| /* Liveness for SSA trees. |
| Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009 Free Software Foundation, |
| Inc. |
| Contributed by Andrew MacLeod <amacleod@redhat.com> |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| GCC is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| #include "tree.h" |
| #include "diagnostic.h" |
| #include "bitmap.h" |
| #include "tree-flow.h" |
| #include "tree-dump.h" |
| #include "tree-ssa-live.h" |
| #include "toplev.h" |
| #include "debug.h" |
| #include "flags.h" |
| |
| #ifdef ENABLE_CHECKING |
| static void verify_live_on_entry (tree_live_info_p); |
| #endif |
| |
| |
| /* VARMAP maintains a mapping from SSA version number to real variables. |
| |
| All SSA_NAMES are divided into partitions. Initially each ssa_name is the |
| only member of it's own partition. Coalescing will attempt to group any |
| ssa_names which occur in a copy or in a PHI node into the same partition. |
| |
| At the end of out-of-ssa, each partition becomes a "real" variable and is |
| rewritten as a compiler variable. |
| |
| The var_map data structure is used to manage these partitions. It allows |
| partitions to be combined, and determines which partition belongs to what |
| ssa_name or variable, and vice versa. */ |
| |
| |
| /* This routine will initialize the basevar fields of MAP. */ |
| |
| static void |
| var_map_base_init (var_map map) |
| { |
| int x, num_part, num; |
| tree var; |
| var_ann_t ann; |
| |
| num = 0; |
| num_part = num_var_partitions (map); |
| |
| /* If a base table already exists, clear it, otherwise create it. */ |
| if (map->partition_to_base_index != NULL) |
| { |
| free (map->partition_to_base_index); |
| VEC_truncate (tree, map->basevars, 0); |
| } |
| else |
| map->basevars = VEC_alloc (tree, heap, MAX (40, (num_part / 10))); |
| |
| map->partition_to_base_index = (int *) xmalloc (sizeof (int) * num_part); |
| |
| /* Build the base variable list, and point partitions at their bases. */ |
| for (x = 0; x < num_part; x++) |
| { |
| var = partition_to_var (map, x); |
| if (TREE_CODE (var) == SSA_NAME) |
| var = SSA_NAME_VAR (var); |
| ann = var_ann (var); |
| /* If base variable hasn't been seen, set it up. */ |
| if (!ann->base_var_processed) |
| { |
| ann->base_var_processed = 1; |
| VAR_ANN_BASE_INDEX (ann) = num++; |
| VEC_safe_push (tree, heap, map->basevars, var); |
| } |
| map->partition_to_base_index[x] = VAR_ANN_BASE_INDEX (ann); |
| } |
| |
| map->num_basevars = num; |
| |
| /* Now clear the processed bit. */ |
| for (x = 0; x < num; x++) |
| { |
| var = VEC_index (tree, map->basevars, x); |
| var_ann (var)->base_var_processed = 0; |
| } |
| |
| #ifdef ENABLE_CHECKING |
| for (x = 0; x < num_part; x++) |
| { |
| tree var2; |
| var = SSA_NAME_VAR (partition_to_var (map, x)); |
| var2 = VEC_index (tree, map->basevars, basevar_index (map, x)); |
| gcc_assert (var == var2); |
| } |
| #endif |
| } |
| |
| |
| /* Remove the base table in MAP. */ |
| |
| static void |
| var_map_base_fini (var_map map) |
| { |
| /* Free the basevar info if it is present. */ |
| if (map->partition_to_base_index != NULL) |
| { |
| VEC_free (tree, heap, map->basevars); |
| free (map->partition_to_base_index); |
| map->partition_to_base_index = NULL; |
| map->num_basevars = 0; |
| } |
| } |
| /* Create a variable partition map of SIZE, initialize and return it. */ |
| |
| var_map |
| init_var_map (int size) |
| { |
| var_map map; |
| |
| map = (var_map) xmalloc (sizeof (struct _var_map)); |
| map->var_partition = partition_new (size); |
| map->partition_to_var |
| = (tree *)xmalloc (size * sizeof (tree)); |
| memset (map->partition_to_var, 0, size * sizeof (tree)); |
| |
| map->partition_to_view = NULL; |
| map->view_to_partition = NULL; |
| map->num_partitions = size; |
| map->partition_size = size; |
| map->num_basevars = 0; |
| map->partition_to_base_index = NULL; |
| map->basevars = NULL; |
| return map; |
| } |
| |
| |
| /* Free memory associated with MAP. */ |
| |
| void |
| delete_var_map (var_map map) |
| { |
| var_map_base_fini (map); |
| free (map->partition_to_var); |
| partition_delete (map->var_partition); |
| if (map->partition_to_view) |
| free (map->partition_to_view); |
| if (map->view_to_partition) |
| free (map->view_to_partition); |
| free (map); |
| } |
| |
| |
| /* This function will combine the partitions in MAP for VAR1 and VAR2. It |
| Returns the partition which represents the new partition. If the two |
| partitions cannot be combined, NO_PARTITION is returned. */ |
| |
| int |
| var_union (var_map map, tree var1, tree var2) |
| { |
