| /* Data references and dependences detectors. |
| Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 |
| Free Software Foundation, Inc. |
| Contributed by Sebastian Pop <pop@cri.ensmp.fr> |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #ifndef GCC_TREE_DATA_REF_H |
| #define GCC_TREE_DATA_REF_H |
| |
| #include "graphds.h" |
| #include "lambda.h" |
| #include "omega.h" |
| #include "tree-chrec.h" |
| |
| /* |
| innermost_loop_behavior describes the evolution of the address of the memory |
| reference in the innermost enclosing loop. The address is expressed as |
| BASE + STEP * # of iteration, and base is further decomposed as the base |
| pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and |
| constant offset (INIT). Examples, in loop nest |
| |
| for (i = 0; i < 100; i++) |
| for (j = 3; j < 100; j++) |
| |
| Example 1 Example 2 |
| data-ref a[j].b[i][j] *(p + x + 16B + 4B * j) |
| |
| |
| innermost_loop_behavior |
| base_address &a p |
| offset i * D_i x |
| init 3 * D_j + offsetof (b) 28 |
| step D_j 4 |
| |
| */ |
| struct innermost_loop_behavior |
| { |
| tree base_address; |
| tree offset; |
| tree init; |
| tree step; |
| |
| /* Alignment information. ALIGNED_TO is set to the largest power of two |
| that divides OFFSET. */ |
| tree aligned_to; |
| }; |
| |
| /* Describes the evolutions of indices of the memory reference. The indices |
| are indices of the ARRAY_REFs and the operands of INDIRECT_REFs. |
| For ARRAY_REFs, BASE_OBJECT is the reference with zeroed indices |
| (note that this reference does not have to be valid, if zero does not |
| belong to the range of the array; hence it is not recommended to use |
| BASE_OBJECT in any code generation). For INDIRECT_REFs, the address is |
| set to the loop-invariant part of the address of the object, except for |
| the constant offset. For the examples above, |
| |
| base_object: a[0].b[0][0] *(p + x + 4B * j_0) |
| indices: {j_0, +, 1}_2 {16, +, 4}_2 |
| {i_0, +, 1}_1 |
| {j_0, +, 1}_2 |
| */ |
| |
| struct indices |
| { |
| /* The object. */ |
| tree base_object; |
| |
| /* A list of chrecs. Access functions of the indices. */ |
| VEC(tree,heap) *access_fns; |
| }; |
| |
| struct dr_alias |
| { |
| /* The alias information that should be used for new pointers to this |
| location. SYMBOL_TAG is either a DECL or a SYMBOL_MEMORY_TAG. */ |
| tree symbol_tag; |
| struct ptr_info_def *ptr_info; |
| |
| /* The set of virtual operands corresponding to this memory reference, |
| serving as a description of the alias information for the memory |
| reference. This could be eliminated if we had alias oracle. */ |
| bitmap vops; |
| }; |
| |
| typedef struct scop *scop_p; |
| |
| /* Each vector of the access matrix represents a linear access |
| function for a subscript. First elements correspond to the |
| leftmost indices, ie. for a[i][j] the first vector corresponds to |
| the subscript in "i". The elements of a vector are relative to |
| the loop nests in which the data reference is considered, |
| i.e. the vector is relative to the SCoP that provides the context |
| in which this data reference occurs. |
| |
| For example, in |
| |
| | loop_1 |
| | loop_2 |
| | a[i+3][2*j+n-1] |
| |
| if "i" varies in loop_1 and "j" varies in loop_2, the access |
| matrix with respect to the loop nest {loop_1, loop_2} is: |
| |
| | loop_1 loop_2 param_n cst |
| | 1 0 0 3 |
| | 0 2 1 -1 |
| |
| whereas the access matrix with respect to loop_2 considers "i" as |
| a parameter: |
| |
| | loop_2 param_i param_n cst |
| | 0 1 0 3 |
| | 2 0 1 -1 |
| */ |
| struct access_matrix |
| { |
| VEC (loop_p, heap) *loop_nest; |
| int nb_induction_vars; |
| VEC (tree, heap) *parameters; |
| VEC (lambda_vector, gc) *matrix; |
| }; |
| |
| #define AM_LOOP_NEST(M) (M)->loop_nest |
| #define AM_NB_INDUCTION_VARS(M) (M)->nb_induction_vars |
| #define AM_PARAMETERS(M) (M)->parameters |
| #define AM_MATRIX(M) (M)->matrix |
| #define AM_NB_PARAMETERS(M) (VEC_length (tree, AM_PARAMETERS(M))) |
