| /* Forward propagation of expressions for single use variables. |
| Copyright (C) 2004, 2005, 2007, 2008, 2009 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| GCC is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| #include "ggc.h" |
| #include "tree.h" |
| #include "rtl.h" |
| #include "tm_p.h" |
| #include "basic-block.h" |
| #include "timevar.h" |
| #include "diagnostic.h" |
| #include "tree-flow.h" |
| #include "tree-pass.h" |
| #include "tree-dump.h" |
| #include "langhooks.h" |
| #include "flags.h" |
| #include "gimple.h" |
| |
| /* This pass propagates the RHS of assignment statements into use |
| sites of the LHS of the assignment. It's basically a specialized |
| form of tree combination. It is hoped all of this can disappear |
| when we have a generalized tree combiner. |
| |
| One class of common cases we handle is forward propagating a single use |
| variable into a COND_EXPR. |
| |
| bb0: |
| x = a COND b; |
| if (x) goto ... else goto ... |
| |
| Will be transformed into: |
| |
| bb0: |
| if (a COND b) goto ... else goto ... |
| |
| Similarly for the tests (x == 0), (x != 0), (x == 1) and (x != 1). |
| |
| Or (assuming c1 and c2 are constants): |
| |
| bb0: |
| x = a + c1; |
| if (x EQ/NEQ c2) goto ... else goto ... |
| |
| Will be transformed into: |
| |
| bb0: |
| if (a EQ/NEQ (c2 - c1)) goto ... else goto ... |
| |
| Similarly for x = a - c1. |
| |
| Or |
| |
| bb0: |
| x = !a |
| if (x) goto ... else goto ... |
| |
| Will be transformed into: |
| |
| bb0: |
| if (a == 0) goto ... else goto ... |
| |
| Similarly for the tests (x == 0), (x != 0), (x == 1) and (x != 1). |
| For these cases, we propagate A into all, possibly more than one, |
| COND_EXPRs that use X. |
| |
| Or |
| |
| bb0: |
| x = (typecast) a |
| if (x) goto ... else goto ... |
| |
| Will be transformed into: |
| |
| bb0: |
| if (a != 0) goto ... else goto ... |
| |
| (Assuming a is an integral type and x is a boolean or x is an |
| integral and a is a boolean.) |
| |
| Similarly for the tests (x == 0), (x != 0), (x == 1) and (x != 1). |
| For these cases, we propagate A into all, possibly more than one, |
| COND_EXPRs that use X. |
| |
| In addition to eliminating the variable and the statement which assigns |
| a value to the variable, we may be able to later thread the jump without |
| adding insane complexity in the dominator optimizer. |
| |
| Also note these transformations can cascade. We handle this by having |
| a worklist of COND_EXPR statements to examine. As we make a change to |
| a statement, we put it back on the worklist to examine on the next |
| iteration of the main loop. |
| |
| A second class of propagation opportunities arises for ADDR_EXPR |
| nodes. |
| |
| ptr = &x->y->z; |
| res = *ptr; |
| |
| Will get turned into |
| |
| res = x->y->z; |
| |
| Or |
| ptr = (type1*)&type2var; |
| res = *ptr |
| |
| Will get turned into (if type1 and type2 are the same size |
| and neither have volatile on them): |
| res = VIEW_CONVERT_EXPR<type1>(type2var) |
| |
| Or |
| |
| ptr = &x[0]; |
| ptr2 = ptr + <constant>; |
| |
| Will get turned into |
| |
| ptr2 = &x[constant/elementsize]; |
| |
| Or |
| |
| ptr = &x[0]; |
| offset = index * element_size; |
| offset_p = (pointer) offset; |
| ptr2 = ptr + offset_p |
| |
| Will get turned into: |
| |
| ptr2 = &x[index]; |
| |
| We also propagate casts into SWITCH_EXPR and COND_EXPR conditions to |
| allow us to remove the cast and {NOT_EXPR,NEG_EXPR} into a subsequent |
| {NOT_EXPR,NEG_EXPR}. |
| |
| This will (of course) be extended as other needs arise. */ |
| |
| static bool forward_propagate_addr_expr (tree name, tree rhs); |
| |
| /* Set to true if we delete EH edges during the optimization. */ |
| static bool cfg_changed; |
| |
| static tree rhs_to_tree (tree type, gimple stmt); |
| |
| /* Get the next statement we can propagate NAME's value into skipping |
| trivial copies. Returns the statement that is suitable as a |
| propagation destination or NULL_TREE if there is no such one. |
| This only returns destinations in a single-use chain. FINAL_NAME_P |
| if non-NULL is written to the ssa name that represents the use. */ |
| |
| static gimple |
| get_prop_dest_stmt (tree name, tree *final_name_p) |
| { |
| use_operand_p use; |
| gimple use_stmt; |
| |
| do { |
| /* If name has multiple uses, bail out. */ |
| if (!single_imm_use (name, &use, &use_stmt)) |
| return NULL; |
| |
| /* If this is not a trivial copy, we found it. */ |
| if (!gimple_assign_copy_p (use_stmt) |
| || TREE_CODE (gimple_assign_lhs (use_stmt)) != SSA_NAME |
| || gimple_assign_rhs1 (use_stmt) != name) |
| break; |
| |
| /* Continue searching uses of the copy destination. */ |
| name = gimple_assign_lhs (use_stmt); |
| } while (1); |
| |
| if (final_name_p) |
| *final_name_p = name; |
| |
| return use_stmt; |
| } |
| |
| /* Get the statement we can propagate from into NAME skipping |
| trivial copies. Returns the statement which defines the |
| propagation source or NULL_TREE if there is no such one. |
| If SINGLE_USE_ONLY is set considers only sources which have |