| int p1, p2, p3; |
| tree root_var = NULL_TREE; |
| tree other_var = NULL_TREE; |
| |
| /* This is independent of partition_to_view. If partition_to_view is |
| on, then whichever one of these partitions is absorbed will never have a |
| dereference into the partition_to_view array any more. */ |
| |
| if (TREE_CODE (var1) == SSA_NAME) |
| p1 = partition_find (map->var_partition, SSA_NAME_VERSION (var1)); |
| else |
| { |
| p1 = var_to_partition (map, var1); |
| if (map->view_to_partition) |
| p1 = map->view_to_partition[p1]; |
| root_var = var1; |
| } |
| |
| if (TREE_CODE (var2) == SSA_NAME) |
| p2 = partition_find (map->var_partition, SSA_NAME_VERSION (var2)); |
| else |
| { |
| p2 = var_to_partition (map, var2); |
| if (map->view_to_partition) |
| p2 = map->view_to_partition[p2]; |
| |
| /* If there is no root_var set, or it's not a user variable, set the |
| root_var to this one. */ |
| if (!root_var || (DECL_P (root_var) && DECL_IGNORED_P (root_var))) |
| { |
| other_var = root_var; |
| root_var = var2; |
| } |
| else |
| other_var = var2; |
| } |
| |
| gcc_assert (p1 != NO_PARTITION); |
| gcc_assert (p2 != NO_PARTITION); |
| |
| if (p1 == p2) |
| p3 = p1; |
| else |
| p3 = partition_union (map->var_partition, p1, p2); |
| |
| if (map->partition_to_view) |
| p3 = map->partition_to_view[p3]; |
| |
| if (root_var) |
| change_partition_var (map, root_var, p3); |
| if (other_var) |
| change_partition_var (map, other_var, p3); |
| |
| return p3; |
| } |
| |
| |
| /* Compress the partition numbers in MAP such that they fall in the range |
| 0..(num_partitions-1) instead of wherever they turned out during |
| the partitioning exercise. This removes any references to unused |
| partitions, thereby allowing bitmaps and other vectors to be much |
| denser. |
| |
| This is implemented such that compaction doesn't affect partitioning. |
| Ie., once partitions are created and possibly merged, running one |
| or more different kind of compaction will not affect the partitions |
| themselves. Their index might change, but all the same variables will |
| still be members of the same partition group. This allows work on reduced |
| sets, and no loss of information when a larger set is later desired. |
| |
| In particular, coalescing can work on partitions which have 2 or more |
| definitions, and then 'recompact' later to include all the single |
| definitions for assignment to program variables. */ |
| |
| |
| /* Set MAP back to the initial state of having no partition view. Return a |
| bitmap which has a bit set for each partition number which is in use in the |
| varmap. */ |
| |
| static bitmap |
| partition_view_init (var_map map) |
| { |
| bitmap used; |
| int tmp; |
| unsigned int x; |
| |
| used = BITMAP_ALLOC (NULL); |
| |
| /* Already in a view? Abandon the old one. */ |
| if (map->partition_to_view) |
| { |
| free (map->partition_to_view); |
| map->partition_to_view = NULL; |
| } |
| if (map->view_to_partition) |
| { |
| free (map->view_to_partition); |
| map->view_to_partition = NULL; |
| } |
| |
| /* Find out which partitions are actually referenced. */ |
| for (x = 0; x < map->partition_size; x++) |
| { |
| tmp = partition_find (map->var_partition, x); |
| if (map->partition_to_var[tmp] != NULL_TREE && !bitmap_bit_p (used, tmp)) |
| bitmap_set_bit (used, tmp); |
| } |
| |
| map->num_partitions = map->partition_size; |
| return used; |
| } |
| |
| |
| /* This routine will finalize the view data for MAP based on the partitions |
| set in SELECTED. This is either the same bitmap returned from |
| partition_view_init, or a trimmed down version if some of those partitions |
| were not desired in this view. SELECTED is freed before returning. */ |
| |
| static void |
| partition_view_fini (var_map map, bitmap selected) |
| { |
| bitmap_iterator bi; |
| unsigned count, i, x, limit; |
| tree var; |
| |
| gcc_assert (selected); |
| |
| count = bitmap_count_bits (selected); |
| limit = map->partition_size; |
| |
| /* If its a one-to-one ratio, we don't need any view compaction. */ |
| if (count < limit) |
| { |
| map->partition_to_view = (int *)xmalloc (limit * sizeof (int)); |
| memset (map->partition_to_view, 0xff, (limit * sizeof (int))); |
| map->view_to_partition = (int *)xmalloc (count * sizeof (int)); |
| |
| i = 0; |
| /* Give each selected partition an index. */ |
| EXECUTE_IF_SET_IN_BITMAP (selected, 0, x, bi) |
| { |
| map->partition_to_view[x] = i; |
| map->view_to_partition[i] = x; |
| var = map->partition_to_var[x]; |
| /* If any one of the members of a partition is not an SSA_NAME, make |
