| /* Subroutines used by or related to instruction recognition. |
| Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998 |
| 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 |
| Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| #include "rtl.h" |
| #include "tm_p.h" |
| #include "insn-config.h" |
| #include "insn-attr.h" |
| #include "hard-reg-set.h" |
| #include "recog.h" |
| #include "regs.h" |
| #include "addresses.h" |
| #include "expr.h" |
| #include "function.h" |
| #include "flags.h" |
| #include "real.h" |
| #include "toplev.h" |
| #include "basic-block.h" |
| #include "output.h" |
| #include "reload.h" |
| #include "target.h" |
| #include "timevar.h" |
| #include "tree-pass.h" |
| #include "df.h" |
| |
| #ifndef STACK_PUSH_CODE |
| #ifdef STACK_GROWS_DOWNWARD |
| #define STACK_PUSH_CODE PRE_DEC |
| #else |
| #define STACK_PUSH_CODE PRE_INC |
| #endif |
| #endif |
| |
| #ifndef STACK_POP_CODE |
| #ifdef STACK_GROWS_DOWNWARD |
| #define STACK_POP_CODE POST_INC |
| #else |
| #define STACK_POP_CODE POST_DEC |
| #endif |
| #endif |
| |
| #ifndef HAVE_ATTR_enabled |
| static inline bool |
| get_attr_enabled (rtx insn ATTRIBUTE_UNUSED) |
| { |
| return true; |
| } |
| #endif |
| |
| static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx, bool); |
| static void validate_replace_src_1 (rtx *, void *); |
| static rtx split_insn (rtx); |
| |
| /* Nonzero means allow operands to be volatile. |
| This should be 0 if you are generating rtl, such as if you are calling |
| the functions in optabs.c and expmed.c (most of the time). |
| This should be 1 if all valid insns need to be recognized, |
| such as in reginfo.c and final.c and reload.c. |
| |
| init_recog and init_recog_no_volatile are responsible for setting this. */ |
| |
| int volatile_ok; |
| |
| struct recog_data recog_data; |
| |
| /* Contains a vector of operand_alternative structures for every operand. |
| Set up by preprocess_constraints. */ |
| struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES]; |
| |
| /* On return from `constrain_operands', indicate which alternative |
| was satisfied. */ |
| |
| int which_alternative; |
| |
| /* Nonzero after end of reload pass. |
| Set to 1 or 0 by toplev.c. |
| Controls the significance of (SUBREG (MEM)). */ |
| |
| int reload_completed; |
| |
| /* Nonzero after thread_prologue_and_epilogue_insns has run. */ |
| int epilogue_completed; |
| |
| /* Initialize data used by the function `recog'. |
| This must be called once in the compilation of a function |
| before any insn recognition may be done in the function. */ |
| |
| void |
| init_recog_no_volatile (void) |
| { |
| volatile_ok = 0; |
| } |
| |
| void |
| init_recog (void) |
| { |
| volatile_ok = 1; |
| } |
| |
| |
| /* Check that X is an insn-body for an `asm' with operands |
| and that the operands mentioned in it are legitimate. */ |
| |
| int |
| check_asm_operands (rtx x) |
| { |
| int noperands; |
| rtx *operands; |
| const char **constraints; |
| int i; |
| |
| /* Post-reload, be more strict with things. */ |
| if (reload_completed) |
| { |
| /* ??? Doh! We've not got the wrapping insn. Cook one up. */ |
| extract_insn (make_insn_raw (x)); |
| constrain_operands (1); |
| return which_alternative >= 0; |
| } |
| |
| noperands = asm_noperands (x); |
| if (noperands < 0) |
| return 0; |
| if (noperands == 0) |
| return 1; |
| |
| operands = XALLOCAVEC (rtx, noperands); |
| constraints = XALLOCAVEC (const char *, noperands); |
| |
| decode_asm_operands (x, operands, NULL, constraints, NULL, NULL); |
| |
| for (i = 0; i < noperands; i++) |
| { |
| const char *c = constraints[i]; |
| if (c[0] == '%') |
| c++; |
| if (! asm_operand_ok (operands[i], c, constraints)) |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* Static data for the next two routines. */ |
| |
| typedef struct change_t |
| { |
| rtx object; |
| int old_code; |
| rtx *loc; |
| rtx old; |
| bool unshare; |
| } change_t; |
| |
| static change_t *changes; |
| static int changes_allocated; |
| |
| static int num_changes = 0; |
| |
| /* Validate a proposed change to OBJECT. LOC is the location in the rtl |
| at which NEW_RTX will be placed. If OBJECT is zero, no validation is done, |
| the change is simply made. |
| |
| Two types of objects are supported: If OBJECT is a MEM, memory_address_p |
| will be called with the address and mode as parameters. If OBJECT is |
| an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with |
| the change in place. |
| |
| IN_GROUP is nonzero if this is part of a group of changes that must be |
| performed as a group. In that case, the changes will be stored. The |
| function `apply_change_group' will validate and apply the changes. |
| |
| If IN_GROUP is zero, this is a single change. Try to recognize the insn |
| or validate the memory reference with the change applied. If the result |
| is not valid for the machine, suppress the change and return zero. |
| Otherwise, perform the change and return 1. */ |
| |
| static bool |
| validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare) |
| { |
| rtx old = *loc; |
| |
| if (old == new_rtx || rtx_equal_p (old, new_rtx)) |
| return 1; |
| |
| gcc_assert (in_group != 0 || num_changes == 0); |
| |
| *loc = new_rtx; |
| |
| /* Save the information describing this change. */ |
| if (num_changes >= changes_allocated) |
| { |
| if (changes_allocated == 0) |
| /* This value allows for repeated substitutions inside complex |
| indexed addresses, or changes in up to 5 insns. */ |
| changes_allocated = MAX_RECOG_OPERANDS * 5; |
| else |
| changes_allocated *= 2; |
| |
| changes = XRESIZEVEC (change_t, changes, changes_allocated); |
| } |
| |
| changes[num_changes].object = object; |
| changes[num_changes].loc = loc; |
| changes[num_changes].old = old; |
| changes[num_changes].unshare = unshare; |
| |
| if (object && !MEM_P (object)) |
| { |
| /* Set INSN_CODE to force rerecognition of insn. Save old code in |
| case invalid. */ |
| changes[num_changes].old_code = INSN_CODE (object); |
| INSN_CODE (object) = -1; |
| } |
| |
| num_changes++; |
| |
| /* If we are making a group of changes, return 1. Otherwise, validate the |
| change group we made. */ |
| |
| if (in_group) |
| return 1; |
| else |
| return apply_change_group (); |
| } |
| |
| /* Wrapper for validate_change_1 without the UNSHARE argument defaulting |
| UNSHARE to false. */ |
| |
| bool |
| validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group) |
| { |
| return validate_change_1 (object, loc, new_rtx, in_group, false); |
| } |
| |
| /* Wrapper for validate_change_1 without the UNSHARE argument defaulting |
| UNSHARE to true. */ |
| |
| bool |
| validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group) |
| { |
| return validate_change_1 (object, loc, new_rtx, in_group, true); |
| } |
| |
| |
| /* Keep X canonicalized if some changes have made it non-canonical; only |
| modifies the operands of X, not (for example) its code. Simplifications |
| are not the job of this routine. |
| |
| Return true if anything was changed. */ |
| bool |
| canonicalize_change_group (rtx insn, rtx x) |
| { |
| if (COMMUTATIVE_P (x) |
| && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1))) |
| { |
| /* Oops, the caller has made X no longer canonical. |
| Let's redo the changes in the correct order. */ |
| rtx tem = XEXP (x, 0); |
| validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1); |
| validate_change (insn, &XEXP (x, 1), tem, 1); |
| return true; |
| } |
| else |
| return false; |
| } |
| |
| |
| /* This subroutine of apply_change_group verifies whether the changes to INSN |
| were valid; i.e. whether INSN can still be recognized. */ |
| |
| int |
| insn_invalid_p (rtx insn) |
| { |
| rtx pat = PATTERN (insn); |
| int num_clobbers = 0; |
| /* If we are before reload and the pattern is a SET, see if we can add |
| clobbers. */ |
| int icode = recog (pat, insn, |
| (GET_CODE (pat) == SET |
| && ! reload_completed && ! reload_in_progress) |
| ? &num_clobbers : 0); |
| int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0; |
| |
| |
| /* If this is an asm and the operand aren't legal, then fail. Likewise if |
| this is not an asm and the insn wasn't recognized. */ |
| if ((is_asm && ! check_asm_operands (PATTERN (insn))) |
| || (!is_asm && icode < 0)) |
| return 1; |
| |
| /* If we have to add CLOBBERs, fail if we have to add ones that reference |
| hard registers since our callers can't know if they are live or not. |
| Otherwise, add them. */ |
| if (num_clobbers > 0) |
| { |
| rtx newpat; |
| |
| if (added_clobbers_hard_reg_p (icode)) |
| return 1; |
| |
| newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1)); |
| XVECEXP (newpat, 0, 0) = pat; |
| add_clobbers (newpat, icode); |
| PATTERN (insn) = pat = newpat; |
| } |
| |
| /* After reload, verify that all constraints are satisfied. */ |
| if (reload_completed) |
| { |
| extract_insn (insn); |
| |
| if (! constrain_operands (1)) |
| return 1; |
| } |
| |
| INSN_CODE (insn) = icode; |
| return 0; |
| } |
| |
| /* Return number of changes made and not validated yet. */ |
| int |
| num_changes_pending (void) |
| { |
| return num_changes; |
| } |
| |
| /* Tentatively apply the changes numbered NUM and up. |
| Return 1 if all changes are valid, zero otherwise. */ |
| |
| int |
| verify_changes (int num) |
| { |
| int i; |
| rtx last_validated = NULL_RTX; |
| |
| /* The changes have been applied and all INSN_CODEs have been reset to force |
| rerecognition. |
| |
| The changes are valid if we aren't given an object, or if we are |
| given a MEM and it still is a valid address, or if this is in insn |
| and it is recognized. In the latter case, if reload has completed, |
| we also require that the operands meet the constraints for |
| the insn. */ |
| |
| for (i = num; i < num_changes; i++) |
| { |
| rtx object = changes[i].object; |
| |
| /* If there is no object to test or if it is the same as the one we |
| already tested, ignore it. */ |
| if (object == 0 || object == last_validated) |
| continue; |
| |
| if (MEM_P (object)) |
| { |
| if (! memory_address_p (GET_MODE (object), XEXP (object, 0))) |
| break; |
| } |
| else if (REG_P (changes[i].old) |
| && asm_noperands (PATTERN (object)) > 0 |
| && REG_EXPR (changes[i].old) != NULL_TREE |
| && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old)) |
| && DECL_REGISTER (REG_EXPR (changes[i].old))) |
| { |
| /* Don't allow changes of hard register operands to inline |
| assemblies if they have been defined as register asm ("x"). */ |
| break; |
| } |
| else if (insn_invalid_p (object)) |
| { |
| rtx pat = PATTERN (object); |
| |
| /* Perhaps we couldn't recognize the insn because there were |
| extra CLOBBERs at the end. If so, try to re-recognize |
| without the last CLOBBER (later iterations will cause each of |
| them to be eliminated, in turn). But don't do this if we |
| have an ASM_OPERAND. */ |
| if (GET_CODE (pat) == PARALLEL |
| && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER |
| && asm_noperands (PATTERN (object)) < 0) |
| { |
| rtx newpat; |
| |
| if (XVECLEN (pat, 0) == 2) |
