| /* Inline functions for tree-flow.h |
| Copyright (C) 2001, 2003, 2005, 2006, 2007, 2008 Free Software |
| Foundation, Inc. |
| Contributed by Diego Novillo <dnovillo@redhat.com> |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| GCC is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #ifndef _TREE_FLOW_INLINE_H |
| #define _TREE_FLOW_INLINE_H 1 |
| |
| /* Inline functions for manipulating various data structures defined in |
| tree-flow.h. See tree-flow.h for documentation. */ |
| |
| /* Return true when gimple SSA form was built. |
| gimple_in_ssa_p is queried by gimplifier in various early stages before SSA |
| infrastructure is initialized. Check for presence of the datastructures |
| at first place. */ |
| static inline bool |
| gimple_in_ssa_p (const struct function *fun) |
| { |
| return fun && fun->gimple_df && fun->gimple_df->in_ssa_p; |
| } |
| |
| /* 'true' after aliases have been computed (see compute_may_aliases). */ |
| static inline bool |
| gimple_aliases_computed_p (const struct function *fun) |
| { |
| gcc_assert (fun && fun->gimple_df); |
| return fun->gimple_df->aliases_computed_p; |
| } |
| |
| /* Addressable variables in the function. If bit I is set, then |
| REFERENCED_VARS (I) has had its address taken. Note that |
| CALL_CLOBBERED_VARS and ADDRESSABLE_VARS are not related. An |
| addressable variable is not necessarily call-clobbered (e.g., a |
| local addressable whose address does not escape) and not all |
| call-clobbered variables are addressable (e.g., a local static |
| variable). */ |
| static inline bitmap |
| gimple_addressable_vars (const struct function *fun) |
| { |
| gcc_assert (fun && fun->gimple_df); |
| return fun->gimple_df->addressable_vars; |
| } |
| |
| /* Call clobbered variables in the function. If bit I is set, then |
| REFERENCED_VARS (I) is call-clobbered. */ |
| static inline bitmap |
| gimple_call_clobbered_vars (const struct function *fun) |
| { |
| gcc_assert (fun && fun->gimple_df); |
| return fun->gimple_df->call_clobbered_vars; |
| } |
| |
| /* Call-used variables in the function. If bit I is set, then |
| REFERENCED_VARS (I) is call-used at pure function call-sites. */ |
| static inline bitmap |
| gimple_call_used_vars (const struct function *fun) |
| { |
| gcc_assert (fun && fun->gimple_df); |
| return fun->gimple_df->call_used_vars; |
| } |
| |
| /* Array of all variables referenced in the function. */ |
| static inline htab_t |
| gimple_referenced_vars (const struct function *fun) |
| { |
| if (!fun->gimple_df) |
| return NULL; |
| return fun->gimple_df->referenced_vars; |
| } |
| |
| /* Artificial variable used to model the effects of function calls. */ |
| static inline tree |
| gimple_global_var (const struct function *fun) |
| { |
| gcc_assert (fun && fun->gimple_df); |
| return fun->gimple_df->global_var; |
| } |
| |
| /* Artificial variable used to model the effects of nonlocal |
| variables. */ |
| static inline tree |
| gimple_nonlocal_all (const struct function *fun) |
| { |
| gcc_assert (fun && fun->gimple_df); |
| return fun->gimple_df->nonlocal_all; |
| } |
| |
| /* Initialize the hashtable iterator HTI to point to hashtable TABLE */ |
| |
| static inline void * |
| first_htab_element (htab_iterator *hti, htab_t table) |
| { |
| hti->htab = table; |
| hti->slot = table->entries; |
| hti->limit = hti->slot + htab_size (table); |
| do |
| { |
| PTR x = *(hti->slot); |
| if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY) |
| break; |
| } while (++(hti->slot) < hti->limit); |
| |
| if (hti->slot < hti->limit) |
| return *(hti->slot); |
| return NULL; |
| } |
| |
| /* Return current non-empty/deleted slot of the hashtable pointed to by HTI, |
| or NULL if we have reached the end. */ |
| |
| static inline bool |
| end_htab_p (const htab_iterator *hti) |
| { |
| if (hti->slot >= hti->limit) |
| return true; |
| return false; |
| } |
| |
| /* Advance the hashtable iterator pointed to by HTI to the next element of the |
| hashtable. */ |
| |
| static inline void * |
| next_htab_element (htab_iterator *hti) |
| { |
| while (++(hti->slot) < hti->limit) |
| { |
| PTR x = *(hti->slot); |
| if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY) |
| return x; |
| }; |
| return NULL; |
| } |
| |
| /* Initialize ITER to point to the first referenced variable in the |
| referenced_vars hashtable, and return that variable. */ |
| |
| static inline tree |
| first_referenced_var (referenced_var_iterator *iter) |
| { |
| return (tree) first_htab_element (&iter->hti, |
| gimple_referenced_vars (cfun)); |
| } |
| |
| /* Return true if we have hit the end of the referenced variables ITER is |
| iterating through. */ |
| |
| static inline bool |
| end_referenced_vars_p (const referenced_var_iterator *iter) |
| { |
| return end_htab_p (&iter->hti); |
| } |
| |
| /* Make ITER point to the next referenced_var in the referenced_var hashtable, |
| and return that variable. */ |
| |
| static inline tree |
| next_referenced_var (referenced_var_iterator *iter) |
| { |
| return (tree) next_htab_element (&iter->hti); |
| } |
| |