| a single use chain up to NAME. If SINGLE_USE_P is non-null, |
| it is set to whether the chain to NAME is a single use chain |
| or not. SINGLE_USE_P is not written to if SINGLE_USE_ONLY is set. */ |
| |
| static gimple |
| get_prop_source_stmt (tree name, bool single_use_only, bool *single_use_p) |
| { |
| bool single_use = true; |
| |
| do { |
| gimple def_stmt = SSA_NAME_DEF_STMT (name); |
| |
| if (!has_single_use (name)) |
| { |
| single_use = false; |
| if (single_use_only) |
| return NULL; |
| } |
| |
| /* If name is defined by a PHI node or is the default def, bail out. */ |
| if (gimple_code (def_stmt) != GIMPLE_ASSIGN) |
| return NULL; |
| |
| /* If name is not a simple copy destination, we found it. */ |
| if (!gimple_assign_copy_p (def_stmt) |
| || TREE_CODE (gimple_assign_rhs1 (def_stmt)) != SSA_NAME) |
| { |
| tree rhs; |
| |
| if (!single_use_only && single_use_p) |
| *single_use_p = single_use; |
| |
| /* We can look through pointer conversions in the search |
| for a useful stmt for the comparison folding. */ |
| rhs = gimple_assign_rhs1 (def_stmt); |
| if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)) |
| && TREE_CODE (rhs) == SSA_NAME |
| && POINTER_TYPE_P (TREE_TYPE (gimple_assign_lhs (def_stmt))) |
| && POINTER_TYPE_P (TREE_TYPE (rhs))) |
| name = rhs; |
| else |
| return def_stmt; |
| } |
| else |
| { |
| /* Continue searching the def of the copy source name. */ |
| name = gimple_assign_rhs1 (def_stmt); |
| } |
| } while (1); |
| } |
| |
| /* Checks if the destination ssa name in DEF_STMT can be used as |
| propagation source. Returns true if so, otherwise false. */ |
| |
| static bool |
| can_propagate_from (gimple def_stmt) |
| { |
| use_operand_p use_p; |
| ssa_op_iter iter; |
| |
| gcc_assert (is_gimple_assign (def_stmt)); |
| /* If the rhs has side-effects we cannot propagate from it. */ |
| if (gimple_has_volatile_ops (def_stmt)) |
| return false; |
| |
| /* If the rhs is a load we cannot propagate from it. */ |
| if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) == tcc_reference |
| || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) == tcc_declaration) |
| return false; |
| |
| /* Constants can be always propagated. */ |
| if (is_gimple_min_invariant |
| (rhs_to_tree (TREE_TYPE (gimple_assign_lhs (def_stmt)), def_stmt))) |
| return true; |
| |
| /* We cannot propagate ssa names that occur in abnormal phi nodes. */ |
| FOR_EACH_SSA_USE_OPERAND (use_p, def_stmt, iter, SSA_OP_USE) |
| if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (use_p))) |
| return false; |
| |
| /* If the definition is a conversion of a pointer to a function type, |
| then we can not apply optimizations as some targets require |
| function pointers to be canonicalized and in this case this |
| optimization could eliminate a necessary canonicalization. */ |
| if (is_gimple_assign (def_stmt) |
| && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))) |
| { |
| tree rhs = gimple_assign_rhs1 (def_stmt); |
| if (POINTER_TYPE_P (TREE_TYPE (rhs)) |
| && TREE_CODE (TREE_TYPE (TREE_TYPE (rhs))) == FUNCTION_TYPE) |
| return false; |
| } |
| return true; |
| } |
| |
| /* Remove a copy chain ending in NAME along the defs but not |
| further or including UP_TO_STMT. If NAME was replaced in |
| its only use then this function can be used to clean up |
| dead stmts. Returns true if UP_TO_STMT can be removed |
| as well, otherwise false. */ |
| |
| static bool |
| remove_prop_source_from_use (tree name, gimple up_to_stmt) |
| { |
| gimple_stmt_iterator gsi; |
| gimple stmt; |
| |
| do { |
| if (!has_zero_uses (name)) |
| return false; |
| |
| stmt = SSA_NAME_DEF_STMT (name); |
| if (stmt == up_to_stmt) |
| return true; |
| |
| gsi = gsi_for_stmt (stmt); |
| release_defs (stmt); |
| gsi_remove (&gsi, true); |
| |
| name = (gimple_assign_copy_p (stmt)) ? gimple_assign_rhs1 (stmt) : NULL; |
| } while (name && TREE_CODE (name) == SSA_NAME); |
| |
| return false; |
| } |
| |
| /* Return the rhs of a gimple_assign STMT in a form of a single tree, |
| converted to type TYPE. |
| |
| This should disappear, but is needed so we can combine expressions and use |
| the fold() interfaces. Long term, we need to develop folding and combine |
| routines that deal with gimple exclusively . */ |
| |
| static tree |
| rhs_to_tree (tree type, gimple stmt) |
| { |
| enum tree_code code = gimple_assign_rhs_code (stmt); |
| if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS) |
| return fold_build2 (code, type, gimple_assign_rhs1 (stmt), |
| gimple_assign_rhs2 (stmt)); |
| else if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS) |
| return build1 (code, type, gimple_assign_rhs1 (stmt)); |
| else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS) |
| return gimple_assign_rhs1 (stmt); |
| else |
| gcc_unreachable (); |
| } |
| |
| /* Combine OP0 CODE OP1 in the context of a COND_EXPR. Returns |
| the folded result in a form suitable for COND_EXPR_COND or |
| NULL_TREE, if there is no suitable simplified form. If |
| INVARIANT_ONLY is true only gimple_min_invariant results are |
| considered simplified. */ |
| |
| static tree |
