |
| |
| /* If this is a cast from one mode to another, where the modes |
| have the same size, and they are not tieable, then mark this |
| register as non-decomposable. If we decompose it we are |
| likely to mess up whatever the backend is trying to do. */ |
| if (outer_words > 1 |
| && outer_size == inner_size |
| && !MODES_TIEABLE_P (GET_MODE (x), GET_MODE (inner))) |
| { |
| bitmap_set_bit (non_decomposable_context, regno); |
| return -1; |
| } |
| } |
| else if (REG_P (x)) |
| { |
| unsigned int regno; |
| |
| /* We will see an outer SUBREG before we see the inner REG, so |
| when we see a plain REG here it means a direct reference to |
| the register. |
| |
| If this is not a simple copy from one location to another, |
| then we can not decompose this register. If this is a simple |
| copy from one pseudo-register to another, and the mode is right |
| then we mark the register as decomposable. |
| Otherwise we don't say anything about this register -- |
| it could be decomposed, but whether that would be |
| profitable depends upon how it is used elsewhere. |
| |
| We only set bits in the bitmap for multi-word |
| pseudo-registers, since those are the only ones we care about |
| and it keeps the size of the bitmaps down. */ |
| |
| regno = REGNO (x); |
| if (!HARD_REGISTER_NUM_P (regno) |
| && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD) |
| { |
| switch (*pcmi) |
| { |
| case NOT_SIMPLE_MOVE: |
| bitmap_set_bit (non_decomposable_context, regno); |
| break; |
| case SIMPLE_PSEUDO_REG_MOVE: |
| if (MODES_TIEABLE_P (GET_MODE (x), word_mode)) |
| bitmap_set_bit (decomposable_context, regno); |
| break; |
| case SIMPLE_MOVE: |
| break; |
| default: |
| gcc_unreachable (); |
| } |
| } |
| } |
| else if (MEM_P (x)) |
| { |
| enum classify_move_insn cmi_mem = NOT_SIMPLE_MOVE; |
| |
| /* Any registers used in a MEM do not participate in a |
| SIMPLE_MOVE or SIMPLE_PSEUDO_REG_MOVE. Do our own recursion |
| here, and return -1 to block the parent's recursion. */ |
| for_each_rtx (&XEXP (x, 0), find_decomposable_subregs, &cmi_mem); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /* Decompose REGNO into word-sized components. We smash the REG node |
| in place. This ensures that (1) something goes wrong quickly if we |
| fail to make some replacement, and (2) the debug information inside |
| the symbol table is automatically kept up to date. */ |
| |
| static void |
| decompose_register (unsigned int regno) |
| { |
| rtx reg; |
| unsigned int words, i; |
| rtvec v; |
| |
| reg = regno_reg_rtx[regno]; |
| |
| regno_reg_rtx[regno] = NULL_RTX; |
| |
| words = GET_MODE_SIZE (GET_MODE (reg)); |
| words = (words + UNITS_PER_WORD - 1) / UNITS_PER_WORD; |
| |
| v = rtvec_alloc (words); |
| for (i = 0; i < words; ++i) |
| RTVEC_ELT (v, i) = gen_reg_rtx_offset (reg, word_mode, i * UNITS_PER_WORD); |
| |
| PUT_CODE (reg, CONCATN); |
| XVEC (reg, 0) = v; |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "; Splitting reg %u ->", regno); |
| for (i = 0; i < words; ++i) |
| fprintf (dump_file, " %u", REGNO (XVECEXP (reg, 0, i))); |
| fputc ('\n', dump_file); |
| } |
| } |
| |
| /* Get a SUBREG of a CONCATN. */ |
| |
| static rtx |
| simplify_subreg_concatn (enum machine_mode outermode, rtx op, |
| unsigned int byte) |
| { |
| unsigned int inner_size; |
| enum machine_mode innermode; |
| rtx part; |
| unsigned int final_offset; |
| |
| gcc_assert (GET_CODE (op) == CONCATN); |
| gcc_assert (byte % GET_MODE_SIZE (outermode) == 0); |
| |
| innermode = GET_MODE (op); |
| gcc_assert (byte < GET_MODE_SIZE (innermode)); |