| newpat = XVECEXP (pat, 0, 0); |
| else |
| { |
| int j; |
| |
| newpat |
| = gen_rtx_PARALLEL (VOIDmode, |
| rtvec_alloc (XVECLEN (pat, 0) - 1)); |
| for (j = 0; j < XVECLEN (newpat, 0); j++) |
| XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j); |
| } |
| |
| /* Add a new change to this group to replace the pattern |
| with this new pattern. Then consider this change |
| as having succeeded. The change we added will |
| cause the entire call to fail if things remain invalid. |
| |
| Note that this can lose if a later change than the one |
| we are processing specified &XVECEXP (PATTERN (object), 0, X) |
| but this shouldn't occur. */ |
| |
| validate_change (object, &PATTERN (object), newpat, 1); |
| continue; |
| } |
| else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER) |
| /* If this insn is a CLOBBER or USE, it is always valid, but is |
| never recognized. */ |
| continue; |
| else |
| break; |
| } |
| last_validated = object; |
| } |
| |
| return (i == num_changes); |
| } |
| |
| /* A group of changes has previously been issued with validate_change |
| and verified with verify_changes. Call df_insn_rescan for each of |
| the insn changed and clear num_changes. */ |
| |
| void |
| confirm_change_group (void) |
| { |
| int i; |
| rtx last_object = NULL; |
| |
| for (i = 0; i < num_changes; i++) |
| { |
| rtx object = changes[i].object; |
| |
| if (changes[i].unshare) |
| *changes[i].loc = copy_rtx (*changes[i].loc); |
| |
| /* Avoid unnecessary rescanning when multiple changes to same instruction |
| are made. */ |
| if (object) |
| { |
| if (object != last_object && last_object && INSN_P (last_object)) |
| df_insn_rescan (last_object); |
| last_object = object; |
| } |
| } |
| |
| if (last_object && INSN_P (last_object)) |
| df_insn_rescan (last_object); |
| num_changes = 0; |
| } |
| |
| /* Apply a group of changes previously issued with `validate_change'. |
| If all changes are valid, call confirm_change_group and return 1, |
| otherwise, call cancel_changes and return 0. */ |
| |
| int |
| apply_change_group (void) |
| { |
| if (verify_changes (0)) |
| { |
| confirm_change_group (); |
| return 1; |
| } |
| else |
| { |
| cancel_changes (0); |
| return 0; |
| } |
| } |
| |
| |
| /* Return the number of changes so far in the current group. */ |
| |
| int |
| num_validated_changes (void) |
| { |
| return num_changes; |
| } |
| |
| /* Retract the changes numbered NUM and up. */ |
| |
| void |
| cancel_changes (int num) |
| { |
| int i; |
| |
| /* Back out all the changes. Do this in the opposite order in which |
| they were made. */ |
| for (i = num_changes - 1; i >= num; i--) |
| { |
| *changes[i].loc = changes[i].old; |
| if (changes[i].object && !MEM_P (changes[i].object)) |
| INSN_CODE (changes[i].object) = changes[i].old_code; |
| } |
| num_changes = num; |
| } |
| |
| /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting |
| rtx. */ |
| |
| static void |
| simplify_while_replacing (rtx *loc, rtx to, rtx object, |
| enum machine_mode op0_mode) |
| { |
| rtx x = *loc; |
| enum rtx_code code = GET_CODE (x); |
| rtx new_rtx; |
| |
| if (SWAPPABLE_OPERANDS_P (x) |
| && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1))) |
| { |
| validate_unshare_change (object, loc, |
| gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code |
| : swap_condition (code), |
| GET_MODE (x), XEXP (x, 1), |
| XEXP (x, 0)), 1); |
| x = *loc; |
| code = GET_CODE (x); |
| } |
| |
| switch (code) |
| { |
| case PLUS: |
| /* If we have a PLUS whose second operand is now a CONST_INT, use |
| simplify_gen_binary to try to simplify it. |
| ??? We may want later to remove this, once simplification is |
| separated from this function. */ |
| if (GET_CODE (XEXP (x, 1)) == CONST_INT && XEXP (x, 1) == to) |
| validate_change (object, loc, |
| simplify_gen_binary |
| (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1); |
| break; |
| case MINUS: |
| if (GET_CODE (XEXP (x, 1)) == CONST_INT |
| || GET_CODE (XEXP (x, 1)) == CONST_DOUBLE) |
| validate_change (object, loc, |
| simplify_gen_binary |
| (PLUS, GET_MODE (x), XEXP (x, 0), |
| simplify_gen_unary (NEG, |
| GET_MODE (x), XEXP (x, 1), |
| GET_MODE (x))), 1); |
| break; |
| case ZERO_EXTEND: |
| case SIGN_EXTEND: |
| if (GET_MODE (XEXP (x, 0)) == VOIDmode) |
| { |
| new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0), |
| op0_mode); |
| /* If any of the above failed, substitute in something that |
| we know won't be recognized. */ |
| if (!new_rtx) |
| new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx); |
| validate_change (object, loc, new_rtx, 1); |
| } |
| break; |
| case SUBREG: |
| /* All subregs possible to simplify should be simplified. */ |
| new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode, |
| SUBREG_BYTE (x)); |
| |
| /* Subregs of VOIDmode operands are incorrect. */ |
| if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode) |
| new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx); |
| if (new_rtx) |
| validate_change (object, loc, new_rtx, 1); |
| break; |
| case ZERO_EXTRACT: |
| case SIGN_EXTRACT: |
| /* If we are replacing a register with memory, try to change the memory |
| to be the mode required for memory in extract operations (this isn't |
| likely to be an insertion operation; if it was, nothing bad will |
| happen, we might just fail in some cases). */ |
| |
| if (MEM_P (XEXP (x, 0)) |
| && GET_CODE (XEXP (x, 1)) == CONST_INT |
| && GET_CODE (XEXP (x, 2)) == CONST_INT |
| && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0)) |
| && !MEM_VOLATILE_P (XEXP (x, 0))) |
| { |
| enum machine_mode wanted_mode = VOIDmode; |
| enum machine_mode is_mode = GET_MODE (XEXP (x, 0)); |
| int pos = INTVAL (XEXP (x, 2)); |
| |
| if (GET_CODE (x) == ZERO_EXTRACT) |
| { |
| enum machine_mode new_mode |
| = mode_for_extraction (EP_extzv, 1); |
| if (new_mode != MAX_MACHINE_MODE) |
| wanted_mode = new_mode; |
| } |
| else if (GET_CODE (x) == SIGN_EXTRACT) |
| { |
| enum machine_mode new_mode |
| = mode_for_extraction (EP_extv, 1); |
| if (new_mode != MAX_MACHINE_MODE) |
| wanted_mode = new_mode; |
| } |
| |
| /* If we have a narrower mode, we can do something. */ |
| if (wanted_mode != VOIDmode |
| && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode)) |
| { |
| int offset = pos / BITS_PER_UNIT; |
| rtx newmem; |
| |
| /* If the bytes and bits are counted differently, we |
| must adjust the offset. */ |
| if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN) |
| offset = |
| (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) - |
| offset); |
| |
| pos %= GET_MODE_BITSIZE (wanted_mode); |
| |
| newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset); |
| |
| validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1); |
| validate_change (object, &XEXP (x, 0), newmem, 1); |
| } |
| } |
| |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| /* Replace every occurrence of FROM in X with TO. Mark each change with |
| validate_change passing OBJECT. */ |
| |
| static void |
| validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object, |
| bool simplify) |
| { |
| int i, j; |
| const char *fmt; |
| rtx x = *loc; |
| enum rtx_code code; |
| enum machine_mode op0_mode = VOIDmode; |
| int prev_changes = num_changes; |
| |
| if (!x) |
| return; |
| |
| code = GET_CODE (x); |
| fmt = GET_RTX_FORMAT (code); |
| if (fmt[0] == 'e') |
| op0_mode = GET_MODE (XEXP (x, 0)); |
| |
| /* X matches FROM if it is the same rtx or they are both referring to the |
| same register in the same mode. Avoid calling rtx_equal_p unless the |
| operands look similar. */ |
| |
| if (x == from |
| || (REG_P (x) && REG_P (from) |
| && GET_MODE (x) == GET_MODE (from) |
| && REGNO (x) == REGNO (from)) |
| || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from) |
| && rtx_equal_p (x, from))) |
| { |
| validate_unshare_change (object, loc, to, 1); |
| return; |
| } |
| |
| /* Call ourself recursively to perform the replacements. |
| We must not replace inside already replaced expression, otherwise we |
| get infinite recursion for replacements like (reg X)->(subreg (reg X)) |
| done by regmove, so we must special case shared ASM_OPERANDS. */ |
| |
| if (GET_CODE (x) == PARALLEL) |
| { |
| for (j = XVECLEN (x, 0) - 1; j >= 0; j--) |
| { |
| if (j && GET_CODE (XVECEXP (x, 0, j)) == SET |
| && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS) |
| { |
| /* Verify that operands are really shared. */ |
| gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0))) |
| == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP |
| (x, 0, j)))); |
| validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)), |
| from, to, object, simplify); |
| } |
| else |
| validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object, |
| simplify); |
| } |
| } |
| else |
| for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) |
| { |
| if (fmt[i] == 'e') |
| validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify); |
| else if (fmt[i] == 'E') |
| for (j = XVECLEN (x, i) - 1; j >= 0; j--) |
| validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object, |
| simplify); |
| } |
| |
| /* If we didn't substitute, there is nothing more to do. */ |
| if (num_changes == prev_changes) |
| return; |
| |
| /* Allow substituted expression to have different mode. This is used by |
| regmove to change mode of pseudo register. */ |
| if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode) |
| op0_mode = GET_MODE (XEXP (x, 0)); |
| |
| /* Do changes needed to keep rtx consistent. Don't do any other |
| simplifications, as it is not our job. */ |
| if (simplify) |
| simplify_while_replacing (loc, to, object, op0_mode); |
| } |
| |
| /* Try replacing every occurrence of FROM in INSN with TO. After all |
| changes have been made, validate by seeing if INSN is still valid. */ |
| |
| int |
| validate_replace_rtx (rtx from, rtx to, rtx insn) |
| { |
| validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true); |
| return apply_change_group (); |
| } |
| |
| /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE |
| is a part of INSN. After all changes have been made, validate by seeing if |
| INSN is still valid. |
| validate_replace_rtx (from, to, insn) is equivalent to |
| validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */ |
| |
| int |
| validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx insn) |
| { |
| validate_replace_rtx_1 (where, from, to, insn, true); |
| return apply_change_group (); |
| } |
| |
| /* Same as above, but do not simplify rtx afterwards. */ |
| int |
| validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where, |
| rtx insn) |
| { |
| validate_replace_rtx_1 (where, from, to, insn, false); |
| return apply_change_group (); |
| |
| } |
| |
| /* Try replacing every occurrence of FROM in INSN with TO. */ |
| |
| void |
| validate_replace_rtx_group (rtx from, rtx to, rtx insn) |
| { |
| validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true); |
| } |
| |
| /* Function called by note_uses to replace used subexpressions. */ |
| struct validate_replace_src_data |
| { |