| sure it is the representative. */ |
| if (TREE_CODE (var) != SSA_NAME) |
| change_partition_var (map, var, i); |
| i++; |
| } |
| gcc_assert (i == count); |
| map->num_partitions = i; |
| } |
| |
| BITMAP_FREE (selected); |
| } |
| |
| |
| /* Create a partition view which includes all the used partitions in MAP. If |
| WANT_BASES is true, create the base variable map as well. */ |
| |
| extern void |
| partition_view_normal (var_map map, bool want_bases) |
| { |
| bitmap used; |
| |
| used = partition_view_init (map); |
| partition_view_fini (map, used); |
| |
| if (want_bases) |
| var_map_base_init (map); |
| else |
| var_map_base_fini (map); |
| } |
| |
| |
| /* Create a partition view in MAP which includes just partitions which occur in |
| the bitmap ONLY. If WANT_BASES is true, create the base variable map |
| as well. */ |
| |
| extern void |
| partition_view_bitmap (var_map map, bitmap only, bool want_bases) |
| { |
| bitmap used; |
| bitmap new_partitions = BITMAP_ALLOC (NULL); |
| unsigned x, p; |
| bitmap_iterator bi; |
| |
| used = partition_view_init (map); |
| EXECUTE_IF_SET_IN_BITMAP (only, 0, x, bi) |
| { |
| p = partition_find (map->var_partition, x); |
| gcc_assert (bitmap_bit_p (used, p)); |
| bitmap_set_bit (new_partitions, p); |
| } |
| partition_view_fini (map, new_partitions); |
| |
| BITMAP_FREE (used); |
| if (want_bases) |
| var_map_base_init (map); |
| else |
| var_map_base_fini (map); |
| } |
| |
| |
| /* This function is used to change the representative variable in MAP for VAR's |
| partition to a regular non-ssa variable. This allows partitions to be |
| mapped back to real variables. */ |
| |
| void |
| change_partition_var (var_map map, tree var, int part) |
| { |
| var_ann_t ann; |
| |
| gcc_assert (TREE_CODE (var) != SSA_NAME); |
| |
| ann = var_ann (var); |
| ann->out_of_ssa_tag = 1; |
| VAR_ANN_PARTITION (ann) = part; |
| if (map->view_to_partition) |
| map->partition_to_var[map->view_to_partition[part]] = var; |
| } |
| |
| |
| static inline void mark_all_vars_used (tree *, void *data); |
| |
| /* Helper function for mark_all_vars_used, called via walk_tree. */ |
| |
| static tree |
| mark_all_vars_used_1 (tree *tp, int *walk_subtrees, void *data) |
| { |
| tree t = *tp; |
| enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t)); |
| tree b; |
| |
| if (TREE_CODE (t) == SSA_NAME) |
| t = SSA_NAME_VAR (t); |
| |
| if (IS_EXPR_CODE_CLASS (c) |
| && (b = TREE_BLOCK (t)) != NULL) |
| TREE_USED (b) = true; |
| |
| /* Ignore TREE_ORIGINAL for TARGET_MEM_REFS, as well as other |
| fields that do not contain vars. */ |
| if (TREE_CODE (t) == TARGET_MEM_REF) |
| { |
| mark_all_vars_used (&TMR_SYMBOL (t), data); |
| mark_all_vars_used (&TMR_BASE (t), data); |
| mark_all_vars_used (&TMR_INDEX (t), data); |
| *walk_subtrees = 0; |
| return NULL; |
| } |
| |
| /* Only need to mark VAR_DECLS; parameters and return results are not |
| eliminated as unused. */ |
| if (TREE_CODE (t) == VAR_DECL) |
| { |
| if (data != NULL && bitmap_bit_p ((bitmap) data, DECL_UID (t))) |
| { |
| bitmap_clear_bit ((bitmap) data, DECL_UID (t)); |
| mark_all_vars_used (&DECL_INITIAL (t), data); |
| } |
| set_is_used (t); |
| } |
| |
| if (IS_TYPE_OR_DECL_P (t)) |
| *walk_subtrees = 0; |
| |
| return NULL; |
| } |
| |
| /* Mark the scope block SCOPE and its subblocks unused when they can be |
| possibly eliminated if dead. */ |
| |
| static void |
| mark_scope_block_unused (tree scope) |
| { |
| tree t; |
| TREE_USED (scope) = false; |
| if (!(*debug_hooks->ignore_block) (scope)) |
| TREE_USED (scope) = true; |
| for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t)) |
| mark_scope_block_unused (t); |
| } |
| |
| /* Look if the block is dead (by possibly eliminating its dead subblocks) |
| and return true if so. |
| Block is declared dead if: |
| 1) No statements are associated with it. |
| 2) Declares no live variables |
| 3) All subblocks are dead |
| or there is precisely one subblocks and the block |
| has same abstract origin as outer block and declares |
| no variables, so it is pure wrapper. |
| When we are not outputting full debug info, we also eliminate dead variables |
| out of scope blocks to let them to be recycled by GGC and to save copying work |
| done by the inliner. */ |
| |
| static bool |
| remove_unused_scope_block_p (tree scope) |
| { |
| tree *t, *next; |
| bool unused = !TREE_USED (scope); |
| var_ann_t ann; |
| int nsubblocks = 0; |
| |
| for (t = &BLOCK_VARS (scope); *t; t = next) |
| { |
| next = &TREE_CHAIN (*t); |
| |
| /* Debug info of nested function refers to the block of the |
