| /* Branch prediction routines for the GNU compiler. |
| Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008 |
| Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| /* References: |
| |
| [1] "Branch Prediction for Free" |
| Ball and Larus; PLDI '93. |
| [2] "Static Branch Frequency and Program Profile Analysis" |
| Wu and Larus; MICRO-27. |
| [3] "Corpus-based Static Branch Prediction" |
| Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */ |
| |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| #include "tree.h" |
| #include "rtl.h" |
| #include "tm_p.h" |
| #include "hard-reg-set.h" |
| #include "basic-block.h" |
| #include "insn-config.h" |
| #include "regs.h" |
| #include "flags.h" |
| #include "output.h" |
| #include "function.h" |
| #include "except.h" |
| #include "toplev.h" |
| #include "recog.h" |
| #include "expr.h" |
| #include "predict.h" |
| #include "coverage.h" |
| #include "sreal.h" |
| #include "params.h" |
| #include "target.h" |
| #include "cfgloop.h" |
| #include "tree-flow.h" |
| #include "ggc.h" |
| #include "tree-dump.h" |
| #include "tree-pass.h" |
| #include "timevar.h" |
| #include "tree-scalar-evolution.h" |
| #include "cfgloop.h" |
| #include "pointer-set.h" |
| |
| /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE, |
| 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */ |
| static sreal real_zero, real_one, real_almost_one, real_br_prob_base, |
| real_inv_br_prob_base, real_one_half, real_bb_freq_max; |
| |
| /* Random guesstimation given names. |
| PROV_VERY_UNLIKELY should be small enough so basic block predicted |
| by it gets bellow HOT_BB_FREQUENCY_FRANCTION. */ |
| #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 2000 - 1) |
| #define PROB_EVEN (REG_BR_PROB_BASE / 2) |
| #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY) |
| #define PROB_ALWAYS (REG_BR_PROB_BASE) |
| |
| static void combine_predictions_for_insn (rtx, basic_block); |
| static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int); |
| static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction); |
| static void compute_function_frequency (void); |
| static void choose_function_section (void); |
| static bool can_predict_insn_p (const_rtx); |
| |
| /* Information we hold about each branch predictor. |
| Filled using information from predict.def. */ |
| |
| struct predictor_info |
| { |
| const char *const name; /* Name used in the debugging dumps. */ |
| const int hitrate; /* Expected hitrate used by |
| predict_insn_def call. */ |
| const int flags; |
| }; |
| |
| /* Use given predictor without Dempster-Shaffer theory if it matches |
| using first_match heuristics. */ |
| #define PRED_FLAG_FIRST_MATCH 1 |
| |
| /* Recompute hitrate in percent to our representation. */ |
| |
| #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100) |
| |
| #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS}, |
| static const struct predictor_info predictor_info[]= { |
| #include "predict.def" |
| |
| /* Upper bound on predictors. */ |
| {NULL, 0, 0} |
| }; |
| #undef DEF_PREDICTOR |
| |
| /* Return TRUE if frequency FREQ is considered to be hot. */ |
| |
| static inline bool |
| maybe_hot_frequency_p (int freq) |
| { |
| if (!profile_info || !flag_branch_probabilities) |
| { |
| if (cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED) |
| return false; |
| if (cfun->function_frequency == FUNCTION_FREQUENCY_HOT) |
| return true; |
| } |
| if (profile_status == PROFILE_ABSENT) |
| return true; |
| if (freq < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)) |
| return false; |
| return true; |
| } |
| |
| /* Return TRUE if frequency FREQ is considered to be hot. */ |
| |
| static inline bool |
| maybe_hot_count_p (gcov_type count) |
| { |
| if (profile_status != PROFILE_READ) |
| return true; |
| /* Code executed at most once is not hot. */ |
| if (profile_info->runs >= count) |
| return false; |
| return (count |
| > profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)); |
| } |
| |
| /* Return true in case BB can be CPU intensive and should be optimized |
| for maximal performance. */ |
| |
| bool |
| maybe_hot_bb_p (const_basic_block bb) |
| { |
| if (profile_status == PROFILE_READ) |
| return maybe_hot_count_p (bb->count); |
| return maybe_hot_frequency_p (bb->frequency); |
| } |
| |
| /* Return true if the call can be hot. */ |
| |
| bool |
| cgraph_maybe_hot_edge_p (struct cgraph_edge *edge) |
| { |
| if (profile_info && flag_branch_probabilities |
| && (edge->count |
| <= profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION))) |
| return false; |
| if (lookup_attribute ("cold", DECL_ATTRIBUTES (edge->callee->decl)) |
| || lookup_attribute ("cold", DECL_ATTRIBUTES (edge->caller->decl))) |
| return false; |
| if (lookup_attribute ("hot", DECL_ATTRIBUTES (edge->caller->decl))) |
| return true; |
| if (flag_guess_branch_prob |
| && edge->frequency < (CGRAPH_FREQ_MAX |
| / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))) |
| return false; |
| return true; |
| } |
| |
| /* Return true in case BB can be CPU intensive and should be optimized |
| for maximal performance. */ |
| |
| bool |
| maybe_hot_edge_p (edge e) |
| { |
| if (profile_status == PROFILE_READ) |
| return maybe_hot_count_p (e->count); |
| return maybe_hot_frequency_p (EDGE_FREQUENCY (e)); |
| } |
| |
| /* Return true in case BB is probably never executed. */ |
| bool |
| probably_never_executed_bb_p (const_basic_block bb) |
| { |
| if (profile_info && flag_branch_probabilities) |
| return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0; |
| if ((!profile_info || !flag_branch_probabilities) |
| && cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED) |
| return true; |
| return false; |
| } |
| |
| /* Return true when current function should always be optimized for size. */ |
| |
| bool |
| optimize_function_for_size_p (struct function *fun) |
| { |
| return (optimize_size |
| || (fun && (fun->function_frequency |
| == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED))); |
| } |
| |
| /* Return true when current function should always be optimized for speed. */ |
| |
| bool |
| optimize_function_for_speed_p (struct function *fun) |
| { |
| return !optimize_function_for_size_p (fun); |
| } |
| |
| /* Return TRUE when BB should be optimized for size. */ |
| |
| bool |
| optimize_bb_for_size_p (const_basic_block bb) |
| { |
| return optimize_function_for_size_p (cfun) || !maybe_hot_bb_p (bb); |
| } |
| |
| /* Return TRUE when BB should be optimized for speed. */ |
| |
| bool |
| optimize_bb_for_speed_p (const_basic_block bb) |
| { |
| return !optimize_bb_for_size_p (bb); |
| } |
| |
| /* Return TRUE when BB should be optimized for size. */ |
| |
| bool |
| optimize_edge_for_size_p (edge e) |
| { |
| return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e); |
| } |
| |
| /* Return TRUE when BB should be optimized for speed. */ |
| |
| bool |
| optimize_edge_for_speed_p (edge e) |
| { |
| return !optimize_edge_for_size_p (e); |
| } |
| |
| /* Return TRUE when BB should be optimized for size. */ |
| |
| bool |
| optimize_insn_for_size_p (void) |
| { |
| return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p; |
| } |
| |
| /* Return TRUE when BB should be optimized for speed. */ |
| |
| bool |
| optimize_insn_for_speed_p (void) |
| { |
| return !optimize_insn_for_size_p (); |
| } |
| |
| /* Return TRUE when LOOP should be optimized for size. */ |
| |
| bool |
| optimize_loop_for_size_p (struct loop *loop) |
| { |
| return optimize_bb_for_size_p (loop->header); |
| } |
| |
| /* Return TRUE when LOOP should be optimized for speed. */ |
| |
| bool |
| optimize_loop_for_speed_p (struct loop *loop) |
| { |
| return optimize_bb_for_speed_p (loop->header); |
| } |
| |
| /* Return TRUE when LOOP nest should be optimized for speed. */ |
| |
| bool |
| optimize_loop_nest_for_speed_p (struct loop *loop) |
| { |
| struct loop *l = loop; |
| if (optimize_loop_for_speed_p (loop)) |