| gcc_assert (GET_MODE_SIZE (outermode) <= GET_MODE_SIZE (innermode)); |
| |
| inner_size = GET_MODE_SIZE (innermode) / XVECLEN (op, 0); |
| part = XVECEXP (op, 0, byte / inner_size); |
| final_offset = byte % inner_size; |
| if (final_offset + GET_MODE_SIZE (outermode) > inner_size) |
| return NULL_RTX; |
| |
| return simplify_gen_subreg (outermode, part, GET_MODE (part), final_offset); |
| } |
| |
| /* Wrapper around simplify_gen_subreg which handles CONCATN. */ |
| |
| static rtx |
| simplify_gen_subreg_concatn (enum machine_mode outermode, rtx op, |
| enum machine_mode innermode, unsigned int byte) |
| { |
| rtx ret; |
| |
| /* We have to handle generating a SUBREG of a SUBREG of a CONCATN. |
| If OP is a SUBREG of a CONCATN, then it must be a simple mode |
| change with the same size and offset 0, or it must extract a |
| part. We shouldn't see anything else here. */ |
| if (GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == CONCATN) |
| { |
| rtx op2; |
| |
| if ((GET_MODE_SIZE (GET_MODE (op)) |
| == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op)))) |
| && SUBREG_BYTE (op) == 0) |
| return simplify_gen_subreg_concatn (outermode, SUBREG_REG (op), |
| GET_MODE (SUBREG_REG (op)), byte); |
| |
| op2 = simplify_subreg_concatn (GET_MODE (op), SUBREG_REG (op), |
| SUBREG_BYTE (op)); |
| if (op2 == NULL_RTX) |
| { |
| /* We don't handle paradoxical subregs here. */ |
| gcc_assert (GET_MODE_SIZE (outermode) |
| <= GET_MODE_SIZE (GET_MODE (op))); |
| gcc_assert (GET_MODE_SIZE (GET_MODE (op)) |
| <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (op)))); |
| op2 = simplify_subreg_concatn (outermode, SUBREG_REG (op), |
| byte + SUBREG_BYTE (op)); |
| gcc_assert (op2 != NULL_RTX); |
| return op2; |
| } |
| |
| op = op2; |
| gcc_assert (op != NULL_RTX); |
| gcc_assert (innermode == GET_MODE (op)); |
| } |
| |
| if (GET_CODE (op) == CONCATN) |
| return simplify_subreg_concatn (outermode, op, byte); |
| |
| ret = simplify_gen_subreg (outermode, op, innermode, byte); |
| |
| /* If we see an insn like (set (reg:DI) (subreg:DI (reg:SI) 0)) then |
| resolve_simple_move will ask for the high part of the paradoxical |
| subreg, which does not have a value. Just return a zero. */ |
| if (ret == NULL_RTX |
| && GET_CODE (op) == SUBREG |
| && SUBREG_BYTE (op) == 0 |
| && (GET_MODE_SIZE (innermode) |
| > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))) |
| return CONST0_RTX (outermode); |
| |
| gcc_assert (ret != NULL_RTX); |
| return ret; |
| } |
| |
| /* Return whether we should resolve X into the registers into which it |
| was decomposed. */ |
| |
| static bool |
| resolve_reg_p (rtx x) |
| { |
| return GET_CODE (x) == CONCATN; |
| } |
| |
| /* Return whether X is a SUBREG of a register which we need to |
| resolve. */ |
| |
| static bool |
| resolve_subreg_p (rtx x) |
| { |
| if (GET_CODE (x) != SUBREG) |
| return false; |
| return resolve_reg_p (SUBREG_REG (x)); |
| } |
| |
| /* This is called via for_each_rtx. Look for SUBREGs which need to be |
| decomposed. */ |
| |
| static int |
| resolve_subreg_use (rtx *px, void *data) |
| { |
| rtx insn = (rtx) data; |
| rtx x = *px; |
| |
| if (x == NULL_RTX) |
| return 0; |
| |
| if (resolve_subreg_p (x)) |
| { |
| x = simplify_subreg_concatn (GET_MODE (x), SUBREG_REG (x), |
| SUBREG_BYTE (x)); |
| |
| /* It is possible for a note to contain a reference which we can |
| decompose. In this case, return 1 to the caller to indicate |
| that the note must be removed. */ |
| if (!x) |
| { |
| gcc_assert (!insn); |
| return 1; |
| } |
| |
| validate_change (insn, px, x, 1); |
| return -1; |
| } |
| |