| function. We might stil call it even if all statements |
| of function it was nested into was elliminated. |
| |
| TODO: We can actually look into cgraph to see if function |
| will be output to file. */ |
| if (TREE_CODE (*t) == FUNCTION_DECL) |
| unused = false; |
| /* Remove everything we don't generate debug info for. */ |
| else if (DECL_IGNORED_P (*t)) |
| { |
| *t = TREE_CHAIN (*t); |
| next = t; |
| } |
| |
| /* When we are outputting debug info, we usually want to output |
| info about optimized-out variables in the scope blocks. |
| Exception are the scope blocks not containing any instructions |
| at all so user can't get into the scopes at first place. */ |
| else if ((ann = var_ann (*t)) != NULL |
| && ann->used) |
| unused = false; |
| |
| /* When we are not doing full debug info, we however can keep around |
| only the used variables for cfgexpand's memory packing saving quite |
| a lot of memory. |
| |
| For sake of -g3, we keep around those vars but we don't count this as |
| use of block, so innermost block with no used vars and no instructions |
| can be considered dead. We only want to keep around blocks user can |
| breakpoint into and ask about value of optimized out variables. |
| |
| Similarly we need to keep around types at least until all variables of |
| all nested blocks are gone. We track no information on whether given |
| type is used or not. */ |
| |
| else if (debug_info_level == DINFO_LEVEL_NORMAL |
| || debug_info_level == DINFO_LEVEL_VERBOSE |
| /* Removing declarations before inlining is going to affect |
| DECL_UID that in turn is going to affect hashtables and |
| code generation. */ |
| || !cfun->after_inlining) |
| ; |
| else |
| { |
| *t = TREE_CHAIN (*t); |
| next = t; |
| } |
| } |
| |
| for (t = &BLOCK_SUBBLOCKS (scope); *t ;) |
| if (remove_unused_scope_block_p (*t)) |
| { |
| if (BLOCK_SUBBLOCKS (*t)) |
| { |
| tree next = BLOCK_CHAIN (*t); |
| tree supercontext = BLOCK_SUPERCONTEXT (*t); |
| |
| *t = BLOCK_SUBBLOCKS (*t); |
| while (BLOCK_CHAIN (*t)) |
| { |
| BLOCK_SUPERCONTEXT (*t) = supercontext; |
| t = &BLOCK_CHAIN (*t); |
| } |
| BLOCK_CHAIN (*t) = next; |
| BLOCK_SUPERCONTEXT (*t) = supercontext; |
| t = &BLOCK_CHAIN (*t); |
| nsubblocks ++; |
| } |
| else |
| *t = BLOCK_CHAIN (*t); |
| } |
| else |
| { |
| t = &BLOCK_CHAIN (*t); |
| nsubblocks ++; |
| } |
| |
| |
| if (!unused) |
| ; |
| /* Outer scope is always used. */ |
| else if (!BLOCK_SUPERCONTEXT (scope) |
| || TREE_CODE (BLOCK_SUPERCONTEXT (scope)) == FUNCTION_DECL) |
| unused = false; |
| /* Innermost blocks with no live variables nor statements can be always |
| eliminated. */ |
| else if (!nsubblocks) |
| ; |
| /* If there are live subblocks and we still have some unused variables |
| or types declared, we must keep them. |
| Before inliing we must not depend on debug info verbosity to keep |
| DECL_UIDs stable. */ |
| else if (!cfun->after_inlining && BLOCK_VARS (scope)) |
| unused = false; |
| /* For terse debug info we can eliminate info on unused variables. */ |
| else if (debug_info_level == DINFO_LEVEL_NONE |
| || debug_info_level == DINFO_LEVEL_TERSE) |
| { |
| /* Even for -g0/-g1 don't prune outer scopes from artificial |
| functions, otherwise diagnostics using tree_nonartificial_location |
| will not be emitted properly. */ |
| if (inlined_function_outer_scope_p (scope)) |
| { |
| tree ao = scope; |
| |
| while (ao |
| && TREE_CODE (ao) == BLOCK |
| && BLOCK_ABSTRACT_ORIGIN (ao) != ao) |
| ao = BLOCK_ABSTRACT_ORIGIN (ao); |
| if (ao |
| && TREE_CODE (ao) == FUNCTION_DECL |
| && DECL_DECLARED_INLINE_P (ao) |
| && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao))) |
| unused = false; |
| } |
| } |
| else if (BLOCK_VARS (scope) || BLOCK_NUM_NONLOCALIZED_VARS (scope)) |
| unused = false; |
| /* See if this block is important for representation of inlined function. |
| Inlined functions are always represented by block with |
| block_ultimate_origin being set to FUNCTION_DECL and DECL_SOURCE_LOCATION |
| set... */ |
| else if (inlined_function_outer_scope_p (scope)) |
| unused = false; |
| else |
| /* Verfify that only blocks with source location set |
| are entry points to the inlined functions. */ |
| gcc_assert (BLOCK_SOURCE_LOCATION (scope) == UNKNOWN_LOCATION); |
| |
| TREE_USED (scope) = !unused; |
| return unused; |
| } |
| |
| /* Mark all VAR_DECLS under *EXPR_P as used, so that they won't be |
| eliminated during the tree->rtl conversion process. */ |
| |
| static inline void |
| mark_all_vars_used (tree *expr_p, void *data) |
| { |