| return true; |
| l = loop->inner; |
| while (l && l != loop) |
| { |
| if (optimize_loop_for_speed_p (l)) |
| return true; |
| if (l->inner) |
| l = l->inner; |
| else if (l->next) |
| l = l->next; |
| else |
| { |
| while (l != loop && !l->next) |
| l = loop_outer (l); |
| if (l != loop) |
| l = l->next; |
| } |
| } |
| return false; |
| } |
| |
| /* Return TRUE when LOOP nest should be optimized for size. */ |
| |
| bool |
| optimize_loop_nest_for_size_p (struct loop *loop) |
| { |
| return !optimize_loop_nest_for_speed_p (loop); |
| } |
| |
| /* Return true when edge E is likely to be well predictable by branch |
| predictor. */ |
| |
| bool |
| predictable_edge_p (edge e) |
| { |
| if (profile_status == PROFILE_ABSENT) |
| return false; |
| if ((e->probability |
| <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100) |
| || (REG_BR_PROB_BASE - e->probability |
| <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)) |
| return true; |
| return false; |
| } |
| |
| |
| /* Set RTL expansion for BB profile. */ |
| |
| void |
| rtl_profile_for_bb (basic_block bb) |
| { |
| crtl->maybe_hot_insn_p = maybe_hot_bb_p (bb); |
| } |
| |
| /* Set RTL expansion for edge profile. */ |
| |
| void |
| rtl_profile_for_edge (edge e) |
| { |
| crtl->maybe_hot_insn_p = maybe_hot_edge_p (e); |
| } |
| |
| /* Set RTL expansion to default mode (i.e. when profile info is not known). */ |
| void |
| default_rtl_profile (void) |
| { |
| crtl->maybe_hot_insn_p = true; |
| } |
| |
| /* Return true if the one of outgoing edges is already predicted by |
| PREDICTOR. */ |
| |
| bool |
| rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor) |
| { |
| rtx note; |
| if (!INSN_P (BB_END (bb))) |
| return false; |
| for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1)) |
| if (REG_NOTE_KIND (note) == REG_BR_PRED |
| && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor) |
| return true; |
| return false; |
| } |
| |
| /* This map contains for a basic block the list of predictions for the |
| outgoing edges. */ |
| |
| static struct pointer_map_t *bb_predictions; |
| |
| /* Return true if the one of outgoing edges is already predicted by |
| PREDICTOR. */ |
| |
| bool |
| gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor) |
| { |
| struct edge_prediction *i; |
| void **preds = pointer_map_contains (bb_predictions, bb); |
| |
| if (!preds) |
| return false; |
| |
| for (i = (struct edge_prediction *) *preds; i; i = i->ep_next) |
| if (i->ep_predictor == predictor) |
| return true; |
| return false; |
| } |
| |
| /* Return true when the probability of edge is reliable. |
| |
| The profile guessing code is good at predicting branch outcome (ie. |
| taken/not taken), that is predicted right slightly over 75% of time. |
| It is however notoriously poor on predicting the probability itself. |
| In general the profile appear a lot flatter (with probabilities closer |
| to 50%) than the reality so it is bad idea to use it to drive optimization |
| such as those disabling dynamic branch prediction for well predictable |
| branches. |
| |
| There are two exceptions - edges leading to noreturn edges and edges |
| predicted by number of iterations heuristics are predicted well. This macro |
| should be able to distinguish those, but at the moment it simply check for |
| noreturn heuristic that is only one giving probability over 99% or bellow |
| 1%. In future we might want to propagate reliability information across the |
| CFG if we find this information useful on multiple places. */ |
| static bool |
| probability_reliable_p (int prob) |
| { |
| return (profile_status == PROFILE_READ |
| || (profile_status == PROFILE_GUESSED |
| && (prob <= HITRATE (1) || prob >= HITRATE (99)))); |
| } |
| |
| /* Same predicate as above, working on edges. */ |
| bool |
| edge_probability_reliable_p (const_edge e) |
| { |
| return probability_reliable_p (e->probability); |
| } |
| |
| /* Same predicate as edge_probability_reliable_p, working on notes. */ |
| bool |
| br_prob_note_reliable_p (const_rtx note) |
| { |
| gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB); |
| return probability_reliable_p (INTVAL (XEXP (note, 0))); |
| } |
| |
| static void |
| predict_insn (rtx insn, enum br_predictor predictor, int probability) |
| { |
| gcc_assert (any_condjump_p (insn)); |
| if (!flag_guess_branch_prob) |
| return; |
| |
| add_reg_note (insn, REG_BR_PRED, |
| gen_rtx_CONCAT (VOIDmode, |
| GEN_INT ((int) predictor), |
| GEN_INT ((int) probability))); |
| } |
| |
| /* Predict insn by given predictor. */ |
| |
| void |
| predict_insn_def (rtx insn, enum br_predictor predictor, |
| enum prediction taken) |
| { |
| int probability = predictor_info[(int) predictor].hitrate; |
| |
| if (taken != TAKEN) |
| probability = REG_BR_PROB_BASE - probability; |
| |
| predict_insn (insn, predictor, probability); |
| } |
| |
| /* Predict edge E with given probability if possible. */ |
| |
| void |
| rtl_predict_edge (edge e, enum br_predictor predictor, int probability) |
| { |
| rtx last_insn; |
| last_insn = BB_END (e->src); |
| |
| /* We can store the branch prediction information only about |
| conditional jumps. */ |
| if (!any_condjump_p (last_insn)) |
| return; |
| |
| /* We always store probability of branching. */ |
| if (e->flags & EDGE_FALLTHRU) |
| probability = REG_BR_PROB_BASE - probability; |
| |
| predict_insn (last_insn, predictor, probability); |
| } |
| |
| /* Predict edge E with the given PROBABILITY. */ |
| void |
| gimple_predict_edge (edge e, enum br_predictor predictor, int probability) |
| { |
| gcc_assert (profile_status != PROFILE_GUESSED); |
| if ((e->src != ENTRY_BLOCK_PTR && EDGE_COUNT (e->src->succs) > 1) |
| && flag_guess_branch_prob && optimize) |
| { |
| struct edge_prediction *i = XNEW (struct edge_prediction); |
| void **preds = pointer_map_insert (bb_predictions, e->src); |
| |
| i->ep_next = (struct edge_prediction *) *preds; |
| *preds = i; |
| i->ep_probability = probability; |
| i->ep_predictor = predictor; |
| i->ep_edge = e; |
| } |
| } |
| |
| /* Remove all predictions on given basic block that are attached |
| to edge E. */ |
| void |
| remove_predictions_associated_with_edge (edge e) |
| { |
| void **preds; |
| |
| if (!bb_predictions) |
| return; |
| |
| preds = pointer_map_contains (bb_predictions, e->src); |
| |
| if (preds) |
| { |
| struct edge_prediction **prediction = (struct edge_prediction **) preds; |
| struct edge_prediction *next; |
| |
| while (*prediction) |
| { |
| if ((*prediction)->ep_edge == e) |
| { |
| next = (*prediction)->ep_next; |
| free (*prediction); |
| *prediction = next; |
| } |
| else |
| prediction = &((*prediction)->ep_next); |
| } |
| } |
| } |
| |
| /* Clears the list of predictions stored for BB. */ |
| |
| static void |
| clear_bb_predictions (basic_block bb) |
| { |
| void **preds = pointer_map_contains (bb_predictions, bb); |
| struct edge_prediction *pred, *next; |
| |
| if (!preds) |
| return; |
| |
| for (pred = (struct edge_prediction *) *preds; pred; pred = next) |
| { |
| next = pred->ep_next; |
| free (pred); |
| } |
| *preds = NULL; |
| } |
| |
| /* Return true when we can store prediction on insn INSN. |
| At the moment we represent predictions only on conditional |
| jumps, not at computed jump or other complicated cases. */ |
| static bool |
| can_predict_insn_p (const_rtx insn) |
| { |
| return (JUMP_P (insn) |
| && any_condjump_p (insn) |
| && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2); |
| } |
| |
| /* Predict edge E by given predictor if possible. */ |
| |
| void |
| predict_edge_def (edge e, enum br_predictor predictor, |
| enum prediction taken) |
| { |
| int probability = predictor_info[(int) predictor].hitrate; |
| |
| if (taken != TAKEN) |
| probability = REG_BR_PROB_BASE - probability; |
| |
| predict_edge (e, predictor, probability); |
| } |
| |
| /* Invert all branch predictions or probability notes in the INSN. This needs |