| combine_cond_expr_cond (enum tree_code code, tree type, |
| tree op0, tree op1, bool invariant_only) |
| { |
| tree t; |
| |
| gcc_assert (TREE_CODE_CLASS (code) == tcc_comparison); |
| |
| t = fold_binary (code, type, op0, op1); |
| if (!t) |
| return NULL_TREE; |
| |
| /* Require that we got a boolean type out if we put one in. */ |
| gcc_assert (TREE_CODE (TREE_TYPE (t)) == TREE_CODE (type)); |
| |
| /* Canonicalize the combined condition for use in a COND_EXPR. */ |
| t = canonicalize_cond_expr_cond (t); |
| |
| /* Bail out if we required an invariant but didn't get one. */ |
| if (!t || (invariant_only && !is_gimple_min_invariant (t))) |
| return NULL_TREE; |
| |
| return t; |
| } |
| |
| /* Propagate from the ssa name definition statements of COND_EXPR |
| in GIMPLE_COND statement STMT into the conditional if that simplifies it. |
| Returns zero if no statement was changed, one if there were |
| changes and two if cfg_cleanup needs to run. |
| |
| This must be kept in sync with forward_propagate_into_cond. */ |
| |
| static int |
| forward_propagate_into_gimple_cond (gimple stmt) |
| { |
| int did_something = 0; |
| |
| do { |
| tree tmp = NULL_TREE; |
| tree name, rhs0 = NULL_TREE, rhs1 = NULL_TREE; |
| gimple def_stmt; |
| bool single_use0_p = false, single_use1_p = false; |
| enum tree_code code = gimple_cond_code (stmt); |
| |
| /* We can do tree combining on SSA_NAME and comparison expressions. */ |
| if (TREE_CODE_CLASS (gimple_cond_code (stmt)) == tcc_comparison |
| && TREE_CODE (gimple_cond_lhs (stmt)) == SSA_NAME) |
| { |
| /* For comparisons use the first operand, that is likely to |
| simplify comparisons against constants. */ |
| name = gimple_cond_lhs (stmt); |
| def_stmt = get_prop_source_stmt (name, false, &single_use0_p); |
| if (def_stmt && can_propagate_from (def_stmt)) |
| { |
| tree op1 = gimple_cond_rhs (stmt); |
| rhs0 = rhs_to_tree (TREE_TYPE (op1), def_stmt); |
| tmp = combine_cond_expr_cond (code, boolean_type_node, rhs0, |
| op1, !single_use0_p); |
| } |
| /* If that wasn't successful, try the second operand. */ |
| if (tmp == NULL_TREE |
| && TREE_CODE (gimple_cond_rhs (stmt)) == SSA_NAME) |
| { |
| tree op0 = gimple_cond_lhs (stmt); |
| name = gimple_cond_rhs (stmt); |
| def_stmt = get_prop_source_stmt (name, false, &single_use1_p); |
| if (!def_stmt || !can_propagate_from (def_stmt)) |
| return did_something; |
| |
| rhs1 = rhs_to_tree (TREE_TYPE (op0), def_stmt); |
| tmp = combine_cond_expr_cond (code, boolean_type_node, op0, rhs1, |
| !single_use1_p); |
| } |
| /* If that wasn't successful either, try both operands. */ |
| if (tmp == NULL_TREE |
| && rhs0 != NULL_TREE |
| && rhs1 != NULL_TREE) |
| tmp = combine_cond_expr_cond (code, boolean_type_node, rhs0, |
| fold_convert (TREE_TYPE (rhs0), rhs1), |
| !(single_use0_p && single_use1_p)); |
| } |
| |
| if (tmp) |
| { |
| if (dump_file && tmp) |
| { |
| tree cond = build2 (gimple_cond_code (stmt), |
| boolean_type_node, |
| gimple_cond_lhs (stmt), |
| gimple_cond_rhs (stmt)); |
| fprintf (dump_file, " Replaced '"); |
| print_generic_expr (dump_file, cond, 0); |
| fprintf (dump_file, "' with '"); |
| print_generic_expr (dump_file, tmp, 0); |
| fprintf (dump_file, "'\n"); |
| } |
| |
| gimple_cond_set_condition_from_tree (stmt, unshare_expr (tmp)); |
| update_stmt (stmt); |
| |
| /* Remove defining statements. */ |
| remove_prop_source_from_use (name, NULL); |
| |
| if (is_gimple_min_invariant (tmp)) |
| did_something = 2; |
| else if (did_something == 0) |
| did_something = 1; |
| |
| /* Continue combining. */ |
| continue; |
| } |
| |
| break; |
| } while (1); |
| |
| return did_something; |
| } |
| |
| |
| /* Propagate from the ssa name definition statements of COND_EXPR |
| in the rhs of statement STMT into the conditional if that simplifies it. |
| Returns zero if no statement was changed, one if there were |
| changes and two if cfg_cleanup needs to run. |
| |
| This must be kept in sync with forward_propagate_into_gimple_cond. */ |
| |
| static int |
| forward_propagate_into_cond (gimple_stmt_iterator *gsi_p) |
| { |
| gimple stmt = gsi_stmt (*gsi_p); |
| int did_something = 0; |
| |
| do { |
| tree tmp = NULL_TREE; |
| tree cond = gimple_assign_rhs1 (stmt); |
| tree name, rhs0 = NULL_TREE, rhs1 = NULL_TREE; |
| gimple def_stmt; |
| bool single_use0_p = false, single_use1_p = false; |
| |
| /* We can do tree combining on SSA_NAME and comparison expressions. */ |
| if (COMPARISON_CLASS_P (cond) |
| && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME) |
| { |
| /* For comparisons use the first operand, that is likely to |
| simplify comparisons against constants. */ |
| name = TREE_OPERAND (cond, 0); |
| def_stmt = get_prop_source_stmt (name, false, &single_use0_p); |
| if (def_stmt && can_propagate_from (def_stmt)) |
| { |
| tree op1 = TREE_OPERAND (cond, 1); |
| rhs0 = rhs_to_tree (TREE_TYPE (op1), def_stmt); |
| tmp = combine_cond_expr_cond (TREE_CODE (cond), boolean_type_node, |
| rhs0, op1, !single_use0_p); |
| } |
| /* If that wasn't successful, try the second operand. */ |
| if (tmp == NULL_TREE |
| && TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME) |
| { |
| tree op0 = TREE_OPERAND (cond, 0); |
| name = TREE_OPERAND (cond, 1); |
| def_stmt = get_prop_source_stmt (name, false, &single_use1_p); |
| if (!def_stmt || !can_propagate_from (def_stmt)) |
| return did_something; |
| |
| rhs1 = rhs_to_tree (TREE_TYPE (op0), def_stmt); |
| tmp = combine_cond_expr_cond (TREE_CODE (cond), boolean_type_node, |
| op0, rhs1, !single_use1_p); |
| } |
| /* If that wasn't successful either, try both operands. */ |
| if (tmp == NULL_TREE |
| && rhs0 != NULL_TREE |
| && rhs1 != NULL_TREE) |
| tmp = combine_cond_expr_cond (TREE_CODE (cond), boolean_type_node, |
| rhs0, fold_convert (TREE_TYPE (rhs0), |
| rhs1), |
| !(single_use0_p && single_use1_p)); |
| } |
| else if (TREE_CODE (cond) == SSA_NAME) |
| { |
| name = cond; |
| def_stmt = get_prop_source_stmt (name, true, NULL); |
| if (def_stmt || !can_propagate_from (def_stmt)) |
| return did_something; |
| |
| rhs0 = gimple_assign_rhs1 (def_stmt); |
| tmp = combine_cond_expr_cond (NE_EXPR, boolean_type_node, rhs0, |
| build_int_cst (TREE_TYPE (rhs0), 0), |
| false); |
| } |
| |
| if (tmp) |
| { |
| if (dump_file && tmp) |
| { |
| fprintf (dump_file, " Replaced '"); |
| print_generic_expr (dump_file, cond, 0); |
| fprintf (dump_file, "' with '"); |
| print_generic_expr (dump_file, tmp, 0); |
| fprintf (dump_file, "'\n"); |
| } |
| |
| gimple_assign_set_rhs_from_tree (gsi_p, unshare_expr (tmp)); |
| stmt = gsi_stmt (*gsi_p); |
| update_stmt (stmt); |
| |
| /* Remove defining statements. */ |
| remove_prop_source_from_use (name, NULL); |
| |
| if (is_gimple_min_invariant (tmp)) |
| did_something = 2; |
| else if (did_something == 0) |
| did_something = 1; |
| |
| /* Continue combining. */ |
| continue; |
| } |
| |
| break; |
| } while (1); |
| |
| return did_something; |
| } |
| |
| /* We've just substituted an ADDR_EXPR into stmt. Update all the |
| relevant data structures to match. */ |
| |
| static void |
| tidy_after_forward_propagate_addr (gimple stmt) |
| { |
| /* We may have turned a trapping insn into a non-trapping insn. */ |
| if (maybe_clean_or_replace_eh_stmt (stmt, stmt) |
| && gimple_purge_dead_eh_edges (gimple_bb (stmt))) |
| cfg_changed = true; |
| |
| if (TREE_CODE (gimple_assign_rhs1 (stmt)) == ADDR_EXPR) |
| recompute_tree_invariant_for_addr_expr (gimple_assign_rhs1 (stmt)); |
| |
| mark_symbols_for_renaming (stmt); |
| } |
| |
| /* DEF_RHS contains the address of the 0th element in an array. |
| USE_STMT uses type of DEF_RHS to compute the address of an |
| arbitrary element within the array. The (variable) byte offset |
| of the element is contained in OFFSET. |
| |
| We walk back through the use-def chains of OFFSET to verify that |
| it is indeed computing the offset of an element within the array |
| and extract the index corresponding to the given byte offset. |
| |
| We then try to fold the entire address expression into a form |
| &array[index]. |
| |
| If we are successful, we replace the right hand side of USE_STMT |
| with the new address computation. */ |
| |
| static bool |
| forward_propagate_addr_into_variable_array_index (tree offset, |
| tree def_rhs, |
| gimple_stmt_iterator *use_stmt_gsi) |
| { |
| tree index; |
| gimple offset_def, use_stmt = gsi_stmt (*use_stmt_gsi); |
| |
| /* Get the offset's defining statement. */ |
| offset_def = SSA_NAME_DEF_STMT (offset); |
| |
| /* Try to find an expression for a proper index. This is either a |
| multiplication expression by the element size or just the ssa name we came |
| along in case the element size is one. In that case, however, we do not |
| allow multiplications because they can be computing index to a higher |
| level dimension (PR 37861). */ |
| if (integer_onep (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (def_rhs))))) |
| { |
| if (is_gimple_assign (offset_def) |
| && gimple_assign_rhs_code (offset_def) == MULT_EXPR) |
| return false; |
| |
| index = offset; |
| } |
| else |
| { |
| /* The statement which defines OFFSET before type conversion |
| must be a simple GIMPLE_ASSIGN. */ |
| if (!is_gimple_assign (offset_def)) |
| return false; |
| |
| /* The RHS of the statement which defines OFFSET must be a |
| multiplication of an object by the size of the array elements. |
| This implicitly verifies that the size of the array elements |
| is constant. */ |
| offset = gimple_assign_rhs1 (offset_def); |
| if (gimple_assign_rhs_code (offset_def) != MULT_EXPR |
| || TREE_CODE (gimple_assign_rhs2 (offset_def)) != INTEGER_CST |
| || !simple_cst_equal (gimple_assign_rhs2 (offset_def), |
| TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (def_rhs))))) |
| return false; |
| |
| /* The first operand to the MULT_EXPR is the desired index. */ |
| index = offset; |
| } |
| |
| /* Replace the pointer addition with array indexing. */ |
| gimple_assign_set_rhs_from_tree (use_stmt_gsi, unshare_expr (def_rhs)); |
| use_stmt = gsi_stmt (*use_stmt_gsi); |
| TREE_OPERAND (TREE_OPERAND (gimple_assign_rhs1 (use_stmt), 0), 1) |
| = index; |
| |
| /* That should have created gimple, so there is no need to |