| walk_tree (expr_p, mark_all_vars_used_1, data, NULL); |
| } |
| |
| /* Dump scope blocks. */ |
| |
| static void |
| dump_scope_block (FILE *file, int indent, tree scope, int flags) |
| { |
| tree var, t; |
| unsigned int i; |
| |
| fprintf (file, "\n%*s{ Scope block #%i%s%s",indent, "" , BLOCK_NUMBER (scope), |
| TREE_USED (scope) ? "" : " (unused)", |
| BLOCK_ABSTRACT (scope) ? " (abstract)": ""); |
| if (BLOCK_SOURCE_LOCATION (scope) != UNKNOWN_LOCATION) |
| { |
| expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (scope)); |
| fprintf (file, " %s:%i", s.file, s.line); |
| } |
| if (BLOCK_ABSTRACT_ORIGIN (scope)) |
| { |
| tree origin = block_ultimate_origin (scope); |
| if (origin) |
| { |
| fprintf (file, " Originating from :"); |
| if (DECL_P (origin)) |
| print_generic_decl (file, origin, flags); |
| else |
| fprintf (file, "#%i", BLOCK_NUMBER (origin)); |
| } |
| } |
| fprintf (file, " \n"); |
| for (var = BLOCK_VARS (scope); var; var = TREE_CHAIN (var)) |
| { |
| bool used = false; |
| var_ann_t ann; |
| |
| if ((ann = var_ann (var)) |
| && ann->used) |
| used = true; |
| |
| fprintf (file, "%*s",indent, ""); |
| print_generic_decl (file, var, flags); |
| fprintf (file, "%s\n", used ? "" : " (unused)"); |
| } |
| for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (scope); i++) |
| { |
| fprintf (file, "%*s",indent, ""); |
| print_generic_decl (file, BLOCK_NONLOCALIZED_VAR (scope, i), |
| flags); |
| fprintf (file, " (nonlocalized)\n"); |
| } |
| for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t)) |
| dump_scope_block (file, indent + 2, t, flags); |
| fprintf (file, "\n%*s}\n",indent, ""); |
| } |
| |
| void |
| dump_scope_blocks (FILE *file, int flags) |
| { |
| dump_scope_block (file, 0, DECL_INITIAL (current_function_decl), flags); |
| } |
| |
| /* Remove local variables that are not referenced in the IL. */ |
| |
| void |
| remove_unused_locals (void) |
| { |
| basic_block bb; |
| tree t, *cell; |
| referenced_var_iterator rvi; |
| var_ann_t ann; |
| bitmap global_unused_vars = NULL; |
| |
| /* Removing declarations from lexical blocks when not optimizing is |
| not only a waste of time, it actually causes differences in stack |
| layout. */ |
| if (!optimize) |
| return; |
| |
| mark_scope_block_unused (DECL_INITIAL (current_function_decl)); |
| |
| /* Assume all locals are unused. */ |
| FOR_EACH_REFERENCED_VAR (t, rvi) |
| var_ann (t)->used = false; |
| |
| /* Walk the CFG marking all referenced symbols. */ |
| FOR_EACH_BB (bb) |
| { |
| gimple_stmt_iterator gsi; |
| size_t i; |
| edge_iterator ei; |
| edge e; |
| |
| /* Walk the statements. */ |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| gimple stmt = gsi_stmt (gsi); |
| tree b = gimple_block (stmt); |
| |
| if (b) |
| TREE_USED (b) = true; |
| |
| for (i = 0; i < gimple_num_ops (stmt); i++) |
| mark_all_vars_used (gimple_op_ptr (gsi_stmt (gsi), i), NULL); |
| } |
| |
| for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| use_operand_p arg_p; |
| ssa_op_iter i; |
| tree def; |
| gimple phi = gsi_stmt (gsi); |
| |
| /* No point processing globals. */ |
| if (is_global_var (SSA_NAME_VAR (gimple_phi_result (phi)))) |
| continue; |
| |
| def = gimple_phi_result (phi); |
| mark_all_vars_used (&def, NULL); |
| |
| FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_ALL_USES) |
| { |
| tree arg = USE_FROM_PTR (arg_p); |
| mark_all_vars_used (&arg, NULL); |
| } |
| } |
| |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| if (e->goto_locus) |
| TREE_USED (e->goto_block) = true; |
| } |
| |
| cfun->has_local_explicit_reg_vars = false; |
| |
| /* Remove unmarked local vars from local_decls. */ |
| for (cell = &cfun->local_decls; *cell; ) |
| { |
| tree var = TREE_VALUE (*cell); |
| |
| if (TREE_CODE (var) != FUNCTION_DECL |
| && (!(ann = var_ann (var)) |
| || !ann->used)) |
| { |
| if (is_global_var (var)) |
| { |
| if (global_unused_vars == NULL) |
| global_unused_vars = BITMAP_ALLOC (NULL); |
| bitmap_set_bit (global_unused_vars, DECL_UID (var)); |
| } |
| else |
| { |
| *cell = TREE_CHAIN (*cell); |
| continue; |
| } |
| } |
| else if (TREE_CODE (var) == VAR_DECL |
| && DECL_HARD_REGISTER (var) |
| && !is_global_var (var)) |
| cfun->has_local_explicit_reg_vars = true; |
| cell = &TREE_CHAIN (*cell); |
| } |
| |
| /* Remove unmarked global vars from local_decls. */ |
| if (global_unused_vars != NULL) |
| { |
| for (t = cfun->local_decls; t; t = TREE_CHAIN (t)) |
| { |
| tree var = TREE_VALUE (t); |
| |
| if (TREE_CODE (var) == VAR_DECL |
| && is_global_var (var) |
| && (ann = var_ann (var)) != NULL |
