| /* SSA operands management for trees. |
| Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 |
| Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| GCC is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| #include "tree.h" |
| #include "flags.h" |
| #include "function.h" |
| #include "diagnostic.h" |
| #include "tree-flow.h" |
| #include "tree-inline.h" |
| #include "tree-pass.h" |
| #include "ggc.h" |
| #include "timevar.h" |
| #include "toplev.h" |
| #include "langhooks.h" |
| #include "ipa-reference.h" |
| |
| /* This file contains the code required to manage the operands cache of the |
| SSA optimizer. For every stmt, we maintain an operand cache in the stmt |
| annotation. This cache contains operands that will be of interest to |
| optimizers and other passes wishing to manipulate the IL. |
| |
| The operand type are broken up into REAL and VIRTUAL operands. The real |
| operands are represented as pointers into the stmt's operand tree. Thus |
| any manipulation of the real operands will be reflected in the actual tree. |
| Virtual operands are represented solely in the cache, although the base |
| variable for the SSA_NAME may, or may not occur in the stmt's tree. |
| Manipulation of the virtual operands will not be reflected in the stmt tree. |
| |
| The routines in this file are concerned with creating this operand cache |
| from a stmt tree. |
| |
| The operand tree is the parsed by the various get_* routines which look |
| through the stmt tree for the occurrence of operands which may be of |
| interest, and calls are made to the append_* routines whenever one is |
| found. There are 4 of these routines, each representing one of the |
| 4 types of operands. Defs, Uses, Virtual Uses, and Virtual May Defs. |
| |
| The append_* routines check for duplication, and simply keep a list of |
| unique objects for each operand type in the build_* extendable vectors. |
| |
| Once the stmt tree is completely parsed, the finalize_ssa_operands() |
| routine is called, which proceeds to perform the finalization routine |
| on each of the 4 operand vectors which have been built up. |
| |
| If the stmt had a previous operand cache, the finalization routines |
| attempt to match up the new operands with the old ones. If it's a perfect |
| match, the old vector is simply reused. If it isn't a perfect match, then |
| a new vector is created and the new operands are placed there. For |
| virtual operands, if the previous cache had SSA_NAME version of a |
| variable, and that same variable occurs in the same operands cache, then |
| the new cache vector will also get the same SSA_NAME. |
| |
| i.e., if a stmt had a VUSE of 'a_5', and 'a' occurs in the new |
| operand vector for VUSE, then the new vector will also be modified |
| such that it contains 'a_5' rather than 'a'. */ |
| |
| /* Helper functions from gimple.c. These are GIMPLE manipulation |
| routines that only the operand scanner should need. */ |
| void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *); |
| void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *); |
| |
| /* Structure storing statistics on how many call clobbers we have, and |
| how many where avoided. */ |
| |
| static struct |
| { |
| /* Number of call-clobbered ops we attempt to add to calls in |
| add_call_clobbered_mem_symbols. */ |
| unsigned int clobbered_vars; |
| |
| /* Number of write-clobbers (VDEFs) avoided by using |
| not_written information. */ |
| unsigned int static_write_clobbers_avoided; |
| |
| /* Number of reads (VUSEs) avoided by using not_read information. */ |
| unsigned int static_read_clobbers_avoided; |
| |
| /* Number of write-clobbers avoided because the variable can't escape to |
| this call. */ |
| unsigned int unescapable_clobbers_avoided; |
| |
| /* Number of read-only uses we attempt to add to calls in |
| add_call_read_mem_symbols. */ |
| unsigned int readonly_clobbers; |
| |
| /* Number of read-only uses we avoid using not_read information. */ |
| unsigned int static_readonly_clobbers_avoided; |
| } clobber_stats; |
| |
| |
| /* Flags to describe operand properties in helpers. */ |
| |
| /* By default, operands are loaded. */ |
| #define opf_use 0 |
| |
| /* Operand is the target of an assignment expression or a |
| call-clobbered variable. */ |
| #define opf_def (1 << 0) |
| |
| /* No virtual operands should be created in the expression. This is used |
| when traversing ADDR_EXPR nodes which have different semantics than |
| other expressions. Inside an ADDR_EXPR node, the only operands that we |
| need to consider are indices into arrays. For instance, &a.b[i] should |
| generate a USE of 'i' but it should not generate a VUSE for 'a' nor a |
| VUSE for 'b'. */ |
| #define opf_no_vops (1 << 1) |
| |
| /* Operand is an implicit reference. This is used to distinguish |
| explicit assignments in the form of MODIFY_EXPR from |
| clobbering sites like function calls or ASM_EXPRs. */ |
| #define opf_implicit (1 << 2) |
| |
| /* Array for building all the def operands. */ |
| static VEC(tree,heap) *build_defs; |
| |
| /* Array for building all the use operands. */ |
| static VEC(tree,heap) *build_uses; |
| |
| /* Set for building all the VDEF operands. */ |
| static VEC(tree,heap) *build_vdefs; |
| |
| /* Set for building all the VUSE operands. */ |
| static VEC(tree,heap) *build_vuses; |
| |
| /* Bitmap obstack for our datastructures that needs to survive across |
| compilations of multiple functions. */ |
| static bitmap_obstack operands_bitmap_obstack; |
| |
| /* Set for building all the loaded symbols. */ |
| static bitmap build_loads; |
| |
| /* Set for building all the stored symbols. */ |
| static bitmap build_stores; |
| |
| static void get_expr_operands (gimple, tree *, int); |
| |
| /* Number of functions with initialized ssa_operands. */ |
| static int n_initialized = 0; |
| |
| /* Statement change buffer. Data structure used to record state |
| information for statements. This is used to determine what needs |
| to be done in order to update the SSA web after a statement is |
| modified by a pass. If STMT is a statement that has just been |
| created, or needs to be folded via fold_stmt, or anything that |
| changes its physical structure then the pass should: |
| |
| 1- Call push_stmt_changes (&stmt) to record the current state of |
| STMT before any modifications are made. |
| |
| 2- Make all appropriate modifications to the statement. |
| |
| 3- Call pop_stmt_changes (&stmt) to find new symbols that |
| need to be put in SSA form, SSA name mappings for names that |
| have disappeared, recompute invariantness for address |