| #define AM_CONST_COLUMN_INDEX(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M)) |
| #define AM_NB_COLUMNS(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M) + 1) |
| #define AM_GET_SUBSCRIPT_ACCESS_VECTOR(M, I) VEC_index (lambda_vector, AM_MATRIX (M), I) |
| #define AM_GET_ACCESS_MATRIX_ELEMENT(M, I, J) AM_GET_SUBSCRIPT_ACCESS_VECTOR (M, I)[J] |
| |
| /* Return the column in the access matrix of LOOP_NUM. */ |
| |
| static inline int |
| am_vector_index_for_loop (struct access_matrix *access_matrix, int loop_num) |
| { |
| int i; |
| loop_p l; |
| |
| for (i = 0; VEC_iterate (loop_p, AM_LOOP_NEST (access_matrix), i, l); i++) |
| if (l->num == loop_num) |
| return i; |
| |
| gcc_unreachable(); |
| } |
| |
| int access_matrix_get_index_for_parameter (tree, struct access_matrix *); |
| |
| struct data_reference |
| { |
| /* A pointer to the statement that contains this DR. */ |
| gimple stmt; |
| |
| /* A pointer to the memory reference. */ |
| tree ref; |
| |
| /* Auxiliary info specific to a pass. */ |
| void *aux; |
| |
| /* True when the data reference is in RHS of a stmt. */ |
| bool is_read; |
| |
| /* Behavior of the memory reference in the innermost loop. */ |
| struct innermost_loop_behavior innermost; |
| |
| /* Subscripts of this data reference. */ |
| struct indices indices; |
| |
| /* Alias information for the data reference. */ |
| struct dr_alias alias; |
| |
| /* The SCoP in which the data reference was analyzed. */ |
| scop_p scop; |
| |
| /* Matrix representation for the data access functions. */ |
| struct access_matrix *access_matrix; |
| }; |
| |
| #define DR_SCOP(DR) (DR)->scop |
| #define DR_STMT(DR) (DR)->stmt |
| #define DR_REF(DR) (DR)->ref |
| #define DR_BASE_OBJECT(DR) (DR)->indices.base_object |
| #define DR_ACCESS_FNS(DR) (DR)->indices.access_fns |
| #define DR_ACCESS_FN(DR, I) VEC_index (tree, DR_ACCESS_FNS (DR), I) |
| #define DR_NUM_DIMENSIONS(DR) VEC_length (tree, DR_ACCESS_FNS (DR)) |
| #define DR_IS_READ(DR) (DR)->is_read |
| #define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address |
| #define DR_OFFSET(DR) (DR)->innermost.offset |
| #define DR_INIT(DR) (DR)->innermost.init |
| #define DR_STEP(DR) (DR)->innermost.step |
| #define DR_SYMBOL_TAG(DR) (DR)->alias.symbol_tag |
| #define DR_PTR_INFO(DR) (DR)->alias.ptr_info |
| #define DR_VOPS(DR) (DR)->alias.vops |
| #define DR_ALIGNED_TO(DR) (DR)->innermost.aligned_to |
| #define DR_ACCESS_MATRIX(DR) (DR)->access_matrix |
| |
| typedef struct data_reference *data_reference_p; |
| DEF_VEC_P(data_reference_p); |
| DEF_VEC_ALLOC_P (data_reference_p, heap); |
| |
| enum data_dependence_direction { |
| dir_positive, |
| dir_negative, |
| dir_equal, |
| dir_positive_or_negative, |
| dir_positive_or_equal, |
| dir_negative_or_equal, |
| dir_star, |
| dir_independent |
| }; |
| |
| /* The description of the grid of iterations that overlap. At most |
| two loops are considered at the same time just now, hence at most |
| two functions are needed. For each of the functions, we store |
| the vector of coefficients, f[0] + x * f[1] + y * f[2] + ..., |
| where x, y, ... are variables. */ |
| |
| #define MAX_DIM 2 |
| |
| /* Special values of N. */ |
| #define NO_DEPENDENCE 0 |
| #define NOT_KNOWN (MAX_DIM + 1) |
| #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN) |
| #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN) |
| #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE) |
| |
| typedef VEC (tree, heap) *affine_fn; |
| |
| typedef struct |
| { |
| unsigned n; |
| affine_fn fns[MAX_DIM]; |
| } conflict_function; |
| |
| /* What is a subscript? Given two array accesses a subscript is the |
| tuple composed of the access functions for a given dimension. |
| Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three |
| subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts |
| are stored in the data_dependence_relation structure under the form |
| of an array of subscripts. */ |
| |
| struct subscript |
| { |
| /* A description of the iterations for which the elements are |