| record information to undo the propagation. */ |
| fold_stmt_inplace (use_stmt); |
| tidy_after_forward_propagate_addr (use_stmt); |
| return true; |
| } |
| |
| /* NAME is a SSA_NAME representing DEF_RHS which is of the form |
| ADDR_EXPR <whatever>. |
| |
| Try to forward propagate the ADDR_EXPR into the use USE_STMT. |
| Often this will allow for removal of an ADDR_EXPR and INDIRECT_REF |
| node or for recovery of array indexing from pointer arithmetic. |
| |
| Return true if the propagation was successful (the propagation can |
| be not totally successful, yet things may have been changed). */ |
| |
| static bool |
| forward_propagate_addr_expr_1 (tree name, tree def_rhs, |
| gimple_stmt_iterator *use_stmt_gsi, |
| bool single_use_p) |
| { |
| tree lhs, rhs, rhs2, array_ref; |
| tree *rhsp, *lhsp; |
| gimple use_stmt = gsi_stmt (*use_stmt_gsi); |
| enum tree_code rhs_code; |
| bool res = true; |
| |
| gcc_assert (TREE_CODE (def_rhs) == ADDR_EXPR); |
| |
| lhs = gimple_assign_lhs (use_stmt); |
| rhs_code = gimple_assign_rhs_code (use_stmt); |
| rhs = gimple_assign_rhs1 (use_stmt); |
| |
| /* Trivial cases. The use statement could be a trivial copy or a |
| useless conversion. Recurse to the uses of the lhs as copyprop does |
| not copy through different variant pointers and FRE does not catch |
| all useless conversions. Treat the case of a single-use name and |
| a conversion to def_rhs type separate, though. */ |
| if (TREE_CODE (lhs) == SSA_NAME |
| && ((rhs_code == SSA_NAME && rhs == name) |
| || CONVERT_EXPR_CODE_P (rhs_code))) |
| { |
| /* Only recurse if we don't deal with a single use or we cannot |
| do the propagation to the current statement. In particular |
| we can end up with a conversion needed for a non-invariant |
| address which we cannot do in a single statement. */ |
| if (!single_use_p |
| || (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (def_rhs)) |
| && !is_gimple_min_invariant (def_rhs))) |
| return forward_propagate_addr_expr (lhs, def_rhs); |
| |
| gimple_assign_set_rhs1 (use_stmt, unshare_expr (def_rhs)); |
| if (useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (def_rhs))) |
| gimple_assign_set_rhs_code (use_stmt, TREE_CODE (def_rhs)); |
| else |
| gimple_assign_set_rhs_code (use_stmt, NOP_EXPR); |
| return true; |
| } |
| |
| /* Now strip away any outer COMPONENT_REF/ARRAY_REF nodes from the LHS. |
| ADDR_EXPR will not appear on the LHS. */ |
| lhsp = gimple_assign_lhs_ptr (use_stmt); |
| while (handled_component_p (*lhsp)) |
| lhsp = &TREE_OPERAND (*lhsp, 0); |
| lhs = *lhsp; |
| |
| /* Now see if the LHS node is an INDIRECT_REF using NAME. If so, |
| propagate the ADDR_EXPR into the use of NAME and fold the result. */ |
| if (TREE_CODE (lhs) == INDIRECT_REF |
| && TREE_OPERAND (lhs, 0) == name) |
| { |
| if (may_propagate_address_into_dereference (def_rhs, lhs) |
| && (lhsp != gimple_assign_lhs_ptr (use_stmt) |
| || useless_type_conversion_p |
| (TREE_TYPE (TREE_OPERAND (def_rhs, 0)), TREE_TYPE (rhs)))) |
| { |
| *lhsp = unshare_expr (TREE_OPERAND (def_rhs, 0)); |
| fold_stmt_inplace (use_stmt); |
| tidy_after_forward_propagate_addr (use_stmt); |
| |
| /* Continue propagating into the RHS if this was not the only use. */ |
| if (single_use_p) |
| return true; |
| } |
| else |
| /* We can have a struct assignment dereferencing our name twice. |
| Note that we didn't propagate into the lhs to not falsely |
| claim we did when propagating into the rhs. */ |
| res = false; |
| } |
| |
| /* Strip away any outer COMPONENT_REF, ARRAY_REF or ADDR_EXPR |
| nodes from the RHS. */ |
| rhsp = gimple_assign_rhs1_ptr (use_stmt); |
| while (handled_component_p (*rhsp) |
| || TREE_CODE (*rhsp) == ADDR_EXPR) |
| rhsp = &TREE_OPERAND (*rhsp, 0); |
| rhs = *rhsp; |
| |
| /* Now see if the RHS node is an INDIRECT_REF using NAME. If so, |
| propagate the ADDR_EXPR into the use of NAME and fold the result. */ |
| if (TREE_CODE (rhs) == INDIRECT_REF |
| && TREE_OPERAND (rhs, 0) == name |
| && may_propagate_address_into_dereference (def_rhs, rhs)) |
| { |
| *rhsp = unshare_expr (TREE_OPERAND (def_rhs, 0)); |
| fold_stmt_inplace (use_stmt); |
| tidy_after_forward_propagate_addr (use_stmt); |
| return res; |
| } |
| |
| /* Now see if the RHS node is an INDIRECT_REF using NAME. If so, |
| propagate the ADDR_EXPR into the use of NAME and try to |
| create a VCE and fold the result. */ |
| if (TREE_CODE (rhs) == INDIRECT_REF |
| && TREE_OPERAND (rhs, 0) == name |
| && TYPE_SIZE (TREE_TYPE (rhs)) |
| && TYPE_SIZE (TREE_TYPE (TREE_OPERAND (def_rhs, 0))) |
| /* Function decls should not be used for VCE either as it could be a |
| function descriptor that we want and not the actual function code. */ |
| && TREE_CODE (TREE_OPERAND (def_rhs, 0)) != FUNCTION_DECL |
| /* We should not convert volatile loads to non volatile loads. */ |
| && !TYPE_VOLATILE (TREE_TYPE (rhs)) |
| && !TYPE_VOLATILE (TREE_TYPE (TREE_OPERAND (def_rhs, 0))) |
| && operand_equal_p (TYPE_SIZE (TREE_TYPE (rhs)), |
| TYPE_SIZE (TREE_TYPE (TREE_OPERAND (def_rhs, 0))), 0)) |
| { |
| tree def_rhs_base, new_rhs = unshare_expr (TREE_OPERAND (def_rhs, 0)); |