| rtx from; /* Old RTX */ |
| rtx to; /* New RTX */ |
| rtx insn; /* Insn in which substitution is occurring. */ |
| }; |
| |
| static void |
| validate_replace_src_1 (rtx *x, void *data) |
| { |
| struct validate_replace_src_data *d |
| = (struct validate_replace_src_data *) data; |
| |
| validate_replace_rtx_1 (x, d->from, d->to, d->insn, true); |
| } |
| |
| /* Try replacing every occurrence of FROM in INSN with TO, avoiding |
| SET_DESTs. */ |
| |
| void |
| validate_replace_src_group (rtx from, rtx to, rtx insn) |
| { |
| struct validate_replace_src_data d; |
| |
| d.from = from; |
| d.to = to; |
| d.insn = insn; |
| note_uses (&PATTERN (insn), validate_replace_src_1, &d); |
| } |
| |
| /* Try simplify INSN. |
| Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's |
| pattern and return true if something was simplified. */ |
| |
| bool |
| validate_simplify_insn (rtx insn) |
| { |
| int i; |
| rtx pat = NULL; |
| rtx newpat = NULL; |
| |
| pat = PATTERN (insn); |
| |
| if (GET_CODE (pat) == SET) |
| { |
| newpat = simplify_rtx (SET_SRC (pat)); |
| if (newpat && !rtx_equal_p (SET_SRC (pat), newpat)) |
| validate_change (insn, &SET_SRC (pat), newpat, 1); |
| newpat = simplify_rtx (SET_DEST (pat)); |
| if (newpat && !rtx_equal_p (SET_DEST (pat), newpat)) |
| validate_change (insn, &SET_DEST (pat), newpat, 1); |
| } |
| else if (GET_CODE (pat) == PARALLEL) |
| for (i = 0; i < XVECLEN (pat, 0); i++) |
| { |
| rtx s = XVECEXP (pat, 0, i); |
| |
| if (GET_CODE (XVECEXP (pat, 0, i)) == SET) |
| { |
| newpat = simplify_rtx (SET_SRC (s)); |
| if (newpat && !rtx_equal_p (SET_SRC (s), newpat)) |
| validate_change (insn, &SET_SRC (s), newpat, 1); |
| newpat = simplify_rtx (SET_DEST (s)); |
| if (newpat && !rtx_equal_p (SET_DEST (s), newpat)) |
| validate_change (insn, &SET_DEST (s), newpat, 1); |
| } |
| } |
| return ((num_changes_pending () > 0) && (apply_change_group () > 0)); |
| } |
| |
| #ifdef HAVE_cc0 |
| /* Return 1 if the insn using CC0 set by INSN does not contain |
| any ordered tests applied to the condition codes. |
| EQ and NE tests do not count. */ |
| |
| int |
| next_insn_tests_no_inequality (rtx insn) |
| { |
| rtx next = next_cc0_user (insn); |
| |
| /* If there is no next insn, we have to take the conservative choice. */ |
| if (next == 0) |
| return 0; |
| |
| return (INSN_P (next) |
| && ! inequality_comparisons_p (PATTERN (next))); |
| } |
| #endif |
| |
| /* Return 1 if OP is a valid general operand for machine mode MODE. |
| This is either a register reference, a memory reference, |
| or a constant. In the case of a memory reference, the address |
| is checked for general validity for the target machine. |
| |
| Register and memory references must have mode MODE in order to be valid, |
| but some constants have no machine mode and are valid for any mode. |
| |
| If MODE is VOIDmode, OP is checked for validity for whatever mode |
| it has. |
| |
| The main use of this function is as a predicate in match_operand |
| expressions in the machine description. |
| |
| For an explanation of this function's behavior for registers of |
| class NO_REGS, see the comment for `register_operand'. */ |
| |
| int |
| general_operand (rtx op, enum machine_mode mode) |
| { |
| enum rtx_code code = GET_CODE (op); |
| |
| if (mode == VOIDmode) |
| mode = GET_MODE (op); |
| |
| /* Don't accept CONST_INT or anything similar |
| if the caller wants something floating. */ |
| if (GET_MODE (op) == VOIDmode && mode != VOIDmode |
| && GET_MODE_CLASS (mode) != MODE_INT |
| && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT) |
| return 0; |
| |
| if (GET_CODE (op) == CONST_INT |
| && mode != VOIDmode |
| && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op)) |
| return 0; |
| |
| if (CONSTANT_P (op)) |
| return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode |
| || mode == VOIDmode) |
| && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)) |
| && LEGITIMATE_CONSTANT_P (op)); |
| |
| /* Except for certain constants with VOIDmode, already checked for, |
| OP's mode must match MODE if MODE specifies a mode. */ |
| |
| if (GET_MODE (op) != mode) |
| return 0; |
| |
| if (code == SUBREG) |
| { |
| rtx sub = SUBREG_REG (op); |
| |
| #ifdef INSN_SCHEDULING |
| /* On machines that have insn scheduling, we want all memory |
| reference to be explicit, so outlaw paradoxical SUBREGs. |
| However, we must allow them after reload so that they can |
| get cleaned up by cleanup_subreg_operands. */ |
| if (!reload_completed && MEM_P (sub) |
| && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub))) |
| return 0; |
| #endif |
| /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory |
| may result in incorrect reference. We should simplify all valid |
| subregs of MEM anyway. But allow this after reload because we |
| might be called from cleanup_subreg_operands. |
| |
| ??? This is a kludge. */ |
| if (!reload_completed && SUBREG_BYTE (op) != 0 |
| && MEM_P (sub)) |
| return 0; |
| |
| /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally |
| create such rtl, and we must reject it. */ |
| if (SCALAR_FLOAT_MODE_P (GET_MODE (op)) |
| && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub))) |
| return 0; |
| |
| op = sub; |
| code = GET_CODE (op); |
| } |
| |
| if (code == REG) |
| /* A register whose class is NO_REGS is not a general operand. */ |
| return (REGNO (op) >= FIRST_PSEUDO_REGISTER |
| || REGNO_REG_CLASS (REGNO (op)) != NO_REGS); |
| |
| if (code == MEM) |
| { |
| rtx y = XEXP (op, 0); |
| |
| if (! volatile_ok && MEM_VOLATILE_P (op)) |
| return 0; |
| |
| /* Use the mem's mode, since it will be reloaded thus. */ |
| if (memory_address_p (GET_MODE (op), y)) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* Return 1 if OP is a valid memory address for a memory reference |
| of mode MODE. |
| |
| The main use of this function is as a predicate in match_operand |
| expressions in the machine description. */ |
| |
| int |
| address_operand (rtx op, enum machine_mode mode) |
| { |
| return memory_address_p (mode, op); |
| } |
| |
| /* Return 1 if OP is a register reference of mode MODE. |
| If MODE is VOIDmode, accept a register in any mode. |
| |
| The main use of this function is as a predicate in match_operand |
| expressions in the machine description. |
| |
| As a special exception, registers whose class is NO_REGS are |
| not accepted by `register_operand'. The reason for this change |
| is to allow the representation of special architecture artifacts |
| (such as a condition code register) without extending the rtl |
| definitions. Since registers of class NO_REGS cannot be used |
| as registers in any case where register classes are examined, |
| it is most consistent to keep this function from accepting them. */ |
| |
| int |
| register_operand (rtx op, enum machine_mode mode) |
| { |
| if (GET_MODE (op) != mode && mode != VOIDmode) |
| return 0; |
| |
| if (GET_CODE (op) == SUBREG) |
| { |
| rtx sub = SUBREG_REG (op); |
| |
| /* Before reload, we can allow (SUBREG (MEM...)) as a register operand |
| because it is guaranteed to be reloaded into one. |
| Just make sure the MEM is valid in itself. |
| (Ideally, (SUBREG (MEM)...) should not exist after reload, |
| but currently it does result from (SUBREG (REG)...) where the |
| reg went on the stack.) */ |
| if (! reload_completed && MEM_P (sub)) |
| return general_operand (op, mode); |
| |
| #ifdef CANNOT_CHANGE_MODE_CLASS |
| if (REG_P (sub) |
| && REGNO (sub) < FIRST_PSEUDO_REGISTER |
| && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode) |
| && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT |
| && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT) |
| return 0; |
| #endif |
| |
| /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally |
| create such rtl, and we must reject it. */ |
| if (SCALAR_FLOAT_MODE_P (GET_MODE (op)) |
| && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub))) |
| return 0; |
| |
| op = sub; |
| } |
| |
| /* We don't consider registers whose class is NO_REGS |
| to be a register operand. */ |
| return (REG_P (op) |
| && (REGNO (op) >= FIRST_PSEUDO_REGISTER |
| || REGNO_REG_CLASS (REGNO (op)) != NO_REGS)); |
| } |
| |
| /* Return 1 for a register in Pmode; ignore the tested mode. */ |
| |
| int |
| pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED) |
| { |
| return register_operand (op, Pmode); |
| } |
| |
| /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH |
| or a hard register. */ |
| |
| int |
| scratch_operand (rtx op, enum machine_mode mode) |
| { |
| if (GET_MODE (op) != mode && mode != VOIDmode) |
| return 0; |
| |
| return (GET_CODE (op) == SCRATCH |
| || (REG_P (op) |
| && REGNO (op) < FIRST_PSEUDO_REGISTER)); |
| } |
| |
| /* Return 1 if OP is a valid immediate operand for mode MODE. |
| |
| The main use of this function is as a predicate in match_operand |
| expressions in the machine description. */ |
| |
| int |
| immediate_operand (rtx op, enum machine_mode mode) |
| { |
| /* Don't accept CONST_INT or anything similar |
| if the caller wants something floating. */ |
| if (GET_MODE (op) == VOIDmode && mode != VOIDmode |
| && GET_MODE_CLASS (mode) != MODE_INT |
| && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT) |
| return 0; |
| |
| if (GET_CODE (op) == CONST_INT |
| && mode != VOIDmode |
| && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op)) |
| return 0; |
| |
| return (CONSTANT_P (op) |
| && (GET_MODE (op) == mode || mode == VOIDmode |
| || GET_MODE (op) == VOIDmode) |
| && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)) |
| && LEGITIMATE_CONSTANT_P (op)); |
| } |
| |
| /* Returns 1 if OP is an operand that is a CONST_INT. */ |
| |
| int |
| const_int_operand (rtx op, enum machine_mode mode) |
| { |
| if (GET_CODE (op) != CONST_INT) |
| return 0; |
| |
| if (mode != VOIDmode |
| && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op)) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* Returns 1 if OP is an operand that is a constant integer or constant |
| floating-point number. */ |
| |
| int |
| const_double_operand (rtx op, enum machine_mode mode) |
| { |
| /* Don't accept CONST_INT or anything similar |
| if the caller wants something floating. */ |
| if (GET_MODE (op) == VOIDmode && mode != VOIDmode |
| && GET_MODE_CLASS (mode) != MODE_INT |
| && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT) |
| return 0; |
| |
| return ((GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT) |
| && (mode == VOIDmode || GET_MODE (op) == mode |
| || GET_MODE (op) == VOIDmode)); |
| } |
| |
| /* Return 1 if OP is a general operand that is not an immediate operand. */ |
| |
| int |
| nonimmediate_operand (rtx op, enum machine_mode mode) |
| { |
| return (general_operand (op, mode) && ! CONSTANT_P (op)); |
| } |
| |
| /* Return 1 if OP is a register reference or immediate value of mode MODE. */ |
| |
| int |
| nonmemory_operand (rtx op, enum machine_mode mode) |
| { |
| if (CONSTANT_P (op)) |
| { |
| /* Don't accept CONST_INT or anything similar |
| if the caller wants something floating. */ |