| accessed twice. */ |
| conflict_function *conflicting_iterations_in_a; |
| conflict_function *conflicting_iterations_in_b; |
| |
| /* This field stores the information about the iteration domain |
| validity of the dependence relation. */ |
| tree last_conflict; |
| |
| /* Distance from the iteration that access a conflicting element in |
| A to the iteration that access this same conflicting element in |
| B. The distance is a tree scalar expression, i.e. a constant or a |
| symbolic expression, but certainly not a chrec function. */ |
| tree distance; |
| }; |
| |
| typedef struct subscript *subscript_p; |
| DEF_VEC_P(subscript_p); |
| DEF_VEC_ALLOC_P (subscript_p, heap); |
| |
| #define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a |
| #define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b |
| #define SUB_LAST_CONFLICT(SUB) SUB->last_conflict |
| #define SUB_DISTANCE(SUB) SUB->distance |
| |
| /* A data_dependence_relation represents a relation between two |
| data_references A and B. */ |
| |
| struct data_dependence_relation |
| { |
| |
| struct data_reference *a; |
| struct data_reference *b; |
| |
| /* A "yes/no/maybe" field for the dependence relation: |
| |
| - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence |
| relation between A and B, and the description of this relation |
| is given in the SUBSCRIPTS array, |
| |
| - when "ARE_DEPENDENT == chrec_known", there is no dependence and |
| SUBSCRIPTS is empty, |
| |
| - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence, |
| but the analyzer cannot be more specific. */ |
| tree are_dependent; |
| |
| /* For each subscript in the dependence test, there is an element in |
| this array. This is the attribute that labels the edge A->B of |
| the data_dependence_relation. */ |
| VEC (subscript_p, heap) *subscripts; |
| |
| /* The analyzed loop nest. */ |
| VEC (loop_p, heap) *loop_nest; |
| |
| /* The classic direction vector. */ |
| VEC (lambda_vector, heap) *dir_vects; |
| |
| /* The classic distance vector. */ |
| VEC (lambda_vector, heap) *dist_vects; |
| |
| /* An index in loop_nest for the innermost loop that varies for |
| this data dependence relation. */ |
| unsigned inner_loop; |
| |
| /* Is the dependence reversed with respect to the lexicographic order? */ |
| bool reversed_p; |
| |
| /* When the dependence relation is affine, it can be represented by |
| a distance vector. */ |
| bool affine_p; |
| |
| /* Set to true when the dependence relation is on the same data |
| access. */ |
| bool self_reference_p; |
| }; |
| |
| typedef struct data_dependence_relation *ddr_p; |
| DEF_VEC_P(ddr_p); |
| DEF_VEC_ALLOC_P(ddr_p,heap); |
| |
| #define DDR_A(DDR) DDR->a |
| #define DDR_B(DDR) DDR->b |
| #define DDR_AFFINE_P(DDR) DDR->affine_p |
| #define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent |
| #define DDR_SUBSCRIPTS(DDR) DDR->subscripts |
| #define DDR_SUBSCRIPT(DDR, I) VEC_index (subscript_p, DDR_SUBSCRIPTS (DDR), I) |
| #define DDR_NUM_SUBSCRIPTS(DDR) VEC_length (subscript_p, DDR_SUBSCRIPTS (DDR)) |
| |
| #define DDR_LOOP_NEST(DDR) DDR->loop_nest |
| /* The size of the direction/distance vectors: the number of loops in |
| the loop nest. */ |
| #define DDR_NB_LOOPS(DDR) (VEC_length (loop_p, DDR_LOOP_NEST (DDR))) |
| #define DDR_INNER_LOOP(DDR) DDR->inner_loop |
| #define DDR_SELF_REFERENCE(DDR) DDR->self_reference_p |
| |
| #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects) |
| #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects) |
| #define DDR_NUM_DIST_VECTS(DDR) \ |
| (VEC_length (lambda_vector, DDR_DIST_VECTS (DDR))) |
| #define DDR_NUM_DIR_VECTS(DDR) \ |
| (VEC_length (lambda_vector, DDR_DIR_VECTS (DDR))) |
| #define DDR_DIR_VECT(DDR, I) \ |
| VEC_index (lambda_vector, DDR_DIR_VECTS (DDR), I) |
| #define DDR_DIST_VECT(DDR, I) \ |
| VEC_index (lambda_vector, DDR_DIST_VECTS (DDR), I) |
| #define DDR_REVERSED_P(DDR) DDR->reversed_p |
| |
| |
| |
| /* Describes a location of a memory reference. */ |
| |
| typedef struct data_ref_loc_d |
| { |