| expressions, cleanup EH information, etc. |
| |
| If it is possible to determine that the statement was not modified, |
| instead of calling pop_stmt_changes it is quicker to call |
| discard_stmt_changes to avoid the expensive and unnecessary operand |
| re-scan and change comparison. */ |
| |
| struct scb_d |
| { |
| /* Pointer to the statement being modified. */ |
| gimple *stmt_p; |
| |
| /* If the statement references memory these are the sets of symbols |
| loaded and stored by the statement. */ |
| bitmap loads; |
| bitmap stores; |
| }; |
| |
| typedef struct scb_d *scb_t; |
| DEF_VEC_P(scb_t); |
| DEF_VEC_ALLOC_P(scb_t,heap); |
| |
| /* Stack of statement change buffers (SCB). Every call to |
| push_stmt_changes pushes a new buffer onto the stack. Calls to |
| pop_stmt_changes pop a buffer off of the stack and compute the set |
| of changes for the popped statement. */ |
| static VEC(scb_t,heap) *scb_stack; |
| |
| /* Return the DECL_UID of the base variable of T. */ |
| |
| static inline unsigned |
| get_name_decl (const_tree t) |
| { |
| if (TREE_CODE (t) != SSA_NAME) |
| return DECL_UID (t); |
| else |
| return DECL_UID (SSA_NAME_VAR (t)); |
| } |
| |
| |
| /* Comparison function for qsort used in operand_build_sort_virtual. */ |
| |
| int |
| operand_build_cmp (const void *p, const void *q) |
| { |
| const_tree const e1 = *((const_tree const *)p); |
| const_tree const e2 = *((const_tree const *)q); |
| const unsigned int u1 = get_name_decl (e1); |
| const unsigned int u2 = get_name_decl (e2); |
| |
| /* We want to sort in ascending order. They can never be equal. */ |
| #ifdef ENABLE_CHECKING |
| gcc_assert (u1 != u2); |
| #endif |
| return (u1 > u2 ? 1 : -1); |
| } |
| |
| |
| /* Sort the virtual operands in LIST from lowest DECL_UID to highest. */ |
| |
| static inline void |
| operand_build_sort_virtual (VEC(tree,heap) *list) |
| { |
| int num = VEC_length (tree, list); |
| |
| if (num < 2) |
| return; |
| |
| if (num == 2) |
| { |
| if (get_name_decl (VEC_index (tree, list, 0)) |
| > get_name_decl (VEC_index (tree, list, 1))) |
| { |
| /* Swap elements if in the wrong order. */ |
| tree tmp = VEC_index (tree, list, 0); |
| VEC_replace (tree, list, 0, VEC_index (tree, list, 1)); |
| VEC_replace (tree, list, 1, tmp); |
| } |
| return; |
| } |
| |
| /* There are 3 or more elements, call qsort. */ |
| qsort (VEC_address (tree, list), |
| VEC_length (tree, list), |
| sizeof (tree), |
| operand_build_cmp); |
| } |
| |
| /* Return true if the SSA operands cache is active. */ |
| |
| bool |
| ssa_operands_active (void) |
| { |
| /* This function may be invoked from contexts where CFUN is NULL |
| (IPA passes), return false for now. FIXME: operands may be |
| active in each individual function, maybe this function should |
| take CFUN as a parameter. */ |
| if (cfun == NULL) |
| return false; |
| |
| return cfun->gimple_df && gimple_ssa_operands (cfun)->ops_active; |
| } |
| |
| |
| /* VOPs are of variable sized, so the free list maps "free buckets" to the |
| following table: |
| bucket # operands |
| ------ ---------- |
| 0 1 |
| 1 2 |
| ... |
| 15 16 |
| 16 17-24 |
| 17 25-32 |
| 18 31-40 |
| ... |
| 29 121-128 |
| Any VOPs larger than this are simply added to the largest bucket when they |
| are freed. */ |
| |
| |
| /* Return the number of operands used in bucket BUCKET. */ |
| |
| static inline int |
| vop_free_bucket_size (int bucket) |
| { |
| #ifdef ENABLE_CHECKING |
| gcc_assert (bucket >= 0 && bucket < NUM_VOP_FREE_BUCKETS); |
| #endif |
| if (bucket < 16) |
| return bucket + 1; |
| return (bucket - 13) * 8; |
| } |
| |
| |
| /* For a vop of NUM operands, return the bucket NUM belongs to. If NUM is |
| beyond the end of the bucket table, return -1. */ |
| |
| static inline int |
| vop_free_bucket_index (int num) |
| { |
| gcc_assert (num > 0 && NUM_VOP_FREE_BUCKETS > 16); |
| |
| /* Sizes 1 through 16 use buckets 0-15. */ |
| if (num <= 16) |
| return num - 1; |
| /* Buckets 16 - NUM_VOP_FREE_BUCKETS represent 8 unit chunks. */ |
| num = 14 + (num - 1) / 8; |
| if (num >= NUM_VOP_FREE_BUCKETS) |
| return -1; |
| else |
| return num; |
| } |
| |
| |
| /* Initialize the VOP free buckets. */ |
| |
| static inline void |
| init_vop_buckets (void) |
| { |
| int x; |
| |
| for (x = 0; x < NUM_VOP_FREE_BUCKETS; x++) |
| gimple_ssa_operands (cfun)->vop_free_buckets[x] = NULL; |
| } |
| |
| |
| /* Add PTR to the appropriate VOP bucket. */ |
| |
| static inline void |
| add_vop_to_freelist (voptype_p ptr) |
| { |
| int bucket = vop_free_bucket_index (VUSE_VECT_NUM_ELEM (ptr->usev)); |
| |
| /* Too large, use the largest bucket so its not a complete throw away. */ |
| if (bucket == -1) |
| bucket = NUM_VOP_FREE_BUCKETS - 1; |
| |
| ptr->next = gimple_ssa_operands (cfun)->vop_free_buckets[bucket]; |
| gimple_ssa_operands (cfun)->vop_free_buckets[bucket] = ptr; |
| } |
| |
| |
| /* These are the sizes of the operand memory buffer which gets allocated each |
| time more operands space is required. The final value is the amount that is |
| allocated every time after that. */ |
| |
| #define OP_SIZE_INIT 0 |
| #define OP_SIZE_1 30 |
| #define OP_SIZE_2 110 |
| #define OP_SIZE_3 511 |
| |
| /* Initialize the operand cache routines. */ |
| |
| void |
| init_ssa_operands (void) |
| { |
| if (!n_initialized++) |
| { |
| build_defs = VEC_alloc (tree, heap, 5); |
| build_uses = VEC_alloc (tree, heap, 10); |
| build_vuses = VEC_alloc (tree, heap, 25); |
| build_vdefs = VEC_alloc (tree, heap, 25); |
| bitmap_obstack_initialize (&operands_bitmap_obstack); |
| build_loads = BITMAP_ALLOC (&operands_bitmap_obstack); |
| build_stores = BITMAP_ALLOC (&operands_bitmap_obstack); |
| scb_stack = VEC_alloc (scb_t, heap, 20); |
| } |
| |
| gcc_assert (gimple_ssa_operands (cfun)->operand_memory == NULL); |
| gcc_assert (gimple_ssa_operands (cfun)->mpt_table == NULL); |
| gimple_ssa_operands (cfun)->operand_memory_index |
| = gimple_ssa_operands (cfun)->ssa_operand_mem_size; |
| gimple_ssa_operands (cfun)->ops_active = true; |
| memset (&clobber_stats, 0, sizeof (clobber_stats)); |
| init_vop_buckets (); |
| gimple_ssa_operands (cfun)->ssa_operand_mem_size = OP_SIZE_INIT; |
| } |
| |
| |
| /* Dispose of anything required by the operand routines. */ |
| |
| void |
| fini_ssa_operands (void) |
| { |
| struct ssa_operand_memory_d *ptr; |
| unsigned ix; |
| tree mpt; |
| |
| if (!--n_initialized) |
| { |
| VEC_free (tree, heap, build_defs); |
| VEC_free (tree, heap, build_uses); |
| VEC_free (tree, heap, build_vdefs); |
| VEC_free (tree, heap, build_vuses); |
| BITMAP_FREE (build_loads); |
| BITMAP_FREE (build_stores); |