| if (GET_MODE (op) == VOIDmode && mode != VOIDmode |
| && GET_MODE_CLASS (mode) != MODE_INT |
| && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT) |
| return 0; |
| |
| if (GET_CODE (op) == CONST_INT |
| && mode != VOIDmode |
| && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op)) |
| return 0; |
| |
| return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode |
| || mode == VOIDmode) |
| && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)) |
| && LEGITIMATE_CONSTANT_P (op)); |
| } |
| |
| if (GET_MODE (op) != mode && mode != VOIDmode) |
| return 0; |
| |
| if (GET_CODE (op) == SUBREG) |
| { |
| /* Before reload, we can allow (SUBREG (MEM...)) as a register operand |
| because it is guaranteed to be reloaded into one. |
| Just make sure the MEM is valid in itself. |
| (Ideally, (SUBREG (MEM)...) should not exist after reload, |
| but currently it does result from (SUBREG (REG)...) where the |
| reg went on the stack.) */ |
| if (! reload_completed && MEM_P (SUBREG_REG (op))) |
| return general_operand (op, mode); |
| op = SUBREG_REG (op); |
| } |
| |
| /* We don't consider registers whose class is NO_REGS |
| to be a register operand. */ |
| return (REG_P (op) |
| && (REGNO (op) >= FIRST_PSEUDO_REGISTER |
| || REGNO_REG_CLASS (REGNO (op)) != NO_REGS)); |
| } |
| |
| /* Return 1 if OP is a valid operand that stands for pushing a |
| value of mode MODE onto the stack. |
| |
| The main use of this function is as a predicate in match_operand |
| expressions in the machine description. */ |
| |
| int |
| push_operand (rtx op, enum machine_mode mode) |
| { |
| unsigned int rounded_size = GET_MODE_SIZE (mode); |
| |
| #ifdef PUSH_ROUNDING |
| rounded_size = PUSH_ROUNDING (rounded_size); |
| #endif |
| |
| if (!MEM_P (op)) |
| return 0; |
| |
| if (mode != VOIDmode && GET_MODE (op) != mode) |
| return 0; |
| |
| op = XEXP (op, 0); |
| |
| if (rounded_size == GET_MODE_SIZE (mode)) |
| { |
| if (GET_CODE (op) != STACK_PUSH_CODE) |
| return 0; |
| } |
| else |
| { |
| if (GET_CODE (op) != PRE_MODIFY |
| || GET_CODE (XEXP (op, 1)) != PLUS |
| || XEXP (XEXP (op, 1), 0) != XEXP (op, 0) |
| || GET_CODE (XEXP (XEXP (op, 1), 1)) != CONST_INT |
| #ifdef STACK_GROWS_DOWNWARD |
| || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size |
| #else |
| || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size |
| #endif |
| ) |
| return 0; |
| } |
| |
| return XEXP (op, 0) == stack_pointer_rtx; |
| } |
| |
| /* Return 1 if OP is a valid operand that stands for popping a |
| value of mode MODE off the stack. |
| |
| The main use of this function is as a predicate in match_operand |
| expressions in the machine description. */ |
| |
| int |
| pop_operand (rtx op, enum machine_mode mode) |
| { |
| if (!MEM_P (op)) |
| return 0; |
| |
| if (mode != VOIDmode && GET_MODE (op) != mode) |
| return 0; |
| |
| op = XEXP (op, 0); |
| |
| if (GET_CODE (op) != STACK_POP_CODE) |
| return 0; |
| |
| return XEXP (op, 0) == stack_pointer_rtx; |
| } |
| |
| /* Return 1 if ADDR is a valid memory address for mode MODE. */ |
| |
| int |
| memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr) |
| { |
| GO_IF_LEGITIMATE_ADDRESS (mode, addr, win); |
| return 0; |
| |
| win: |
| return 1; |
| } |
| |
| /* Return 1 if OP is a valid memory reference with mode MODE, |
| including a valid address. |
| |
| The main use of this function is as a predicate in match_operand |
| expressions in the machine description. */ |
| |
| int |
| memory_operand (rtx op, enum machine_mode mode) |
| { |
| rtx inner; |
| |
| if (! reload_completed) |
| /* Note that no SUBREG is a memory operand before end of reload pass, |
| because (SUBREG (MEM...)) forces reloading into a register. */ |
| return MEM_P (op) && general_operand (op, mode); |
| |
| if (mode != VOIDmode && GET_MODE (op) != mode) |
| return 0; |
| |
| inner = op; |
| if (GET_CODE (inner) == SUBREG) |
| inner = SUBREG_REG (inner); |
| |
| return (MEM_P (inner) && general_operand (op, mode)); |
| } |
| |
| /* Return 1 if OP is a valid indirect memory reference with mode MODE; |
| that is, a memory reference whose address is a general_operand. */ |
| |
| int |
| indirect_operand (rtx op, enum machine_mode mode) |
| { |
| /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */ |
| if (! reload_completed |
| && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op))) |
| { |
| int offset = SUBREG_BYTE (op); |
| rtx inner = SUBREG_REG (op); |
| |
| if (mode != VOIDmode && GET_MODE (op) != mode) |
| return 0; |
| |
| /* The only way that we can have a general_operand as the resulting |
| address is if OFFSET is zero and the address already is an operand |
| or if the address is (plus Y (const_int -OFFSET)) and Y is an |
| operand. */ |
| |
| return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode)) |
| || (GET_CODE (XEXP (inner, 0)) == PLUS |
| && GET_CODE (XEXP (XEXP (inner, 0), 1)) == CONST_INT |
| && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset |
| && general_operand (XEXP (XEXP (inner, 0), 0), Pmode))); |
| } |
| |
| return (MEM_P (op) |
| && memory_operand (op, mode) |
| && general_operand (XEXP (op, 0), Pmode)); |
| } |
| |
| /* Return 1 if this is a comparison operator. This allows the use of |
| MATCH_OPERATOR to recognize all the branch insns. */ |
| |
| int |
| comparison_operator (rtx op, enum machine_mode mode) |
| { |
| return ((mode == VOIDmode || GET_MODE (op) == mode) |
| && COMPARISON_P (op)); |
| } |
| |
| /* If BODY is an insn body that uses ASM_OPERANDS, |
| return the number of operands (both input and output) in the insn. |
| Otherwise return -1. */ |
| |
| int |
| asm_noperands (const_rtx body) |
| { |
| switch (GET_CODE (body)) |
| { |
| case ASM_OPERANDS: |
| /* No output operands: return number of input operands. */ |
| return ASM_OPERANDS_INPUT_LENGTH (body); |
| case SET: |
| if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS) |
| /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */ |
| return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body)) + 1; |
| else |
| return -1; |
| case PARALLEL: |
| if (GET_CODE (XVECEXP (body, 0, 0)) == SET |
| && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS) |
| { |
| /* Multiple output operands, or 1 output plus some clobbers: |
| body is [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */ |
| int i; |
| int n_sets; |
| |
| /* Count backwards through CLOBBERs to determine number of SETs. */ |
| for (i = XVECLEN (body, 0); i > 0; i--) |
| { |
| if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET) |
| break; |
| if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER) |
| return -1; |
| } |
| |
| /* N_SETS is now number of output operands. */ |
| n_sets = i; |
| |
| /* Verify that all the SETs we have |
| came from a single original asm_operands insn |
| (so that invalid combinations are blocked). */ |
| for (i = 0; i < n_sets; i++) |
| { |
| rtx elt = XVECEXP (body, 0, i); |
| if (GET_CODE (elt) != SET) |
| return -1; |
| if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS) |
| return -1; |
| /* If these ASM_OPERANDS rtx's came from different original insns |
| then they aren't allowed together. */ |
| if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt)) |
| != ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (body, 0, 0)))) |
| return -1; |
| } |
| return (ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0))) |
| + n_sets); |
| } |
| else if (GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS) |
| { |
| /* 0 outputs, but some clobbers: |
| body is [(asm_operands ...) (clobber (reg ...))...]. */ |
| int i; |
| |
| /* Make sure all the other parallel things really are clobbers. */ |
| for (i = XVECLEN (body, 0) - 1; i > 0; i--) |
| if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER) |
| return -1; |
| |
| return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0)); |
| } |
| else |
| return -1; |
| default: |
| return -1; |
| } |
| } |
| |
| /* Assuming BODY is an insn body that uses ASM_OPERANDS, |
| copy its operands (both input and output) into the vector OPERANDS, |
| the locations of the operands within the insn into the vector OPERAND_LOCS, |
| and the constraints for the operands into CONSTRAINTS. |
| Write the modes of the operands into MODES. |
| Return the assembler-template. |
| |
| If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0, |
| we don't store that info. */ |
| |
| const char * |
| decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs, |
| const char **constraints, enum machine_mode *modes, |
| location_t *loc) |
| { |
| int i; |
| int noperands; |
| rtx asmop = 0; |
| |
| if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS) |
| { |
| asmop = SET_SRC (body); |
| /* Single output operand: BODY is (set OUTPUT (asm_operands ....)). */ |
| |
| noperands = ASM_OPERANDS_INPUT_LENGTH (asmop) + 1; |
| |
| for (i = 1; i < noperands; i++) |
| { |
| if (operand_locs) |
| operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i - 1); |
| if (operands) |
| operands[i] = ASM_OPERANDS_INPUT (asmop, i - 1); |
| if (constraints) |
| constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i - 1); |
| if (modes) |
| modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i - 1); |
| } |
| |
| /* The output is in the SET. |
| Its constraint is in the ASM_OPERANDS itself. */ |
| if (operands) |
| operands[0] = SET_DEST (body); |
| if (operand_locs) |
| operand_locs[0] = &SET_DEST (body); |
| if (constraints) |
| constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop); |
| if (modes) |
| modes[0] = GET_MODE (SET_DEST (body)); |
| } |
| else if (GET_CODE (body) == ASM_OPERANDS) |
| { |
| asmop = body; |
| /* No output operands: BODY is (asm_operands ....). */ |
| |
| noperands = ASM_OPERANDS_INPUT_LENGTH (asmop); |
| |
| /* The input operands are found in the 1st element vector. */ |
| /* Constraints for inputs are in the 2nd element vector. */ |
| for (i = 0; i < noperands; i++) |
| { |
| if (operand_locs) |
| operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i); |
| if (operands) |
| operands[i] = ASM_OPERANDS_INPUT (asmop, i); |
| if (constraints) |
| constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i); |
| if (modes) |
| modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i); |
| } |
| } |
| else if (GET_CODE (body) == PARALLEL |
| && GET_CODE (XVECEXP (body, 0, 0)) == SET |
| && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS) |
| { |
| int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */ |
| int nin; |
| int nout = 0; /* Does not include CLOBBERs. */ |
| |
| asmop = SET_SRC (XVECEXP (body, 0, 0)); |
| nin = ASM_OPERANDS_INPUT_LENGTH (asmop); |
| |
| /* At least one output, plus some CLOBBERs. */ |
| |
| /* The outputs are in the SETs. |
| Their constraints are in the ASM_OPERANDS itself. */ |
| for (i = 0; i < nparallel; i++) |
| { |
| if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER) |
| break; /* Past last SET */ |
| |
| if (operands) |
| operands[i] = SET_DEST (XVECEXP (body, 0, i)); |
| if (operand_locs) |
| operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i)); |
| if (constraints) |
| constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1); |
| if (modes) |
| modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i))); |
| nout++; |
| } |
| |
| for (i = 0; i < nin; i++) |
| { |
| if (operand_locs) |
| operand_locs[i + nout] = &ASM_OPERANDS_INPUT (asmop, i); |
| if (operands) |
| operands[i + nout] = ASM_OPERANDS_INPUT (asmop, i); |
| if (constraints) |
| constraints[i + nout] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i); |
| if (modes) |
| modes[i + nout] = ASM_OPERANDS_INPUT_MODE (asmop, i); |
| } |
| } |
| else if (GET_CODE (body) == PARALLEL |
| && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS) |
| { |
| /* No outputs, but some CLOBBERs. */ |
| |
| int nin; |
| |
| asmop = XVECEXP (body, 0, 0); |
| nin = ASM_OPERANDS_INPUT_LENGTH (asmop); |
| |
| for (i = 0; i < nin; i++) |
| { |
| if (operand_locs) |
| operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i); |
| if (operands) |
| operands[i] = ASM_OPERANDS_INPUT (asmop, i); |
| if (constraints) |
| constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i); |
| if (modes) |
| modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i); |
| } |
| |
| } |
| |
| if (loc) |
| *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop); |
| |
| return ASM_OPERANDS_TEMPLATE (asmop); |
| } |
| |
| /* Check if an asm_operand matches its constraints. |
| Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */ |
| |
| int |
| asm_operand_ok (rtx op, const char *constraint, const char **constraints) |
| { |
| int result = 0; |
| |
| /* Use constrain_operands after reload. */ |
| gcc_assert (!reload_completed); |
| |
| while (*constraint) |
| { |
| char c = *constraint; |
| int len; |
| switch (c) |
| { |
| case ',': |
| constraint++; |
| continue; |
| case '=': |
| case '+': |
| case '*': |
| case '%': |
| case '!': |
| case '#': |
| case '&': |
| case '?': |
| break; |
| |
| case '0': case '1': case '2': case '3': case '4': |
| case '5': case '6': case '7': case '8': case '9': |
| /* If caller provided constraints pointer, look up |
| the maching constraint. Otherwise, our caller should have |
| given us the proper matching constraint, but we can't |
| actually fail the check if they didn't. Indicate that |
| results are inconclusive. */ |
| if (constraints) |
| { |
| char *end; |
| unsigned long match; |
| |
| match = strtoul (constraint, &end, 10); |
| if (!result) |
| result = asm_operand_ok (op, constraints[match], NULL); |
| constraint = (const char *) end; |
| } |
| else |
| { |
| do |
| constraint++; |
| while (ISDIGIT (*constraint)); |
| if (! result) |
| result = -1; |
| } |
| continue; |
| |
| case 'p': |
| if (address_operand (op, VOIDmode)) |
| result = 1; |
| break; |
| |
| case TARGET_MEM_CONSTRAINT: |
| case 'V': /* non-offsettable */ |
| if (memory_operand (op, VOIDmode)) |
| result = 1; |
| break; |
| |
| case 'o': /* offsettable */ |
| if (offsettable_nonstrict_memref_p (op)) |
| result = 1; |
| break; |
| |
| case '<': |
| /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist, |
| excepting those that expand_call created. Further, on some |
| machines which do not have generalized auto inc/dec, an inc/dec |
| is not a memory_operand. |
| |
| Match any memory and hope things are resolved after reload. */ |
| |
| if (MEM_P (op) |
| && (1 |
| || GET_CODE (XEXP (op, 0)) == PRE_DEC |
| || GET_CODE (XEXP (op, 0)) == POST_DEC)) |
| result = 1; |
| break; |
| |
| case '>': |
| if (MEM_P (op) |
| && (1 |
| || GET_CODE (XEXP (op, 0)) == PRE_INC |
| || GET_CODE (XEXP (op, 0)) == POST_INC)) |
| result = 1; |
| break; |
| |
| case 'E': |
| case 'F': |
| if (GET_CODE (op) == CONST_DOUBLE |
| || (GET_CODE (op) == CONST_VECTOR |
| && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT)) |
| result = 1; |
| break; |
| |
| case 'G': |
| if (GET_CODE (op) == CONST_DOUBLE |
| && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint)) |
| result = 1; |
| break; |
| case 'H': |
| if (GET_CODE (op) == CONST_DOUBLE |
| && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint)) |
| result = 1; |
| break; |
| |
| case 's': |
| if (GET_CODE (op) == CONST_INT |
| || (GET_CODE (op) == CONST_DOUBLE |
| && GET_MODE (op) == VOIDmode)) |
| break; |
| /* Fall through. */ |
| |
| case 'i': |
| if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))) |
| result = 1; |
| break; |
| |
| case 'n': |
| if (GET_CODE (op) == CONST_INT |
| || (GET_CODE (op) == CONST_DOUBLE |
| && GET_MODE (op) == VOIDmode)) |
| result = 1; |
| break; |
| |
| case 'I': |
| if (GET_CODE (op) == CONST_INT |
| && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint)) |
| result = 1; |
| break; |
| case 'J': |
| if (GET_CODE (op) == CONST_INT |
| && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint)) |
| result = 1; |
| break; |
| case 'K': |
| if (GET_CODE (op) == CONST_INT |
| && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint)) |
| result = 1; |
| break; |
| case 'L': |
| if (GET_CODE (op) == CONST_INT |
| && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint)) |
| result = 1; |
| break; |
| case 'M': |
| if (GET_CODE (op) == CONST_INT |
| && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint)) |
| result = 1; |
| break; |
| case 'N': |
| if (GET_CODE (op) == CONST_INT |
| && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint)) |
| result = 1; |
| break; |
| case 'O': |
| if (GET_CODE (op) == CONST_INT |
| && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint)) |
| result = 1; |
| break; |
| case 'P': |
| if (GET_CODE (op) == CONST_INT |
| && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint)) |
| result = 1; |
| break; |
| |
| case 'X': |
| result = 1; |
| break; |
| |
| case 'g': |
| if (general_operand (op, VOIDmode)) |
| result = 1; |
| break; |
| |
| default: |
| /* For all other letters, we first check for a register class, |
| otherwise it is an EXTRA_CONSTRAINT. */ |
| if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS) |
| { |
| case 'r': |
| if (GET_MODE (op) == BLKmode) |
| break; |
| if (register_operand (op, VOIDmode)) |
| result = 1; |
| } |
| #ifdef EXTRA_CONSTRAINT_STR |
| else if (EXTRA_MEMORY_CONSTRAINT (c, constraint)) |
| /* Every memory operand can be reloaded to fit. */ |
| result = result || memory_operand (op, VOIDmode); |
| else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint)) |
| /* Every address operand can be reloaded to fit. */ |
| result = result || address_operand (op, VOIDmode); |
| else if (EXTRA_CONSTRAINT_STR (op, c, constraint)) |
| result = 1; |
| #endif |
| break; |
| } |
| len = CONSTRAINT_LEN (c, constraint); |
| do |
| constraint++; |
| while (--len && *constraint); |
| if (len) |
| return 0; |
| } |
| |
| return result; |
| } |
| |
| /* Given an rtx *P, if it is a sum containing an integer constant term, |
| return the location (type rtx *) of the pointer to that constant term. |
| Otherwise, return a null pointer. */ |
| |
| rtx * |
| find_constant_term_loc (rtx *p) |
| { |
| rtx *tem; |
| enum rtx_code code = GET_CODE (*p); |
| |
| /* If *P IS such a constant term, P is its location. */ |
| |
| if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF |
| || code == CONST) |
| return p; |
| |
| /* Otherwise, if not a sum, it has no constant term. */ |
| |
| if (GET_CODE (*p) != PLUS) |
| return 0; |
| |
| /* If one of the summands is constant, return its location. */ |
| |
| if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0)) |
| && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1))) |
| return p; |
| |
| /* Otherwise, check each summand for containing a constant term. */ |
| |
| if (XEXP (*p, 0) != 0) |
| { |
| tem = find_constant_term_loc (&XEXP (*p, 0)); |
| if (tem != 0) |
| return tem; |
| } |
| |
| if (XEXP (*p, 1) != 0) |
| { |
| tem = find_constant_term_loc (&XEXP (*p, 1)); |
| if (tem != 0) |
| return tem; |
| } |
| |
| return 0; |
| } |
| |
| /* Return 1 if OP is a memory reference |
| whose address contains no side effects |
| and remains valid after the addition |
| of a positive integer less than the |
| size of the object being referenced. |
| |
| We assume that the original address is valid and do not check it. |
| |
| This uses strict_memory_address_p as a subroutine, so |
| don't use it before reload. */ |
| |
| int |
| offsettable_memref_p (rtx op) |
| { |
| return ((MEM_P (op)) |
| && offsettable_address_p (1, GET_MODE (op), XEXP (op, 0))); |
| } |
| |
| /* Similar, but don't require a strictly valid mem ref: |
| consider pseudo-regs valid as index or base regs. */ |
| |
| int |
| offsettable_nonstrict_memref_p (rtx op) |
| { |
| return ((MEM_P (op)) |
| && offsettable_address_p (0, GET_MODE (op), XEXP (op, 0))); |
| } |
| |
| /* Return 1 if Y is a memory address which contains no side effects |
| and would remain valid after the addition of a positive integer |
| less than the size of that mode. |
| |
| We assume that the original address is valid and do not check it. |
| We do check that it is valid for narrower modes. |
| |
| If STRICTP is nonzero, we require a strictly valid address, |
| for the sake of use in reload.c. */ |
| |
| int |
| offsettable_address_p (int strictp, enum machine_mode mode, rtx y) |
| { |
| enum rtx_code ycode = GET_CODE (y); |
| rtx z; |
| rtx y1 = y; |
| rtx *y2; |
| int (*addressp) (enum machine_mode, rtx) = |
| (strictp ? strict_memory_address_p : memory_address_p); |
| unsigned int mode_sz = GET_MODE_SIZE (mode); |
| |
| if (CONSTANT_ADDRESS_P (y)) |
| return 1; |
| |
| /* Adjusting an offsettable address involves changing to a narrower mode. |
| Make sure that's OK. */ |
| |
| if (mode_dependent_address_p (y)) |
| return 0; |
| |
| /* ??? How much offset does an offsettable BLKmode reference need? |
| Clearly that depends on the situation in which it's being used. |
| However, the current situation in which we test 0xffffffff is |
| less than ideal. Caveat user. */ |
| if (mode_sz == 0) |
| mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT; |
| |
| /* If the expression contains a constant term, |
| see if it remains valid when max possible offset is added. */ |
| |
| if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1))) |
| { |
| int good; |
| |
| y1 = *y2; |
| *y2 = plus_constant (*y2, mode_sz - 1); |
| /* Use QImode because an odd displacement may be automatically invalid |
| for any wider mode. But it should be valid for a single byte. */ |
| good = (*addressp) (QImode, y); |
| |
| /* In any case, restore old contents of memory. */ |
| *y2 = y1; |
| return good; |
| } |
| |
| if (GET_RTX_CLASS (ycode) == RTX_AUTOINC) |
| return 0; |
| |
| /* The offset added here is chosen as the maximum offset that |
| any instruction could need to add when operating on something |
| of the specified mode. We assume that if Y and Y+c are |
| valid addresses then so is Y+d for all 0<d<c. adjust_address will |
| go inside a LO_SUM here, so we do so as well. */ |
| if (GET_CODE (y) == LO_SUM |
| && mode != BLKmode |
| && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT) |
| z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0), |
| plus_constant (XEXP (y, 1), mode_sz - 1)); |