| /* Fill up VEC with the variables in the referenced vars hashtable. */ |
| |
| static inline void |
| fill_referenced_var_vec (VEC (tree, heap) **vec) |
| { |
| referenced_var_iterator rvi; |
| tree var; |
| *vec = NULL; |
| FOR_EACH_REFERENCED_VAR (var, rvi) |
| VEC_safe_push (tree, heap, *vec, var); |
| } |
| |
| /* Return the variable annotation for T, which must be a _DECL node. |
| Return NULL if the variable annotation doesn't already exist. */ |
| static inline var_ann_t |
| var_ann (const_tree t) |
| { |
| var_ann_t ann; |
| |
| if (!t->base.ann) |
| return NULL; |
| ann = (var_ann_t) t->base.ann; |
| |
| gcc_assert (ann->common.type == VAR_ANN); |
| |
| return ann; |
| } |
| |
| /* Return the variable annotation for T, which must be a _DECL node. |
| Create the variable annotation if it doesn't exist. */ |
| static inline var_ann_t |
| get_var_ann (tree var) |
| { |
| var_ann_t ann = var_ann (var); |
| return (ann) ? ann : create_var_ann (var); |
| } |
| |
| /* Return the function annotation for T, which must be a FUNCTION_DECL node. |
| Return NULL if the function annotation doesn't already exist. */ |
| static inline function_ann_t |
| function_ann (const_tree t) |
| { |
| gcc_assert (t); |
| gcc_assert (TREE_CODE (t) == FUNCTION_DECL); |
| gcc_assert (!t->base.ann |
| || t->base.ann->common.type == FUNCTION_ANN); |
| |
| return (function_ann_t) t->base.ann; |
| } |
| |
| /* Return the function annotation for T, which must be a FUNCTION_DECL node. |
| Create the function annotation if it doesn't exist. */ |
| static inline function_ann_t |
| get_function_ann (tree var) |
| { |
| function_ann_t ann = function_ann (var); |
| gcc_assert (!var->base.ann || var->base.ann->common.type == FUNCTION_ANN); |
| return (ann) ? ann : create_function_ann (var); |
| } |
| |
| /* Get the number of the next statement uid to be allocated. */ |
| static inline unsigned int |
| gimple_stmt_max_uid (struct function *fn) |
| { |
| return fn->last_stmt_uid; |
| } |
| |
| /* Set the number of the next statement uid to be allocated. */ |
| static inline void |
| set_gimple_stmt_max_uid (struct function *fn, unsigned int maxid) |
| { |
| fn->last_stmt_uid = maxid; |
| } |
| |
| /* Set the number of the next statement uid to be allocated. */ |
| static inline unsigned int |
| inc_gimple_stmt_max_uid (struct function *fn) |
| { |
| return fn->last_stmt_uid++; |
| } |
| |
| /* Return the annotation type for annotation ANN. */ |
| static inline enum tree_ann_type |
| ann_type (tree_ann_t ann) |
| { |
| return ann->common.type; |
| } |
| |
| /* Return the may_aliases bitmap for variable VAR, or NULL if it has |
| no may aliases. */ |
| static inline bitmap |
| may_aliases (const_tree var) |
| { |
| return MTAG_ALIASES (var); |
| } |
| |
| /* Return the line number for EXPR, or return -1 if we have no line |
| number information for it. */ |
| static inline int |
| get_lineno (const_gimple stmt) |
| { |
| location_t loc; |
| |
| if (!stmt) |
| return -1; |
| |
| loc = gimple_location (stmt); |
| if (loc != UNKNOWN_LOCATION) |
| return -1; |
| |
| return LOCATION_LINE (loc); |
| } |
| |
| /* Delink an immediate_uses node from its chain. */ |
| static inline void |
| delink_imm_use (ssa_use_operand_t *linknode) |
| { |
| /* Return if this node is not in a list. */ |
| if (linknode->prev == NULL) |
| return; |
| |
| linknode->prev->next = linknode->next; |
| linknode->next->prev = linknode->prev; |
| linknode->prev = NULL; |
| linknode->next = NULL; |
| } |
| |
| /* Link ssa_imm_use node LINKNODE into the chain for LIST. */ |
| static inline void |
| link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list) |
| { |
| /* Link the new node at the head of the list. If we are in the process of |
| traversing the list, we won't visit any new nodes added to it. */ |
| linknode->prev = list; |
| linknode->next = list->next; |
| list->next->prev = linknode; |
| list->next = linknode; |
| } |
| |
| /* Link ssa_imm_use node LINKNODE into the chain for DEF. */ |
| static inline void |
| link_imm_use (ssa_use_operand_t *linknode, tree def) |
| { |
| ssa_use_operand_t *root; |
| |
| if (!def || TREE_CODE (def) != SSA_NAME) |
| linknode->prev = NULL; |
| else |
| { |
| root = &(SSA_NAME_IMM_USE_NODE (def)); |
| #ifdef ENABLE_CHECKING |
| if (linknode->use) |
| gcc_assert (*(linknode->use) == def); |
| #endif |
| link_imm_use_to_list (linknode, root); |
| } |
| } |
| |
| /* Set the value of a use pointed to by USE to VAL. */ |
| static inline void |
| set_ssa_use_from_ptr (use_operand_p use, tree val) |
| { |
| delink_imm_use (use); |
| *(use->use) = val; |
| link_imm_use (use, val); |
| } |
| |
| /* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring |
| in STMT. */ |
| static inline void |
| link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, gimple stmt) |
| { |
| if (stmt) |
| link_imm_use (linknode, def); |
| else |
| link_imm_use (linknode, NULL); |
| linknode->loc.stmt = stmt; |
| } |
| |
| /* Relink a new node in place of an old node in the list. */ |
| static inline void |
| relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old) |
| { |
| /* The node one had better be in the same list. */ |
| gcc_assert (*(old->use) == *(node->use)); |
| node->prev = old->prev; |
| node->next = old->next; |
| if (old->prev) |
| { |
| old->prev->next = node; |
| old->next->prev = node; |
| /* Remove the old node from the list. */ |
| old->prev = NULL; |
| } |
| } |
| |
| /* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring |
| in STMT. */ |
| static inline void |
| relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old, |
| gimple stmt) |
| { |
| if (stmt) |
| relink_imm_use (linknode, old); |
| else |
| link_imm_use (linknode, NULL); |
| linknode->loc.stmt = stmt; |
| } |
| |
| |
| /* Return true is IMM has reached the end of the immediate use list. */ |
| static inline bool |
| end_readonly_imm_use_p (const imm_use_iterator *imm) |
| { |
| return (imm->imm_use == imm->end_p); |
| } |
| |
| /* Initialize iterator IMM to process the list for VAR. */ |
| static inline use_operand_p |
| first_readonly_imm_use (imm_use_iterator *imm, tree var) |
| { |
| gcc_assert (TREE_CODE (var) == SSA_NAME); |
| |
| imm->end_p = &(SSA_NAME_IMM_USE_NODE (var)); |
| imm->imm_use = imm->end_p->next; |
| #ifdef ENABLE_CHECKING |
| imm->iter_node.next = imm->imm_use->next; |
| #endif |
| if (end_readonly_imm_use_p (imm)) |
| return NULL_USE_OPERAND_P; |
| return imm->imm_use; |
| } |
| |
| /* Bump IMM to the next use in the list. */ |
| static inline use_operand_p |
| next_readonly_imm_use (imm_use_iterator *imm) |
| { |
| use_operand_p old = imm->imm_use; |
| |
| #ifdef ENABLE_CHECKING |
| /* If this assertion fails, it indicates the 'next' pointer has changed |
| since the last bump. This indicates that the list is being modified |
| via stmt changes, or SET_USE, or somesuch thing, and you need to be |
| using the SAFE version of the iterator. */ |
| gcc_assert (imm->iter_node.next == old->next); |
| imm->iter_node.next = old->next->next; |
| #endif |
| |
| imm->imm_use = old->next; |
| if (end_readonly_imm_use_p (imm)) |
| return NULL_USE_OPERAND_P; |
| return imm->imm_use; |
| } |
| |
| /* Return true if VAR has no uses. */ |
| static inline bool |
| has_zero_uses (const_tree var) |
| { |
| const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var)); |
| /* A single use means there is no items in the list. */ |
| return (ptr == ptr->next); |
| } |
| |
| /* Return true if VAR has a single use. */ |
| static inline bool |
| has_single_use (const_tree var) |
| { |
| const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var)); |
| /* A single use means there is one item in the list. */ |
| return (ptr != ptr->next && ptr == ptr->next->next); |
| } |
| |
| |
| /* If VAR has only a single immediate use, return true, and set USE_P and STMT |
| to the use pointer and stmt of occurrence. */ |
| static inline bool |
| single_imm_use (const_tree var, use_operand_p *use_p, gimple *stmt) |
| { |
| const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var)); |
| if (ptr != ptr->next && ptr == ptr->next->next) |
| { |
| *use_p = ptr->next; |
| *stmt = ptr->next->loc.stmt; |
| return true; |
| } |
| *use_p = NULL_USE_OPERAND_P; |
| *stmt = NULL; |
| return false; |
| } |
| |
| /* Return the number of immediate uses of VAR. */ |
| static inline unsigned int |
| num_imm_uses (const_tree var) |
| { |
| const ssa_use_operand_t *const start = &(SSA_NAME_IMM_USE_NODE (var)); |
| const ssa_use_operand_t *ptr; |
| unsigned int num = 0; |
| |
| for (ptr = start->next; ptr != start; ptr = ptr->next) |
| num++; |
| |
| return num; |
| } |
| |
| /* Return the tree pointed-to by USE. */ |
| static inline tree |
| get_use_from_ptr (use_operand_p use) |
| { |
| return *(use->use); |
| } |
| |
| /* Return the tree pointed-to by DEF. */ |
| static inline tree |
| get_def_from_ptr (def_operand_p def) |
| { |
| return *def; |
| } |
| |
| /* Return a use_operand_p pointer for argument I of PHI node GS. */ |
| |
| static inline use_operand_p |
| gimple_phi_arg_imm_use_ptr (gimple gs, int i) |
| { |
| return &gimple_phi_arg (gs, i)->imm_use; |
| } |
| |
| /* Return the tree operand for argument I of PHI node GS. */ |
| |
| static inline tree |
| gimple_phi_arg_def (gimple gs, size_t index) |
| { |
| struct phi_arg_d *pd = gimple_phi_arg (gs, index); |
| return get_use_from_ptr (&pd->imm_use); |
| } |
| |
| /* Return a pointer to the tree operand for argument I of PHI node GS. */ |
| |
| static inline tree * |
| gimple_phi_arg_def_ptr (gimple gs, size_t index) |
| { |
| return &gimple_phi_arg (gs, index)->def; |
| } |
| |
| /* Return the edge associated with argument I of phi node GS. */ |
| |
| static inline edge |
| gimple_phi_arg_edge (gimple gs, size_t i) |
| { |
| return EDGE_PRED (gimple_bb (gs), i); |
| } |
| |
| /* Return the PHI nodes for basic block BB, or NULL if there are no |
| PHI nodes. */ |
| static inline gimple_seq |
| phi_nodes (const_basic_block bb) |
| { |
| gcc_assert (!(bb->flags & BB_RTL)); |
| if (!bb->il.gimple) |
| return NULL; |
| return bb->il.gimple->phi_nodes; |
| } |
| |
| /* Set PHI nodes of a basic block BB to SEQ. */ |