| /* Position of the memory reference. */ |
| tree *pos; |
| |
| /* True if the memory reference is read. */ |
| bool is_read; |
| } data_ref_loc; |
| |
| DEF_VEC_O (data_ref_loc); |
| DEF_VEC_ALLOC_O (data_ref_loc, heap); |
| |
| bool get_references_in_stmt (gimple, VEC (data_ref_loc, heap) **); |
| bool dr_analyze_innermost (struct data_reference *); |
| extern bool compute_data_dependences_for_loop (struct loop *, bool, |
| VEC (data_reference_p, heap) **, |
| VEC (ddr_p, heap) **); |
| extern tree find_data_references_in_loop (struct loop *, |
| VEC (data_reference_p, heap) **); |
| extern void print_direction_vector (FILE *, lambda_vector, int); |
| extern void print_dir_vectors (FILE *, VEC (lambda_vector, heap) *, int); |
| extern void print_dist_vectors (FILE *, VEC (lambda_vector, heap) *, int); |
| extern void dump_subscript (FILE *, struct subscript *); |
| extern void dump_ddrs (FILE *, VEC (ddr_p, heap) *); |
| extern void dump_dist_dir_vectors (FILE *, VEC (ddr_p, heap) *); |
| extern void dump_data_reference (FILE *, struct data_reference *); |
| extern void dump_data_references (FILE *, VEC (data_reference_p, heap) *); |
| extern void debug_data_dependence_relation (struct data_dependence_relation *); |
| extern void dump_data_dependence_relation (FILE *, |
| struct data_dependence_relation *); |
| extern void dump_data_dependence_relations (FILE *, VEC (ddr_p, heap) *); |
| extern void debug_data_dependence_relations (VEC (ddr_p, heap) *); |
| extern void dump_data_dependence_direction (FILE *, |
| enum data_dependence_direction); |
| extern void free_dependence_relation (struct data_dependence_relation *); |
| extern void free_dependence_relations (VEC (ddr_p, heap) *); |
| extern void free_data_ref (data_reference_p); |
| extern void free_data_refs (VEC (data_reference_p, heap) *); |
| extern bool find_data_references_in_stmt (struct loop *, gimple, |
| VEC (data_reference_p, heap) **); |
| struct data_reference *create_data_ref (struct loop *, tree, gimple, bool); |
| extern bool find_loop_nest (struct loop *, VEC (loop_p, heap) **); |
| extern void compute_all_dependences (VEC (data_reference_p, heap) *, |
| VEC (ddr_p, heap) **, VEC (loop_p, heap) *, |
| bool); |
| |
| extern void create_rdg_vertices (struct graph *, VEC (gimple, heap) *); |
| extern bool dr_may_alias_p (const struct data_reference *, |
| const struct data_reference *); |
| extern bool stmt_simple_memref_p (struct loop *, gimple, tree); |
| |
| /* Return true when the DDR contains two data references that have the |
| same access functions. */ |
| |
| static inline bool |
| same_access_functions (const struct data_dependence_relation *ddr) |
| { |
| unsigned i; |
| |
| for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++) |
| if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i), |
| DR_ACCESS_FN (DDR_B (ddr), i))) |
| return false; |
| |
| return true; |
| } |
| |
| /* Return true when DDR is an anti-dependence relation. */ |
| |
| static inline bool |
| ddr_is_anti_dependent (ddr_p ddr) |
| { |
| return (DDR_ARE_DEPENDENT (ddr) == NULL_TREE |
| && DR_IS_READ (DDR_A (ddr)) |
| && !DR_IS_READ (DDR_B (ddr)) |
| && !same_access_functions (ddr)); |
| } |
| |
| /* Return true when DEPENDENCE_RELATIONS contains an anti-dependence. */ |
| |
| static inline bool |
| ddrs_have_anti_deps (VEC (ddr_p, heap) *dependence_relations) |
| { |
| unsigned i; |
| ddr_p ddr; |
| |
| for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++) |
| if (ddr_is_anti_dependent (ddr)) |
| return true; |
| |
| return false; |
| } |
| |
| /* Return the dependence level for the DDR relation. */ |
| |
| static inline unsigned |
| ddr_dependence_level (ddr_p ddr) |
| { |
| unsigned vector; |
| unsigned level = 0; |
| |
| if (DDR_DIST_VECTS (ddr)) |
| level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr)); |
| |
| for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++) |
| level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector), |
| DDR_NB_LOOPS (ddr))); |
| return level; |