| |
| /* The change buffer stack had better be empty. */ |
| gcc_assert (VEC_length (scb_t, scb_stack) == 0); |
| VEC_free (scb_t, heap, scb_stack); |
| scb_stack = NULL; |
| } |
| |
| gimple_ssa_operands (cfun)->free_defs = NULL; |
| gimple_ssa_operands (cfun)->free_uses = NULL; |
| |
| while ((ptr = gimple_ssa_operands (cfun)->operand_memory) != NULL) |
| { |
| gimple_ssa_operands (cfun)->operand_memory |
| = gimple_ssa_operands (cfun)->operand_memory->next; |
| ggc_free (ptr); |
| } |
| |
| for (ix = 0; |
| VEC_iterate (tree, gimple_ssa_operands (cfun)->mpt_table, ix, mpt); |
| ix++) |
| { |
| if (mpt) |
| BITMAP_FREE (MPT_SYMBOLS (mpt)); |
| } |
| |
| VEC_free (tree, heap, gimple_ssa_operands (cfun)->mpt_table); |
| |
| gimple_ssa_operands (cfun)->ops_active = false; |
| |
| if (!n_initialized) |
| bitmap_obstack_release (&operands_bitmap_obstack); |
| |
| if (dump_file && (dump_flags & TDF_STATS)) |
| { |
| fprintf (dump_file, "Original clobbered vars: %d\n", |
| clobber_stats.clobbered_vars); |
| fprintf (dump_file, "Static write clobbers avoided: %d\n", |
| clobber_stats.static_write_clobbers_avoided); |
| fprintf (dump_file, "Static read clobbers avoided: %d\n", |
| clobber_stats.static_read_clobbers_avoided); |
| fprintf (dump_file, "Unescapable clobbers avoided: %d\n", |
| clobber_stats.unescapable_clobbers_avoided); |
| fprintf (dump_file, "Original read-only clobbers: %d\n", |
| clobber_stats.readonly_clobbers); |
| fprintf (dump_file, "Static read-only clobbers avoided: %d\n", |
| clobber_stats.static_readonly_clobbers_avoided); |
| } |
| } |
| |
| |
| /* Return memory for operands of SIZE chunks. */ |
| |
| static inline void * |
| ssa_operand_alloc (unsigned size) |
| { |
| char *ptr; |
| |
| if (gimple_ssa_operands (cfun)->operand_memory_index + size |
| >= gimple_ssa_operands (cfun)->ssa_operand_mem_size) |
| { |
| struct ssa_operand_memory_d *ptr; |
| |
| if (gimple_ssa_operands (cfun)->ssa_operand_mem_size == OP_SIZE_INIT) |
| gimple_ssa_operands (cfun)->ssa_operand_mem_size |
| = OP_SIZE_1 * sizeof (struct voptype_d); |
| else |
| if (gimple_ssa_operands (cfun)->ssa_operand_mem_size |
| == OP_SIZE_1 * sizeof (struct voptype_d)) |
| gimple_ssa_operands (cfun)->ssa_operand_mem_size |
| = OP_SIZE_2 * sizeof (struct voptype_d); |
| else |
| gimple_ssa_operands (cfun)->ssa_operand_mem_size |
| = OP_SIZE_3 * sizeof (struct voptype_d); |
| |
| /* Go right to the maximum size if the request is too large. */ |
| if (size > gimple_ssa_operands (cfun)->ssa_operand_mem_size) |
| gimple_ssa_operands (cfun)->ssa_operand_mem_size |
| = OP_SIZE_3 * sizeof (struct voptype_d); |
| |
| /* We can reliably trigger the case that we need arbitrary many |
| operands (see PR34093), so allocate a buffer just for this request. */ |
| if (size > gimple_ssa_operands (cfun)->ssa_operand_mem_size) |
| gimple_ssa_operands (cfun)->ssa_operand_mem_size = size; |
| |
| ptr = (struct ssa_operand_memory_d *) |
| ggc_alloc (sizeof (struct ssa_operand_memory_d) |
| + gimple_ssa_operands (cfun)->ssa_operand_mem_size - 1); |
| ptr->next = gimple_ssa_operands (cfun)->operand_memory; |
| gimple_ssa_operands (cfun)->operand_memory = ptr; |
| gimple_ssa_operands (cfun)->operand_memory_index = 0; |
| } |
| ptr = &(gimple_ssa_operands (cfun)->operand_memory |
| ->mem[gimple_ssa_operands (cfun)->operand_memory_index]); |
| gimple_ssa_operands (cfun)->operand_memory_index += size; |
| return ptr; |
| } |
| |
| |
| /* Allocate a DEF operand. */ |
| |
| static inline struct def_optype_d * |
| alloc_def (void) |
| { |
| struct def_optype_d *ret; |
| if (gimple_ssa_operands (cfun)->free_defs) |
| { |
| ret = gimple_ssa_operands (cfun)->free_defs; |
| gimple_ssa_operands (cfun)->free_defs |
| = gimple_ssa_operands (cfun)->free_defs->next; |
| } |
| else |
| ret = (struct def_optype_d *) |
| ssa_operand_alloc (sizeof (struct def_optype_d)); |
| return ret; |
| } |
| |
| |
| /* Allocate a USE operand. */ |
| |
| static inline struct use_optype_d * |
| alloc_use (void) |
| { |
| struct use_optype_d *ret; |
| if (gimple_ssa_operands (cfun)->free_uses) |
| { |
| ret = gimple_ssa_operands (cfun)->free_uses; |
| gimple_ssa_operands (cfun)->free_uses |
| = gimple_ssa_operands (cfun)->free_uses->next; |
| } |
| else |
| ret = (struct use_optype_d *) |
| ssa_operand_alloc (sizeof (struct use_optype_d)); |
| return ret; |
| } |
| |
| |
| /* Allocate a vop with NUM elements. */ |
| |
| static inline struct voptype_d * |
| alloc_vop (int num) |
| { |
| struct voptype_d *ret = NULL; |
| int alloc_size = 0; |
| |
| int bucket = vop_free_bucket_index (num); |
| if (bucket != -1) |
| { |
| /* If there is a free operand, use it. */ |
| if (gimple_ssa_operands (cfun)->vop_free_buckets[bucket] != NULL) |
| { |
| ret = gimple_ssa_operands (cfun)->vop_free_buckets[bucket]; |
| gimple_ssa_operands (cfun)->vop_free_buckets[bucket] = |
| gimple_ssa_operands (cfun)->vop_free_buckets[bucket]->next; |
| } |
| else |
| alloc_size = vop_free_bucket_size(bucket); |
| } |
| else |
| alloc_size = num; |
| |
| if (alloc_size > 0) |
| ret = (struct voptype_d *)ssa_operand_alloc ( |
| sizeof (struct voptype_d) + (alloc_size - 1) * sizeof (vuse_element_t)); |
| |
| VUSE_VECT_NUM_ELEM (ret->usev) = num; |
| return ret; |
| } |
| |
| |
| /* This routine makes sure that PTR is in an immediate use list, and makes |
| sure the stmt pointer is set to the current stmt. */ |
| |
| static inline void |
| set_virtual_use_link (use_operand_p ptr, gimple stmt) |
| { |
| /* fold_stmt may have changed the stmt pointers. */ |
| if (ptr->loc.stmt != stmt) |
| ptr->loc.stmt = stmt; |
| |
| /* If this use isn't in a list, add it to the correct list. */ |
| if (!ptr->prev) |
| link_imm_use (ptr, *(ptr->use)); |
| } |
| |
| |
| /* Adds OP to the list of defs after LAST. */ |
| |
| static inline def_optype_p |
| add_def_op (tree *op, def_optype_p last) |
| { |
| def_optype_p new_def; |
| |
| new_def = alloc_def (); |
| DEF_OP_PTR (new_def) = op; |
| last->next = new_def; |
| new_def->next = NULL; |
| return new_def; |
| } |
| |
| |
| /* Adds OP to the list of uses of statement STMT after LAST. */ |
| |
| static inline use_optype_p |
| add_use_op (gimple stmt, tree *op, use_optype_p last) |
| { |
| use_optype_p new_use; |
| |
| new_use = alloc_use (); |
| USE_OP_PTR (new_use)->use = op; |
| link_imm_use_stmt (USE_OP_PTR (new_use), *op, stmt); |
| last->next = new_use; |
| new_use->next = NULL; |
| return new_use; |
| } |
| |
| |
| /* Return a virtual op pointer with NUM elements which are all |
| initialized to OP and are linked into the immediate uses for STMT. |
| The new vop is appended after PREV. */ |