| |
| static inline void |
| set_phi_nodes (basic_block bb, gimple_seq seq) |
| { |
| gimple_stmt_iterator i; |
| |
| gcc_assert (!(bb->flags & BB_RTL)); |
| bb->il.gimple->phi_nodes = seq; |
| if (seq) |
| for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i)) |
| gimple_set_bb (gsi_stmt (i), bb); |
| } |
| |
| /* Return the phi argument which contains the specified use. */ |
| |
| static inline int |
| phi_arg_index_from_use (use_operand_p use) |
| { |
| struct phi_arg_d *element, *root; |
| size_t index; |
| gimple phi; |
| |
| /* Since the use is the first thing in a PHI argument element, we can |
| calculate its index based on casting it to an argument, and performing |
| pointer arithmetic. */ |
| |
| phi = USE_STMT (use); |
| gcc_assert (gimple_code (phi) == GIMPLE_PHI); |
| |
| element = (struct phi_arg_d *)use; |
| root = gimple_phi_arg (phi, 0); |
| index = element - root; |
| |
| #ifdef ENABLE_CHECKING |
| /* Make sure the calculation doesn't have any leftover bytes. If it does, |
| then imm_use is likely not the first element in phi_arg_d. */ |
| gcc_assert ( |
| (((char *)element - (char *)root) % sizeof (struct phi_arg_d)) == 0); |
| gcc_assert (index < gimple_phi_capacity (phi)); |
| #endif |
| |
| return index; |
| } |
| |
| /* Mark VAR as used, so that it'll be preserved during rtl expansion. */ |
| |
| static inline void |
| set_is_used (tree var) |
| { |
| var_ann_t ann = get_var_ann (var); |
| ann->used = 1; |
| } |
| |
| |
| /* Return true if T (assumed to be a DECL) is a global variable. */ |
| |
| static inline bool |
| is_global_var (const_tree t) |
| { |
| if (MTAG_P (t)) |
| return MTAG_GLOBAL (t); |
| else |
| return (TREE_STATIC (t) || DECL_EXTERNAL (t)); |
| } |
| |
| /* PHI nodes should contain only ssa_names and invariants. A test |
| for ssa_name is definitely simpler; don't let invalid contents |
| slip in in the meantime. */ |
| |
| static inline bool |
| phi_ssa_name_p (const_tree t) |
| { |
| if (TREE_CODE (t) == SSA_NAME) |
| return true; |
| #ifdef ENABLE_CHECKING |
| gcc_assert (is_gimple_min_invariant (t)); |
| #endif |
| return false; |
| } |
| |
| |
| /* Returns the loop of the statement STMT. */ |
| |
| static inline struct loop * |
| loop_containing_stmt (gimple stmt) |
| { |
| basic_block bb = gimple_bb (stmt); |
| if (!bb) |
| return NULL; |
| |
| return bb->loop_father; |
| } |
| |
| |
| /* Return the memory partition tag associated with symbol SYM. */ |
| |
| static inline tree |
| memory_partition (tree sym) |
| { |
| tree tag; |
| |
| /* MPTs belong to their own partition. */ |
| if (TREE_CODE (sym) == MEMORY_PARTITION_TAG) |
| return sym; |
| |
| gcc_assert (!is_gimple_reg (sym)); |
| /* Autoparallelization moves statements from the original function (which has |
| aliases computed) to the new one (which does not). When rebuilding |
| operands for the statement in the new function, we do not want to |
| record the memory partition tags of the original function. */ |
| if (!gimple_aliases_computed_p (cfun)) |
| return NULL_TREE; |
| tag = get_var_ann (sym)->mpt; |
| |
| #if defined ENABLE_CHECKING |
| if (tag) |
| gcc_assert (TREE_CODE (tag) == MEMORY_PARTITION_TAG); |
| #endif |
| |
| return tag; |
| } |
| |
| /* Return true if NAME is a memory factoring SSA name (i.e., an SSA |
| name for a memory partition. */ |
| |
| static inline bool |
| factoring_name_p (const_tree name) |
| { |
| return TREE_CODE (SSA_NAME_VAR (name)) == MEMORY_PARTITION_TAG; |
| } |
| |
| /* Return true if VAR is used by function calls. */ |
| static inline bool |
| is_call_used (const_tree var) |
| { |
| return (var_ann (var)->call_clobbered |
| || bitmap_bit_p (gimple_call_used_vars (cfun), DECL_UID (var))); |
| } |
| |
| /* Return true if VAR is clobbered by function calls. */ |
| static inline bool |
| is_call_clobbered (const_tree var) |
| { |
| return var_ann (var)->call_clobbered; |
| } |
| |
| /* Mark variable VAR as being clobbered by function calls. */ |
| static inline void |
| mark_call_clobbered (tree var, unsigned int escape_type) |
| { |
| var_ann (var)->escape_mask |= escape_type; |
| var_ann (var)->call_clobbered = true; |
| bitmap_set_bit (gimple_call_clobbered_vars (cfun), DECL_UID (var)); |
| } |
| |
| /* Clear the call-clobbered attribute from variable VAR. */ |
| static inline void |
| clear_call_clobbered (tree var) |
| { |
| var_ann_t ann = var_ann (var); |
| ann->escape_mask = 0; |
| if (MTAG_P (var)) |
| MTAG_GLOBAL (var) = 0; |
| var_ann (var)->call_clobbered = false; |
| bitmap_clear_bit (gimple_call_clobbered_vars (cfun), DECL_UID (var)); |
| } |
| |
| /* Return the common annotation for T. Return NULL if the annotation |
| doesn't already exist. */ |
| static inline tree_ann_common_t |
| tree_common_ann (const_tree t) |
| { |
| /* Watch out static variables with unshared annotations. */ |
| if (DECL_P (t) && TREE_CODE (t) == VAR_DECL) |
| return &var_ann (t)->common; |
| return &t->base.ann->common; |
| } |
| |
| /* Return a common annotation for T. Create the constant annotation if it |
| doesn't exist. */ |