| if (resolve_reg_p (x)) |
| { |
| /* Return 1 to the caller to indicate that we found a direct |
| reference to a register which is being decomposed. This can |
| happen inside notes, multiword shift or zero-extend |
| instructions. */ |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* We are deleting INSN. Move any EH_REGION notes to INSNS. */ |
| |
| static void |
| move_eh_region_note (rtx insn, rtx insns) |
| { |
| rtx note, p; |
| |
| note = find_reg_note (insn, REG_EH_REGION, NULL_RTX); |
| if (note == NULL_RTX) |
| return; |
| |
| gcc_assert (CALL_P (insn) |
| || (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))); |
| |
| for (p = insns; p != NULL_RTX; p = NEXT_INSN (p)) |
| { |
| if (CALL_P (p) |
| || (flag_non_call_exceptions |
| && INSN_P (p) |
| && may_trap_p (PATTERN (p)))) |
| add_reg_note (p, REG_EH_REGION, XEXP (note, 0)); |
| } |
| } |
| |
| /* Resolve any decomposed registers which appear in register notes on |
| INSN. */ |
| |
| static void |
| resolve_reg_notes (rtx insn) |
| { |
| rtx *pnote, note; |
| |
| note = find_reg_equal_equiv_note (insn); |
| if (note) |
| { |
| int old_count = num_validated_changes (); |
| if (for_each_rtx (&XEXP (note, 0), resolve_subreg_use, NULL)) |
| remove_note (insn, note); |
| else |
| if (old_count != num_validated_changes ()) |
| df_notes_rescan (insn); |
| } |
| |
| pnote = ®_NOTES (insn); |
| while (*pnote != NULL_RTX) |
| { |
| bool del = false; |
| |
| note = *pnote; |
| switch (REG_NOTE_KIND (note)) |
| { |
| case REG_DEAD: |
| case REG_UNUSED: |
| if (resolve_reg_p (XEXP (note, 0))) |
| del = true; |
| break; |
| |
| default: |
| break; |
| } |
| |
| if (del) |
| *pnote = XEXP (note, 1); |
| else |
| pnote = &XEXP (note, 1); |
| } |
| } |
| |
| /* Return whether X can be decomposed into subwords. */ |
| |
| static bool |
| can_decompose_p (rtx x) |
| { |
| if (REG_P (x)) |
| { |
| unsigned int regno = REGNO (x); |
| |
| if (HARD_REGISTER_NUM_P (regno)) |
| return (validate_subreg (word_mode, GET_MODE (x), x, UNITS_PER_WORD) |
| && HARD_REGNO_MODE_OK (regno, word_mode)); |
| else |
| return !bitmap_bit_p (non_decomposable_context, regno); |
| } |
| |
| return true; |
| } |
| |
| /* Decompose the registers used in a simple move SET within INSN. If |
| we don't change anything, return INSN, otherwise return the start |
| of the sequence of moves. */ |
| |
| static rtx |
| resolve_simple_move (rtx set, rtx insn) |
| { |
| rtx src, dest, real_dest, insns; |
| enum machine_mode orig_mode, dest_mode; |
| unsigned int words; |
| bool pushing; |
| |
| src = SET_SRC (set); |
| dest = SET_DEST (set); |
| orig_mode = GET_MODE (dest); |
| |
| words = (GET_MODE_SIZE (orig_mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD; |
| if (words <= 1) |
| return insn; |
| |
| start_sequence (); |
| |
| /* We have to handle copying from a SUBREG of a decomposed reg where |
| the SUBREG is larger than word size. Rather than assume that we |
| can take a word_mode SUBREG of the destination, we copy to a new |
| register and then copy that to the destination. */ |
| |
| real_dest = NULL_RTX; |
| |
| if (GET_CODE (src) == SUBREG |
| && resolve_reg_p (SUBREG_REG (src)) |
| && (SUBREG_BYTE (src) != 0 |
| || (GET_MODE_SIZE (orig_mode) |
| != GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))) |
| { |
| real_dest = dest; |
| dest = gen_reg_rtx (orig_mode); |
| if (REG_P (real_dest)) |
| REG_ATTRS (dest) = REG_ATTRS (real_dest); |
| } |
| |
| /* Similarly if we are copying to a SUBREG of a decomposed reg where |
| the SUBREG is larger than word size. */ |
| |
| if (GET_CODE (dest) == SUBREG |