| |
| static inline voptype_p |
| add_vop (gimple stmt, tree op, int num, voptype_p prev) |
| { |
| voptype_p new_vop; |
| int x; |
| |
| new_vop = alloc_vop (num); |
| for (x = 0; x < num; x++) |
| { |
| VUSE_OP_PTR (new_vop, x)->prev = NULL; |
| SET_VUSE_OP (new_vop, x, op); |
| VUSE_OP_PTR (new_vop, x)->use = &new_vop->usev.uses[x].use_var; |
| link_imm_use_stmt (VUSE_OP_PTR (new_vop, x), |
| new_vop->usev.uses[x].use_var, stmt); |
| } |
| |
| if (prev) |
| prev->next = new_vop; |
| new_vop->next = NULL; |
| return new_vop; |
| } |
| |
| |
| /* Adds OP to the list of vuses of statement STMT after LAST, and moves |
| LAST to the new element. */ |
| |
| static inline voptype_p |
| add_vuse_op (gimple stmt, tree op, int num, voptype_p last) |
| { |
| voptype_p new_vop = add_vop (stmt, op, num, last); |
| VDEF_RESULT (new_vop) = NULL_TREE; |
| return new_vop; |
| } |
| |
| |
| /* Adds OP to the list of vdefs of statement STMT after LAST, and moves |
| LAST to the new element. */ |
| |
| static inline voptype_p |
| add_vdef_op (gimple stmt, tree op, int num, voptype_p last) |
| { |
| voptype_p new_vop = add_vop (stmt, op, num, last); |
| VDEF_RESULT (new_vop) = op; |
| return new_vop; |
| } |
| |
| |
| /* Takes elements from build_defs and turns them into def operands of STMT. |
| TODO -- Make build_defs VEC of tree *. */ |
| |
| static inline void |
| finalize_ssa_defs (gimple stmt) |
| { |
| unsigned new_i; |
| struct def_optype_d new_list; |
| def_optype_p old_ops, last; |
| unsigned int num = VEC_length (tree, build_defs); |
| |
| /* There should only be a single real definition per assignment. */ |
| gcc_assert ((stmt && gimple_code (stmt) != GIMPLE_ASSIGN) || num <= 1); |
| |
| new_list.next = NULL; |
| last = &new_list; |
| |
| old_ops = gimple_def_ops (stmt); |
| |
| new_i = 0; |
| |
| /* Check for the common case of 1 def that hasn't changed. */ |
| if (old_ops && old_ops->next == NULL && num == 1 |
| && (tree *) VEC_index (tree, build_defs, 0) == DEF_OP_PTR (old_ops)) |
| return; |
| |
| /* If there is anything in the old list, free it. */ |
| if (old_ops) |
| { |
| old_ops->next = gimple_ssa_operands (cfun)->free_defs; |
| gimple_ssa_operands (cfun)->free_defs = old_ops; |
| } |
| |
| /* If there is anything remaining in the build_defs list, simply emit it. */ |
| for ( ; new_i < num; new_i++) |
| last = add_def_op ((tree *) VEC_index (tree, build_defs, new_i), last); |
| |
| /* Now set the stmt's operands. */ |
| gimple_set_def_ops (stmt, new_list.next); |
| |
| #ifdef ENABLE_CHECKING |
| { |
| def_optype_p ptr; |
| unsigned x = 0; |
| for (ptr = gimple_def_ops (stmt); ptr; ptr = ptr->next) |
| x++; |
| |
| gcc_assert (x == num); |
| } |
| #endif |
| } |
| |
| |
| /* Takes elements from build_uses and turns them into use operands of STMT. |
| TODO -- Make build_uses VEC of tree *. */ |
| |
| static inline void |
| finalize_ssa_uses (gimple stmt) |
| { |
| unsigned new_i; |
| struct use_optype_d new_list; |
| use_optype_p old_ops, ptr, last; |
| |
| new_list.next = NULL; |
| last = &new_list; |
| |
| old_ops = gimple_use_ops (stmt); |
| |
| /* If there is anything in the old list, free it. */ |
| if (old_ops) |
| { |
| for (ptr = old_ops; ptr; ptr = ptr->next) |
| delink_imm_use (USE_OP_PTR (ptr)); |
| old_ops->next = gimple_ssa_operands (cfun)->free_uses; |
| gimple_ssa_operands (cfun)->free_uses = old_ops; |
| } |
| |
| /* Now create nodes for all the new nodes. */ |
| for (new_i = 0; new_i < VEC_length (tree, build_uses); new_i++) |
| last = add_use_op (stmt, |
| (tree *) VEC_index (tree, build_uses, new_i), |
| last); |
| |
| /* Now set the stmt's operands. */ |
| gimple_set_use_ops (stmt, new_list.next); |
| |
| #ifdef ENABLE_CHECKING |
| { |
| unsigned x = 0; |
| for (ptr = gimple_use_ops (stmt); ptr; ptr = ptr->next) |
| x++; |
| |
| gcc_assert (x == VEC_length (tree, build_uses)); |
| } |
| #endif |
| } |
| |
| |
| /* Takes elements from BUILD_VDEFS and turns them into vdef operands of |
| STMT. */ |
| |
| static inline void |
| finalize_ssa_vdefs (gimple stmt) |
| { |
| unsigned new_i; |
| struct voptype_d new_list; |
| voptype_p old_ops, ptr, last; |
| |
| /* Set the symbols referenced by STMT. */ |
| gimple_set_stored_syms (stmt, build_stores, &operands_bitmap_obstack); |
| |
| /* If aliases have not been computed, do not instantiate a virtual |
| operator on STMT. Initially, we only compute the SSA form on |
| GIMPLE registers. The virtual SSA form is only computed after |
| alias analysis, so virtual operators will remain unrenamed and |
| the verifier will complain. However, alias analysis needs to |
| access symbol load/store information, so we need to compute |
| those. */ |
| if (!gimple_aliases_computed_p (cfun)) |
| return; |
| |
| new_list.next = NULL; |
| last = &new_list; |
| |
| old_ops = gimple_vdef_ops (stmt); |
| new_i = 0; |
| while (old_ops && new_i < VEC_length (tree, build_vdefs)) |
| { |
| tree op = VEC_index (tree, build_vdefs, new_i); |
| unsigned new_uid = get_name_decl (op); |
| unsigned old_uid = get_name_decl (VDEF_RESULT (old_ops)); |
| |
| /* FIXME, for now each VDEF operator should have at most one |
| operand in their RHS. */ |
| gcc_assert (VDEF_NUM (old_ops) == 1); |
| |
| if (old_uid == new_uid) |
| { |
| /* If the symbols are the same, reuse the existing operand. */ |
| last->next = old_ops; |
| last = old_ops; |
| old_ops = old_ops->next; |
| last->next = NULL; |
| set_virtual_use_link (VDEF_OP_PTR (last, 0), stmt); |
| new_i++; |
| } |
| else if (old_uid < new_uid) |
| { |
| /* If old is less than new, old goes to the free list. */ |
| voptype_p next; |
| delink_imm_use (VDEF_OP_PTR (old_ops, 0)); |
| next = old_ops->next; |
| add_vop_to_freelist (old_ops); |
| old_ops = next; |
| } |
| else |
| { |
| /* This is a new operand. */ |
| last = add_vdef_op (stmt, op, 1, last); |
| new_i++; |
| } |
| } |
| |
| /* If there is anything remaining in BUILD_VDEFS, simply emit it. */ |
| for ( ; new_i < VEC_length (tree, build_vdefs); new_i++) |
| last = add_vdef_op (stmt, VEC_index (tree, build_vdefs, new_i), 1, last); |
| |
| /* If there is anything in the old list, free it. */ |
| if (old_ops) |
| { |
| for (ptr = old_ops; ptr; ptr = last) |
| { |
| last = ptr->next; |
| delink_imm_use (VDEF_OP_PTR (ptr, 0)); |
| add_vop_to_freelist (ptr); |
| } |
| } |
| |
| /* Now set STMT's operands. */ |
| gimple_set_vdef_ops (stmt, new_list.next); |
| |
| #ifdef ENABLE_CHECKING |
| { |
| unsigned x = 0; |
| for (ptr = gimple_vdef_ops (stmt); ptr; ptr = ptr->next) |
| x++; |
| |
| gcc_assert (x == VEC_length (tree, build_vdefs)); |
| } |
| #endif |