| to be done each time we invert the condition used by the jump. */ |
| |
| void |
| invert_br_probabilities (rtx insn) |
| { |
| rtx note; |
| |
| for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) |
| if (REG_NOTE_KIND (note) == REG_BR_PROB) |
| XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0))); |
| else if (REG_NOTE_KIND (note) == REG_BR_PRED) |
| XEXP (XEXP (note, 0), 1) |
| = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1))); |
| } |
| |
| /* Dump information about the branch prediction to the output file. */ |
| |
| static void |
| dump_prediction (FILE *file, enum br_predictor predictor, int probability, |
| basic_block bb, int used) |
| { |
| edge e; |
| edge_iterator ei; |
| |
| if (!file) |
| return; |
| |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| if (! (e->flags & EDGE_FALLTHRU)) |
| break; |
| |
| fprintf (file, " %s heuristics%s: %.1f%%", |
| predictor_info[predictor].name, |
| used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE); |
| |
| if (bb->count) |
| { |
| fprintf (file, " exec "); |
| fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count); |
| if (e) |
| { |
| fprintf (file, " hit "); |
| fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count); |
| fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count); |
| } |
| } |
| |
| fprintf (file, "\n"); |
| } |
| |
| /* We can not predict the probabilities of outgoing edges of bb. Set them |
| evenly and hope for the best. */ |
| static void |
| set_even_probabilities (basic_block bb) |
| { |
| int nedges = 0; |
| edge e; |
| edge_iterator ei; |
| |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| if (!(e->flags & (EDGE_EH | EDGE_FAKE))) |
| nedges ++; |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| if (!(e->flags & (EDGE_EH | EDGE_FAKE))) |
| e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges; |
| else |
| e->probability = 0; |
| } |
| |
| /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB |
| note if not already present. Remove now useless REG_BR_PRED notes. */ |
| |
| static void |
| combine_predictions_for_insn (rtx insn, basic_block bb) |
| { |
| rtx prob_note; |
| rtx *pnote; |
| rtx note; |
| int best_probability = PROB_EVEN; |
| int best_predictor = END_PREDICTORS; |
| int combined_probability = REG_BR_PROB_BASE / 2; |
| int d; |
| bool first_match = false; |
| bool found = false; |
| |
| if (!can_predict_insn_p (insn)) |
| { |
| set_even_probabilities (bb); |
| return; |
| } |
| |
| prob_note = find_reg_note (insn, REG_BR_PROB, 0); |
| pnote = ®_NOTES (insn); |
| if (dump_file) |
| fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn), |
| bb->index); |
| |
| /* We implement "first match" heuristics and use probability guessed |
| by predictor with smallest index. */ |
| for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) |
| if (REG_NOTE_KIND (note) == REG_BR_PRED) |
| { |
| int predictor = INTVAL (XEXP (XEXP (note, 0), 0)); |
| int probability = INTVAL (XEXP (XEXP (note, 0), 1)); |
| |
| found = true; |
| if (best_predictor > predictor) |
| best_probability = probability, best_predictor = predictor; |
| |
| d = (combined_probability * probability |
| + (REG_BR_PROB_BASE - combined_probability) |
| * (REG_BR_PROB_BASE - probability)); |
| |
| /* Use FP math to avoid overflows of 32bit integers. */ |
| if (d == 0) |
| /* If one probability is 0% and one 100%, avoid division by zero. */ |
| combined_probability = REG_BR_PROB_BASE / 2; |
| else |
| combined_probability = (((double) combined_probability) * probability |
| * REG_BR_PROB_BASE / d + 0.5); |
| } |
| |
| /* Decide which heuristic to use. In case we didn't match anything, |
| use no_prediction heuristic, in case we did match, use either |
| first match or Dempster-Shaffer theory depending on the flags. */ |
| |
| if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH) |
| first_match = true; |
| |
| if (!found) |
| dump_prediction (dump_file, PRED_NO_PREDICTION, |
| combined_probability, bb, true); |
| else |
| { |
| dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, |
| bb, !first_match); |
| dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, |
| bb, first_match); |
| } |
| |
| if (first_match) |
| combined_probability = best_probability; |
| dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true); |
| |
| while (*pnote) |
| { |
| if (REG_NOTE_KIND (*pnote) == REG_BR_PRED) |
| { |
| int predictor = INTVAL (XEXP (XEXP (*pnote, 0), 0)); |
| int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1)); |
| |
| dump_prediction (dump_file, predictor, probability, bb, |
| !first_match || best_predictor == predictor); |
| *pnote = XEXP (*pnote, 1); |
| } |
| else |
| pnote = &XEXP (*pnote, 1); |
| } |
| |
| if (!prob_note) |
| { |
| add_reg_note (insn, REG_BR_PROB, GEN_INT (combined_probability)); |
| |
| /* Save the prediction into CFG in case we are seeing non-degenerated |
| conditional jump. */ |
| if (!single_succ_p (bb)) |
| { |
| BRANCH_EDGE (bb)->probability = combined_probability; |
| FALLTHRU_EDGE (bb)->probability |
| = REG_BR_PROB_BASE - combined_probability; |
| } |
| } |
| else if (!single_succ_p (bb)) |
| { |
| int prob = INTVAL (XEXP (prob_note, 0)); |
| |
| BRANCH_EDGE (bb)->probability = prob; |
| FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob; |
| } |
| else |
| single_succ_edge (bb)->probability = REG_BR_PROB_BASE; |
| } |
| |
| /* Combine predictions into single probability and store them into CFG. |
| Remove now useless prediction entries. */ |
| |
| static void |
| combine_predictions_for_bb (basic_block bb) |
| { |
| int best_probability = PROB_EVEN; |
| int best_predictor = END_PREDICTORS; |
| int combined_probability = REG_BR_PROB_BASE / 2; |
| int d; |
| bool first_match = false; |
| bool found = false; |
| struct edge_prediction *pred; |
| int nedges = 0; |
| edge e, first = NULL, second = NULL; |
| edge_iterator ei; |
| void **preds; |
| |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| if (!(e->flags & (EDGE_EH | EDGE_FAKE))) |
| { |
| nedges ++; |
| if (first && !second) |
| second = e; |
| if (!first) |
| first = e; |
| } |
| |
| /* When there is no successor or only one choice, prediction is easy. |
| |
| We are lazy for now and predict only basic blocks with two outgoing |
| edges. It is possible to predict generic case too, but we have to |
| ignore first match heuristics and do more involved combining. Implement |
| this later. */ |
| if (nedges != 2) |
| { |
| if (!bb->count) |
| set_even_probabilities (bb); |
| clear_bb_predictions (bb); |
| if (dump_file) |
| fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n", |
| nedges, bb->index); |
| return; |
| } |
| |
| if (dump_file) |
| fprintf (dump_file, "Predictions for bb %i\n", bb->index); |
| |
| preds = pointer_map_contains (bb_predictions, bb); |
| if (preds) |
| { |
| /* We implement "first match" heuristics and use probability guessed |
| by predictor with smallest index. */ |
| for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next) |
| { |
| int predictor = pred->ep_predictor; |
| int probability = pred->ep_probability; |
| |
| if (pred->ep_edge != first) |
| probability = REG_BR_PROB_BASE - probability; |
| |
| found = true; |
| /* First match heuristics would be widly confused if we predicted |
| both directions. */ |
| if (best_predictor > predictor) |
| { |
| struct edge_prediction *pred2; |
| int prob = probability; |
| |
| for (pred2 = (struct edge_prediction *) *preds; pred2; pred2 = pred2->ep_next) |
| if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor) |
| { |
| int probability2 = pred->ep_probability; |
| |
| if (pred2->ep_edge != first) |
| probability2 = REG_BR_PROB_BASE - probability2; |
| |
| if ((probability < REG_BR_PROB_BASE / 2) != |
| (probability2 < REG_BR_PROB_BASE / 2)) |
| break; |
| |
| /* If the same predictor later gave better result, go for it! */ |
| if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability)) |
| || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability))) |
| prob = probability2; |
| } |
| if (!pred2) |
| best_probability = prob, best_predictor = predictor; |
| } |
| |
| d = (combined_probability * probability |
| + (REG_BR_PROB_BASE - combined_probability) |
| * (REG_BR_PROB_BASE - probability)); |
| |
| /* Use FP math to avoid overflows of 32bit integers. */ |
| if (d == 0) |
| /* If one probability is 0% and one 100%, avoid division by zero. */ |
| combined_probability = REG_BR_PROB_BASE / 2; |
| else |
| combined_probability = (((double) combined_probability) |
| * probability |
| * REG_BR_PROB_BASE / d + 0.5); |
| } |
| } |
| |
| /* Decide which heuristic to use. In case we didn't match anything, |
| use no_prediction heuristic, in case we did match, use either |
| first match or Dempster-Shaffer theory depending on the flags. */ |
| |
| if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH) |
| first_match = true; |
| |
| if (!found) |
| dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true); |
| else |
| { |
| dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb, |
| !first_match); |
| dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb, |
| first_match); |
| } |
| |
| if (first_match) |
| combined_probability = best_probability; |
| dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true); |
| |
| if (preds) |
| { |
| for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next) |
| { |
| int predictor = pred->ep_predictor; |
| int probability = pred->ep_probability; |
| |
| if (pred->ep_edge != EDGE_SUCC (bb, 0)) |
| probability = REG_BR_PROB_BASE - probability; |
| dump_prediction (dump_file, predictor, probability, bb, |
| !first_match || best_predictor == predictor); |
| } |
| } |
| clear_bb_predictions (bb); |
| |
| if (!bb->count) |
| { |
| first->probability = combined_probability; |
| second->probability = REG_BR_PROB_BASE - combined_probability; |
| } |
| } |
| |
| /* Predict edge probabilities by exploiting loop structure. */ |
| |
| static void |
| predict_loops (void) |
| { |
| loop_iterator li; |
| struct loop *loop; |
| |
| scev_initialize (); |
| |
| /* Try to predict out blocks in a loop that are not part of a |
| natural loop. */ |
| FOR_EACH_LOOP (li, loop, 0) |
| { |
| basic_block bb, *bbs; |
| unsigned j, n_exits; |
| VEC (edge, heap) *exits; |
| struct tree_niter_desc niter_desc; |
| edge ex; |
| |
| exits = get_loop_exit_edges (loop); |
| n_exits = VEC_length (edge, exits); |
| |
| for (j = 0; VEC_iterate (edge, exits, j, ex); j++) |
| { |
| tree niter = NULL; |
| HOST_WIDE_INT nitercst; |
| int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS); |
| int probability; |
| enum br_predictor predictor; |
| |
| if (number_of_iterations_exit (loop, ex, &niter_desc, false)) |
| niter = niter_desc.niter; |
| if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST) |
| niter = loop_niter_by_eval (loop, ex); |
| |
| if (TREE_CODE (niter) == INTEGER_CST) |
| { |
| if (host_integerp (niter, 1) |
| && compare_tree_int (niter, max-1) == -1) |
| nitercst = tree_low_cst (niter, 1) + 1; |
| else |
| nitercst = max; |
| predictor = PRED_LOOP_ITERATIONS; |
| } |
| /* If we have just one exit and we can derive some information about |
| the number of iterations of the loop from the statements inside |
| the loop, use it to predict this exit. */ |
| else if (n_exits == 1) |
| { |
| nitercst = estimated_loop_iterations_int (loop, false); |
| if (nitercst < 0) |
| continue; |
| if (nitercst > max) |
| nitercst = max; |
| |
| predictor = PRED_LOOP_ITERATIONS_GUESSED; |
| } |
| else |
| continue; |
| |
| probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst); |
| predict_edge (ex, predictor, probability); |
| } |
| VEC_free (edge, heap, exits); |
| |
| bbs = get_loop_body (loop); |
| |
| for (j = 0; j < loop->num_nodes; j++) |
| { |
| int header_found = 0; |
| edge e; |
| edge_iterator ei; |
| |
| bb = bbs[j]; |
| |
| /* Bypass loop heuristics on continue statement. These |
| statements construct loops via "non-loop" constructs |
| in the source language and are better to be handled |
| separately. */ |
| if (predicted_by_p (bb, PRED_CONTINUE)) |
| continue; |
| |
| /* Loop branch heuristics - predict an edge back to a |
| loop's head as taken. */ |
| if (bb == loop->latch) |
| { |
| e = find_edge (loop->latch, loop->header); |
| if (e) |
| { |
| header_found = 1; |
| predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN); |
| } |
| } |
| |
| /* Loop exit heuristics - predict an edge exiting the loop if the |
| conditional has no loop header successors as not taken. */ |
| if (!header_found |
| /* If we already used more reliable loop exit predictors, do not |
| bother with PRED_LOOP_EXIT. */ |
| && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED) |
| && !predicted_by_p (bb, PRED_LOOP_ITERATIONS)) |
| { |
| /* For loop with many exits we don't want to predict all exits |
| with the pretty large probability, because if all exits are |
| considered in row, the loop would be predicted to iterate |
| almost never. The code to divide probability by number of |
| exits is very rough. It should compute the number of exits |
| taken in each patch through function (not the overall number |
| of exits that might be a lot higher for loops with wide switch |
| statements in them) and compute n-th square root. |
| |
| We limit the minimal probability by 2% to avoid |
| EDGE_PROBABILITY_RELIABLE from trusting the branch prediction |
| as this was causing regression in perl benchmark containing such |
| a wide loop. */ |
| |
| int probability = ((REG_BR_PROB_BASE |
| - predictor_info [(int) PRED_LOOP_EXIT].hitrate) |
| / n_exits); |
| if (probability < HITRATE (2)) |
| probability = HITRATE (2); |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| if (e->dest->index < NUM_FIXED_BLOCKS |
| || !flow_bb_inside_loop_p (loop, e->dest)) |
| predict_edge (e, PRED_LOOP_EXIT, probability); |
| } |
| } |
| |
| /* Free basic blocks from get_loop_body. */ |
| free (bbs); |
| } |
| |
| scev_finalize (); |
| } |
| |
| /* Attempt to predict probabilities of BB outgoing edges using local |
| properties. */ |
| static void |
| bb_estimate_probability_locally (basic_block bb) |
| { |
| rtx last_insn = BB_END (bb); |
| rtx cond; |
| |
| if (! can_predict_insn_p (last_insn)) |
| return; |
| cond = get_condition (last_insn, NULL, false, false); |
| if (! cond) |
| return; |
| |
| /* Try "pointer heuristic." |
| A comparison ptr == 0 is predicted as false. |
| Similarly, a comparison ptr1 == ptr2 is predicted as false. */ |
| if (COMPARISON_P (cond) |
| && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0))) |
| || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1))))) |
| { |
| if (GET_CODE (cond) == EQ) |
| predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN); |
| else if (GET_CODE (cond) == NE) |
| predict_insn_def (last_insn, PRED_POINTER, TAKEN); |
| } |
| else |
| |
| /* Try "opcode heuristic." |
| EQ tests are usually false and NE tests are usually true. Also, |
| most quantities are positive, so we can make the appropriate guesses |
| about signed comparisons against zero. */ |
| switch (GET_CODE (cond)) |
| { |
| case CONST_INT: |
| /* Unconditional branch. */ |
| predict_insn_def (last_insn, PRED_UNCONDITIONAL, |
| cond == const0_rtx ? NOT_TAKEN : TAKEN); |
| break; |
| |
| case EQ: |
| case UNEQ: |
| /* Floating point comparisons appears to behave in a very |
| unpredictable way because of special role of = tests in |
| FP code. */ |
| if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0)))) |
| ; |
| /* Comparisons with 0 are often used for booleans and there is |
| nothing useful to predict about them. */ |
| else if (XEXP (cond, 1) == const0_rtx |
| || XEXP (cond, 0) == const0_rtx) |
| ; |
| else |
| predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN); |
| break; |
| |
| case NE: |
| case LTGT: |