| && resolve_reg_p (SUBREG_REG (dest)) |
| && (SUBREG_BYTE (dest) != 0 |
| || (GET_MODE_SIZE (orig_mode) |
| != GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))))) |
| { |
| rtx reg, minsn, smove; |
| |
| reg = gen_reg_rtx (orig_mode); |
| minsn = emit_move_insn (reg, src); |
| smove = single_set (minsn); |
| gcc_assert (smove != NULL_RTX); |
| resolve_simple_move (smove, minsn); |
| src = reg; |
| } |
| |
| /* If we didn't have any big SUBREGS of decomposed registers, and |
| neither side of the move is a register we are decomposing, then |
| we don't have to do anything here. */ |
| |
| if (src == SET_SRC (set) |
| && dest == SET_DEST (set) |
| && !resolve_reg_p (src) |
| && !resolve_subreg_p (src) |
| && !resolve_reg_p (dest) |
| && !resolve_subreg_p (dest)) |
| { |
| end_sequence (); |
| return insn; |
| } |
| |
| /* It's possible for the code to use a subreg of a decomposed |
| register while forming an address. We need to handle that before |
| passing the address to emit_move_insn. We pass NULL_RTX as the |
| insn parameter to resolve_subreg_use because we can not validate |
| the insn yet. */ |
| if (MEM_P (src) || MEM_P (dest)) |
| { |
| int acg; |
| |
| if (MEM_P (src)) |
| for_each_rtx (&XEXP (src, 0), resolve_subreg_use, NULL_RTX); |
| if (MEM_P (dest)) |
| for_each_rtx (&XEXP (dest, 0), resolve_subreg_use, NULL_RTX); |
| acg = apply_change_group (); |
| gcc_assert (acg); |
| } |
| |
| /* If SRC is a register which we can't decompose, or has side |
| effects, we need to move via a temporary register. */ |
| |
| if (!can_decompose_p (src) |
| || side_effects_p (src) |
| || GET_CODE (src) == ASM_OPERANDS) |
| { |
| rtx reg; |
| |
| reg = gen_reg_rtx (orig_mode); |
| emit_move_insn (reg, src); |
| src = reg; |
| } |
| |
| /* If DEST is a register which we can't decompose, or has side |
| effects, we need to first move to a temporary register. We |
| handle the common case of pushing an operand directly. We also |
| go through a temporary register if it holds a floating point |
| value. This gives us better code on systems which can't move |
| data easily between integer and floating point registers. */ |
| |
| dest_mode = orig_mode; |
| pushing = push_operand (dest, dest_mode); |
| if (!can_decompose_p (dest) |
| || (side_effects_p (dest) && !pushing) |
| || (!SCALAR_INT_MODE_P (dest_mode) |
| && !resolve_reg_p (dest) |
| && !resolve_subreg_p (dest))) |
| { |
| if (real_dest == NULL_RTX) |
| real_dest = dest; |
| if (!SCALAR_INT_MODE_P (dest_mode)) |
| { |
| dest_mode = mode_for_size (GET_MODE_SIZE (dest_mode) * BITS_PER_UNIT, |
| MODE_INT, 0); |
| gcc_assert (dest_mode != BLKmode); |
| } |
| dest = gen_reg_rtx (dest_mode); |
| if (REG_P (real_dest)) |
| REG_ATTRS (dest) = REG_ATTRS (real_dest); |
| } |
| |
| if (pushing) |
| { |
| unsigned int i, j, jinc; |
| |
| gcc_assert (GET_MODE_SIZE (orig_mode) % UNITS_PER_WORD == 0); |
| gcc_assert (GET_CODE (XEXP (dest, 0)) != PRE_MODIFY); |
| gcc_assert (GET_CODE (XEXP (dest, 0)) != POST_MODIFY); |
| |
| if (WORDS_BIG_ENDIAN == STACK_GROWS_DOWNWARD) |
| { |
| j = 0; |
| jinc = 1; |
| } |
| else |
| { |
| j = words - 1; |
| jinc = -1; |
| } |
| |
| for (i = 0; i < words; ++i, j += jinc) |
| { |
| rtx temp; |
| |
| temp = copy_rtx (XEXP (dest, 0)); |
| temp = adjust_automodify_address_nv (dest, word_mode, temp, |
| j * UNITS_PER_WORD); |
| emit_move_insn (temp, |
| simplify_gen_subreg_concatn (word_mode, src, |
| orig_mode, |
| j * UNITS_PER_WORD)); |
| } |
| } |
| else |
| { |
| unsigned int i; |
| |
| if (REG_P (dest) && !HARD_REGISTER_NUM_P (REGNO (dest))) |