| } |
| |
| |
| /* Takes elements from BUILD_VUSES and turns them into VUSE operands of |
| STMT. */ |
| |
| static inline void |
| finalize_ssa_vuse_ops (gimple stmt) |
| { |
| unsigned new_i, old_i; |
| voptype_p old_ops, last; |
| VEC(tree,heap) *new_ops; |
| |
| /* Set the symbols referenced by STMT. */ |
| gimple_set_loaded_syms (stmt, build_loads, &operands_bitmap_obstack); |
| |
| /* If aliases have not been computed, do not instantiate a virtual |
| operator on STMT. Initially, we only compute the SSA form on |
| GIMPLE registers. The virtual SSA form is only computed after |
| alias analysis, so virtual operators will remain unrenamed and |
| the verifier will complain. However, alias analysis needs to |
| access symbol load/store information, so we need to compute |
| those. */ |
| if (!gimple_aliases_computed_p (cfun)) |
| return; |
| |
| /* STMT should have at most one VUSE operator. */ |
| old_ops = gimple_vuse_ops (stmt); |
| gcc_assert (old_ops == NULL || old_ops->next == NULL); |
| |
| new_ops = NULL; |
| new_i = old_i = 0; |
| while (old_ops |
| && old_i < VUSE_NUM (old_ops) |
| && new_i < VEC_length (tree, build_vuses)) |
| { |
| tree new_op = VEC_index (tree, build_vuses, new_i); |
| tree old_op = VUSE_OP (old_ops, old_i); |
| unsigned new_uid = get_name_decl (new_op); |
| unsigned old_uid = get_name_decl (old_op); |
| |
| if (old_uid == new_uid) |
| { |
| /* If the symbols are the same, reuse the existing operand. */ |
| VEC_safe_push (tree, heap, new_ops, old_op); |
| new_i++; |
| old_i++; |
| } |
| else if (old_uid < new_uid) |
| { |
| /* If OLD_UID is less than NEW_UID, the old operand has |
| disappeared, skip to the next old operand. */ |
| old_i++; |
| } |
| else |
| { |
| /* This is a new operand. */ |
| VEC_safe_push (tree, heap, new_ops, new_op); |
| new_i++; |
| } |
| } |
| |
| /* If there is anything remaining in the build_vuses list, simply emit it. */ |
| for ( ; new_i < VEC_length (tree, build_vuses); new_i++) |
| VEC_safe_push (tree, heap, new_ops, VEC_index (tree, build_vuses, new_i)); |
| |
| /* If there is anything in the old list, free it. */ |
| if (old_ops) |
| { |
| for (old_i = 0; old_i < VUSE_NUM (old_ops); old_i++) |
| delink_imm_use (VUSE_OP_PTR (old_ops, old_i)); |
| add_vop_to_freelist (old_ops); |
| gimple_set_vuse_ops (stmt, NULL); |
| } |
| |
| /* If there are any operands, instantiate a VUSE operator for STMT. */ |
| if (new_ops) |
| { |
| tree op; |
| unsigned i; |
| |
| last = add_vuse_op (stmt, NULL, VEC_length (tree, new_ops), NULL); |
| |
| for (i = 0; VEC_iterate (tree, new_ops, i, op); i++) |
| SET_USE (VUSE_OP_PTR (last, (int) i), op); |
| |
| gimple_set_vuse_ops (stmt, last); |
| VEC_free (tree, heap, new_ops); |
| } |
| |
| #ifdef ENABLE_CHECKING |
| { |
| unsigned x; |
| |
| if (gimple_vuse_ops (stmt)) |
| { |
| gcc_assert (gimple_vuse_ops (stmt)->next == NULL); |
| x = VUSE_NUM (gimple_vuse_ops (stmt)); |
| } |
| else |
| x = 0; |
| |
| gcc_assert (x == VEC_length (tree, build_vuses)); |
| } |
| #endif |
| } |
| |
| /* Return a new VUSE operand vector for STMT. */ |
| |
| static void |
| finalize_ssa_vuses (gimple stmt) |
| { |
| unsigned num, num_vdefs; |
| unsigned vuse_index; |
| |
| /* Remove superfluous VUSE operands. If the statement already has a |
| VDEF operator for a variable 'a', then a VUSE for 'a' is not |
| needed because VDEFs imply a VUSE of the variable. For instance, |
| suppose that variable 'a' is pointed-to by p and q: |
| |
| # VUSE <a_2> |
| # a_3 = VDEF <a_2> |
| *p = *q; |
| |
| The VUSE <a_2> is superfluous because it is implied by the |
| VDEF operator. */ |
| num = VEC_length (tree, build_vuses); |
| num_vdefs = VEC_length (tree, build_vdefs); |
| |
| if (num > 0 && num_vdefs > 0) |
| for (vuse_index = 0; vuse_index < VEC_length (tree, build_vuses); ) |
| { |
| tree vuse; |
| vuse = VEC_index (tree, build_vuses, vuse_index); |
| if (TREE_CODE (vuse) != SSA_NAME) |
| { |
| var_ann_t ann = var_ann (vuse); |
| ann->in_vuse_list = 0; |
| if (ann->in_vdef_list) |
| { |
| VEC_ordered_remove (tree, build_vuses, vuse_index); |
| continue; |
| } |
| } |
| vuse_index++; |
| } |
| |
| finalize_ssa_vuse_ops (stmt); |
| } |
| |
| |
| /* Clear the in_list bits and empty the build array for VDEFs and |
| VUSEs. */ |
| |
| static inline void |
| cleanup_build_arrays (void) |
| { |
| unsigned i; |
| tree t; |
| |
| for (i = 0; VEC_iterate (tree, build_vdefs, i, t); i++) |
| if (TREE_CODE (t) != SSA_NAME) |
| var_ann (t)->in_vdef_list = false; |
| |
| for (i = 0; VEC_iterate (tree, build_vuses, i, t); i++) |
| if (TREE_CODE (t) != SSA_NAME) |
| var_ann (t)->in_vuse_list = false; |
| |
| VEC_truncate (tree, build_vdefs, 0); |
| VEC_truncate (tree, build_vuses, 0); |
| VEC_truncate (tree, build_defs, 0); |
| VEC_truncate (tree, build_uses, 0); |
| bitmap_clear (build_loads); |
| bitmap_clear (build_stores); |
| } |
| |
| |
| /* Finalize all the build vectors, fill the new ones into INFO. */ |
| |
| static inline void |
| finalize_ssa_stmt_operands (gimple stmt) |
| { |
| finalize_ssa_defs (stmt); |
| finalize_ssa_uses (stmt); |
| if (gimple_has_mem_ops (stmt)) |
| { |
| finalize_ssa_vdefs (stmt); |
| finalize_ssa_vuses (stmt); |
| } |
| cleanup_build_arrays (); |
| } |
| |
| |
| /* Start the process of building up operands vectors in INFO. */ |
| |
| static inline void |
| start_ssa_stmt_operands (void) |
| { |
| gcc_assert (VEC_length (tree, build_defs) == 0); |
| gcc_assert (VEC_length (tree, build_uses) == 0); |
| gcc_assert (VEC_length (tree, build_vuses) == 0); |
| gcc_assert (VEC_length (tree, build_vdefs) == 0); |
| gcc_assert (bitmap_empty_p (build_loads)); |
| gcc_assert (bitmap_empty_p (build_stores)); |
| } |
| |
| |
| /* Add DEF_P to the list of pointers to operands. */ |
| |
| static inline void |
| append_def (tree *def_p) |
| { |
| VEC_safe_push (tree, heap, build_defs, (tree) def_p); |
| } |
| |
| |
| /* Add USE_P to the list of pointers to operands. */ |
| |
| static inline void |
| append_use (tree *use_p) |
| { |
| VEC_safe_push (tree, heap, build_uses, (tree) use_p); |
| } |
| |
| |
| /* Add VAR to the set of variables that require a VDEF operator. */ |
| |
| static inline void |
| append_vdef (tree var) |
| { |
| tree sym; |
| |
| if (TREE_CODE (var) != SSA_NAME) |
| { |
| tree mpt; |
| var_ann_t ann; |
| |
| /* If VAR belongs to a memory partition, use it instead of VAR. */ |
| mpt = memory_partition (var); |
| if (mpt) |
| var = mpt; |
| |
| /* Don't allow duplicate entries. */ |
| ann = get_var_ann (var); |
| if (ann->in_vdef_list) |
| return; |
| |
| ann->in_vdef_list = true; |
| sym = var; |
| } |