| else |
| z = plus_constant (y, mode_sz - 1); |
| |
| /* Use QImode because an odd displacement may be automatically invalid |
| for any wider mode. But it should be valid for a single byte. */ |
| return (*addressp) (QImode, z); |
| } |
| |
| /* Return 1 if ADDR is an address-expression whose effect depends |
| on the mode of the memory reference it is used in. |
| |
| Autoincrement addressing is a typical example of mode-dependence |
| because the amount of the increment depends on the mode. */ |
| |
| int |
| mode_dependent_address_p (rtx addr) |
| { |
| /* Auto-increment addressing with anything other than post_modify |
| or pre_modify always introduces a mode dependency. Catch such |
| cases now instead of deferring to the target. */ |
| if (GET_CODE (addr) == PRE_INC |
| || GET_CODE (addr) == POST_INC |
| || GET_CODE (addr) == PRE_DEC |
| || GET_CODE (addr) == POST_DEC) |
| return 1; |
| |
| GO_IF_MODE_DEPENDENT_ADDRESS (addr, win); |
| return 0; |
| /* Label `win' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */ |
| win: ATTRIBUTE_UNUSED_LABEL |
| return 1; |
| } |
| |
| /* Like extract_insn, but save insn extracted and don't extract again, when |
| called again for the same insn expecting that recog_data still contain the |
| valid information. This is used primary by gen_attr infrastructure that |
| often does extract insn again and again. */ |
| void |
| extract_insn_cached (rtx insn) |
| { |
| if (recog_data.insn == insn && INSN_CODE (insn) >= 0) |
| return; |
| extract_insn (insn); |
| recog_data.insn = insn; |
| } |
| |
| /* Do cached extract_insn, constrain_operands and complain about failures. |
| Used by insn_attrtab. */ |
| void |
| extract_constrain_insn_cached (rtx insn) |
| { |
| extract_insn_cached (insn); |
| if (which_alternative == -1 |
| && !constrain_operands (reload_completed)) |
| fatal_insn_not_found (insn); |
| } |
| |
| /* Do cached constrain_operands and complain about failures. */ |
| int |
| constrain_operands_cached (int strict) |
| { |
| if (which_alternative == -1) |
| return constrain_operands (strict); |
| else |
| return 1; |
| } |
| |
| /* Analyze INSN and fill in recog_data. */ |
| |
| void |
| extract_insn (rtx insn) |
| { |
| int i; |
| int icode; |
| int noperands; |
| rtx body = PATTERN (insn); |
| |
| recog_data.n_operands = 0; |
| recog_data.n_alternatives = 0; |
| recog_data.n_dups = 0; |
| |
| switch (GET_CODE (body)) |
| { |
| case USE: |
| case CLOBBER: |
| case ASM_INPUT: |
| case ADDR_VEC: |
| case ADDR_DIFF_VEC: |
| return; |
| |
| case SET: |
| if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS) |
| goto asm_insn; |
| else |
| goto normal_insn; |
| case PARALLEL: |
| if ((GET_CODE (XVECEXP (body, 0, 0)) == SET |
| && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS) |
| || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS) |
| goto asm_insn; |
| else |
| goto normal_insn; |
| case ASM_OPERANDS: |
| asm_insn: |
| recog_data.n_operands = noperands = asm_noperands (body); |
| if (noperands >= 0) |
| { |
| /* This insn is an `asm' with operands. */ |
| |
| /* expand_asm_operands makes sure there aren't too many operands. */ |
| gcc_assert (noperands <= MAX_RECOG_OPERANDS); |
| |
| /* Now get the operand values and constraints out of the insn. */ |
| decode_asm_operands (body, recog_data.operand, |
| recog_data.operand_loc, |
| recog_data.constraints, |
| recog_data.operand_mode, NULL); |
| if (noperands > 0) |
| { |
| const char *p = recog_data.constraints[0]; |
| recog_data.n_alternatives = 1; |
| while (*p) |
| recog_data.n_alternatives += (*p++ == ','); |
| } |
| break; |
| } |
| fatal_insn_not_found (insn); |
| |
| default: |
| normal_insn: |
| /* Ordinary insn: recognize it, get the operands via insn_extract |
| and get the constraints. */ |
| |
| icode = recog_memoized (insn); |
| if (icode < 0) |
| fatal_insn_not_found (insn); |
| |
| recog_data.n_operands = noperands = insn_data[icode].n_operands; |
| recog_data.n_alternatives = insn_data[icode].n_alternatives; |
| recog_data.n_dups = insn_data[icode].n_dups; |
| |
| insn_extract (insn); |
| |
| for (i = 0; i < noperands; i++) |
| { |
| recog_data.constraints[i] = insn_data[icode].operand[i].constraint; |
| recog_data.operand_mode[i] = insn_data[icode].operand[i].mode; |
| /* VOIDmode match_operands gets mode from their real operand. */ |
| if (recog_data.operand_mode[i] == VOIDmode) |
| recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]); |
| } |
| } |
| for (i = 0; i < noperands; i++) |
| recog_data.operand_type[i] |
| = (recog_data.constraints[i][0] == '=' ? OP_OUT |
| : recog_data.constraints[i][0] == '+' ? OP_INOUT |
| : OP_IN); |
| |
| gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES); |
| |
| if (INSN_CODE (insn) < 0) |
| for (i = 0; i < recog_data.n_alternatives; i++) |
| recog_data.alternative_enabled_p[i] = true; |
| else |
| { |
| recog_data.insn = insn; |
| for (i = 0; i < recog_data.n_alternatives; i++) |
| { |
| which_alternative = i; |
| recog_data.alternative_enabled_p[i] = get_attr_enabled (insn); |
| } |
| } |
| |
| recog_data.insn = NULL; |
| which_alternative = -1; |
| } |
| |
| /* After calling extract_insn, you can use this function to extract some |
| information from the constraint strings into a more usable form. |
| The collected data is stored in recog_op_alt. */ |
| void |
| preprocess_constraints (void) |
| { |
| int i; |
| |
| for (i = 0; i < recog_data.n_operands; i++) |
| memset (recog_op_alt[i], 0, (recog_data.n_alternatives |
| * sizeof (struct operand_alternative))); |
| |
| for (i = 0; i < recog_data.n_operands; i++) |
| { |
| int j; |
| struct operand_alternative *op_alt; |
| const char *p = recog_data.constraints[i]; |
| |
| op_alt = recog_op_alt[i]; |
| |
| for (j = 0; j < recog_data.n_alternatives; j++) |
| { |
| op_alt[j].cl = NO_REGS; |
| op_alt[j].constraint = p; |
| op_alt[j].matches = -1; |
| op_alt[j].matched = -1; |
| |
| if (!recog_data.alternative_enabled_p[j]) |
| { |
| p = skip_alternative (p); |
| continue; |
| } |
| |
| if (*p == '\0' || *p == ',') |
| { |
| op_alt[j].anything_ok = 1; |
| continue; |
| } |
| |
| for (;;) |
| { |
| char c = *p; |
| if (c == '#') |
| do |
| c = *++p; |
| while (c != ',' && c != '\0'); |
| if (c == ',' || c == '\0') |
| { |
| p++; |
| break; |
| } |
| |
| switch (c) |
| { |
| case '=': case '+': case '*': case '%': |
| case 'E': case 'F': case 'G': case 'H': |
| case 's': case 'i': case 'n': |
| case 'I': case 'J': case 'K': case 'L': |
| case 'M': case 'N': case 'O': case 'P': |
| /* These don't say anything we care about. */ |
| break; |
| |
| case '?': |
| op_alt[j].reject += 6; |
| break; |
| case '!': |
| op_alt[j].reject += 600; |
| break; |
| case '&': |
| op_alt[j].earlyclobber = 1; |
| break; |
| |
| case '0': case '1': case '2': case '3': case '4': |
| case '5': case '6': case '7': case '8': case '9': |
| { |
| char *end; |
| op_alt[j].matches = strtoul (p, &end, 10); |
| recog_op_alt[op_alt[j].matches][j].matched = i; |
| p = end; |
| } |
| continue; |
| |
| case TARGET_MEM_CONSTRAINT: |
| op_alt[j].memory_ok = 1; |
| break; |
| case '<': |
| op_alt[j].decmem_ok = 1; |
| break; |
| case '>': |
| op_alt[j].incmem_ok = 1; |
| break; |
| case 'V': |
| op_alt[j].nonoffmem_ok = 1; |
| break; |
| case 'o': |
| op_alt[j].offmem_ok = 1; |
| break; |
| case 'X': |
| op_alt[j].anything_ok = 1; |
| break; |
| |
| case 'p': |
| op_alt[j].is_address = 1; |
| op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl] |
| [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)]; |
| break; |
| |
| case 'g': |
| case 'r': |
| op_alt[j].cl = |
| reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS]; |
| break; |
| |
| default: |
| if (EXTRA_MEMORY_CONSTRAINT (c, p)) |
| { |
| op_alt[j].memory_ok = 1; |
| break; |
| } |
| if (EXTRA_ADDRESS_CONSTRAINT (c, p)) |
| { |
| op_alt[j].is_address = 1; |
| op_alt[j].cl |
| = (reg_class_subunion |
| [(int) op_alt[j].cl] |
| [(int) base_reg_class (VOIDmode, ADDRESS, |
| SCRATCH)]); |
| break; |
| } |
| |
| op_alt[j].cl |
| = (reg_class_subunion |
| [(int) op_alt[j].cl] |
| [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]); |
| break; |
| } |
| p += CONSTRAINT_LEN (c, p); |
| } |
| } |
| } |
| } |
| |
| /* Check the operands of an insn against the insn's operand constraints |
| and return 1 if they are valid. |
| The information about the insn's operands, constraints, operand modes |
| etc. is obtained from the global variables set up by extract_insn. |
| |
| WHICH_ALTERNATIVE is set to a number which indicates which |
| alternative of constraints was matched: 0 for the first alternative, |
| 1 for the next, etc. |
| |
| In addition, when two operands are required to match |
| and it happens that the output operand is (reg) while the |
| input operand is --(reg) or ++(reg) (a pre-inc or pre-dec), |
| make the output operand look like the input. |
| This is because the output operand is the one the template will print. |
| |
| This is used in final, just before printing the assembler code and by |
| the routines that determine an insn's attribute. |
| |
| If STRICT is a positive nonzero value, it means that we have been |
| called after reload has been completed. In that case, we must |
| do all checks strictly. If it is zero, it means that we have been called |
| before reload has completed. In that case, we first try to see if we can |
| find an alternative that matches strictly. If not, we try again, this |
| time assuming that reload will fix up the insn. This provides a "best |
| guess" for the alternative and is used to compute attributes of insns prior |
| to reload. A negative value of STRICT is used for this internal call. */ |
| |
| struct funny_match |
| { |
| int this_op, other; |
| }; |
| |
| int |
| constrain_operands (int strict) |
| { |
| const char *constraints[MAX_RECOG_OPERANDS]; |
| int matching_operands[MAX_RECOG_OPERANDS]; |
| int earlyclobber[MAX_RECOG_OPERANDS]; |
| int c; |
| |
| struct funny_match funny_match[MAX_RECOG_OPERANDS]; |
| int funny_match_index; |
| |
| which_alternative = 0; |
| if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0) |
| return 1; |
| |
| for (c = 0; c < recog_data.n_operands; c++) |
| { |
| constraints[c] = recog_data.constraints[c]; |
| matching_operands[c] = -1; |
| } |
| |
| do |
| { |
| int seen_earlyclobber_at = -1; |
| int opno; |
| int lose = 0; |
| funny_match_index = 0; |
| |
| if (!recog_data.alternative_enabled_p[which_alternative]) |
| { |
| int i; |
| |
| for (i = 0; i < recog_data.n_operands; i++) |
| constraints[i] = skip_alternative (constraints[i]); |
| |
| which_alternative++; |
| continue; |
| } |
| |
| for (opno = 0; opno < recog_data.n_operands; opno++) |
| { |
| rtx op = recog_data.operand[opno]; |
| enum machine_mode mode = GET_MODE (op); |
| const char *p = constraints[opno]; |
| int offset = 0; |
| int win = 0; |
| int val; |
| int len; |
| |
| earlyclobber[opno] = 0; |
| |
| /* A unary operator may be accepted by the predicate, but it |
| is irrelevant for matching constraints. */ |
| if (UNARY_P (op)) |
| op = XEXP (op, 0); |
| |