| emit_clobber (dest); |
| |
| for (i = 0; i < words; ++i) |
| emit_move_insn (simplify_gen_subreg_concatn (word_mode, dest, |
| dest_mode, |
| i * UNITS_PER_WORD), |
| simplify_gen_subreg_concatn (word_mode, src, |
| orig_mode, |
| i * UNITS_PER_WORD)); |
| } |
| |
| if (real_dest != NULL_RTX) |
| { |
| rtx mdest, minsn, smove; |
| |
| if (dest_mode == orig_mode) |
| mdest = dest; |
| else |
| mdest = simplify_gen_subreg (orig_mode, dest, GET_MODE (dest), 0); |
| minsn = emit_move_insn (real_dest, mdest); |
| |
| smove = single_set (minsn); |
| gcc_assert (smove != NULL_RTX); |
| |
| resolve_simple_move (smove, minsn); |
| } |
| |
| insns = get_insns (); |
| end_sequence (); |
| |
| move_eh_region_note (insn, insns); |
| |
| emit_insn_before (insns, insn); |
| |
| delete_insn (insn); |
| |
| return insns; |
| } |
| |
| /* Change a CLOBBER of a decomposed register into a CLOBBER of the |
| component registers. Return whether we changed something. */ |
| |
| static bool |
| resolve_clobber (rtx pat, rtx insn) |
| { |
| rtx reg; |
| enum machine_mode orig_mode; |
| unsigned int words, i; |
| int ret; |
| |
| reg = XEXP (pat, 0); |
| if (!resolve_reg_p (reg) && !resolve_subreg_p (reg)) |
| return false; |
| |
| orig_mode = GET_MODE (reg); |
| words = GET_MODE_SIZE (orig_mode); |
| words = (words + UNITS_PER_WORD - 1) / UNITS_PER_WORD; |
| |
| ret = validate_change (NULL_RTX, &XEXP (pat, 0), |
| simplify_gen_subreg_concatn (word_mode, reg, |
| orig_mode, 0), |
| 0); |
| df_insn_rescan (insn); |
| gcc_assert (ret != 0); |
| |
| for (i = words - 1; i > 0; --i) |
| { |
| rtx x; |
| |
| x = simplify_gen_subreg_concatn (word_mode, reg, orig_mode, |
| i * UNITS_PER_WORD); |
| x = gen_rtx_CLOBBER (VOIDmode, x); |
| emit_insn_after (x, insn); |
| } |
| |
| resolve_reg_notes (insn); |
| |
| return true; |
| } |
| |
| /* A USE of a decomposed register is no longer meaningful. Return |
| whether we changed something. */ |
| |
| static bool |
| resolve_use (rtx pat, rtx insn) |
| { |
| if (resolve_reg_p (XEXP (pat, 0)) || resolve_subreg_p (XEXP (pat, 0))) |
| { |
| delete_insn (insn); |
| return true; |
| } |
| |
| resolve_reg_notes (insn); |
| |
| return false; |
| } |
| |
| /* Checks if INSN is a decomposable multiword-shift or zero-extend and |
| sets the decomposable_context bitmap accordingly. A non-zero value |
| is returned if a decomposable insn has been found. */ |
| |
| static int |
| find_decomposable_shift_zext (rtx insn) |
| { |
| rtx set; |
| rtx op; |
| rtx op_operand; |
| |
| set = single_set (insn); |
| if (!set) |
| return 0; |
| |
| op = SET_SRC (set); |
| if (GET_CODE (op) != ASHIFT |
| && GET_CODE (op) != LSHIFTRT |
| && GET_CODE (op) != ZERO_EXTEND) |
| return 0; |
| |
| op_operand = XEXP (op, 0); |
| if (!REG_P (SET_DEST (set)) || !REG_P (op_operand) |
| || HARD_REGISTER_NUM_P (REGNO (SET_DEST (set))) |
| || HARD_REGISTER_NUM_P (REGNO (op_operand)) |
| || !SCALAR_INT_MODE_P (GET_MODE (op))) |
| return 0; |
| |
| if (GET_CODE (op) == ZERO_EXTEND) |
| { |
| if (GET_MODE (op_operand) != word_mode |
| || GET_MODE_BITSIZE (GET_MODE (op)) != 2 * BITS_PER_WORD) |
| return 0; |
| } |
| else /* left or right shift */ |
| { |
| if (GET_CODE (XEXP (op, 1)) != CONST_INT |
| || INTVAL (XEXP (op, 1)) < BITS_PER_WORD |
| || GET_MODE_BITSIZE (GET_MODE (op_operand)) != 2 * BITS_PER_WORD) |
| return 0; |
| } |
| |
| bitmap_set_bit (decomposable_context, REGNO (SET_DEST (set))); |
| |
| if (GET_CODE (op) != ZERO_EXTEND) |
| bitmap_set_bit (decomposable_context, REGNO (op_operand)); |
| |
| return 1; |
| } |
| |