| static inline tree_ann_common_t |
| get_tree_common_ann (tree t) |
| { |
| tree_ann_common_t ann = tree_common_ann (t); |
| return (ann) ? ann : create_tree_common_ann (t); |
| } |
| |
| /* ----------------------------------------------------------------------- */ |
| |
| /* The following set of routines are used to iterator over various type of |
| SSA operands. */ |
| |
| /* Return true if PTR is finished iterating. */ |
| static inline bool |
| op_iter_done (const ssa_op_iter *ptr) |
| { |
| return ptr->done; |
| } |
| |
| /* Get the next iterator use value for PTR. */ |
| static inline use_operand_p |
| op_iter_next_use (ssa_op_iter *ptr) |
| { |
| use_operand_p use_p; |
| #ifdef ENABLE_CHECKING |
| gcc_assert (ptr->iter_type == ssa_op_iter_use); |
| #endif |
| if (ptr->uses) |
| { |
| use_p = USE_OP_PTR (ptr->uses); |
| ptr->uses = ptr->uses->next; |
| return use_p; |
| } |
| if (ptr->vuses) |
| { |
| use_p = VUSE_OP_PTR (ptr->vuses, ptr->vuse_index); |
| if (++(ptr->vuse_index) >= VUSE_NUM (ptr->vuses)) |
| { |
| ptr->vuse_index = 0; |
| ptr->vuses = ptr->vuses->next; |
| } |
| return use_p; |
| } |
| if (ptr->mayuses) |
| { |
| use_p = VDEF_OP_PTR (ptr->mayuses, ptr->mayuse_index); |
| if (++(ptr->mayuse_index) >= VDEF_NUM (ptr->mayuses)) |
| { |
| ptr->mayuse_index = 0; |
| ptr->mayuses = ptr->mayuses->next; |
| } |
| return use_p; |
| } |
| if (ptr->phi_i < ptr->num_phi) |
| { |
| return PHI_ARG_DEF_PTR (ptr->phi_stmt, (ptr->phi_i)++); |
| } |
| ptr->done = true; |
| return NULL_USE_OPERAND_P; |
| } |
| |
| /* Get the next iterator def value for PTR. */ |
| static inline def_operand_p |
| op_iter_next_def (ssa_op_iter *ptr) |
| { |
| def_operand_p def_p; |
| #ifdef ENABLE_CHECKING |
| gcc_assert (ptr->iter_type == ssa_op_iter_def); |
| #endif |
| if (ptr->defs) |
| { |
| def_p = DEF_OP_PTR (ptr->defs); |
| ptr->defs = ptr->defs->next; |
| return def_p; |
| } |
| if (ptr->vdefs) |
| { |
| def_p = VDEF_RESULT_PTR (ptr->vdefs); |
| ptr->vdefs = ptr->vdefs->next; |
| return def_p; |
| } |
| ptr->done = true; |
| return NULL_DEF_OPERAND_P; |
| } |
| |
| /* Get the next iterator tree value for PTR. */ |
| static inline tree |
| op_iter_next_tree (ssa_op_iter *ptr) |
| { |
| tree val; |
| #ifdef ENABLE_CHECKING |
| gcc_assert (ptr->iter_type == ssa_op_iter_tree); |
| #endif |
| if (ptr->uses) |
| { |
| val = USE_OP (ptr->uses); |
| ptr->uses = ptr->uses->next; |
| return val; |
| } |
| if (ptr->vuses) |
| { |
| val = VUSE_OP (ptr->vuses, ptr->vuse_index); |
| if (++(ptr->vuse_index) >= VUSE_NUM (ptr->vuses)) |
| { |
| ptr->vuse_index = 0; |
| ptr->vuses = ptr->vuses->next; |
| } |
| return val; |
| } |
| if (ptr->mayuses) |
| { |
| val = VDEF_OP (ptr->mayuses, ptr->mayuse_index); |
| if (++(ptr->mayuse_index) >= VDEF_NUM (ptr->mayuses)) |
| { |
| ptr->mayuse_index = 0; |
| ptr->mayuses = ptr->mayuses->next; |
| } |
| return val; |
| } |
| if (ptr->defs) |
| { |
| val = DEF_OP (ptr->defs); |
| ptr->defs = ptr->defs->next; |
| return val; |
| } |
| if (ptr->vdefs) |
| { |
| val = VDEF_RESULT (ptr->vdefs); |
| ptr->vdefs = ptr->vdefs->next; |
| return val; |
| } |
| |
| ptr->done = true; |
| return NULL_TREE; |
| |
| } |
| |
| |
| /* This functions clears the iterator PTR, and marks it done. This is normally |
| used to prevent warnings in the compile about might be uninitialized |
| components. */ |
| |
| static inline void |
| clear_and_done_ssa_iter (ssa_op_iter *ptr) |
| { |
| ptr->defs = NULL; |
| ptr->uses = NULL; |
| ptr->vuses = NULL; |
| ptr->vdefs = NULL; |
| ptr->mayuses = NULL; |
| ptr->iter_type = ssa_op_iter_none; |
| ptr->phi_i = 0; |
| ptr->num_phi = 0; |
| ptr->phi_stmt = NULL; |
| ptr->done = true; |
| ptr->vuse_index = 0; |
| ptr->mayuse_index = 0; |
| } |
| |
| /* Initialize the iterator PTR to the virtual defs in STMT. */ |
| static inline void |
| op_iter_init (ssa_op_iter *ptr, gimple stmt, int flags) |
| { |
| ptr->defs = (flags & SSA_OP_DEF) ? gimple_def_ops (stmt) : NULL; |
| ptr->uses = (flags & SSA_OP_USE) ? gimple_use_ops (stmt) : NULL; |
| ptr->vuses = (flags & SSA_OP_VUSE) ? gimple_vuse_ops (stmt) : NULL; |
| ptr->vdefs = (flags & SSA_OP_VDEF) ? gimple_vdef_ops (stmt) : NULL; |
| ptr->mayuses = (flags & SSA_OP_VMAYUSE) ? gimple_vdef_ops (stmt) : NULL; |
| ptr->done = false; |
| |
| ptr->phi_i = 0; |
| ptr->num_phi = 0; |
| ptr->phi_stmt = NULL; |
| ptr->vuse_index = 0; |
| ptr->mayuse_index = 0; |
| } |
| |
| /* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return |
| the first use. */ |
| static inline use_operand_p |
| op_iter_init_use (ssa_op_iter *ptr, gimple stmt, int flags) |
| { |
| gcc_assert ((flags & SSA_OP_ALL_DEFS) == 0); |
| op_iter_init (ptr, stmt, flags); |
| ptr->iter_type = ssa_op_iter_use; |
| return op_iter_next_use (ptr); |
| } |
| |
| /* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return |
| the first def. */ |
| static inline def_operand_p |
| op_iter_init_def (ssa_op_iter *ptr, gimple stmt, int flags) |
| { |
| gcc_assert ((flags & SSA_OP_ALL_USES) == 0); |
| op_iter_init (ptr, stmt, flags); |
| ptr->iter_type = ssa_op_iter_def; |