| /* Floating point comparisons appears to behave in a very |
| unpredictable way because of special role of = tests in |
| FP code. */ |
| if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0)))) |
| ; |
| /* Comparisons with 0 are often used for booleans and there is |
| nothing useful to predict about them. */ |
| else if (XEXP (cond, 1) == const0_rtx |
| || XEXP (cond, 0) == const0_rtx) |
| ; |
| else |
| predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN); |
| break; |
| |
| case ORDERED: |
| predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN); |
| break; |
| |
| case UNORDERED: |
| predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN); |
| break; |
| |
| case LE: |
| case LT: |
| if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx |
| || XEXP (cond, 1) == constm1_rtx) |
| predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN); |
| break; |
| |
| case GE: |
| case GT: |
| if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx |
| || XEXP (cond, 1) == constm1_rtx) |
| predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| /* Set edge->probability for each successor edge of BB. */ |
| void |
| guess_outgoing_edge_probabilities (basic_block bb) |
| { |
| bb_estimate_probability_locally (bb); |
| combine_predictions_for_insn (BB_END (bb), bb); |
| } |
| |
| static tree expr_expected_value (tree, bitmap); |
| |
| /* Helper function for expr_expected_value. */ |
| |
| static tree |
| expr_expected_value_1 (tree type, tree op0, enum tree_code code, tree op1, bitmap visited) |
| { |
| gimple def; |
| |
| if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS) |
| { |
| if (TREE_CONSTANT (op0)) |
| return op0; |
| |
| if (code != SSA_NAME) |
| return NULL_TREE; |
| |
| def = SSA_NAME_DEF_STMT (op0); |
| |
| /* If we were already here, break the infinite cycle. */ |
| if (bitmap_bit_p (visited, SSA_NAME_VERSION (op0))) |
| return NULL; |
| bitmap_set_bit (visited, SSA_NAME_VERSION (op0)); |
| |
| if (gimple_code (def) == GIMPLE_PHI) |
| { |
| /* All the arguments of the PHI node must have the same constant |
| length. */ |
| int i, n = gimple_phi_num_args (def); |
| tree val = NULL, new_val; |
| |
| for (i = 0; i < n; i++) |
| { |
| tree arg = PHI_ARG_DEF (def, i); |
| |
| /* If this PHI has itself as an argument, we cannot |
| determine the string length of this argument. However, |
| if we can find an expected constant value for the other |
| PHI args then we can still be sure that this is |
| likely a constant. So be optimistic and just |
| continue with the next argument. */ |
| if (arg == PHI_RESULT (def)) |
| continue; |
| |
| new_val = expr_expected_value (arg, visited); |
| if (!new_val) |
| return NULL; |
| if (!val) |
| val = new_val; |
| else if (!operand_equal_p (val, new_val, false)) |
| return NULL; |
| } |
| return val; |
| } |
| if (is_gimple_assign (def)) |
| { |
| if (gimple_assign_lhs (def) != op0) |
| return NULL; |
| |
| return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)), |
| gimple_assign_rhs1 (def), |
| gimple_assign_rhs_code (def), |
| gimple_assign_rhs2 (def), |
| visited); |
| } |
| |
| if (is_gimple_call (def)) |
| { |
| tree decl = gimple_call_fndecl (def); |
| if (!decl) |
| return NULL; |
| if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL |
| && DECL_FUNCTION_CODE (decl) == BUILT_IN_EXPECT) |
| { |
| tree val; |
| |
| if (gimple_call_num_args (def) != 2) |
| return NULL; |
| val = gimple_call_arg (def, 0); |
| if (TREE_CONSTANT (val)) |
| return val; |
| return gimple_call_arg (def, 1); |
| } |
| } |
| |
| return NULL; |
| } |
| |
| if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS) |
| { |
| tree res; |
| op0 = expr_expected_value (op0, visited); |
| if (!op0) |
| return NULL; |
| op1 = expr_expected_value (op1, visited); |
| if (!op1) |
| return NULL; |
| res = fold_build2 (code, type, op0, op1); |
| if (TREE_CONSTANT (res)) |
| return res; |
| return NULL; |
| } |
| if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS) |
| { |
| tree res; |
| op0 = expr_expected_value (op0, visited); |
| if (!op0) |
| return NULL; |
| res = fold_build1 (code, type, op0); |
| if (TREE_CONSTANT (res)) |
| return res; |
| return NULL; |
| } |
| return NULL; |
| } |
| |
| /* Return constant EXPR will likely have at execution time, NULL if unknown. |
| The function is used by builtin_expect branch predictor so the evidence |
| must come from this construct and additional possible constant folding. |
| |
| We may want to implement more involved value guess (such as value range |
| propagation based prediction), but such tricks shall go to new |
| implementation. */ |
| |
| static tree |
| expr_expected_value (tree expr, bitmap visited) |
| { |
| enum tree_code code; |
| tree op0, op1; |
| |
| if (TREE_CONSTANT (expr)) |
| return expr; |
| |
| extract_ops_from_tree (expr, &code, &op0, &op1); |
| return expr_expected_value_1 (TREE_TYPE (expr), |
| op0, code, op1, visited); |
| } |
| |
| |
| /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements |
| we no longer need. */ |
| static unsigned int |
| strip_predict_hints (void) |
| { |
| basic_block bb; |
| gimple ass_stmt; |
| tree var; |
| |
| FOR_EACH_BB (bb) |
| { |
| gimple_stmt_iterator bi; |
| for (bi = gsi_start_bb (bb); !gsi_end_p (bi);) |
| { |
| gimple stmt = gsi_stmt (bi); |
| |
| if (gimple_code (stmt) == GIMPLE_PREDICT) |
| { |
| gsi_remove (&bi, true); |
| continue; |
| } |
| else if (gimple_code (stmt) == GIMPLE_CALL) |
| { |
| tree fndecl = gimple_call_fndecl (stmt); |
| |
| if (fndecl |
| && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL |
| && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT |
| && gimple_call_num_args (stmt) == 2) |
| { |
| var = gimple_call_lhs (stmt); |
| ass_stmt = gimple_build_assign (var, gimple_call_arg (stmt, 0)); |
| |
| gsi_replace (&bi, ass_stmt, true); |
| } |
| } |
| gsi_next (&bi); |
| } |
| } |
| return 0; |
| } |
| |
| /* Predict using opcode of the last statement in basic block. */ |
| static void |
| tree_predict_by_opcode (basic_block bb) |
| { |
| gimple stmt = last_stmt (bb); |
| edge then_edge; |
| tree op0, op1; |
| tree type; |
| tree val; |
| enum tree_code cmp; |
| bitmap visited; |
| edge_iterator ei; |
| |
| if (!stmt || gimple_code (stmt) != GIMPLE_COND) |
| return; |
| FOR_EACH_EDGE (then_edge, ei, bb->succs) |
| if (then_edge->flags & EDGE_TRUE_VALUE) |
| break; |
| op0 = gimple_cond_lhs (stmt); |
| op1 = gimple_cond_rhs (stmt); |
| cmp = gimple_cond_code (stmt); |
| type = TREE_TYPE (op0); |
| visited = BITMAP_ALLOC (NULL); |
| val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited); |
| BITMAP_FREE (visited); |
| if (val) |
| { |
| if (integer_zerop (val)) |
| predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN); |
| else |
| predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN); |
| return; |
| } |
| /* Try "pointer heuristic." |
| A comparison ptr == 0 is predicted as false. |
| Similarly, a comparison ptr1 == ptr2 is predicted as false. */ |
| if (POINTER_TYPE_P (type)) |
| { |
| if (cmp == EQ_EXPR) |
| predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN); |
| else if (cmp == NE_EXPR) |
| predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN); |
| } |
| else |
| |
| /* Try "opcode heuristic." |
| EQ tests are usually false and NE tests are usually true. Also, |
| most quantities are positive, so we can make the appropriate guesses |
| about signed comparisons against zero. */ |
| switch (cmp) |
| { |
| case EQ_EXPR: |
| case UNEQ_EXPR: |
| /* Floating point comparisons appears to behave in a very |
| unpredictable way because of special role of = tests in |
| FP code. */ |
| if (FLOAT_TYPE_P (type)) |
| ; |
| /* Comparisons with 0 are often used for booleans and there is |
| nothing useful to predict about them. */ |
| else if (integer_zerop (op0) || integer_zerop (op1)) |
| ; |
| else |
| predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN); |
| break; |