| && ann->used) |
| mark_all_vars_used (&DECL_INITIAL (var), global_unused_vars); |
| } |
| |
| for (cell = &cfun->local_decls; *cell; ) |
| { |
| tree var = TREE_VALUE (*cell); |
| |
| if (TREE_CODE (var) == VAR_DECL |
| && is_global_var (var) |
| && bitmap_bit_p (global_unused_vars, DECL_UID (var))) |
| *cell = TREE_CHAIN (*cell); |
| else |
| cell = &TREE_CHAIN (*cell); |
| } |
| BITMAP_FREE (global_unused_vars); |
| } |
| |
| /* Remove unused variables from REFERENCED_VARs. As a special |
| exception keep the variables that are believed to be aliased. |
| Those can't be easily removed from the alias sets and operand |
| caches. They will be removed shortly after the next may_alias |
| pass is performed. */ |
| FOR_EACH_REFERENCED_VAR (t, rvi) |
| if (!is_global_var (t) |
| && !MTAG_P (t) |
| && TREE_CODE (t) != PARM_DECL |
| && TREE_CODE (t) != RESULT_DECL |
| && !(ann = var_ann (t))->used |
| && !ann->symbol_mem_tag |
| && !TREE_ADDRESSABLE (t)) |
| remove_referenced_var (t); |
| remove_unused_scope_block_p (DECL_INITIAL (current_function_decl)); |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Scope blocks after cleanups:\n"); |
| dump_scope_blocks (dump_file, dump_flags); |
| } |
| } |
| |
| |
| /* Allocate and return a new live range information object base on MAP. */ |
| |
| static tree_live_info_p |
| new_tree_live_info (var_map map) |
| { |
| tree_live_info_p live; |
| unsigned x; |
| |
| live = (tree_live_info_p) xmalloc (sizeof (struct tree_live_info_d)); |
| live->map = map; |
| live->num_blocks = last_basic_block; |
| |
| live->livein = (bitmap *)xmalloc (last_basic_block * sizeof (bitmap)); |
| for (x = 0; x < (unsigned)last_basic_block; x++) |
| live->livein[x] = BITMAP_ALLOC (NULL); |
| |
| live->liveout = (bitmap *)xmalloc (last_basic_block * sizeof (bitmap)); |
| for (x = 0; x < (unsigned)last_basic_block; x++) |
| live->liveout[x] = BITMAP_ALLOC (NULL); |
| |
| live->work_stack = XNEWVEC (int, last_basic_block); |
| live->stack_top = live->work_stack; |
| |
| live->global = BITMAP_ALLOC (NULL); |
| return live; |
| } |
| |
| |
| /* Free storage for live range info object LIVE. */ |
| |
| void |
| delete_tree_live_info (tree_live_info_p live) |
| { |
| int x; |
| |
| BITMAP_FREE (live->global); |
| free (live->work_stack); |
| |
| for (x = live->num_blocks - 1; x >= 0; x--) |
| BITMAP_FREE (live->liveout[x]); |
| free (live->liveout); |
| |
| for (x = live->num_blocks - 1; x >= 0; x--) |
| BITMAP_FREE (live->livein[x]); |
| free (live->livein); |
| |
| free (live); |
| } |
| |
| |
| /* Visit basic block BB and propagate any required live on entry bits from |
| LIVE into the predecessors. VISITED is the bitmap of visited blocks. |
| TMP is a temporary work bitmap which is passed in to avoid reallocating |
| it each time. */ |
| |
| static void |
| loe_visit_block (tree_live_info_p live, basic_block bb, sbitmap visited, |
| bitmap tmp) |
| { |
| edge e; |
| bool change; |
| edge_iterator ei; |
| basic_block pred_bb; |
| bitmap loe; |
| gcc_assert (!TEST_BIT (visited, bb->index)); |
| |
| SET_BIT (visited, bb->index); |
| loe = live_on_entry (live, bb); |
| |
| FOR_EACH_EDGE (e, ei, bb->preds) |
| { |
| pred_bb = e->src; |
| if (pred_bb == ENTRY_BLOCK_PTR) |
| continue; |
| /* TMP is variables live-on-entry from BB that aren't defined in the |
| predecessor block. This should be the live on entry vars to pred. |
| Note that liveout is the DEFs in a block while live on entry is |
| being calculated. */ |
| bitmap_and_compl (tmp, loe, live->liveout[pred_bb->index]); |
| |
| /* Add these bits to live-on-entry for the pred. if there are any |
| changes, and pred_bb has been visited already, add it to the |
| revisit stack. */ |
| change = bitmap_ior_into (live_on_entry (live, pred_bb), tmp); |
| if (TEST_BIT (visited, pred_bb->index) && change) |
| { |
| RESET_BIT (visited, pred_bb->index); |
| *(live->stack_top)++ = pred_bb->index; |
| } |
| } |
| } |
| |
| |
| /* Using LIVE, fill in all the live-on-entry blocks between the defs and uses |
| of all the variables. */ |
| |
| static void |
| live_worklist (tree_live_info_p live) |
| { |
| unsigned b; |
| basic_block bb; |
| sbitmap visited = sbitmap_alloc (last_basic_block + 1); |
| bitmap tmp = BITMAP_ALLOC (NULL); |
| |
| sbitmap_zero (visited); |
| |
| /* Visit all the blocks in reverse order and propagate live on entry values |
| into the predecessors blocks. */ |
| FOR_EACH_BB_REVERSE (bb) |
| loe_visit_block (live, bb, visited, tmp); |
| |
| /* Process any blocks which require further iteration. */ |