| return op_iter_next_def (ptr); |
| } |
| |
| /* Initialize iterator PTR to the operands in STMT based on FLAGS. Return |
| the first operand as a tree. */ |
| static inline tree |
| op_iter_init_tree (ssa_op_iter *ptr, gimple stmt, int flags) |
| { |
| op_iter_init (ptr, stmt, flags); |
| ptr->iter_type = ssa_op_iter_tree; |
| return op_iter_next_tree (ptr); |
| } |
| |
| /* Get the next iterator mustdef value for PTR, returning the mustdef values in |
| KILL and DEF. */ |
| static inline void |
| op_iter_next_vdef (vuse_vec_p *use, def_operand_p *def, |
| ssa_op_iter *ptr) |
| { |
| #ifdef ENABLE_CHECKING |
| gcc_assert (ptr->iter_type == ssa_op_iter_vdef); |
| #endif |
| if (ptr->mayuses) |
| { |
| *def = VDEF_RESULT_PTR (ptr->mayuses); |
| *use = VDEF_VECT (ptr->mayuses); |
| ptr->mayuses = ptr->mayuses->next; |
| return; |
| } |
| |
| *def = NULL_DEF_OPERAND_P; |
| *use = NULL; |
| ptr->done = true; |
| return; |
| } |
| |
| |
| static inline void |
| op_iter_next_mustdef (use_operand_p *use, def_operand_p *def, |
| ssa_op_iter *ptr) |
| { |
| vuse_vec_p vp; |
| op_iter_next_vdef (&vp, def, ptr); |
| if (vp != NULL) |
| { |
| gcc_assert (VUSE_VECT_NUM_ELEM (*vp) == 1); |
| *use = VUSE_ELEMENT_PTR (*vp, 0); |
| } |
| else |
| *use = NULL_USE_OPERAND_P; |
| } |
| |
| /* Initialize iterator PTR to the operands in STMT. Return the first operands |
| in USE and DEF. */ |
| static inline void |
| op_iter_init_vdef (ssa_op_iter *ptr, gimple stmt, vuse_vec_p *use, |
| def_operand_p *def) |
| { |
| gcc_assert (gimple_code (stmt) != GIMPLE_PHI); |
| |
| op_iter_init (ptr, stmt, SSA_OP_VMAYUSE); |
| ptr->iter_type = ssa_op_iter_vdef; |
| op_iter_next_vdef (use, def, ptr); |
| } |
| |
| |
| /* If there is a single operand in STMT matching FLAGS, return it. Otherwise |
| return NULL. */ |
| static inline tree |
| single_ssa_tree_operand (gimple stmt, int flags) |
| { |
| tree var; |
| ssa_op_iter iter; |
| |
| var = op_iter_init_tree (&iter, stmt, flags); |
| if (op_iter_done (&iter)) |
| return NULL_TREE; |
| op_iter_next_tree (&iter); |
| if (op_iter_done (&iter)) |
| return var; |
| return NULL_TREE; |
| } |
| |
| |
| /* If there is a single operand in STMT matching FLAGS, return it. Otherwise |
| return NULL. */ |
| static inline use_operand_p |
| single_ssa_use_operand (gimple stmt, int flags) |
| { |
| use_operand_p var; |
| ssa_op_iter iter; |
| |
| var = op_iter_init_use (&iter, stmt, flags); |
| if (op_iter_done (&iter)) |
| return NULL_USE_OPERAND_P; |
| op_iter_next_use (&iter); |
| if (op_iter_done (&iter)) |
| return var; |
| return NULL_USE_OPERAND_P; |
| } |
| |
| |
| |
| /* If there is a single operand in STMT matching FLAGS, return it. Otherwise |
| return NULL. */ |
| static inline def_operand_p |
| single_ssa_def_operand (gimple stmt, int flags) |
| { |
| def_operand_p var; |
| ssa_op_iter iter; |
| |
| var = op_iter_init_def (&iter, stmt, flags); |
| if (op_iter_done (&iter)) |
| return NULL_DEF_OPERAND_P; |
| op_iter_next_def (&iter); |
| if (op_iter_done (&iter)) |
| return var; |
| return NULL_DEF_OPERAND_P; |
| } |
| |
| |
| /* Return true if there are zero operands in STMT matching the type |
| given in FLAGS. */ |
| static inline bool |
| zero_ssa_operands (gimple stmt, int flags) |
| { |
| ssa_op_iter iter; |
| |
| op_iter_init_tree (&iter, stmt, flags); |
| return op_iter_done (&iter); |
| } |
| |
| |
| /* Return the number of operands matching FLAGS in STMT. */ |
| static inline int |
| num_ssa_operands (gimple stmt, int flags) |
| { |
| ssa_op_iter iter; |
| tree t; |
| int num = 0; |
| |
| FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags) |
| num++; |
| return num; |
| } |
| |
| |
| /* Delink all immediate_use information for STMT. */ |
| static inline void |
| delink_stmt_imm_use (gimple stmt) |
| { |
| ssa_op_iter iter; |
| use_operand_p use_p; |
| |
| if (ssa_operands_active ()) |
| FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES) |
| delink_imm_use (use_p); |
| } |
| |
| |
| /* This routine will compare all the operands matching FLAGS in STMT1 to those |
| in STMT2. TRUE is returned if they are the same. STMTs can be NULL. */ |
| static inline bool |
| compare_ssa_operands_equal (gimple stmt1, gimple stmt2, int flags) |
| { |
| ssa_op_iter iter1, iter2; |
| tree op1 = NULL_TREE; |
| tree op2 = NULL_TREE; |
| bool look1, look2; |
| |
| if (stmt1 == stmt2) |
| return true; |
| |
| look1 = stmt1 != NULL; |
| look2 = stmt2 != NULL; |
| |
| if (look1) |
| { |
| op1 = op_iter_init_tree (&iter1, stmt1, flags); |
| if (!look2) |
| return op_iter_done (&iter1); |
| } |
| else |
| clear_and_done_ssa_iter (&iter1); |
| |
| if (look2) |
| { |
| op2 = op_iter_init_tree (&iter2, stmt2, flags); |
| if (!look1) |
| return op_iter_done (&iter2); |
| } |
| else |
| clear_and_done_ssa_iter (&iter2); |
| |
| while (!op_iter_done (&iter1) && !op_iter_done (&iter2)) |
| { |
| if (op1 != op2) |
| return false; |
| op1 = op_iter_next_tree (&iter1); |
| op2 = op_iter_next_tree (&iter2); |
| } |
| |
| return (op_iter_done (&iter1) && op_iter_done (&iter2)); |