| /* Decompose a more than word wide shift (in INSN) of a multiword |
| pseudo or a multiword zero-extend of a wordmode pseudo into a move |
| and 'set to zero' insn. Return a pointer to the new insn when a |
| replacement was done. */ |
| |
| static rtx |
| resolve_shift_zext (rtx insn) |
| { |
| rtx set; |
| rtx op; |
| rtx op_operand; |
| rtx insns; |
| rtx src_reg, dest_reg, dest_zero; |
| int src_reg_num, dest_reg_num, offset1, offset2, src_offset; |
| |
| set = single_set (insn); |
| if (!set) |
| return NULL_RTX; |
| |
| op = SET_SRC (set); |
| if (GET_CODE (op) != ASHIFT |
| && GET_CODE (op) != LSHIFTRT |
| && GET_CODE (op) != ZERO_EXTEND) |
| return NULL_RTX; |
| |
| op_operand = XEXP (op, 0); |
| |
| if (!resolve_reg_p (SET_DEST (set)) && !resolve_reg_p (op_operand)) |
| return NULL_RTX; |
| |
| /* src_reg_num is the number of the word mode register which we |
| are operating on. For a left shift and a zero_extend on little |
| endian machines this is register 0. */ |
| src_reg_num = GET_CODE (op) == LSHIFTRT ? 1 : 0; |
| |
| if (WORDS_BIG_ENDIAN |
| && GET_MODE_SIZE (GET_MODE (op_operand)) > UNITS_PER_WORD) |
| src_reg_num = 1 - src_reg_num; |
| |
| if (GET_CODE (op) == ZERO_EXTEND) |
| dest_reg_num = WORDS_BIG_ENDIAN ? 1 : 0; |
| else |
| dest_reg_num = 1 - src_reg_num; |
| |
| offset1 = UNITS_PER_WORD * dest_reg_num; |
| offset2 = UNITS_PER_WORD * (1 - dest_reg_num); |
| src_offset = UNITS_PER_WORD * src_reg_num; |
| |
| if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN) |
| { |
| offset1 += UNITS_PER_WORD - 1; |
| offset2 += UNITS_PER_WORD - 1; |
| src_offset += UNITS_PER_WORD - 1; |
| } |
| |
| start_sequence (); |
| |
| dest_reg = simplify_gen_subreg_concatn (word_mode, SET_DEST (set), |
| GET_MODE (SET_DEST (set)), |
| offset1); |
| dest_zero = simplify_gen_subreg_concatn (word_mode, SET_DEST (set), |
| GET_MODE (SET_DEST (set)), |
| offset2); |
| src_reg = simplify_gen_subreg_concatn (word_mode, op_operand, |
| GET_MODE (op_operand), |
| src_offset); |
| if (GET_CODE (op) != ZERO_EXTEND) |
| { |
| int shift_count = INTVAL (XEXP (op, 1)); |
| if (shift_count > BITS_PER_WORD) |
| src_reg = expand_shift (GET_CODE (op) == ASHIFT ? |
| LSHIFT_EXPR : RSHIFT_EXPR, |
| word_mode, src_reg, |
| build_int_cst (NULL_TREE, |
| shift_count - BITS_PER_WORD), |
| dest_reg, 1); |
| } |
| |
| if (dest_reg != src_reg) |
| emit_move_insn (dest_reg, src_reg); |
| emit_move_insn (dest_zero, CONST0_RTX (word_mode)); |
| insns = get_insns (); |
| |
| end_sequence (); |
| |
| emit_insn_before (insns, insn); |
| |
| if (dump_file) |
| { |
| rtx in; |
| fprintf (dump_file, "; Replacing insn: %d with insns: ", INSN_UID (insn)); |
| for (in = insns; in != insn; in = NEXT_INSN (in)) |
| fprintf (dump_file, "%d ", INSN_UID (in)); |
| fprintf (dump_file, "\n"); |
| } |
| |
| delete_insn (insn); |
| return insns; |
| } |
| |
| /* Look for registers which are always accessed via word-sized SUBREGs |
| or via copies. Decompose these registers into several word-sized |
| pseudo-registers. */ |
| |
| static void |
| decompose_multiword_subregs (void) |
| { |
| unsigned int max; |
| basic_block bb; |
| |
| if (df) |
| df_set_flags (DF_DEFER_INSN_RESCAN); |
| |
| max = max_reg_num (); |
| |
| /* First see if there are any multi-word pseudo-registers. If there |
| aren't, there is nothing we can do. This should speed up this |
| pass in the normal case, since it should be faster than scanning |
| all the insns. */ |
| { |
| unsigned int i; |
| |
| for (i = FIRST_PSEUDO_REGISTER; i < max; ++i) |
| { |
| if (regno_reg_rtx[i] != NULL |
| && GET_MODE_SIZE (GET_MODE (regno_reg_rtx[i])) > UNITS_PER_WORD) |