| while (live->stack_top != live->work_stack) |
| { |
| b = *--(live->stack_top); |
| loe_visit_block (live, BASIC_BLOCK (b), visited, tmp); |
| } |
| |
| BITMAP_FREE (tmp); |
| sbitmap_free (visited); |
| } |
| |
| |
| /* Calculate the initial live on entry vector for SSA_NAME using immediate_use |
| links. Set the live on entry fields in LIVE. Def's are marked temporarily |
| in the liveout vector. */ |
| |
| static void |
| set_var_live_on_entry (tree ssa_name, tree_live_info_p live) |
| { |
| int p; |
| gimple stmt; |
| use_operand_p use; |
| basic_block def_bb = NULL; |
| imm_use_iterator imm_iter; |
| bool global = false; |
| |
| p = var_to_partition (live->map, ssa_name); |
| if (p == NO_PARTITION) |
| return; |
| |
| stmt = SSA_NAME_DEF_STMT (ssa_name); |
| if (stmt) |
| { |
| def_bb = gimple_bb (stmt); |
| /* Mark defs in liveout bitmap temporarily. */ |
| if (def_bb) |
| bitmap_set_bit (live->liveout[def_bb->index], p); |
| } |
| else |
| def_bb = ENTRY_BLOCK_PTR; |
| |
| /* Visit each use of SSA_NAME and if it isn't in the same block as the def, |
| add it to the list of live on entry blocks. */ |
| FOR_EACH_IMM_USE_FAST (use, imm_iter, ssa_name) |
| { |
| gimple use_stmt = USE_STMT (use); |
| basic_block add_block = NULL; |
| |
| if (gimple_code (use_stmt) == GIMPLE_PHI) |
| { |
| /* Uses in PHI's are considered to be live at exit of the SRC block |
| as this is where a copy would be inserted. Check to see if it is |
| defined in that block, or whether its live on entry. */ |
| int index = PHI_ARG_INDEX_FROM_USE (use); |
| edge e = gimple_phi_arg_edge (use_stmt, index); |
| if (e->src != ENTRY_BLOCK_PTR) |
| { |
| if (e->src != def_bb) |
| add_block = e->src; |
| } |
| } |
| else |
| { |
| /* If its not defined in this block, its live on entry. */ |
| basic_block use_bb = gimple_bb (use_stmt); |
| if (use_bb != def_bb) |
| add_block = use_bb; |
| } |
| |
| /* If there was a live on entry use, set the bit. */ |
| if (add_block) |
| { |
| global = true; |
| bitmap_set_bit (live->livein[add_block->index], p); |
| } |
| } |
| |
| /* If SSA_NAME is live on entry to at least one block, fill in all the live |
| on entry blocks between the def and all the uses. */ |
| if (global) |
| bitmap_set_bit (live->global, p); |
| } |
| |
| |
| /* Calculate the live on exit vectors based on the entry info in LIVEINFO. */ |
| |
| void |
| calculate_live_on_exit (tree_live_info_p liveinfo) |
| { |
| basic_block bb; |
| edge e; |
| edge_iterator ei; |
| |
| /* live on entry calculations used liveout vectors for defs, clear them. */ |
| FOR_EACH_BB (bb) |
| bitmap_clear (liveinfo->liveout[bb->index]); |
| |
| /* Set all the live-on-exit bits for uses in PHIs. */ |
| FOR_EACH_BB (bb) |
| { |
| gimple_stmt_iterator gsi; |
| size_t i; |
| |
| /* Mark the PHI arguments which are live on exit to the pred block. */ |
| for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| gimple phi = gsi_stmt (gsi); |
| for (i = 0; i < gimple_phi_num_args (phi); i++) |
| { |
| tree t = PHI_ARG_DEF (phi, i); |
| int p; |
| |
| if (TREE_CODE (t) != SSA_NAME) |
| continue; |
| |
| p = var_to_partition (liveinfo->map, t); |
| if (p == NO_PARTITION) |
| continue; |
| e = gimple_phi_arg_edge (phi, i); |
| if (e->src != ENTRY_BLOCK_PTR) |
| bitmap_set_bit (liveinfo->liveout[e->src->index], p); |
| } |
| } |
| |
| /* Add each successors live on entry to this bock live on exit. */ |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| if (e->dest != EXIT_BLOCK_PTR) |
| bitmap_ior_into (liveinfo->liveout[bb->index], |
| live_on_entry (liveinfo, e->dest)); |
| } |
| } |
| |
| |
| /* Given partition map MAP, calculate all the live on entry bitmaps for |
| each partition. Return a new live info object. */ |
| |
| tree_live_info_p |
| calculate_live_ranges (var_map map) |
| { |
| tree var; |
| unsigned i; |
| tree_live_info_p live; |
| |
| live = new_tree_live_info (map); |
| for (i = 0; i < num_var_partitions (map); i++) |
| { |
| var = partition_to_var (map, i); |
| if (var != NULL_TREE) |
| set_var_live_on_entry (var, live); |
| } |
| |
| live_worklist (live); |
| |
| #ifdef ENABLE_CHECKING |
| verify_live_on_entry (live); |
| #endif |
| |
| calculate_live_on_exit (live); |
| return live; |
| } |
| |
| |
| /* Output partition map MAP to file F. */ |
| |
| void |
| dump_var_map (FILE *f, var_map map) |
| { |
| int t; |
| unsigned x, y; |
| int p; |
| |
| fprintf (f, "\nPartition map \n\n"); |
| |
| for (x = 0; x < map->num_partitions; x++) |
| { |
| if (map->view_to_partition != NULL) |
| p = map->view_to_partition[x]; |
| else |
| p = x; |
| |