| else |
| sym = SSA_NAME_VAR (var); |
| |
| VEC_safe_push (tree, heap, build_vdefs, var); |
| bitmap_set_bit (build_stores, DECL_UID (sym)); |
| } |
| |
| |
| /* Add VAR to the set of variables that require a VUSE operator. */ |
| |
| static inline void |
| append_vuse (tree var) |
| { |
| tree sym; |
| |
| if (TREE_CODE (var) != SSA_NAME) |
| { |
| tree mpt; |
| var_ann_t ann; |
| |
| /* If VAR belongs to a memory partition, use it instead of VAR. */ |
| mpt = memory_partition (var); |
| if (mpt) |
| var = mpt; |
| |
| /* Don't allow duplicate entries. */ |
| ann = get_var_ann (var); |
| if (ann->in_vuse_list) |
| return; |
| else if (ann->in_vdef_list) |
| { |
| /* We don't want a vuse if we already have a vdef, but we must |
| still put this in build_loads. */ |
| bitmap_set_bit (build_loads, DECL_UID (var)); |
| return; |
| } |
| |
| ann->in_vuse_list = true; |
| sym = var; |
| } |
| else |
| sym = SSA_NAME_VAR (var); |
| |
| VEC_safe_push (tree, heap, build_vuses, var); |
| bitmap_set_bit (build_loads, DECL_UID (sym)); |
| } |
| |
| |
| /* REF is a tree that contains the entire pointer dereference |
| expression, if available, or NULL otherwise. ALIAS is the variable |
| we are asking if REF can access. OFFSET and SIZE come from the |
| memory access expression that generated this virtual operand. |
| |
| XXX: We should handle the NO_ALIAS attributes here. */ |
| |
| static bool |
| access_can_touch_variable (tree ref, tree alias, HOST_WIDE_INT offset, |
| HOST_WIDE_INT size) |
| { |
| bool offsetgtz = offset > 0; |
| unsigned HOST_WIDE_INT uoffset = (unsigned HOST_WIDE_INT) offset; |
| tree base = ref ? get_base_address (ref) : NULL; |
| |
| /* If ALIAS is .GLOBAL_VAR then the memory reference REF must be |
| using a call-clobbered memory tag. By definition, call-clobbered |
| memory tags can always touch .GLOBAL_VAR. */ |
| if (alias == gimple_global_var (cfun)) |
| return true; |
| |
| /* If ref is a TARGET_MEM_REF, just return true, as we can't really |
| disambiguate them right now. */ |
| if (ref && TREE_CODE (ref) == TARGET_MEM_REF) |
| return true; |
| |
| /* Without strict aliasing, it is impossible for a component access |
| through a pointer to touch a random variable, unless that |
| variable *is* a structure or a pointer. |
| |
| That is, given p->c, and some random global variable b, |
| there is no legal way that p->c could be an access to b. |
| |
| Without strict aliasing on, we consider it legal to do something |
| like: |
| |
| struct foos { int l; }; |
| int foo; |
| static struct foos *getfoo(void); |
| int main (void) |
| { |
| struct foos *f = getfoo(); |
| f->l = 1; |
| foo = 2; |
| if (f->l == 1) |
| abort(); |
| exit(0); |
| } |
| static struct foos *getfoo(void) |
| { return (struct foos *)&foo; } |
| |
| (taken from 20000623-1.c) |
| |
| The docs also say/imply that access through union pointers |
| is legal (but *not* if you take the address of the union member, |
| i.e. the inverse), such that you can do |
| |
| typedef union { |
| int d; |
| } U; |
| |
| int rv; |
| void breakme() |
| { |
| U *rv0; |
| U *pretmp = (U*)&rv; |
| rv0 = pretmp; |
| rv0->d = 42; |
| } |
| To implement this, we just punt on accesses through union |
| pointers entirely. |
| |
| Another case we have to allow is accessing a variable |
| through an array access at offset zero. This happens from |
| code generated by the fortran frontend like |
| |
| char[1:1] & my_char_ref; |
| char my_char; |
| my_char_ref_1 = (char[1:1] &) &my_char; |
| D.874_2 = (*my_char_ref_1)[1]{lb: 1 sz: 1}; |
| */ |
| if (ref |
| && flag_strict_aliasing |
| && TREE_CODE (ref) != INDIRECT_REF |
| && !MTAG_P (alias) |
| && base |
| && (TREE_CODE (base) != INDIRECT_REF |
| || TREE_CODE (TREE_TYPE (base)) != UNION_TYPE) |
| && (TREE_CODE (base) != INDIRECT_REF |
| || TREE_CODE (ref) != ARRAY_REF |
| || offset != 0 |
| || (DECL_SIZE (alias) |
| && TREE_CODE (DECL_SIZE (alias)) == INTEGER_CST |
| && size != -1 |
| && (unsigned HOST_WIDE_INT)size |
| != TREE_INT_CST_LOW (DECL_SIZE (alias)))) |
| && !AGGREGATE_TYPE_P (TREE_TYPE (alias)) |
| && TREE_CODE (TREE_TYPE (alias)) != COMPLEX_TYPE |
| && !var_ann (alias)->is_heapvar |
| /* When the struct has may_alias attached to it, we need not to |
| return true. */ |
| && get_alias_set (base)) |
| { |
| #ifdef ACCESS_DEBUGGING |
| fprintf (stderr, "Access to "); |
| print_generic_expr (stderr, ref, 0); |
| fprintf (stderr, " may not touch "); |
| print_generic_expr (stderr, alias, 0); |
| fprintf (stderr, " in function %s\n", get_name (current_function_decl)); |
| #endif |
| return false; |
| } |
| |
| /* If the offset of the access is greater than the size of one of |
| the possible aliases, it can't be touching that alias, because it |
| would be past the end of the structure. */ |
| else if (ref |
| && flag_strict_aliasing |
| && TREE_CODE (ref) != INDIRECT_REF |
| && !MTAG_P (alias) |
| && !var_ann (alias)->is_heapvar |
| && !POINTER_TYPE_P (TREE_TYPE (alias)) |
| && offsetgtz |
| && DECL_SIZE (alias) |
| && TREE_CODE (DECL_SIZE (alias)) == INTEGER_CST |
| && uoffset >= TREE_INT_CST_LOW (DECL_SIZE (alias))) |
| { |
| #ifdef ACCESS_DEBUGGING |
| fprintf (stderr, "Access to "); |
| print_generic_expr (stderr, ref, 0); |
| fprintf (stderr, " may not touch "); |
| print_generic_expr (stderr, alias, 0); |
| fprintf (stderr, " in function %s\n", get_name (current_function_decl)); |
| #endif |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Add VAR to the virtual operands for STMT. FLAGS is as in |
| get_expr_operands. FULL_REF is a tree that contains the entire |
| pointer dereference expression, if available, or NULL otherwise. |
| OFFSET and SIZE come from the memory access expression that |
| generated this virtual operand. IS_CALL_SITE is true if the |
| affected statement is a call site. */ |
| |
| static void |
| add_virtual_operand (tree var, gimple stmt, int flags, |
| tree full_ref, HOST_WIDE_INT offset, |
| HOST_WIDE_INT size, bool is_call_site) |
| { |
| bitmap aliases = NULL; |
| tree sym; |
| var_ann_t v_ann; |
| |
| sym = (TREE_CODE (var) == SSA_NAME ? SSA_NAME_VAR (var) : var); |
| v_ann = var_ann (sym); |
| |
| /* Mark the statement as having memory operands. */ |
| gimple_set_references_memory (stmt, true); |
| |
| /* If the variable cannot be modified and this is a VDEF change |
| it into a VUSE. This happens when read-only variables are marked |
| call-clobbered and/or aliased to writable variables. So we only |
| check that this only happens on non-specific stores. |
| |
| Note that if this is a specific store, i.e. associated with a |