| if (GET_CODE (op) == SUBREG) |
| { |
| if (REG_P (SUBREG_REG (op)) |
| && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER) |
| offset = subreg_regno_offset (REGNO (SUBREG_REG (op)), |
| GET_MODE (SUBREG_REG (op)), |
| SUBREG_BYTE (op), |
| GET_MODE (op)); |
| op = SUBREG_REG (op); |
| } |
| |
| /* An empty constraint or empty alternative |
| allows anything which matched the pattern. */ |
| if (*p == 0 || *p == ',') |
| win = 1; |
| |
| do |
| switch (c = *p, len = CONSTRAINT_LEN (c, p), c) |
| { |
| case '\0': |
| len = 0; |
| break; |
| case ',': |
| c = '\0'; |
| break; |
| |
| case '?': case '!': case '*': case '%': |
| case '=': case '+': |
| break; |
| |
| case '#': |
| /* Ignore rest of this alternative as far as |
| constraint checking is concerned. */ |
| do |
| p++; |
| while (*p && *p != ','); |
| len = 0; |
| break; |
| |
| case '&': |
| earlyclobber[opno] = 1; |
| if (seen_earlyclobber_at < 0) |
| seen_earlyclobber_at = opno; |
| break; |
| |
| case '0': case '1': case '2': case '3': case '4': |
| case '5': case '6': case '7': case '8': case '9': |
| { |
| /* This operand must be the same as a previous one. |
| This kind of constraint is used for instructions such |
| as add when they take only two operands. |
| |
| Note that the lower-numbered operand is passed first. |
| |
| If we are not testing strictly, assume that this |
| constraint will be satisfied. */ |
| |
| char *end; |
| int match; |
| |
| match = strtoul (p, &end, 10); |
| p = end; |
| |
| if (strict < 0) |
| val = 1; |
| else |
| { |
| rtx op1 = recog_data.operand[match]; |
| rtx op2 = recog_data.operand[opno]; |
| |
| /* A unary operator may be accepted by the predicate, |
| but it is irrelevant for matching constraints. */ |
| if (UNARY_P (op1)) |
| op1 = XEXP (op1, 0); |
| if (UNARY_P (op2)) |
| op2 = XEXP (op2, 0); |
| |
| val = operands_match_p (op1, op2); |
| } |
| |
| matching_operands[opno] = match; |
| matching_operands[match] = opno; |
| |
| if (val != 0) |
| win = 1; |
| |
| /* If output is *x and input is *--x, arrange later |
| to change the output to *--x as well, since the |
| output op is the one that will be printed. */ |
| if (val == 2 && strict > 0) |
| { |
| funny_match[funny_match_index].this_op = opno; |
| funny_match[funny_match_index++].other = match; |
| } |
| } |
| len = 0; |
| break; |
| |
| case 'p': |
| /* p is used for address_operands. When we are called by |
| gen_reload, no one will have checked that the address is |
| strictly valid, i.e., that all pseudos requiring hard regs |
| have gotten them. */ |
| if (strict <= 0 |
| || (strict_memory_address_p (recog_data.operand_mode[opno], |
| op))) |
| win = 1; |
| break; |
| |
| /* No need to check general_operand again; |
| it was done in insn-recog.c. Well, except that reload |
| doesn't check the validity of its replacements, but |
| that should only matter when there's a bug. */ |
| case 'g': |
| /* Anything goes unless it is a REG and really has a hard reg |
| but the hard reg is not in the class GENERAL_REGS. */ |
| if (REG_P (op)) |
| { |
| if (strict < 0 |
| || GENERAL_REGS == ALL_REGS |
| || (reload_in_progress |
| && REGNO (op) >= FIRST_PSEUDO_REGISTER) |
| || reg_fits_class_p (op, GENERAL_REGS, offset, mode)) |
| win = 1; |
| } |
| else if (strict < 0 || general_operand (op, mode)) |
| win = 1; |
| break; |
| |
| case 'X': |
| /* This is used for a MATCH_SCRATCH in the cases when |
| we don't actually need anything. So anything goes |
| any time. */ |
| win = 1; |
| break; |
| |
| case TARGET_MEM_CONSTRAINT: |
| /* Memory operands must be valid, to the extent |
| required by STRICT. */ |
| if (MEM_P (op)) |
| { |
| if (strict > 0 |
| && !strict_memory_address_p (GET_MODE (op), |
| XEXP (op, 0))) |
| break; |
| if (strict == 0 |
| && !memory_address_p (GET_MODE (op), XEXP (op, 0))) |
| break; |
| win = 1; |
| } |
| /* Before reload, accept what reload can turn into mem. */ |
| else if (strict < 0 && CONSTANT_P (op)) |
| win = 1; |
| /* During reload, accept a pseudo */ |
| else if (reload_in_progress && REG_P (op) |
| && REGNO (op) >= FIRST_PSEUDO_REGISTER) |
| win = 1; |
| break; |
| |
| case '<': |
| if (MEM_P (op) |
| && (GET_CODE (XEXP (op, 0)) == PRE_DEC |
| || GET_CODE (XEXP (op, 0)) == POST_DEC)) |
| win = 1; |
| break; |
| |
| case '>': |
| if (MEM_P (op) |
| && (GET_CODE (XEXP (op, 0)) == PRE_INC |
| || GET_CODE (XEXP (op, 0)) == POST_INC)) |
| win = 1; |
| break; |
| |
| case 'E': |
| case 'F': |
| if (GET_CODE (op) == CONST_DOUBLE |
| || (GET_CODE (op) == CONST_VECTOR |
| && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT)) |
| win = 1; |
| break; |
| |
| case 'G': |
| case 'H': |
| if (GET_CODE (op) == CONST_DOUBLE |
| && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p)) |
| win = 1; |
| break; |
| |
| case 's': |
| if (GET_CODE (op) == CONST_INT |
| || (GET_CODE (op) == CONST_DOUBLE |
| && GET_MODE (op) == VOIDmode)) |
| break; |
| case 'i': |
| if (CONSTANT_P (op)) |
| win = 1; |
| break; |
| |
| case 'n': |
| if (GET_CODE (op) == CONST_INT |
| || (GET_CODE (op) == CONST_DOUBLE |
| && GET_MODE (op) == VOIDmode)) |
| win = 1; |
| break; |
| |
| case 'I': |
| case 'J': |
| case 'K': |
| case 'L': |
| case 'M': |
| case 'N': |
| case 'O': |
| case 'P': |
| if (GET_CODE (op) == CONST_INT |
| && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p)) |
| win = 1; |
| break; |
| |
| case 'V': |
| if (MEM_P (op) |
| && ((strict > 0 && ! offsettable_memref_p (op)) |
| || (strict < 0 |
| && !(CONSTANT_P (op) || MEM_P (op))) |
| || (reload_in_progress |
| && !(REG_P (op) |
| && REGNO (op) >= FIRST_PSEUDO_REGISTER)))) |
| win = 1; |
| break; |
| |
| case 'o': |
| if ((strict > 0 && offsettable_memref_p (op)) |
| || (strict == 0 && offsettable_nonstrict_memref_p (op)) |
| /* Before reload, accept what reload can handle. */ |
| || (strict < 0 |
| && (CONSTANT_P (op) || MEM_P (op))) |
| /* During reload, accept a pseudo */ |
| || (reload_in_progress && REG_P (op) |
| && REGNO (op) >= FIRST_PSEUDO_REGISTER)) |
| win = 1; |
| break; |
| |
| default: |
| { |
| enum reg_class cl; |
| |
| cl = (c == 'r' |
| ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p)); |
| if (cl != NO_REGS) |
| { |
| if (strict < 0 |
| || (strict == 0 |
| && REG_P (op) |
| && REGNO (op) >= FIRST_PSEUDO_REGISTER) |
| || (strict == 0 && GET_CODE (op) == SCRATCH) |
| || (REG_P (op) |
| && reg_fits_class_p (op, cl, offset, mode))) |
| win = 1; |
| } |
| #ifdef EXTRA_CONSTRAINT_STR |
| else if (EXTRA_CONSTRAINT_STR (op, c, p)) |
| win = 1; |
| |
| else if (EXTRA_MEMORY_CONSTRAINT (c, p) |
| /* Every memory operand can be reloaded to fit. */ |
| && ((strict < 0 && MEM_P (op)) |
| /* Before reload, accept what reload can turn |
| into mem. */ |
| || (strict < 0 && CONSTANT_P (op)) |
| /* During reload, accept a pseudo */ |
| || (reload_in_progress && REG_P (op) |
| && REGNO (op) >= FIRST_PSEUDO_REGISTER))) |
| win = 1; |
| else if (EXTRA_ADDRESS_CONSTRAINT (c, p) |
| /* Every address operand can be reloaded to fit. */ |
| && strict < 0) |
| win = 1; |
| #endif |
| break; |
| } |
| } |
| while (p += len, c); |
| |
| constraints[opno] = p; |
| /* If this operand did not win somehow, |
| this alternative loses. */ |
| if (! win) |
| lose = 1; |
| } |
| /* This alternative won; the operands are ok. |
| Change whichever operands this alternative says to change. */ |
| if (! lose) |
| { |
| int opno, eopno; |
| |
| /* See if any earlyclobber operand conflicts with some other |
| operand. */ |
| |
| if (strict > 0 && seen_earlyclobber_at >= 0) |
| for (eopno = seen_earlyclobber_at; |
| eopno < recog_data.n_operands; |
| eopno++) |
| /* Ignore earlyclobber operands now in memory, |
| because we would often report failure when we have |
| two memory operands, one of which was formerly a REG. */ |
| if (earlyclobber[eopno] |
| && REG_P (recog_data.operand[eopno])) |
| for (opno = 0; opno < recog_data.n_operands; opno++) |
| if ((MEM_P (recog_data.operand[opno]) |
| || recog_data.operand_type[opno] != OP_OUT) |
| && opno != eopno |
| /* Ignore things like match_operator operands. */ |
| && *recog_data.constraints[opno] != 0 |
| && ! (matching_operands[opno] == eopno |
| && operands_match_p (recog_data.operand[opno], |
| recog_data.operand[eopno])) |
| && ! safe_from_earlyclobber (recog_data.operand[opno], |
| recog_data.operand[eopno])) |
| lose = 1; |
| |
| if (! lose) |
| { |
| while (--funny_match_index >= 0) |
| { |
| recog_data.operand[funny_match[funny_match_index].other] |
| = recog_data.operand[funny_match[funny_match_index].this_op]; |
| } |
| |
| return 1; |
| } |
| } |
| |
| which_alternative++; |
| } |
| while (which_alternative < recog_data.n_alternatives); |
| |
| which_alternative = -1; |
| /* If we are about to reject this, but we are not to test strictly, |
| try a very loose test. Only return failure if it fails also. */ |
| if (strict == 0) |
| return constrain_operands (-1); |
| else |
| return 0; |
| } |
| |
| /* Return 1 iff OPERAND (assumed to be a REG rtx) |
| is a hard reg in class CLASS when its regno is offset by OFFSET |
| and changed to mode MODE. |
| If REG occupies multiple hard regs, all of them must be in CLASS. */ |
| |
| int |
| reg_fits_class_p (rtx operand, enum reg_class cl, int offset, |
| enum machine_mode mode) |
| { |
| int regno = REGNO (operand); |
| |
| if (cl == NO_REGS) |
| return 0; |
| |
| return (regno < FIRST_PSEUDO_REGISTER |
| && in_hard_reg_set_p (reg_class_contents[(int) cl], |
| mode, regno + offset)); |
| } |
| |
| /* Split single instruction. Helper function for split_all_insns and |
| split_all_insns_noflow. Return last insn in the sequence if successful, |
| or NULL if unsuccessful. */ |
| |
| static rtx |
| split_insn (rtx insn) |
| { |
| /* Split insns here to get max fine-grain parallelism. */ |
| rtx first = PREV_INSN (insn); |
| rtx last = try_split (PATTERN (insn), insn, 1); |
| rtx insn_set, last_set, note; |
| |
| if (last == insn) |
| return NULL_RTX; |
| |
| /* If the original instruction was a single set that was known to be |
| equivalent to a constant, see if we can say the same about the last |
| instruction in the split sequence. The two instructions must set |
| the same destination. */ |
| insn_set = single_set (insn); |
| if (insn_set) |
| { |
| last_set = single_set (last); |
| if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set))) |
| { |
| note = find_reg_equal_equiv_note (insn); |
| if (note && CONSTANT_P (XEXP (note, 0))) |
| set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0)); |
| else if (CONSTANT_P (SET_SRC (insn_set))) |
| set_unique_reg_note (last, REG_EQUAL, SET_SRC (insn_set)); |
| } |
| } |
| |
| /* try_split returns the NOTE that INSN became. */ |
| SET_INSN_DELETED (insn); |
| |
| /* ??? Coddle to md files that generate subregs in post-reload |
| splitters instead of computing the proper hard register. */ |
| if (reload_completed && first != last) |
| { |
| first = NEXT_INSN (first); |
| for (;;) |
| { |
| if (INSN_P (first)) |
| cleanup_subreg_operands (first); |
| if (first == last) |
| break; |
| first = NEXT_INSN (first); |
| } |
| } |
| |