| } |
| |
| |
| /* If there is a single DEF in the PHI node which matches FLAG, return it. |
| Otherwise return NULL_DEF_OPERAND_P. */ |
| static inline tree |
| single_phi_def (gimple stmt, int flags) |
| { |
| tree def = PHI_RESULT (stmt); |
| if ((flags & SSA_OP_DEF) && is_gimple_reg (def)) |
| return def; |
| if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def)) |
| return def; |
| return NULL_TREE; |
| } |
| |
| /* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should |
| be either SSA_OP_USES or SSA_OP_VIRTUAL_USES. */ |
| static inline use_operand_p |
| op_iter_init_phiuse (ssa_op_iter *ptr, gimple phi, int flags) |
| { |
| tree phi_def = gimple_phi_result (phi); |
| int comp; |
| |
| clear_and_done_ssa_iter (ptr); |
| ptr->done = false; |
| |
| gcc_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0); |
| |
| comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES); |
| |
| /* If the PHI node doesn't the operand type we care about, we're done. */ |
| if ((flags & comp) == 0) |
| { |
| ptr->done = true; |
| return NULL_USE_OPERAND_P; |
| } |
| |
| ptr->phi_stmt = phi; |
| ptr->num_phi = gimple_phi_num_args (phi); |
| ptr->iter_type = ssa_op_iter_use; |
| return op_iter_next_use (ptr); |
| } |
| |
| |
| /* Start an iterator for a PHI definition. */ |
| |
| static inline def_operand_p |
| op_iter_init_phidef (ssa_op_iter *ptr, gimple phi, int flags) |
| { |
| tree phi_def = PHI_RESULT (phi); |
| int comp; |
| |
| clear_and_done_ssa_iter (ptr); |
| ptr->done = false; |
| |
| gcc_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0); |
| |
| comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS); |
| |
| /* If the PHI node doesn't the operand type we care about, we're done. */ |
| if ((flags & comp) == 0) |
| { |
| ptr->done = true; |
| return NULL_USE_OPERAND_P; |
| } |
| |
| ptr->iter_type = ssa_op_iter_def; |
| /* The first call to op_iter_next_def will terminate the iterator since |
| all the fields are NULL. Simply return the result here as the first and |
| therefore only result. */ |
| return PHI_RESULT_PTR (phi); |
| } |
| |
| /* Return true is IMM has reached the end of the immediate use stmt list. */ |
| |
| static inline bool |
| end_imm_use_stmt_p (const imm_use_iterator *imm) |
| { |
| return (imm->imm_use == imm->end_p); |
| } |
| |
| /* Finished the traverse of an immediate use stmt list IMM by removing the |
| placeholder node from the list. */ |
| |
| static inline void |
| end_imm_use_stmt_traverse (imm_use_iterator *imm) |
| { |
| delink_imm_use (&(imm->iter_node)); |
| } |
| |
| /* Immediate use traversal of uses within a stmt require that all the |
| uses on a stmt be sequentially listed. This routine is used to build up |
| this sequential list by adding USE_P to the end of the current list |
| currently delimited by HEAD and LAST_P. The new LAST_P value is |
| returned. */ |
| |
| static inline use_operand_p |
| move_use_after_head (use_operand_p use_p, use_operand_p head, |
| use_operand_p last_p) |
| { |
| gcc_assert (USE_FROM_PTR (use_p) == USE_FROM_PTR (head)); |
| /* Skip head when we find it. */ |
| if (use_p != head) |
| { |
| /* If use_p is already linked in after last_p, continue. */ |
| if (last_p->next == use_p) |
| last_p = use_p; |
| else |
| { |
| /* Delink from current location, and link in at last_p. */ |
| delink_imm_use (use_p); |
| link_imm_use_to_list (use_p, last_p); |
| last_p = use_p; |
| } |
| } |
| return last_p; |
| } |
| |
| |
| /* This routine will relink all uses with the same stmt as HEAD into the list |
| immediately following HEAD for iterator IMM. */ |
| |
| static inline void |
| link_use_stmts_after (use_operand_p head, imm_use_iterator *imm) |
| { |
| use_operand_p use_p; |
| use_operand_p last_p = head; |
| gimple head_stmt = USE_STMT (head); |
| tree use = USE_FROM_PTR (head); |
| ssa_op_iter op_iter; |
| int flag; |
| |
| /* Only look at virtual or real uses, depending on the type of HEAD. */ |
| flag = (is_gimple_reg (use) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES); |
| |
| if (gimple_code (head_stmt) == GIMPLE_PHI) |
| { |
| FOR_EACH_PHI_ARG (use_p, head_stmt, op_iter, flag) |
| if (USE_FROM_PTR (use_p) == use) |
| last_p = move_use_after_head (use_p, head, last_p); |
| } |
| else |
| { |
| FOR_EACH_SSA_USE_OPERAND (use_p, head_stmt, op_iter, flag) |
| if (USE_FROM_PTR (use_p) == use) |
| last_p = move_use_after_head (use_p, head, last_p); |
| } |
| /* Link iter node in after last_p. */ |
| if (imm->iter_node.prev != NULL) |
| delink_imm_use (&imm->iter_node); |
| link_imm_use_to_list (&(imm->iter_node), last_p); |
| } |
| |
| /* Initialize IMM to traverse over uses of VAR. Return the first statement. */ |
| static inline gimple |
| first_imm_use_stmt (imm_use_iterator *imm, tree var) |
| { |
| gcc_assert (TREE_CODE (var) == SSA_NAME); |
| |
| imm->end_p = &(SSA_NAME_IMM_USE_NODE (var)); |
| imm->imm_use = imm->end_p->next; |
| imm->next_imm_name = NULL_USE_OPERAND_P; |
| |
| /* iter_node is used as a marker within the immediate use list to indicate |
| where the end of the current stmt's uses are. Initialize it to NULL |