| break; |
| } |
| if (i == max) |
| return; |
| } |
| |
| /* FIXME: When the dataflow branch is merged, we can change this |
| code to look for each multi-word pseudo-register and to find each |
| insn which sets or uses that register. That should be faster |
| than scanning all the insns. */ |
| |
| decomposable_context = BITMAP_ALLOC (NULL); |
| non_decomposable_context = BITMAP_ALLOC (NULL); |
| |
| reg_copy_graph = VEC_alloc (bitmap, heap, max); |
| VEC_safe_grow (bitmap, heap, reg_copy_graph, max); |
| memset (VEC_address (bitmap, reg_copy_graph), 0, sizeof (bitmap) * max); |
| |
| FOR_EACH_BB (bb) |
| { |
| rtx insn; |
| |
| FOR_BB_INSNS (bb, insn) |
| { |
| rtx set; |
| enum classify_move_insn cmi; |
| int i, n; |
| |
| if (!INSN_P (insn) |
| || GET_CODE (PATTERN (insn)) == CLOBBER |
| || GET_CODE (PATTERN (insn)) == USE) |
| continue; |
| |
| if (find_decomposable_shift_zext (insn)) |
| continue; |
| |
| recog_memoized (insn); |
| extract_insn (insn); |
| |
| set = simple_move (insn); |
| |
| if (!set) |
| cmi = NOT_SIMPLE_MOVE; |
| else |
| { |
| if (find_pseudo_copy (set)) |
| cmi = SIMPLE_PSEUDO_REG_MOVE; |
| else |
| cmi = SIMPLE_MOVE; |
| } |
| |
| n = recog_data.n_operands; |
| for (i = 0; i < n; ++i) |
| { |
| for_each_rtx (&recog_data.operand[i], |
| find_decomposable_subregs, |
| &cmi); |
| |
| /* We handle ASM_OPERANDS as a special case to support |
| things like x86 rdtsc which returns a DImode value. |
| We can decompose the output, which will certainly be |
| operand 0, but not the inputs. */ |
| |
| if (cmi == SIMPLE_MOVE |
| && GET_CODE (SET_SRC (set)) == ASM_OPERANDS) |
| { |
| gcc_assert (i == 0); |
| cmi = NOT_SIMPLE_MOVE; |
| } |
| } |
| } |
| } |
| |
| bitmap_and_compl_into (decomposable_context, non_decomposable_context); |
| if (!bitmap_empty_p (decomposable_context)) |
| { |
| sbitmap sub_blocks; |
| unsigned int i; |
| sbitmap_iterator sbi; |
| bitmap_iterator iter; |
| unsigned int regno; |
| |
| propagate_pseudo_copies (); |
| |
| sub_blocks = sbitmap_alloc (last_basic_block); |
| sbitmap_zero (sub_blocks); |
| |
| EXECUTE_IF_SET_IN_BITMAP (decomposable_context, 0, regno, iter) |
| decompose_register (regno); |
| |
| FOR_EACH_BB (bb) |
| { |
| rtx insn; |
| |
| FOR_BB_INSNS (bb, insn) |
| { |
| rtx next, pat; |
| |
| if (!INSN_P (insn)) |
| continue; |
| |
| next = NEXT_INSN (insn); |
| |
| pat = PATTERN (insn); |
| if (GET_CODE (pat) == CLOBBER) |
| resolve_clobber (pat, insn); |
| else if (GET_CODE (pat) == USE) |
| resolve_use (pat, insn); |
| else |
| { |
| rtx set; |
| int i; |
| |
| recog_memoized (insn); |
| extract_insn (insn); |
| |
| set = simple_move (insn); |
| if (set) |
| { |
| rtx orig_insn = insn; |
| bool cfi = control_flow_insn_p (insn); |
| |
| /* We can end up splitting loads to multi-word pseudos |
| into separate loads to machine word size pseudos. |
| When this happens, we first had one load that can |
| throw, and after resolve_simple_move we'll have a |
| bunch of loads (at least two). All those loads may |
| trap if we can have non-call exceptions, so they |
| all will end the current basic block. We split the |
| block after the outer loop over all insns, but we |
| make sure here that we will be able to split the |
| basic block and still produce the correct control |
| flow graph for it. */ |
| gcc_assert (!cfi |
| || (flag_non_call_exceptions |
| && can_throw_internal (insn))); |
| |
| insn = resolve_simple_move (set, insn); |
| if (insn != orig_insn) |
| { |
| recog_memoized (insn); |
| extract_insn (insn); |
| |
| if (cfi) |