| |
| case NE_EXPR: |
| case LTGT_EXPR: |
| /* Floating point comparisons appears to behave in a very |
| unpredictable way because of special role of = tests in |
| FP code. */ |
| if (FLOAT_TYPE_P (type)) |
| ; |
| /* Comparisons with 0 are often used for booleans and there is |
| nothing useful to predict about them. */ |
| else if (integer_zerop (op0) |
| || integer_zerop (op1)) |
| ; |
| else |
| predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN); |
| break; |
| |
| case ORDERED_EXPR: |
| predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN); |
| break; |
| |
| case UNORDERED_EXPR: |
| predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN); |
| break; |
| |
| case LE_EXPR: |
| case LT_EXPR: |
| if (integer_zerop (op1) |
| || integer_onep (op1) |
| || integer_all_onesp (op1) |
| || real_zerop (op1) |
| || real_onep (op1) |
| || real_minus_onep (op1)) |
| predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN); |
| break; |
| |
| case GE_EXPR: |
| case GT_EXPR: |
| if (integer_zerop (op1) |
| || integer_onep (op1) |
| || integer_all_onesp (op1) |
| || real_zerop (op1) |
| || real_onep (op1) |
| || real_minus_onep (op1)) |
| predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| /* Try to guess whether the value of return means error code. */ |
| |
| static enum br_predictor |
| return_prediction (tree val, enum prediction *prediction) |
| { |
| /* VOID. */ |
| if (!val) |
| return PRED_NO_PREDICTION; |
| /* Different heuristics for pointers and scalars. */ |
| if (POINTER_TYPE_P (TREE_TYPE (val))) |
| { |
| /* NULL is usually not returned. */ |
| if (integer_zerop (val)) |
| { |
| *prediction = NOT_TAKEN; |
| return PRED_NULL_RETURN; |
| } |
| } |
| else if (INTEGRAL_TYPE_P (TREE_TYPE (val))) |
| { |
| /* Negative return values are often used to indicate |
| errors. */ |
| if (TREE_CODE (val) == INTEGER_CST |
| && tree_int_cst_sgn (val) < 0) |
| { |
| *prediction = NOT_TAKEN; |
| return PRED_NEGATIVE_RETURN; |
| } |
| /* Constant return values seems to be commonly taken. |
| Zero/one often represent booleans so exclude them from the |
| heuristics. */ |
| if (TREE_CONSTANT (val) |
| && (!integer_zerop (val) && !integer_onep (val))) |
| { |
| *prediction = TAKEN; |
| return PRED_CONST_RETURN; |
| } |
| } |
| return PRED_NO_PREDICTION; |
| } |
| |
| /* Find the basic block with return expression and look up for possible |
| return value trying to apply RETURN_PREDICTION heuristics. */ |
| static void |
| apply_return_prediction (void) |
| { |
| gimple return_stmt = NULL; |
| tree return_val; |
| edge e; |
| gimple phi; |
| int phi_num_args, i; |
| enum br_predictor pred; |
| enum prediction direction; |
| edge_iterator ei; |
| |
| FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds) |
| { |
| return_stmt = last_stmt (e->src); |
| if (return_stmt |
| && gimple_code (return_stmt) == GIMPLE_RETURN) |
| break; |
| } |
| if (!e) |
| return; |
| return_val = gimple_return_retval (return_stmt); |
| if (!return_val) |
| return; |
| if (TREE_CODE (return_val) != SSA_NAME |
| || !SSA_NAME_DEF_STMT (return_val) |
| || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI) |
| return; |
| phi = SSA_NAME_DEF_STMT (return_val); |
| phi_num_args = gimple_phi_num_args (phi); |
| pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction); |
| |
| /* Avoid the degenerate case where all return values form the function |
| belongs to same category (ie they are all positive constants) |
| so we can hardly say something about them. */ |
| for (i = 1; i < phi_num_args; i++) |
| if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction)) |
| break; |
| if (i != phi_num_args) |
| for (i = 0; i < phi_num_args; i++) |
| { |
| pred = return_prediction (PHI_ARG_DEF (phi, i), &direction); |
| if (pred != PRED_NO_PREDICTION) |
| predict_paths_leading_to (gimple_phi_arg_edge (phi, i)->src, pred, |
| direction); |
| } |
| } |
| |
| /* Look for basic block that contains unlikely to happen events |
| (such as noreturn calls) and mark all paths leading to execution |
| of this basic blocks as unlikely. */ |
| |
| static void |
| tree_bb_level_predictions (void) |
| { |
| basic_block bb; |
| bool has_return_edges = false; |
| edge e; |
| edge_iterator ei; |
| |
| FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds) |
| if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH))) |
| { |
| has_return_edges = true; |
| break; |
| } |
| |
| apply_return_prediction (); |
| |
| FOR_EACH_BB (bb) |
| { |
| gimple_stmt_iterator gsi; |
| |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| gimple stmt = gsi_stmt (gsi); |
| tree decl; |
| |
| if (is_gimple_call (stmt)) |
| { |
| if ((gimple_call_flags (stmt) & ECF_NORETURN) |
| && has_return_edges) |
| predict_paths_leading_to (bb, PRED_NORETURN, |
| NOT_TAKEN); |
| decl = gimple_call_fndecl (stmt); |
| if (decl |
| && lookup_attribute ("cold", |
| DECL_ATTRIBUTES (decl))) |
| predict_paths_leading_to (bb, PRED_COLD_FUNCTION, |
| NOT_TAKEN); |
| } |
| else if (gimple_code (stmt) == GIMPLE_PREDICT) |
| { |
| predict_paths_leading_to (bb, gimple_predict_predictor (stmt), |
| gimple_predict_outcome (stmt)); |
| /* Keep GIMPLE_PREDICT around so early inlining will propagate |
| hints to callers. */ |
| } |
| } |
| } |
| } |
| |
| #ifdef ENABLE_CHECKING |
| |
| /* Callback for pointer_map_traverse, asserts that the pointer map is |
| empty. */ |
| |
| static bool |
| assert_is_empty (const void *key ATTRIBUTE_UNUSED, void **value, |
| void *data ATTRIBUTE_UNUSED) |
| { |
| gcc_assert (!*value); |
| return false; |
| } |
| #endif |
| |
| /* Predict branch probabilities and estimate profile of the tree CFG. */ |
| static unsigned int |
| tree_estimate_probability (void) |
| { |
| basic_block bb; |
| |
| loop_optimizer_init (0); |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| flow_loops_dump (dump_file, NULL, 0); |
| |
| add_noreturn_fake_exit_edges (); |
| connect_infinite_loops_to_exit (); |
| /* We use loop_niter_by_eval, which requires that the loops have |
| preheaders. */ |
| create_preheaders (CP_SIMPLE_PREHEADERS); |
| calculate_dominance_info (CDI_POST_DOMINATORS); |
| |
| bb_predictions = pointer_map_create (); |
| tree_bb_level_predictions (); |
| |
| mark_irreducible_loops (); |
| record_loop_exits (); |
| if (number_of_loops () > 1) |
| predict_loops (); |
| |
| FOR_EACH_BB (bb) |
| { |
| edge e; |
| edge_iterator ei; |
| gimple last; |
| |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| { |
| /* Predict early returns to be probable, as we've already taken |
| care for error returns and other cases are often used for |
| fast paths through function. |
| |
| Since we've already removed the return statements, we are |
| looking for CFG like: |
| |
| if (conditional) |
| { |
| .. |
| goto return_block |
| } |
| some other blocks |
| return_block: |
| return_stmt. */ |
| if (e->dest != bb->next_bb |
| && e->dest != EXIT_BLOCK_PTR |
| && single_succ_p (e->dest) |
| && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR |
| && (last = last_stmt (e->dest)) != NULL |
| && gimple_code (last) == GIMPLE_RETURN) |
| { |
| edge e1; |
| edge_iterator ei1; |
| |
| if (single_succ_p (bb)) |
| { |
| FOR_EACH_EDGE (e1, ei1, bb->preds) |
| if (!predicted_by_p (e1->src, PRED_NULL_RETURN) |
| && !predicted_by_p (e1->src, PRED_CONST_RETURN) |
| && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN)) |
| predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN); |
| } |
| else |
| if (!predicted_by_p (e->src, PRED_NULL_RETURN) |
| && !predicted_by_p (e->src, PRED_CONST_RETURN) |
| && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN)) |
| predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN); |
| } |
| |
| /* Look for block we are guarding (ie we dominate it, |
| but it doesn't postdominate us). */ |
| if (e->dest != EXIT_BLOCK_PTR && e->dest != bb |
| && dominated_by_p (CDI_DOMINATORS, e->dest, e->src) |
| && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest)) |
| { |
| gimple_stmt_iterator bi; |
| |
| /* The call heuristic claims that a guarded function call |
| is improbable. This is because such calls are often used |
| to signal exceptional situations such as printing error |
| messages. */ |
| for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi); |
| gsi_next (&bi)) |
| { |
| gimple stmt = gsi_stmt (bi); |
| if (is_gimple_call (stmt) |
| /* Constant and pure calls are hardly used to signalize |
| something exceptional. */ |
| && gimple_has_side_effects (stmt)) |
| { |
| predict_edge_def (e, PRED_CALL, NOT_TAKEN); |
| break; |
| } |
| } |
| } |
| } |
| tree_predict_by_opcode (bb); |
| } |
| FOR_EACH_BB (bb) |
| combine_predictions_for_bb (bb); |
| |
| #ifdef ENABLE_CHECKING |
| pointer_map_traverse (bb_predictions, assert_is_empty, NULL); |
| #endif |
| pointer_map_destroy (bb_predictions); |
| bb_predictions = NULL; |
| |
| estimate_bb_frequencies (); |
| free_dominance_info (CDI_POST_DOMINATORS); |
| remove_fake_exit_edges (); |
| loop_optimizer_finalize (); |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| gimple_dump_cfg (dump_file, dump_flags); |
| if (profile_status == PROFILE_ABSENT) |
| profile_status = PROFILE_GUESSED; |
| return 0; |
| } |
| |
| /* Predict edges to successors of CUR whose sources are not postdominated by |
| BB by PRED and recurse to all postdominators. */ |
| |
| static void |
| predict_paths_for_bb (basic_block cur, basic_block bb, |
| enum br_predictor pred, |
| enum prediction taken) |
| { |
| edge e; |
| edge_iterator ei; |
| basic_block son; |
| |
| /* We are looking for all edges forming edge cut induced by |
| set of all blocks postdominated by BB. */ |
| FOR_EACH_EDGE (e, ei, cur->preds) |
| if (e->src->index >= NUM_FIXED_BLOCKS |
| && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb)) |
| { |
| gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb)); |
| predict_edge_def (e, pred, taken); |
| } |
| for (son = first_dom_son (CDI_POST_DOMINATORS, cur); |
| son; |
| son = next_dom_son (CDI_POST_DOMINATORS, son)) |
| predict_paths_for_bb (son, bb, pred, taken); |
| } |
| |
| /* Sets branch probabilities according to PREDiction and |
| FLAGS. */ |
| |
| static void |
| predict_paths_leading_to (basic_block bb, enum br_predictor pred, |
| enum prediction taken) |
| { |
| predict_paths_for_bb (bb, bb, pred, taken); |
| } |
| |
| /* This is used to carry information about basic blocks. It is |
| attached to the AUX field of the standard CFG block. */ |
| |
| typedef struct block_info_def |
| { |
| /* Estimated frequency of execution of basic_block. */ |
| sreal frequency; |
| |
| /* To keep queue of basic blocks to process. */ |
| basic_block next; |
| |
| /* Number of predecessors we need to visit first. */ |
| int npredecessors; |
| } *block_info; |
| |
| /* Similar information for edges. */ |
| typedef struct edge_info_def |
| { |
| /* In case edge is a loopback edge, the probability edge will be reached |
| in case header is. Estimated number of iterations of the loop can be |
| then computed as 1 / (1 - back_edge_prob). */ |
| sreal back_edge_prob; |
| /* True if the edge is a loopback edge in the natural loop. */ |
| unsigned int back_edge:1; |
| } *edge_info; |
| |
| #define BLOCK_INFO(B) ((block_info) (B)->aux) |
| #define EDGE_INFO(E) ((edge_info) (E)->aux) |
| |
| /* Helper function for estimate_bb_frequencies. |
| Propagate the frequencies in blocks marked in |
| TOVISIT, starting in HEAD. */ |
| |
| static void |
| propagate_freq (basic_block head, bitmap tovisit) |
| { |
| basic_block bb; |
| basic_block last; |
| unsigned i; |
| edge e; |
| basic_block nextbb; |
| bitmap_iterator bi; |
| |
| /* For each basic block we need to visit count number of his predecessors |
| we need to visit first. */ |
| EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi) |
| { |
| edge_iterator ei; |
| int count = 0; |
| |
| /* The outermost "loop" includes the exit block, which we can not |
| look up via BASIC_BLOCK. Detect this and use EXIT_BLOCK_PTR |
| directly. Do the same for the entry block. */ |
| bb = BASIC_BLOCK (i); |
| |
| FOR_EACH_EDGE (e, ei, bb->preds) |
| { |
| bool visit = bitmap_bit_p (tovisit, e->src->index); |
| |
| if (visit && !(e->flags & EDGE_DFS_BACK)) |
| count++; |
| else if (visit && dump_file && !EDGE_INFO (e)->back_edge) |
| fprintf (dump_file, |
| "Irreducible region hit, ignoring edge to %i->%i\n", |
| e->src->index, bb->index); |
| } |
| BLOCK_INFO (bb)->npredecessors = count; |
| } |
| |
| memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one)); |
| last = head; |
| for (bb = head; bb; bb = nextbb) |
| { |
| edge_iterator ei; |
| sreal cyclic_probability, frequency; |
| |
| memcpy (&cyclic_probability, &real_zero, sizeof (real_zero)); |
| memcpy (&frequency, &real_zero, sizeof (real_zero)); |
| |
| nextbb = BLOCK_INFO (bb)->next; |
| BLOCK_INFO (bb)->next = NULL; |
| |
| /* Compute frequency of basic block. */ |
| if (bb != head) |
| { |
| #ifdef ENABLE_CHECKING |
| FOR_EACH_EDGE (e, ei, bb->preds) |
| gcc_assert (!bitmap_bit_p (tovisit, e->src->index) |
| || (e->flags & EDGE_DFS_BACK)); |
| #endif |
| |
| FOR_EACH_EDGE (e, ei, bb->preds) |
| if (EDGE_INFO (e)->back_edge) |
| { |
| sreal_add (&cyclic_probability, &cyclic_probability, |
| &EDGE_INFO (e)->back_edge_prob); |
| } |
| else if (!(e->flags & EDGE_DFS_BACK)) |
| { |
| sreal tmp; |
| |
| /* frequency += (e->probability |
| * BLOCK_INFO (e->src)->frequency / |
| REG_BR_PROB_BASE); */ |
| |
| sreal_init (&tmp, e->probability, 0); |
| sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency); |
| sreal_mul (&tmp, &tmp, &real_inv_br_prob_base); |
| sreal_add (&frequency, &frequency, &tmp); |
| } |
| |
| if (sreal_compare (&cyclic_probability, &real_zero) == 0) |
| { |
| memcpy (&BLOCK_INFO (bb)->frequency, &frequency, |
| sizeof (frequency)); |
| } |
| else |
| { |
| if (sreal_compare (&cyclic_probability, &real_almost_one) > 0) |
| { |
| memcpy (&cyclic_probability, &real_almost_one, |
| sizeof (real_almost_one)); |
| } |
| |
| /* BLOCK_INFO (bb)->frequency = frequency |
| / (1 - cyclic_probability) */ |
| |
| sreal_sub (&cyclic_probability, &real_one, &cyclic_probability); |
| sreal_div (&BLOCK_INFO (bb)->frequency, |
| &frequency, &cyclic_probability); |
| } |
| } |
| |
| bitmap_clear_bit (tovisit, bb->index); |
| |
| e = find_edge (bb, head); |
| if (e) |
| { |
| sreal tmp; |
| |
| /* EDGE_INFO (e)->back_edge_prob |
| = ((e->probability * BLOCK_INFO (bb)->frequency) |
| / REG_BR_PROB_BASE); */ |
| |
| sreal_init (&tmp, e->probability, 0); |
| sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency); |
| sreal_mul (&EDGE_INFO (e)->back_edge_prob, |
| &tmp, &real_inv_br_prob_base); |
| } |
| |
| /* Propagate to successor blocks. */ |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| if (!(e->flags & EDGE_DFS_BACK) |
| && BLOCK_INFO (e->dest)->npredecessors) |
| { |
| BLOCK_INFO (e->dest)->npredecessors--; |
| if (!BLOCK_INFO (e->dest)->npredecessors) |
| { |
| if (!nextbb) |
| nextbb = e->dest; |
| else |
| BLOCK_INFO (last)->next = e->dest; |
| |
| last = e->dest; |
| } |
| } |
| } |
| } |
| |
| /* Estimate probabilities of loopback edges in loops at same nest level. */ |
| |
| static void |
| estimate_loops_at_level (struct loop *first_loop) |
| { |
| struct loop *loop; |
| |
| for (loop = first_loop; loop; loop = loop->next) |
| { |
| edge e; |
| basic_block *bbs; |
| unsigned i; |
| bitmap tovisit = BITMAP_ALLOC (NULL); |
| |
| estimate_loops_at_level (loop->inner); |
| |
| /* Find current loop back edge and mark it. */ |
| e = loop_latch_edge (loop); |
| EDGE_INFO (e)->back_edge = 1; |
| |
| bbs = get_loop_body (loop); |
| for (i = 0; i < loop->num_nodes; i++) |
| bitmap_set_bit (tovisit, bbs[i]->index); |
| free (bbs); |
| propagate_freq (loop->header, tovisit); |
| BITMAP_FREE (tovisit); |
| } |
| } |
| |
| /* Propagates frequencies through structure of loops. */ |