| new_rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (rhs), new_rhs); |
| if (TREE_CODE (new_rhs) != VIEW_CONVERT_EXPR) |
| { |
| /* If we have folded the VIEW_CONVERT_EXPR then the result is only |
| valid if we can replace the whole rhs of the use statement. */ |
| if (rhs != gimple_assign_rhs1 (use_stmt)) |
| return false; |
| new_rhs = force_gimple_operand_gsi (use_stmt_gsi, new_rhs, true, NULL, |
| true, GSI_NEW_STMT); |
| gimple_assign_set_rhs1 (use_stmt, new_rhs); |
| tidy_after_forward_propagate_addr (use_stmt); |
| return res; |
| } |
| /* If the defining rhs comes from an indirect reference, then do not |
| convert into a VIEW_CONVERT_EXPR. */ |
| def_rhs_base = TREE_OPERAND (def_rhs, 0); |
| while (handled_component_p (def_rhs_base)) |
| def_rhs_base = TREE_OPERAND (def_rhs_base, 0); |
| if (!INDIRECT_REF_P (def_rhs_base)) |
| { |
| /* We may have arbitrary VIEW_CONVERT_EXPRs in a nested component |
| reference. Place it there and fold the thing. */ |
| *rhsp = new_rhs; |
| fold_stmt_inplace (use_stmt); |
| tidy_after_forward_propagate_addr (use_stmt); |
| return res; |
| } |
| } |
| |
| /* If the use of the ADDR_EXPR is not a POINTER_PLUS_EXPR, there |
| is nothing to do. */ |
| if (gimple_assign_rhs_code (use_stmt) != POINTER_PLUS_EXPR |
| || gimple_assign_rhs1 (use_stmt) != name) |
| return false; |
| |
| /* The remaining cases are all for turning pointer arithmetic into |
| array indexing. They only apply when we have the address of |
| element zero in an array. If that is not the case then there |
| is nothing to do. */ |
| array_ref = TREE_OPERAND (def_rhs, 0); |
| if (TREE_CODE (array_ref) != ARRAY_REF |
| || TREE_CODE (TREE_TYPE (TREE_OPERAND (array_ref, 0))) != ARRAY_TYPE |
| || !integer_zerop (TREE_OPERAND (array_ref, 1))) |
| return false; |
| |
| rhs2 = gimple_assign_rhs2 (use_stmt); |
| /* Try to optimize &x[0] p+ C where C is a multiple of the size |
| of the elements in X into &x[C/element size]. */ |
| if (TREE_CODE (rhs2) == INTEGER_CST) |
| { |
| tree new_rhs = maybe_fold_stmt_addition (gimple_expr_type (use_stmt), |
| array_ref, rhs2); |
| if (new_rhs) |
| { |
| gimple_assign_set_rhs_from_tree (use_stmt_gsi, new_rhs); |
| use_stmt = gsi_stmt (*use_stmt_gsi); |
| update_stmt (use_stmt); |
| tidy_after_forward_propagate_addr (use_stmt); |
| return true; |
| } |
| } |
| |
| /* Try to optimize &x[0] p+ OFFSET where OFFSET is defined by |
| converting a multiplication of an index by the size of the |
| array elements, then the result is converted into the proper |
| type for the arithmetic. */ |
| if (TREE_CODE (rhs2) == SSA_NAME |
| && useless_type_conversion_p (TREE_TYPE (name), TREE_TYPE (def_rhs)) |
| /* Avoid problems with IVopts creating PLUS_EXPRs with a |
| different type than their operands. */ |
| && useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (def_rhs))) |
| return forward_propagate_addr_into_variable_array_index (rhs2, def_rhs, |
| use_stmt_gsi); |
| return false; |
| } |
| |
| /* STMT is a statement of the form SSA_NAME = ADDR_EXPR <whatever>. |
| |
| Try to forward propagate the ADDR_EXPR into all uses of the SSA_NAME. |
| Often this will allow for removal of an ADDR_EXPR and INDIRECT_REF |
| node or for recovery of array indexing from pointer arithmetic. |
| Returns true, if all uses have been propagated into. */ |
| |
| static bool |
| forward_propagate_addr_expr (tree name, tree rhs) |
| { |
| int stmt_loop_depth = gimple_bb (SSA_NAME_DEF_STMT (name))->loop_depth; |
| imm_use_iterator iter; |
| gimple use_stmt; |
| bool all = true; |
| bool single_use_p = has_single_use (name); |
| |
| FOR_EACH_IMM_USE_STMT (use_stmt, iter, name) |
| { |
| bool result; |
| tree use_rhs; |
| |
| /* If the use is not in a simple assignment statement, then |
| there is nothing we can do. */ |
| if (gimple_code (use_stmt) != GIMPLE_ASSIGN) |
| { |
| all = false; |
| continue; |
| } |
| |
| /* If the use is in a deeper loop nest, then we do not want |
| to propagate the ADDR_EXPR into the loop as that is likely |
| adding expression evaluations into the loop. */ |
| if (gimple_bb (use_stmt)->loop_depth > stmt_loop_depth) |
| { |
| all = false; |
| continue; |
| } |
| |
| push_stmt_changes (&use_stmt); |
| |
| { |
| gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt); |
| result = forward_propagate_addr_expr_1 (name, rhs, &gsi, |
| single_use_p); |
| use_stmt = gsi_stmt (gsi); |
| } |
| all &= result; |
| |
| pop_stmt_changes (&use_stmt); |
| |
| /* Remove intermediate now unused copy and conversion chains. */ |
| use_rhs = gimple_assign_rhs1 (use_stmt); |
| if (result |
| && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME |
| && (TREE_CODE (use_rhs) == SSA_NAME |
| || (CONVERT_EXPR_P (use_rhs) |
| && TREE_CODE (TREE_OPERAND (use_rhs, 0)) == SSA_NAME))) |
| { |
| gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt); |
| release_defs (use_stmt); |
| gsi_remove (&gsi, true); |
| } |
| } |
| |
| return all; |
| } |
| |
| /* Forward propagate the comparison defined in STMT like |
| cond_1 = x CMP y to uses of the form |
| a_1 = (T')cond_1 |