| } |
| |
| |
| |
| /* A Reduced Dependence Graph (RDG) vertex representing a statement. */ |
| typedef struct rdg_vertex |
| { |
| /* The statement represented by this vertex. */ |
| gimple stmt; |
| |
| /* True when the statement contains a write to memory. */ |
| bool has_mem_write; |
| |
| /* True when the statement contains a read from memory. */ |
| bool has_mem_reads; |
| } *rdg_vertex_p; |
| |
| #define RDGV_STMT(V) ((struct rdg_vertex *) ((V)->data))->stmt |
| #define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write |
| #define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads |
| #define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I])) |
| #define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I])) |
| #define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I])) |
| |
| void dump_rdg_vertex (FILE *, struct graph *, int); |
| void debug_rdg_vertex (struct graph *, int); |
| void dump_rdg_component (FILE *, struct graph *, int, bitmap); |
| void debug_rdg_component (struct graph *, int); |
| void dump_rdg (FILE *, struct graph *); |
| void debug_rdg (struct graph *); |
| void dot_rdg (struct graph *); |
| int rdg_vertex_for_stmt (struct graph *, gimple); |
| |
| /* Data dependence type. */ |
| |
| enum rdg_dep_type |
| { |
| /* Read After Write (RAW). */ |
| flow_dd = 'f', |
| |
| /* Write After Read (WAR). */ |
| anti_dd = 'a', |
| |
| /* Write After Write (WAW). */ |
| output_dd = 'o', |
| |
| /* Read After Read (RAR). */ |
| input_dd = 'i' |
| }; |
| |
| /* Dependence information attached to an edge of the RDG. */ |
| |
| typedef struct rdg_edge |
| { |
| /* Type of the dependence. */ |
| enum rdg_dep_type type; |
| |
| /* Levels of the dependence: the depth of the loops that carry the |
| dependence. */ |
| unsigned level; |
| |
| /* Dependence relation between data dependences, NULL when one of |
| the vertices is a scalar. */ |
| ddr_p relation; |
| } *rdg_edge_p; |
| |
| #define RDGE_TYPE(E) ((struct rdg_edge *) ((E)->data))->type |
| #define RDGE_LEVEL(E) ((struct rdg_edge *) ((E)->data))->level |
| #define RDGE_RELATION(E) ((struct rdg_edge *) ((E)->data))->relation |
| |
| struct graph *build_rdg (struct loop *); |
| struct graph *build_empty_rdg (int); |
| void free_rdg (struct graph *); |
| |
| /* Return the index of the variable VAR in the LOOP_NEST array. */ |
| |
| static inline int |
| index_in_loop_nest (int var, VEC (loop_p, heap) *loop_nest) |
| { |
| struct loop *loopi; |
| int var_index; |
| |
| for (var_index = 0; VEC_iterate (loop_p, loop_nest, var_index, loopi); |
| var_index++) |
| if (loopi->num == var) |
| break; |
| |
| return var_index; |
| } |
| |
| void stores_from_loop (struct loop *, VEC (gimple, heap) **); |
| void remove_similar_memory_refs (VEC (gimple, heap) **); |
| bool rdg_defs_used_in_other_loops_p (struct graph *, int); |
| bool have_similar_memory_accesses (gimple, gimple); |
| |
| /* Determines whether RDG vertices V1 and V2 access to similar memory |
| locations, in which case they have to be in the same partition. */ |
| |
| static inline bool |
| rdg_has_similar_memory_accesses (struct graph *rdg, int v1, int v2) |
| { |
| return have_similar_memory_accesses (RDG_STMT (rdg, v1), |
| RDG_STMT (rdg, v2)); |
| } |
| |
| /* In lambda-code.c */ |
| bool lambda_transform_legal_p (lambda_trans_matrix, int, |
| VEC (ddr_p, heap) *); |
| void lambda_collect_parameters (VEC (data_reference_p, heap) *, |
| VEC (tree, heap) **); |
| bool lambda_compute_access_matrices (VEC (data_reference_p, heap) *, |
| VEC (tree, heap) *, VEC (loop_p, heap) *); |
| |
| /* In tree-data-ref.c */ |
| void split_constant_offset (tree , tree *, tree *); |
| |
| /* Strongly connected components of the reduced data dependence graph. */ |
| |
| typedef struct rdg_component |
| { |
| int num; |
| VEC (int, heap) *vertices; |
| } *rdgc; |
| |
| DEF_VEC_P (rdgc); |
| DEF_VEC_ALLOC_P (rdgc, heap); |
| |
| DEF_VEC_P (bitmap); |
| DEF_VEC_ALLOC_P (bitmap, heap); |
| |
| #endif /* GCC_TREE_DATA_REF_H */ |