| |
| static void |
| estimate_loops (void) |
| { |
| bitmap tovisit = BITMAP_ALLOC (NULL); |
| basic_block bb; |
| |
| /* Start by estimating the frequencies in the loops. */ |
| if (number_of_loops () > 1) |
| estimate_loops_at_level (current_loops->tree_root->inner); |
| |
| /* Now propagate the frequencies through all the blocks. */ |
| FOR_ALL_BB (bb) |
| { |
| bitmap_set_bit (tovisit, bb->index); |
| } |
| propagate_freq (ENTRY_BLOCK_PTR, tovisit); |
| BITMAP_FREE (tovisit); |
| } |
| |
| /* Convert counts measured by profile driven feedback to frequencies. |
| Return nonzero iff there was any nonzero execution count. */ |
| |
| int |
| counts_to_freqs (void) |
| { |
| gcov_type count_max, true_count_max = 0; |
| basic_block bb; |
| |
| FOR_EACH_BB (bb) |
| true_count_max = MAX (bb->count, true_count_max); |
| |
| count_max = MAX (true_count_max, 1); |
| FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb) |
| bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max; |
| |
| return true_count_max; |
| } |
| |
| /* Return true if function is likely to be expensive, so there is no point to |
| optimize performance of prologue, epilogue or do inlining at the expense |
| of code size growth. THRESHOLD is the limit of number of instructions |
| function can execute at average to be still considered not expensive. */ |
| |
| bool |
| expensive_function_p (int threshold) |
| { |
| unsigned int sum = 0; |
| basic_block bb; |
| unsigned int limit; |
| |
| /* We can not compute accurately for large thresholds due to scaled |
| frequencies. */ |
| gcc_assert (threshold <= BB_FREQ_MAX); |
| |
| /* Frequencies are out of range. This either means that function contains |
| internal loop executing more than BB_FREQ_MAX times or profile feedback |
| is available and function has not been executed at all. */ |
| if (ENTRY_BLOCK_PTR->frequency == 0) |
| return true; |
| |
| /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */ |
| limit = ENTRY_BLOCK_PTR->frequency * threshold; |
| FOR_EACH_BB (bb) |
| { |
| rtx insn; |
| |
| for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); |
| insn = NEXT_INSN (insn)) |
| if (active_insn_p (insn)) |
| { |
| sum += bb->frequency; |
| if (sum > limit) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /* Estimate basic blocks frequency by given branch probabilities. */ |
| |
| void |
| estimate_bb_frequencies (void) |
| { |
| basic_block bb; |
| sreal freq_max; |
| |
| if (profile_status != PROFILE_READ || !counts_to_freqs ()) |
| { |
| static int real_values_initialized = 0; |
| |
| if (!real_values_initialized) |
| { |
| real_values_initialized = 1; |
| sreal_init (&real_zero, 0, 0); |
| sreal_init (&real_one, 1, 0); |
| sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0); |
| sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0); |
| sreal_init (&real_one_half, 1, -1); |
| sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base); |
| sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base); |
| } |
| |
| mark_dfs_back_edges (); |
| |
| single_succ_edge (ENTRY_BLOCK_PTR)->probability = REG_BR_PROB_BASE; |
| |
| /* Set up block info for each basic block. */ |
| alloc_aux_for_blocks (sizeof (struct block_info_def)); |
| alloc_aux_for_edges (sizeof (struct edge_info_def)); |
| FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb) |
| { |
| edge e; |
| edge_iterator ei; |
| |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| { |
| sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0); |
| sreal_mul (&EDGE_INFO (e)->back_edge_prob, |
| &EDGE_INFO (e)->back_edge_prob, |
| &real_inv_br_prob_base); |
| } |
| } |
| |
| /* First compute probabilities locally for each loop from innermost |
| to outermost to examine probabilities for back edges. */ |
| estimate_loops (); |
| |
| memcpy (&freq_max, &real_zero, sizeof (real_zero)); |
| FOR_EACH_BB (bb) |
| if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0) |
| memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max)); |
| |
| sreal_div (&freq_max, &real_bb_freq_max, &freq_max); |
| FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb) |
| { |
| sreal tmp; |
| |
| sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max); |
| sreal_add (&tmp, &tmp, &real_one_half); |
| bb->frequency = sreal_to_int (&tmp); |
| } |
| |
| free_aux_for_blocks (); |
| free_aux_for_edges (); |
| } |
| compute_function_frequency (); |
| if (flag_reorder_functions) |
| choose_function_section (); |
| } |
| |
| /* Decide whether function is hot, cold or unlikely executed. */ |
| static void |
| compute_function_frequency (void) |
| { |
| basic_block bb; |
| |
| if (!profile_info || !flag_branch_probabilities) |
| { |
| if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl)) |
| != NULL) |
| cfun->function_frequency = FUNCTION_FREQUENCY_UNLIKELY_EXECUTED; |
| else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl)) |
| != NULL) |
| cfun->function_frequency = FUNCTION_FREQUENCY_HOT; |
| return; |
| } |
| cfun->function_frequency = FUNCTION_FREQUENCY_UNLIKELY_EXECUTED; |
| FOR_EACH_BB (bb) |
| { |
| if (maybe_hot_bb_p (bb)) |
| { |
| cfun->function_frequency = FUNCTION_FREQUENCY_HOT; |
| return; |
| } |
| if (!probably_never_executed_bb_p (bb)) |
| cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL; |
| } |
| } |
| |
| /* Choose appropriate section for the function. */ |
| static void |
| choose_function_section (void) |
| { |
| if (DECL_SECTION_NAME (current_function_decl) |
| || !targetm.have_named_sections |
| /* Theoretically we can split the gnu.linkonce text section too, |
| but this requires more work as the frequency needs to match |
| for all generated objects so we need to merge the frequency |
| of all instances. For now just never set frequency for these. */ |
| || DECL_ONE_ONLY (current_function_decl)) |
| return; |
| |
| /* If we are doing the partitioning optimization, let the optimization |
| choose the correct section into which to put things. */ |
| |
| if (flag_reorder_blocks_and_partition) |
| return; |
| |
| if (cfun->function_frequency == FUNCTION_FREQUENCY_HOT) |
| DECL_SECTION_NAME (current_function_decl) = |
| build_string (strlen (HOT_TEXT_SECTION_NAME), HOT_TEXT_SECTION_NAME); |
| if (cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED) |
| DECL_SECTION_NAME (current_function_decl) = |
| build_string (strlen (UNLIKELY_EXECUTED_TEXT_SECTION_NAME), |
| UNLIKELY_EXECUTED_TEXT_SECTION_NAME); |
| } |
| |
| static bool |
| gate_estimate_probability (void) |
| { |
| return flag_guess_branch_prob; |
| } |
| |
| /* Build PREDICT_EXPR. */ |
| tree |
| build_predict_expr (enum br_predictor predictor, enum prediction taken) |
| { |
| tree t = build1 (PREDICT_EXPR, void_type_node, |
| build_int_cst (NULL, predictor)); |
| PREDICT_EXPR_OUTCOME (t) = taken; |
| return t; |
| } |
| |
| const char * |
| predictor_name (enum br_predictor predictor) |
| { |
| return predictor_info[predictor].name; |
| } |
| |
| struct gimple_opt_pass pass_profile = |
| { |
| { |
| GIMPLE_PASS, |
| "profile", /* name */ |
| gate_estimate_probability, /* gate */ |
| tree_estimate_probability, /* execute */ |
| NULL, /* sub */ |
| NULL, /* next */ |
| 0, /* static_pass_number */ |
| TV_BRANCH_PROB, /* tv_id */ |
| PROP_cfg, /* properties_required */ |
| 0, /* properties_provided */ |
| 0, /* properties_destroyed */ |
| 0, /* todo_flags_start */ |
| TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */ |
| } |
| }; |
| |
| struct gimple_opt_pass pass_strip_predict_hints = |
| { |
| { |
| GIMPLE_PASS, |
| NULL, /* name */ |
| NULL, /* gate */ |
| strip_predict_hints, /* execute */ |
| NULL, /* sub */ |
| NULL, /* next */ |
| 0, /* static_pass_number */ |
| TV_BRANCH_PROB, /* tv_id */ |
| PROP_cfg, /* properties_required */ |
| 0, /* properties_provided */ |
| 0, /* properties_destroyed */ |
| 0, /* todo_flags_start */ |
| TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */ |
| } |
| }; |