| a_1 = !cond_1 |
| a_1 = cond_1 != 0 |
| Returns true if stmt is now unused. */ |
| |
| static bool |
| forward_propagate_comparison (gimple stmt) |
| { |
| tree name = gimple_assign_lhs (stmt); |
| gimple use_stmt; |
| tree tmp = NULL_TREE; |
| |
| /* Don't propagate ssa names that occur in abnormal phis. */ |
| if ((TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME |
| && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs1 (stmt))) |
| || (TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME |
| && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs2 (stmt)))) |
| return false; |
| |
| /* Do not un-cse comparisons. But propagate through copies. */ |
| use_stmt = get_prop_dest_stmt (name, &name); |
| if (!use_stmt) |
| return false; |
| |
| /* Conversion of the condition result to another integral type. */ |
| if (is_gimple_assign (use_stmt) |
| && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_stmt)) |
| || TREE_CODE_CLASS (gimple_assign_rhs_code (use_stmt)) |
| == tcc_comparison |
| || gimple_assign_rhs_code (use_stmt) == TRUTH_NOT_EXPR) |
| && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (use_stmt)))) |
| { |
| tree lhs = gimple_assign_lhs (use_stmt); |
| |
| /* We can propagate the condition into a conversion. */ |
| if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_stmt))) |
| { |
| /* Avoid using fold here as that may create a COND_EXPR with |
| non-boolean condition as canonical form. */ |
| tmp = build2 (gimple_assign_rhs_code (stmt), TREE_TYPE (lhs), |
| gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt)); |
| } |
| /* We can propagate the condition into X op CST where op |
| is EQ_EXPR or NE_EXPR and CST is either one or zero. */ |
| else if (TREE_CODE_CLASS (gimple_assign_rhs_code (use_stmt)) |
| == tcc_comparison |
| && TREE_CODE (gimple_assign_rhs1 (use_stmt)) == SSA_NAME |
| && TREE_CODE (gimple_assign_rhs2 (use_stmt)) == INTEGER_CST) |
| { |
| enum tree_code code = gimple_assign_rhs_code (use_stmt); |
| tree cst = gimple_assign_rhs2 (use_stmt); |
| tree cond; |
| |
| cond = build2 (gimple_assign_rhs_code (stmt), |
| TREE_TYPE (cst), |
| gimple_assign_rhs1 (stmt), |
| gimple_assign_rhs2 (stmt)); |
| |
| tmp = combine_cond_expr_cond (code, TREE_TYPE (lhs), cond, cst, false); |
| if (tmp == NULL_TREE) |
| return false; |
| } |
| /* We can propagate the condition into a statement that |
| computes the logical negation of the comparison result. */ |
| else if (gimple_assign_rhs_code (use_stmt) == TRUTH_NOT_EXPR) |
| { |
| tree type = TREE_TYPE (gimple_assign_rhs1 (stmt)); |
| bool nans = HONOR_NANS (TYPE_MODE (type)); |
| enum tree_code code; |
| code = invert_tree_comparison (gimple_assign_rhs_code (stmt), nans); |
| if (code == ERROR_MARK) |
| return false; |
| |
| tmp = build2 (code, TREE_TYPE (lhs), gimple_assign_rhs1 (stmt), |
| gimple_assign_rhs2 (stmt)); |
| } |
| else |
| return false; |
| |
| { |
| gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt); |
| gimple_assign_set_rhs_from_tree (&gsi, unshare_expr (tmp)); |
| use_stmt = gsi_stmt (gsi); |
| update_stmt (use_stmt); |
| } |
| |
| /* Remove defining statements. */ |
| remove_prop_source_from_use (name, stmt); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| tree old_rhs = rhs_to_tree (TREE_TYPE (gimple_assign_lhs (stmt)), |
| stmt); |
| fprintf (dump_file, " Replaced '"); |
| print_generic_expr (dump_file, old_rhs, dump_flags); |
| fprintf (dump_file, "' with '"); |
| print_generic_expr (dump_file, tmp, dump_flags); |
| fprintf (dump_file, "'\n"); |
| } |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* If we have lhs = ~x (STMT), look and see if earlier we had x = ~y. |
| If so, we can change STMT into lhs = y which can later be copy |
| propagated. Similarly for negation. |
| |
| This could trivially be formulated as a forward propagation |
| to immediate uses. However, we already had an implementation |
| from DOM which used backward propagation via the use-def links. |
| |
| It turns out that backward propagation is actually faster as |
| there's less work to do for each NOT/NEG expression we find. |
| Backwards propagation needs to look at the statement in a single |
| backlink. Forward propagation needs to look at potentially more |
| than one forward link. */ |
| |
| static void |
| simplify_not_neg_expr (gimple_stmt_iterator *gsi_p) |
| { |
| gimple stmt = gsi_stmt (*gsi_p); |
| tree rhs = gimple_assign_rhs1 (stmt); |
| gimple rhs_def_stmt = SSA_NAME_DEF_STMT (rhs); |
| |
| /* See if the RHS_DEF_STMT has the same form as our statement. */ |
| if (is_gimple_assign (rhs_def_stmt) |
| && gimple_assign_rhs_code (rhs_def_stmt) == gimple_assign_rhs_code (stmt)) |
| { |
| tree rhs_def_operand = gimple_assign_rhs1 (rhs_def_stmt); |
| |
| /* Verify that RHS_DEF_OPERAND is a suitable SSA_NAME. */ |
| if (TREE_CODE (rhs_def_operand) == SSA_NAME |
| && ! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs_def_operand)) |
| { |
| gimple_assign_set_rhs_from_tree (gsi_p, rhs_def_operand); |
| stmt = gsi_stmt (*gsi_p); |
| update_stmt (stmt); |
| } |
| } |
| } |
| |