| stmt and use, which indicates a marker node. */ |
| imm->iter_node.prev = NULL_USE_OPERAND_P; |
| imm->iter_node.next = NULL_USE_OPERAND_P; |
| imm->iter_node.loc.stmt = NULL; |
| imm->iter_node.use = NULL_USE_OPERAND_P; |
| |
| if (end_imm_use_stmt_p (imm)) |
| return NULL; |
| |
| link_use_stmts_after (imm->imm_use, imm); |
| |
| return USE_STMT (imm->imm_use); |
| } |
| |
| /* Bump IMM to the next stmt which has a use of var. */ |
| |
| static inline gimple |
| next_imm_use_stmt (imm_use_iterator *imm) |
| { |
| imm->imm_use = imm->iter_node.next; |
| if (end_imm_use_stmt_p (imm)) |
| { |
| if (imm->iter_node.prev != NULL) |
| delink_imm_use (&imm->iter_node); |
| return NULL; |
| } |
| |
| link_use_stmts_after (imm->imm_use, imm); |
| return USE_STMT (imm->imm_use); |
| } |
| |
| /* This routine will return the first use on the stmt IMM currently refers |
| to. */ |
| |
| static inline use_operand_p |
| first_imm_use_on_stmt (imm_use_iterator *imm) |
| { |
| imm->next_imm_name = imm->imm_use->next; |
| return imm->imm_use; |
| } |
| |
| /* Return TRUE if the last use on the stmt IMM refers to has been visited. */ |
| |
| static inline bool |
| end_imm_use_on_stmt_p (const imm_use_iterator *imm) |
| { |
| return (imm->imm_use == &(imm->iter_node)); |
| } |
| |
| /* Bump to the next use on the stmt IMM refers to, return NULL if done. */ |
| |
| static inline use_operand_p |
| next_imm_use_on_stmt (imm_use_iterator *imm) |
| { |
| imm->imm_use = imm->next_imm_name; |
| if (end_imm_use_on_stmt_p (imm)) |
| return NULL_USE_OPERAND_P; |
| else |
| { |
| imm->next_imm_name = imm->imm_use->next; |
| return imm->imm_use; |
| } |
| } |
| |
| /* Return true if VAR cannot be modified by the program. */ |
| |
| static inline bool |
| unmodifiable_var_p (const_tree var) |
| { |
| if (TREE_CODE (var) == SSA_NAME) |
| var = SSA_NAME_VAR (var); |
| |
| if (MTAG_P (var)) |
| return false; |
| |
| return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var)); |
| } |
| |
| /* Return true if REF, an ARRAY_REF, has an INDIRECT_REF somewhere in it. */ |
| |
| static inline bool |
| array_ref_contains_indirect_ref (const_tree ref) |
| { |
| gcc_assert (TREE_CODE (ref) == ARRAY_REF); |
| |
| do { |
| ref = TREE_OPERAND (ref, 0); |
| } while (handled_component_p (ref)); |
| |
| return TREE_CODE (ref) == INDIRECT_REF; |
| } |
| |
| /* Return true if REF, a handled component reference, has an ARRAY_REF |
| somewhere in it. */ |
| |
| static inline bool |
| ref_contains_array_ref (const_tree ref) |
| { |
| gcc_assert (handled_component_p (ref)); |
| |
| do { |
| if (TREE_CODE (ref) == ARRAY_REF) |
| return true; |
| ref = TREE_OPERAND (ref, 0); |
| } while (handled_component_p (ref)); |
| |
| return false; |
| } |
| |
| /* Return true, if the two ranges [POS1, SIZE1] and [POS2, SIZE2] |
| overlap. SIZE1 and/or SIZE2 can be (unsigned)-1 in which case the |
| range is open-ended. Otherwise return false. */ |
| |
| static inline bool |
| ranges_overlap_p (unsigned HOST_WIDE_INT pos1, |
| unsigned HOST_WIDE_INT size1, |
| unsigned HOST_WIDE_INT pos2, |
| unsigned HOST_WIDE_INT size2) |
| { |
| if (pos1 >= pos2 |
| && (size2 == (unsigned HOST_WIDE_INT)-1 |
| || pos1 < (pos2 + size2))) |
| return true; |
| if (pos2 >= pos1 |
| && (size1 == (unsigned HOST_WIDE_INT)-1 |
| || pos2 < (pos1 + size1))) |
| return true; |
| |
| return false; |
| } |
| |
| /* Return the memory tag associated with symbol SYM. */ |
| |
| static inline tree |
| symbol_mem_tag (tree sym) |
| { |
| tree tag = get_var_ann (sym)->symbol_mem_tag; |
| |
| #if defined ENABLE_CHECKING |
| if (tag) |
| gcc_assert (TREE_CODE (tag) == SYMBOL_MEMORY_TAG); |
| #endif |
| |
| return tag; |
| } |
| |
| |
| /* Set the memory tag associated with symbol SYM. */ |
| |
| static inline void |
| set_symbol_mem_tag (tree sym, tree tag) |
| { |
| #if defined ENABLE_CHECKING |
| if (tag) |
| gcc_assert (TREE_CODE (tag) == SYMBOL_MEMORY_TAG); |
| #endif |
| |
| get_var_ann (sym)->symbol_mem_tag = tag; |
| } |
| |
| /* Accessor to tree-ssa-operands.c caches. */ |
| static inline struct ssa_operands * |
| gimple_ssa_operands (const struct function *fun) |
| { |
| return &fun->gimple_df->ssa_operands; |
| } |
| |
| /* Map describing reference statistics for function FN. */ |
| static inline struct mem_ref_stats_d * |
| gimple_mem_ref_stats (const struct function *fn) |
| { |
| return &fn->gimple_df->mem_ref_stats; |
| } |
| |
| /* Given an edge_var_map V, return the PHI arg definition. */ |
| |
| static inline tree |
| redirect_edge_var_map_def (edge_var_map *v) |
| { |
| return v->def; |
| } |
| |
| /* Given an edge_var_map V, return the PHI result. */ |
| |
| static inline tree |
| redirect_edge_var_map_result (edge_var_map *v) |
| { |
| return v->result; |
| } |
| |
| |
| /* Return an SSA_NAME node for variable VAR defined in statement STMT |
| in function cfun. */ |
| |
| static inline tree |
| make_ssa_name (tree var, gimple stmt) |
| { |
| return make_ssa_name_fn (cfun, var, stmt); |
| } |
| |
| #endif /* _TREE_FLOW_INLINE_H */ |