| MODIFY_EXPR, then we can't suppress the VDEF, lest we run |
| into validation problems. |
| |
| This can happen when programs cast away const, leaving us with a |
| store to read-only memory. If the statement is actually executed |
| at runtime, then the program is ill formed. If the statement is |
| not executed then all is well. At the very least, we cannot ICE. */ |
| if ((flags & opf_implicit) && unmodifiable_var_p (var)) |
| flags &= ~opf_def; |
| |
| /* The variable is not a GIMPLE register. Add it (or its aliases) to |
| virtual operands, unless the caller has specifically requested |
| not to add virtual operands (used when adding operands inside an |
| ADDR_EXPR expression). */ |
| if (flags & opf_no_vops) |
| return; |
| |
| if (MTAG_P (var)) |
| aliases = MTAG_ALIASES (var); |
| |
| if (aliases == NULL) |
| { |
| if (!gimple_aliases_computed_p (cfun) && (flags & opf_def)) |
| gimple_set_has_volatile_ops (stmt, true); |
| |
| /* The variable is not aliased or it is an alias tag. */ |
| if (flags & opf_def) |
| append_vdef (var); |
| else |
| append_vuse (var); |
| } |
| else |
| { |
| bitmap_iterator bi; |
| unsigned int i; |
| bool none_added = true; |
| |
| /* The variable is aliased. Add its aliases to the virtual |
| operands. */ |
| gcc_assert (!bitmap_empty_p (aliases)); |
| |
| EXECUTE_IF_SET_IN_BITMAP (aliases, 0, i, bi) |
| { |
| tree al = referenced_var (i); |
| |
| /* Call-clobbered tags may have non-call-clobbered |
| symbols in their alias sets. Ignore them if we are |
| adding VOPs for a call site. */ |
| if (is_call_site && !is_call_clobbered (al)) |
| continue; |
| |
| /* If we do not know the full reference tree or if the access is |
| unspecified [0, -1], we cannot prune it. Otherwise try doing |
| so using access_can_touch_variable. */ |
| if (full_ref |
| && !access_can_touch_variable (full_ref, al, offset, size)) |
| continue; |
| |
| if (flags & opf_def) |
| append_vdef (al); |
| else |
| append_vuse (al); |
| none_added = false; |
| } |
| |
| if (flags & opf_def) |
| { |
| /* If the variable is also an alias tag, add a virtual |
| operand for it, otherwise we will miss representing |
| references to the members of the variable's alias set. |
| This fixes the bug in gcc.c-torture/execute/20020503-1.c. |
| |
| It is also necessary to add bare defs on clobbers for |
| SMT's, so that bare SMT uses caused by pruning all the |
| aliases will link up properly with calls. In order to |
| keep the number of these bare defs we add down to the |
| minimum necessary, we keep track of which SMT's were used |
| alone in statement vdefs or VUSEs. */ |
| if (none_added |
| || (TREE_CODE (var) == SYMBOL_MEMORY_TAG |
| && is_call_site)) |
| append_vdef (var); |
| } |
| else |
| { |
| /* Even if no aliases have been added, we still need to |
| establish def-use and use-def chains, lest |
| transformations think that this is not a memory |
| reference. For an example of this scenario, see |
| testsuite/g++.dg/opt/cleanup1.C. */ |
| if (none_added) |
| append_vuse (var); |
| } |
| } |
| } |
| |
| |
| /* Add *VAR_P to the appropriate operand array for statement STMT. |
| FLAGS is as in get_expr_operands. If *VAR_P is a GIMPLE register, |
| it will be added to the statement's real operands, otherwise it is |
| added to virtual operands. */ |
| |
| static void |
| add_stmt_operand (tree *var_p, gimple stmt, int flags) |
| { |
| tree var, sym; |
| var_ann_t v_ann; |
| |
| gcc_assert (SSA_VAR_P (*var_p)); |
| |
| var = *var_p; |
| sym = (TREE_CODE (var) == SSA_NAME ? SSA_NAME_VAR (var) : var); |
| v_ann = var_ann (sym); |
| |
| /* Mark statements with volatile operands. */ |
| if (TREE_THIS_VOLATILE (sym)) |
| gimple_set_has_volatile_ops (stmt, true); |
| |
| if (is_gimple_reg (sym)) |
| { |
| /* The variable is a GIMPLE register. Add it to real operands. */ |
| if (flags & opf_def) |
| append_def (var_p); |
| else |
| append_use (var_p); |
| } |
| else |
| add_virtual_operand (var, stmt, flags, NULL_TREE, 0, -1, false); |
| } |
| |
| /* Subroutine of get_indirect_ref_operands. ADDR is the address |
| that is dereferenced, the meaning of the rest of the arguments |
| is the same as in get_indirect_ref_operands. */ |
| |
| static void |
| get_addr_dereference_operands (gimple stmt, tree *addr, int flags, |
| tree full_ref, HOST_WIDE_INT offset, |
| HOST_WIDE_INT size, bool recurse_on_base) |
| { |
| tree ptr = *addr; |
| |
| /* Mark the statement as having memory operands. */ |
| gimple_set_references_memory (stmt, true); |
| |
| if (SSA_VAR_P (ptr)) |
| { |
| struct ptr_info_def *pi = NULL; |
| |
| /* If PTR has flow-sensitive points-to information, use it. */ |
| if (TREE_CODE (ptr) == SSA_NAME |
| && (pi = SSA_NAME_PTR_INFO (ptr)) != NULL |
| && pi->name_mem_tag) |
| { |
| /* PTR has its own memory tag. Use it. */ |
| add_virtual_operand (pi->name_mem_tag, stmt, flags, |
| full_ref, offset, size, false); |
| } |
| else |
| { |
| /* If PTR is not an SSA_NAME or it doesn't have a name |
| tag, use its symbol memory tag. */ |
| var_ann_t v_ann; |
| |
| /* If we are emitting debugging dumps, display a warning if |
| PTR is an SSA_NAME with no flow-sensitive alias |
| information. That means that we may need to compute |
| aliasing again or that a propagation pass forgot to |
| update the alias information on the pointers. */ |
| if (dump_file |
| && TREE_CODE (ptr) == SSA_NAME |
| && (pi == NULL |
| || (pi->name_mem_tag == NULL_TREE |
| && !pi->pt_anything)) |
| && gimple_aliases_computed_p (cfun)) |
| { |
| fprintf (dump_file, |
| "NOTE: no flow-sensitive alias info for "); |
| print_generic_expr (dump_file, ptr, dump_flags); |
| fprintf (dump_file, " in "); |
| print_gimple_stmt (dump_file, stmt, 0, 0); |
| } |
| |
| if (TREE_CODE (ptr) == SSA_NAME) |
| ptr = SSA_NAME_VAR (ptr); |
| v_ann = var_ann (ptr); |
| |
| /* If we don't know what this pointer points to then we have |
| to make sure to not prune virtual operands based on offset |
| and size. */ |
| if (v_ann->symbol_mem_tag) |
| { |
| add_virtual_operand (v_ann->symbol_mem_tag, stmt, flags, |
| full_ref, 0, -1, false); |
| /* Make sure we add the SMT itself. */ |
| if (!(flags & opf_no_vops)) |
| { |
| if (flags & opf_def) |
| append_vdef (v_ann->symbol_mem_tag); |
| else |
| append_vuse (v_ann->symbol_mem_tag); |
| } |
| } |
| |
| /* Aliasing information is missing; mark statement as |
| volatile so we won't optimize it out too actively. */ |
| else if (!gimple_aliases_computed_p (cfun) |
| && (flags & opf_def)) |
| gimple_set_has_volatile_ops (stmt, true); |
| } |
| } |
| else if (TREE_CODE (ptr) == INTEGER_CST) |
| { |
| /* If a constant is used as a pointer, we can't generate a real |