| /* STMT is a SWITCH_EXPR for which we attempt to find equivalent forms of |
| the condition which we may be able to optimize better. */ |
| |
| static void |
| simplify_gimple_switch (gimple stmt) |
| { |
| tree cond = gimple_switch_index (stmt); |
| tree def, to, ti; |
| gimple def_stmt; |
| |
| /* The optimization that we really care about is removing unnecessary |
| casts. That will let us do much better in propagating the inferred |
| constant at the switch target. */ |
| if (TREE_CODE (cond) == SSA_NAME) |
| { |
| def_stmt = SSA_NAME_DEF_STMT (cond); |
| if (is_gimple_assign (def_stmt)) |
| { |
| if (gimple_assign_rhs_code (def_stmt) == NOP_EXPR) |
| { |
| int need_precision; |
| bool fail; |
| |
| def = gimple_assign_rhs1 (def_stmt); |
| |
| #ifdef ENABLE_CHECKING |
| /* ??? Why was Jeff testing this? We are gimple... */ |
| gcc_assert (is_gimple_val (def)); |
| #endif |
| |
| to = TREE_TYPE (cond); |
| ti = TREE_TYPE (def); |
| |
| /* If we have an extension that preserves value, then we |
| can copy the source value into the switch. */ |
| |
| need_precision = TYPE_PRECISION (ti); |
| fail = false; |
| if (! INTEGRAL_TYPE_P (ti)) |
| fail = true; |
| else if (TYPE_UNSIGNED (to) && !TYPE_UNSIGNED (ti)) |
| fail = true; |
| else if (!TYPE_UNSIGNED (to) && TYPE_UNSIGNED (ti)) |
| need_precision += 1; |
| if (TYPE_PRECISION (to) < need_precision) |
| fail = true; |
| |
| if (!fail) |
| { |
| gimple_switch_set_index (stmt, def); |
| update_stmt (stmt); |
| } |
| } |
| } |
| } |
| } |
| |
| /* Main entry point for the forward propagation optimizer. */ |
| |
| static unsigned int |
| tree_ssa_forward_propagate_single_use_vars (void) |
| { |
| basic_block bb; |
| unsigned int todoflags = 0; |
| |
| cfg_changed = false; |
| |
| FOR_EACH_BB (bb) |
| { |
| gimple_stmt_iterator gsi; |
| |
| /* Note we update GSI within the loop as necessary. */ |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); ) |
| { |
| gimple stmt = gsi_stmt (gsi); |
| |
| /* If this statement sets an SSA_NAME to an address, |
| try to propagate the address into the uses of the SSA_NAME. */ |
| if (is_gimple_assign (stmt)) |
| { |
| tree lhs = gimple_assign_lhs (stmt); |
| tree rhs = gimple_assign_rhs1 (stmt); |
| |
| if (TREE_CODE (lhs) != SSA_NAME) |
| { |
| gsi_next (&gsi); |
| continue; |
| } |
| |
| if (gimple_assign_rhs_code (stmt) == ADDR_EXPR |
| /* Handle pointer conversions on invariant addresses |
| as well, as this is valid gimple. */ |
| || (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt)) |
| && TREE_CODE (rhs) == ADDR_EXPR |
| && POINTER_TYPE_P (TREE_TYPE (lhs)))) |
| { |
| STRIP_NOPS (rhs); |
| if (!stmt_references_abnormal_ssa_name (stmt) |
| && forward_propagate_addr_expr (lhs, rhs)) |
| { |
| release_defs (stmt); |
| todoflags |= TODO_remove_unused_locals; |
| gsi_remove (&gsi, true); |
| } |
| else |
| gsi_next (&gsi); |
| } |
| else if ((gimple_assign_rhs_code (stmt) == BIT_NOT_EXPR |
| || gimple_assign_rhs_code (stmt) == NEGATE_EXPR) |
| && TREE_CODE (rhs) == SSA_NAME) |
| { |
| simplify_not_neg_expr (&gsi); |
| gsi_next (&gsi); |
| } |
| else if (gimple_assign_rhs_code (stmt) == COND_EXPR) |
| { |
| /* In this case the entire COND_EXPR is in rhs1. */ |
| int did_something; |
| fold_defer_overflow_warnings (); |
| did_something = forward_propagate_into_cond (&gsi); |
| stmt = gsi_stmt (gsi); |
| if (did_something == 2) |
| cfg_changed = true; |
| fold_undefer_overflow_warnings (!TREE_NO_WARNING (rhs) |
| && did_something, stmt, WARN_STRICT_OVERFLOW_CONDITIONAL); |
| gsi_next (&gsi); |
| } |
| else if (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) |
| == tcc_comparison) |
| { |
| if (forward_propagate_comparison (stmt)) |
| { |
| release_defs (stmt); |
| todoflags |= TODO_remove_unused_locals; |
| gsi_remove (&gsi, true); |
| } |
| else |
| gsi_next (&gsi); |
| } |
| else |
| gsi_next (&gsi); |
| } |
| else if (gimple_code (stmt) == GIMPLE_SWITCH) |
| { |
| simplify_gimple_switch (stmt); |
| gsi_next (&gsi); |
| } |
| else if (gimple_code (stmt) == GIMPLE_COND) |
| { |
| int did_something; |
| fold_defer_overflow_warnings (); |
| did_something = forward_propagate_into_gimple_cond (stmt); |
| if (did_something == 2) |
| cfg_changed = true; |
| fold_undefer_overflow_warnings (did_something, stmt, |
| WARN_STRICT_OVERFLOW_CONDITIONAL); |
| gsi_next (&gsi); |
| } |
| else |
| gsi_next (&gsi); |
| } |
| } |
| |
| if (cfg_changed) |
| todoflags |= TODO_cleanup_cfg; |
| return todoflags; |
| } |
| |
| |
| static bool |
| gate_forwprop (void) |
| { |
| return 1; |
| } |
| |
| struct gimple_opt_pass pass_forwprop = |
| { |
| { |
| GIMPLE_PASS, |
| "forwprop", /* name */ |
| gate_forwprop, /* gate */ |
| tree_ssa_forward_propagate_single_use_vars, /* execute */ |
| NULL, /* sub */ |
| NULL, /* next */ |
| 0, /* static_pass_number */ |
| TV_TREE_FORWPROP, /* tv_id */ |
| PROP_cfg | PROP_ssa, /* properties_required */ |
| 0, /* properties_provided */ |
| 0, /* properties_destroyed */ |
| 0, /* todo_flags_start */ |
| TODO_dump_func |
| | TODO_ggc_collect |
| | TODO_update_ssa |
| | TODO_verify_ssa /* todo_flags_finish */ |
| } |
| }; |
| |