| if (map->partition_to_var[p] == NULL_TREE) |
| continue; |
| |
| t = 0; |
| for (y = 1; y < num_ssa_names; y++) |
| { |
| p = partition_find (map->var_partition, y); |
| if (map->partition_to_view) |
| p = map->partition_to_view[p]; |
| if (p == (int)x) |
| { |
| if (t++ == 0) |
| { |
| fprintf(f, "Partition %d (", x); |
| print_generic_expr (f, partition_to_var (map, p), TDF_SLIM); |
| fprintf (f, " - "); |
| } |
| fprintf (f, "%d ", y); |
| } |
| } |
| if (t != 0) |
| fprintf (f, ")\n"); |
| } |
| fprintf (f, "\n"); |
| } |
| |
| |
| /* Output live range info LIVE to file F, controlled by FLAG. */ |
| |
| void |
| dump_live_info (FILE *f, tree_live_info_p live, int flag) |
| { |
| basic_block bb; |
| unsigned i; |
| var_map map = live->map; |
| bitmap_iterator bi; |
| |
| if ((flag & LIVEDUMP_ENTRY) && live->livein) |
| { |
| FOR_EACH_BB (bb) |
| { |
| fprintf (f, "\nLive on entry to BB%d : ", bb->index); |
| EXECUTE_IF_SET_IN_BITMAP (live->livein[bb->index], 0, i, bi) |
| { |
| print_generic_expr (f, partition_to_var (map, i), TDF_SLIM); |
| fprintf (f, " "); |
| } |
| fprintf (f, "\n"); |
| } |
| } |
| |
| if ((flag & LIVEDUMP_EXIT) && live->liveout) |
| { |
| FOR_EACH_BB (bb) |
| { |
| fprintf (f, "\nLive on exit from BB%d : ", bb->index); |
| EXECUTE_IF_SET_IN_BITMAP (live->liveout[bb->index], 0, i, bi) |
| { |
| print_generic_expr (f, partition_to_var (map, i), TDF_SLIM); |
| fprintf (f, " "); |
| } |
| fprintf (f, "\n"); |
| } |
| } |
| } |
| |
| |
| #ifdef ENABLE_CHECKING |
| /* Verify that SSA_VAR is a non-virtual SSA_NAME. */ |
| |
| void |
| register_ssa_partition_check (tree ssa_var) |
| { |
| gcc_assert (TREE_CODE (ssa_var) == SSA_NAME); |
| if (!is_gimple_reg (SSA_NAME_VAR (ssa_var))) |
| { |
| fprintf (stderr, "Illegally registering a virtual SSA name :"); |
| print_generic_expr (stderr, ssa_var, TDF_SLIM); |
| fprintf (stderr, " in the SSA->Normal phase.\n"); |
| internal_error ("SSA corruption"); |
| } |
| } |
| |
| |
| /* Verify that the info in LIVE matches the current cfg. */ |
| |
| static void |
| verify_live_on_entry (tree_live_info_p live) |
| { |
| unsigned i; |
| tree var; |
| gimple stmt; |
| basic_block bb; |
| edge e; |
| int num; |
| edge_iterator ei; |
| var_map map = live->map; |
| |
| /* Check for live on entry partitions and report those with a DEF in |
| the program. This will typically mean an optimization has done |
| something wrong. */ |
| bb = ENTRY_BLOCK_PTR; |
| num = 0; |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| { |
| int entry_block = e->dest->index; |
| if (e->dest == EXIT_BLOCK_PTR) |
| continue; |
| for (i = 0; i < (unsigned)num_var_partitions (map); i++) |
| { |
| basic_block tmp; |
| tree d; |
| bitmap loe; |
| var = partition_to_var (map, i); |
| stmt = SSA_NAME_DEF_STMT (var); |
| tmp = gimple_bb (stmt); |
| d = gimple_default_def (cfun, SSA_NAME_VAR (var)); |
| |
| loe = live_on_entry (live, e->dest); |
| if (loe && bitmap_bit_p (loe, i)) |
| { |
| if (!gimple_nop_p (stmt)) |
| { |
| num++; |
| print_generic_expr (stderr, var, TDF_SLIM); |
| fprintf (stderr, " is defined "); |
| if (tmp) |
| fprintf (stderr, " in BB%d, ", tmp->index); |
| fprintf (stderr, "by:\n"); |
| print_gimple_stmt (stderr, stmt, 0, TDF_SLIM); |
| fprintf (stderr, "\nIt is also live-on-entry to entry BB %d", |
| entry_block); |
| fprintf (stderr, " So it appears to have multiple defs.\n"); |
| } |
| else |
| { |
| if (d != var) |
| { |
| num++; |
| print_generic_expr (stderr, var, TDF_SLIM); |
| fprintf (stderr, " is live-on-entry to BB%d ", |
| entry_block); |
| if (d) |
| { |
| fprintf (stderr, " but is not the default def of "); |
| print_generic_expr (stderr, d, TDF_SLIM); |
| fprintf (stderr, "\n"); |
| } |
| else |
| fprintf (stderr, " and there is no default def.\n"); |
| } |
| } |
| } |
| else |
| if (d == var) |
| { |
| /* The only way this var shouldn't be marked live on entry is |
| if it occurs in a PHI argument of the block. */ |
| size_t z; |
| bool ok = false; |
| gimple_stmt_iterator gsi; |
| for (gsi = gsi_start_phis (e->dest); |
| !gsi_end_p (gsi) && !ok; |
| gsi_next (&gsi)) |
| { |
| gimple phi = gsi_stmt (gsi); |
| for (z = 0; z < gimple_phi_num_args (phi); z++) |
| if (var == gimple_phi_arg_def (phi, z)) |
| { |
| ok = true; |
| break; |
| } |
| } |
| if (ok) |
| continue; |
| num++; |
| print_generic_expr (stderr, var, TDF_SLIM); |
| fprintf (stderr, " is not marked live-on-entry to entry BB%d ", |
| entry_block); |
| fprintf (stderr, "but it is a default def so it should be.\n"); |
| } |
| } |
| } |
| gcc_assert (num <= 0); |
| } |
| #endif |