| SET_BIT (sub_blocks, bb->index); |
| } |
| } |
| else |
| { |
| rtx decomposed_shift; |
| |
| decomposed_shift = resolve_shift_zext (insn); |
| if (decomposed_shift != NULL_RTX) |
| { |
| insn = decomposed_shift; |
| recog_memoized (insn); |
| extract_insn (insn); |
| } |
| } |
| |
| for (i = recog_data.n_operands - 1; i >= 0; --i) |
| for_each_rtx (recog_data.operand_loc[i], |
| resolve_subreg_use, |
| insn); |
| |
| resolve_reg_notes (insn); |
| |
| if (num_validated_changes () > 0) |
| { |
| for (i = recog_data.n_dups - 1; i >= 0; --i) |
| { |
| rtx *pl = recog_data.dup_loc[i]; |
| int dup_num = recog_data.dup_num[i]; |
| rtx *px = recog_data.operand_loc[dup_num]; |
| |
| validate_unshare_change (insn, pl, *px, 1); |
| } |
| |
| i = apply_change_group (); |
| gcc_assert (i); |
| } |
| } |
| } |
| } |
| |
| /* If we had insns to split that caused control flow insns in the middle |
| of a basic block, split those blocks now. Note that we only handle |
| the case where splitting a load has caused multiple possibly trapping |
| loads to appear. */ |
| EXECUTE_IF_SET_IN_SBITMAP (sub_blocks, 0, i, sbi) |
| { |
| rtx insn, end; |
| edge fallthru; |
| |
| bb = BASIC_BLOCK (i); |
| insn = BB_HEAD (bb); |
| end = BB_END (bb); |
| |
| while (insn != end) |
| { |
| if (control_flow_insn_p (insn)) |
| { |
| /* Split the block after insn. There will be a fallthru |
| edge, which is OK so we keep it. We have to create the |
| exception edges ourselves. */ |
| fallthru = split_block (bb, insn); |
| rtl_make_eh_edge (NULL, bb, BB_END (bb)); |
| bb = fallthru->dest; |
| insn = BB_HEAD (bb); |
| } |
| else |
| insn = NEXT_INSN (insn); |
| } |
| } |
| |
| sbitmap_free (sub_blocks); |
| } |
| |
| { |
| unsigned int i; |
| bitmap b; |
| |
| for (i = 0; VEC_iterate (bitmap, reg_copy_graph, i, b); ++i) |
| if (b) |
| BITMAP_FREE (b); |
| } |
| |
| VEC_free (bitmap, heap, reg_copy_graph); |
| |
| BITMAP_FREE (decomposable_context); |
| BITMAP_FREE (non_decomposable_context); |
| } |
| |
| /* Gate function for lower subreg pass. */ |
| |
| static bool |
| gate_handle_lower_subreg (void) |
| { |
| return flag_split_wide_types != 0; |
| } |
| |
| /* Implement first lower subreg pass. */ |
| |
| static unsigned int |
| rest_of_handle_lower_subreg (void) |
| { |
| decompose_multiword_subregs (); |
| return 0; |
| } |
| |
| /* Implement second lower subreg pass. */ |
| |
| static unsigned int |
| rest_of_handle_lower_subreg2 (void) |
| { |
| decompose_multiword_subregs (); |
| return 0; |
| } |
| |
| struct rtl_opt_pass pass_lower_subreg = |
| { |
| { |
| RTL_PASS, |
| "subreg1", /* name */ |
| gate_handle_lower_subreg, /* gate */ |
| rest_of_handle_lower_subreg, /* execute */ |
| NULL, /* sub */ |
| NULL, /* next */ |
| 0, /* static_pass_number */ |
| TV_LOWER_SUBREG, /* tv_id */ |
| 0, /* properties_required */ |
| 0, /* properties_provided */ |
| 0, /* properties_destroyed */ |
| 0, /* todo_flags_start */ |
| TODO_dump_func | |
| TODO_ggc_collect | |
| TODO_verify_flow /* todo_flags_finish */ |
| } |
| }; |
| |
| struct rtl_opt_pass pass_lower_subreg2 = |
| { |
| { |
| RTL_PASS, |
| "subreg2", /* name */ |
| gate_handle_lower_subreg, /* gate */ |
| rest_of_handle_lower_subreg2, /* execute */ |
| NULL, /* sub */ |
| NULL, /* next */ |
| 0, /* static_pass_number */ |
| TV_LOWER_SUBREG, /* tv_id */ |
| 0, /* properties_required */ |
| 0, /* properties_provided */ |
| 0, /* properties_destroyed */ |
| 0, /* todo_flags_start */ |
| TODO_df_finish | TODO_verify_rtl_sharing | |
| TODO_dump_func | |
| TODO_ggc_collect | |
| TODO_verify_flow /* todo_flags_finish */ |
| } |
| }; |