| return last; |
| } |
| |
| /* Split all insns in the function. If UPD_LIFE, update life info after. */ |
| |
| void |
| split_all_insns (void) |
| { |
| sbitmap blocks; |
| bool changed; |
| basic_block bb; |
| |
| blocks = sbitmap_alloc (last_basic_block); |
| sbitmap_zero (blocks); |
| changed = false; |
| |
| FOR_EACH_BB_REVERSE (bb) |
| { |
| rtx insn, next; |
| bool finish = false; |
| |
| rtl_profile_for_bb (bb); |
| for (insn = BB_HEAD (bb); !finish ; insn = next) |
| { |
| /* Can't use `next_real_insn' because that might go across |
| CODE_LABELS and short-out basic blocks. */ |
| next = NEXT_INSN (insn); |
| finish = (insn == BB_END (bb)); |
| if (INSN_P (insn)) |
| { |
| rtx set = single_set (insn); |
| |
| /* Don't split no-op move insns. These should silently |
| disappear later in final. Splitting such insns would |
| break the code that handles LIBCALL blocks. */ |
| if (set && set_noop_p (set)) |
| { |
| /* Nops get in the way while scheduling, so delete them |
| now if register allocation has already been done. It |
| is too risky to try to do this before register |
| allocation, and there are unlikely to be very many |
| nops then anyways. */ |
| if (reload_completed) |
| delete_insn_and_edges (insn); |
| } |
| else |
| { |
| rtx last = split_insn (insn); |
| if (last) |
| { |
| /* The split sequence may include barrier, but the |
| BB boundary we are interested in will be set to |
| previous one. */ |
| |
| while (BARRIER_P (last)) |
| last = PREV_INSN (last); |
| SET_BIT (blocks, bb->index); |
| changed = true; |
| } |
| } |
| } |
| } |
| } |
| |
| default_rtl_profile (); |
| if (changed) |
| find_many_sub_basic_blocks (blocks); |
| |
| #ifdef ENABLE_CHECKING |
| verify_flow_info (); |
| #endif |
| |
| sbitmap_free (blocks); |
| } |
| |
| /* Same as split_all_insns, but do not expect CFG to be available. |
| Used by machine dependent reorg passes. */ |
| |
| unsigned int |
| split_all_insns_noflow (void) |
| { |
| rtx next, insn; |
| |
| for (insn = get_insns (); insn; insn = next) |
| { |
| next = NEXT_INSN (insn); |
| if (INSN_P (insn)) |
| { |
| /* Don't split no-op move insns. These should silently |
| disappear later in final. Splitting such insns would |
| break the code that handles LIBCALL blocks. */ |
| rtx set = single_set (insn); |
| if (set && set_noop_p (set)) |
| { |
| /* Nops get in the way while scheduling, so delete them |
| now if register allocation has already been done. It |
| is too risky to try to do this before register |
| allocation, and there are unlikely to be very many |
| nops then anyways. |
| |
| ??? Should we use delete_insn when the CFG isn't valid? */ |
| if (reload_completed) |
| delete_insn_and_edges (insn); |
| } |
| else |
| split_insn (insn); |
| } |
| } |
| return 0; |
| } |
| |
| #ifdef HAVE_peephole2 |
| struct peep2_insn_data |
| { |
| rtx insn; |
| regset live_before; |
| }; |
| |
| static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1]; |
| static int peep2_current; |
| /* The number of instructions available to match a peep2. */ |
| int peep2_current_count; |
| |
| /* A non-insn marker indicating the last insn of the block. |
| The live_before regset for this element is correct, indicating |
| DF_LIVE_OUT for the block. */ |
| #define PEEP2_EOB pc_rtx |
| |
| /* Return the Nth non-note insn after `current', or return NULL_RTX if it |
| does not exist. Used by the recognizer to find the next insn to match |
| in a multi-insn pattern. */ |
| |
| rtx |
| peep2_next_insn (int n) |
| { |
| gcc_assert (n <= peep2_current_count); |
| |
| n += peep2_current; |
| if (n >= MAX_INSNS_PER_PEEP2 + 1) |
| n -= MAX_INSNS_PER_PEEP2 + 1; |
| |
| return peep2_insn_data[n].insn; |
| } |
| |
| /* Return true if REGNO is dead before the Nth non-note insn |
| after `current'. */ |
| |
| int |
| peep2_regno_dead_p (int ofs, int regno) |
| { |
| gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1); |
| |
| ofs += peep2_current; |
| if (ofs >= MAX_INSNS_PER_PEEP2 + 1) |
| ofs -= MAX_INSNS_PER_PEEP2 + 1; |
| |
| gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX); |
| |
| return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno); |
| } |
| |
| /* Similarly for a REG. */ |
| |
| int |
| peep2_reg_dead_p (int ofs, rtx reg) |
| { |
| int regno, n; |
| |
| gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1); |
| |
| ofs += peep2_current; |
| if (ofs >= MAX_INSNS_PER_PEEP2 + 1) |
| ofs -= MAX_INSNS_PER_PEEP2 + 1; |
| |
| gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX); |
| |
| regno = REGNO (reg); |
| n = hard_regno_nregs[regno][GET_MODE (reg)]; |
| while (--n >= 0) |
| if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n)) |
| return 0; |
| return 1; |
| } |
| |
| /* Try to find a hard register of mode MODE, matching the register class in |
| CLASS_STR, which is available at the beginning of insn CURRENT_INSN and |
| remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX, |
| in which case the only condition is that the register must be available |
| before CURRENT_INSN. |
| Registers that already have bits set in REG_SET will not be considered. |
| |
| If an appropriate register is available, it will be returned and the |
| corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is |
| returned. */ |
| |
| rtx |
| peep2_find_free_register (int from, int to, const char *class_str, |
| enum machine_mode mode, HARD_REG_SET *reg_set) |
| { |
| static int search_ofs; |
| enum reg_class cl; |
| HARD_REG_SET live; |
| int i; |
| |
| gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1); |
| gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1); |
| |
| from += peep2_current; |
| if (from >= MAX_INSNS_PER_PEEP2 + 1) |
| from -= MAX_INSNS_PER_PEEP2 + 1; |
| to += peep2_current; |
| if (to >= MAX_INSNS_PER_PEEP2 + 1) |
| to -= MAX_INSNS_PER_PEEP2 + 1; |
| |
| gcc_assert (peep2_insn_data[from].insn != NULL_RTX); |
| REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before); |
| |
| while (from != to) |
| { |
| HARD_REG_SET this_live; |
| |
| if (++from >= MAX_INSNS_PER_PEEP2 + 1) |
| from = 0; |
| gcc_assert (peep2_insn_data[from].insn != NULL_RTX); |
| REG_SET_TO_HARD_REG_SET (this_live, peep2_insn_data[from].live_before); |
| IOR_HARD_REG_SET (live, this_live); |
| } |
| |
| cl = (class_str[0] == 'r' ? GENERAL_REGS |
| : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str)); |
| |
| for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) |
| { |
| int raw_regno, regno, success, j; |
| |
| /* Distribute the free registers as much as possible. */ |
| raw_regno = search_ofs + i; |
| if (raw_regno >= FIRST_PSEUDO_REGISTER) |
| raw_regno -= FIRST_PSEUDO_REGISTER; |
| #ifdef REG_ALLOC_ORDER |
| regno = reg_alloc_order[raw_regno]; |
| #else |
| regno = raw_regno; |
| #endif |
| |
| /* Don't allocate fixed registers. */ |
| if (fixed_regs[regno]) |
| continue; |
| /* Don't allocate global registers. */ |
| if (global_regs[regno]) |
| continue; |
| /* Make sure the register is of the right class. */ |
| if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno)) |
| continue; |
| /* And can support the mode we need. */ |
| if (! HARD_REGNO_MODE_OK (regno, mode)) |
| continue; |
| /* And that we don't create an extra save/restore. */ |
| if (! call_used_regs[regno] && ! df_regs_ever_live_p (regno)) |
| continue; |
| if (! targetm.hard_regno_scratch_ok (regno)) |
| continue; |
| |
| /* And we don't clobber traceback for noreturn functions. */ |
| if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM) |
| && (! reload_completed || frame_pointer_needed)) |
| continue; |
| |
| success = 1; |
| for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--) |
| { |
| if (TEST_HARD_REG_BIT (*reg_set, regno + j) |
| || TEST_HARD_REG_BIT (live, regno + j)) |
| { |
| success = 0; |
| break; |
| } |
| } |
| if (success) |
| { |
| add_to_hard_reg_set (reg_set, mode, regno); |
| |
| /* Start the next search with the next register. */ |
| if (++raw_regno >= FIRST_PSEUDO_REGISTER) |
| raw_regno = 0; |
| search_ofs = raw_regno; |
| |
| return gen_rtx_REG (mode, regno); |
| } |
| } |
| |
| search_ofs = 0; |
| return NULL_RTX; |
| } |
| |
| /* Perform the peephole2 optimization pass. */ |
| |
| static void |
| peephole2_optimize (void) |
| { |
| rtx insn, prev; |
| bitmap live; |
| int i; |
| basic_block bb; |
| bool do_cleanup_cfg = false; |
| bool do_rebuild_jump_labels = false; |
| |
| df_set_flags (DF_LR_RUN_DCE); |
| df_analyze (); |
| |
| /* Initialize the regsets we're going to use. */ |
| for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i) |
| peep2_insn_data[i].live_before = BITMAP_ALLOC (®_obstack); |
| live = BITMAP_ALLOC (®_obstack); |
| |
| FOR_EACH_BB_REVERSE (bb) |
| { |
| rtl_profile_for_bb (bb); |
| /* Indicate that all slots except the last holds invalid data. */ |
| for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i) |
| peep2_insn_data[i].insn = NULL_RTX; |
| peep2_current_count = 0; |
| |
| /* Indicate that the last slot contains live_after data. */ |
| peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB; |
| peep2_current = MAX_INSNS_PER_PEEP2; |
| |
| /* Start up propagation. */ |
| bitmap_copy (live, DF_LR_OUT (bb)); |
| df_simulate_initialize_backwards (bb, live); |
| bitmap_copy (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live); |
| |
| for (insn = BB_END (bb); ; insn = prev) |
| { |
| prev = PREV_INSN (insn); |
| if (INSN_P (insn)) |
| { |
| rtx attempt, before_try, x; |
| int match_len; |
| rtx note; |
| bool was_call = false; |
| |
| /* Record this insn. */ |
| if (--peep2_current < 0) |
| peep2_current = MAX_INSNS_PER_PEEP2; |
| if (peep2_current_count < MAX_INSNS_PER_PEEP2 |
| && peep2_insn_data[peep2_current].insn == NULL_RTX) |
| peep2_current_count++; |
| peep2_insn_data[peep2_current].insn = insn; |
| df_simulate_one_insn_backwards (bb, insn, live); |
| COPY_REG_SET (peep2_insn_data[peep2_current].live_before, live); |
| |
| if (RTX_FRAME_RELATED_P (insn)) |
| { |
| /* If an insn has RTX_FRAME_RELATED_P set, peephole |
| substitution would lose the |
| REG_FRAME_RELATED_EXPR that is attached. */ |
| peep2_current_count = 0; |
| attempt = NULL; |
| } |
| else |
| /* Match the peephole. */ |
| attempt = peephole2_insns (PATTERN (insn), insn, &match_len); |
| |
| if (attempt != NULL) |
| { |
| /* If we are splitting a CALL_INSN, look for the CALL_INSN |
| in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other |
| cfg-related call notes. */ |
| for (i = 0; i <= match_len; ++i) |
| { |
| int j; |
| rtx old_insn, new_insn, note; |
| |
| j = i + peep2_current; |
| if (j >= MAX_INSNS_PER_PEEP2 + 1) |
| j -= MAX_INSNS_PER_PEEP2 + 1; |
| old_insn = peep2_insn_data[j].insn; |
| if (!CALL_P (old_insn)) |
| continue; |
| was_call = true; |
| |
| new_insn = attempt; |
| while (new_insn != NULL_RTX) |
| { |
| if (CALL_P (new_insn)) |
| break; |
| new_insn = NEXT_INSN (new_insn); |
| } |
| |
| gcc_assert (new_insn != NULL_RTX); |
| |
| CALL_INSN_FUNCTION_USAGE (new_insn) |
| = CALL_INSN_FUNCTION_USAGE (old_insn); |
| |
| for (note = REG_NOTES (old_insn); |
| note; |
| note = XEXP (note, 1 |