| operand for it but we mark the statement volatile to prevent |
| optimizations from messing things up. */ |
| gimple_set_has_volatile_ops (stmt, true); |
| return; |
| } |
| else |
| { |
| /* Ok, this isn't even is_gimple_min_invariant. Something's broke. */ |
| gcc_unreachable (); |
| } |
| |
| /* If requested, add a USE operand for the base pointer. */ |
| if (recurse_on_base) |
| get_expr_operands (stmt, addr, opf_use); |
| } |
| |
| |
| /* A subroutine of get_expr_operands to handle INDIRECT_REF, |
| ALIGN_INDIRECT_REF and MISALIGNED_INDIRECT_REF. |
| |
| STMT is the statement being processed, EXPR is the INDIRECT_REF |
| that got us here. |
| |
| FLAGS is as in get_expr_operands. |
| |
| FULL_REF contains the full pointer dereference expression, if we |
| have it, or NULL otherwise. |
| |
| OFFSET and SIZE are the location of the access inside the |
| dereferenced pointer, if known. |
| |
| RECURSE_ON_BASE should be set to true if we want to continue |
| calling get_expr_operands on the base pointer, and false if |
| something else will do it for us. */ |
| |
| static void |
| get_indirect_ref_operands (gimple stmt, tree expr, int flags, tree full_ref, |
| HOST_WIDE_INT offset, HOST_WIDE_INT size, |
| bool recurse_on_base) |
| { |
| tree *pptr = &TREE_OPERAND (expr, 0); |
| |
| if (TREE_THIS_VOLATILE (expr)) |
| gimple_set_has_volatile_ops (stmt, true); |
| |
| get_addr_dereference_operands (stmt, pptr, flags, full_ref, offset, size, |
| recurse_on_base); |
| } |
| |
| |
| /* A subroutine of get_expr_operands to handle TARGET_MEM_REF. */ |
| |
| static void |
| get_tmr_operands (gimple stmt, tree expr, int flags) |
| { |
| tree tag; |
| |
| /* Mark the statement as having memory operands. */ |
| gimple_set_references_memory (stmt, true); |
| |
| /* First record the real operands. */ |
| get_expr_operands (stmt, &TMR_BASE (expr), opf_use); |
| get_expr_operands (stmt, &TMR_INDEX (expr), opf_use); |
| |
| if (TMR_SYMBOL (expr)) |
| gimple_add_to_addresses_taken (stmt, TMR_SYMBOL (expr)); |
| |
| tag = TMR_TAG (expr); |
| if (!tag) |
| { |
| /* Something weird, so ensure that we will be careful. */ |
| gimple_set_has_volatile_ops (stmt, true); |
| return; |
| } |
| if (!MTAG_P (tag)) |
| { |
| get_expr_operands (stmt, &tag, flags); |
| return; |
| } |
| |
| add_virtual_operand (tag, stmt, flags, expr, 0, -1, false); |
| } |
| |
| |
| /* Add clobbering definitions for .GLOBAL_VAR or for each of the call |
| clobbered variables in the function. */ |
| |
| static void |
| add_call_clobber_ops (gimple stmt, tree callee ATTRIBUTE_UNUSED) |
| { |
| unsigned u; |
| bitmap_iterator bi; |
| bitmap not_read_b, not_written_b; |
| |
| gcc_assert (!(gimple_call_flags (stmt) & (ECF_PURE | ECF_CONST))); |
| |
| /* If we created .GLOBAL_VAR earlier, just use it. */ |
| if (gimple_global_var (cfun)) |
| { |
| tree var = gimple_global_var (cfun); |
| add_virtual_operand (var, stmt, opf_def, NULL, 0, -1, true); |
| return; |
| } |
| |
| /* Get info for local and module level statics. There is a bit |
| set for each static if the call being processed does not read |
| or write that variable. */ |
| not_read_b = callee ? ipa_reference_get_not_read_global (cgraph_node (callee)) : NULL; |
| not_written_b = callee ? ipa_reference_get_not_written_global (cgraph_node (callee)) : NULL; |
| |
| /* Add a VDEF operand for every call clobbered variable. */ |
| EXECUTE_IF_SET_IN_BITMAP (gimple_call_clobbered_vars (cfun), 0, u, bi) |
| { |
| tree var = referenced_var_lookup (u); |
| tree real_var = var; |
| bool not_read; |
| bool not_written; |
| |
| not_read = not_read_b |
| ? bitmap_bit_p (not_read_b, DECL_UID (real_var)) |
| : false; |
| |
| not_written = not_written_b |
| ? bitmap_bit_p (not_written_b, DECL_UID (real_var)) |
| : false; |
| gcc_assert (!unmodifiable_var_p (var)); |
| |
| clobber_stats.clobbered_vars++; |
| |
| /* See if this variable is really clobbered by this function. */ |
| |
| if (not_written) |
| { |
| clobber_stats.static_write_clobbers_avoided++; |
| if (!not_read) |
| add_virtual_operand (var, stmt, opf_use, NULL, 0, -1, true); |
| else |
| clobber_stats.static_read_clobbers_avoided++; |
| } |
| else |
| add_virtual_operand (var, stmt, opf_def, NULL, 0, -1, true); |
| } |
| } |
| |
| |
| /* Add VUSE operands for .GLOBAL_VAR or all call clobbered variables in the |
| function. */ |
| |
| static void |
| add_call_read_ops (gimple stmt, tree callee ATTRIBUTE_UNUSED) |
| { |
| unsigned u; |
| bitmap_iterator bi; |
| bitmap not_read_b; |
| |
| /* Const functions do not reference memory. */ |
| if (gimple_call_flags (stmt) & ECF_CONST) |
| return; |
| |
| not_read_b = callee ? ipa_reference_get_not_read_global (cgraph_node (callee)) : NULL; |
| |
| /* For pure functions we compute non-escaped uses separately. */ |
| if (gimple_call_flags (stmt) & ECF_PURE) |
| EXECUTE_IF_SET_IN_BITMAP (gimple_call_used_vars (cfun), 0, u, bi) |
| { |
| tree var = referenced_var_lookup (u); |
| tree real_var = var; |
| bool not_read; |
| |
| if (unmodifiable_var_p (var)) |
| continue; |
| |
| not_read = not_read_b |
| ? bitmap_bit_p (not_read_b, DECL_UID (real_var)) |
| : false; |
| |
| clobber_stats.readonly_clobbers++; |
| |
| /* See if this variable is really used by this function. */ |
| if (!not_read) |
| add_virtual_operand (var, stmt, opf_use, NULL, 0, -1, true); |
| else |
| clobber_stats.static_readonly_clobbers_avoided++; |
| } |
| |
| /* Add a VUSE for .GLOBAL_VAR if it has been created. See |
| add_referenced_var for the heuristic used to decide whether to |
| create .GLOBAL_VAR. */ |
| if (gimple_global_var (cfun)) |
| { |
| tree var = gimple_global_var (cfun); |
| add_virtual_operand (var, stmt, opf_use, NULL, 0, -1, true); |
| return; |
| } |
| |
| /* Add a VUSE for each call-clobbered variable. */ |
| EXECUTE_IF_SET_IN_BITMAP (gimple_call_clobbered_vars (cfun), 0, u, bi) |
| { |
| tree var = referenced_var (u); |
| tree real_var = var; |
| bool not_read; |
| |
| clobber_stats.readonly_clobbers++; |
| |
| not_read = not_read_b ? bitmap_bit_p (not_read_b, DECL_UID (real_var)) |
| : false; |
| |
| if (not_read) |
| { |
| clobber_stats.static_readonly_clobbers_avoided++; |
| continue; |
| } |
| |
| add_virtual_operand (var, stmt, opf_use, NULL, 0, -1, true); |
| } |
| } |
| |
| |
| /* If STMT is a call that may clobber globals and other symbols that |
| escape, add them to the VDEF/VUSE lists for it. */ |
| |
| static void |
| maybe_add_call_clobbered_vops (gimple stmt) |
| { |
| int call_flags = gimple_call_flags (stmt); |
| |
| /* Mark the statement as having memory operands. */ |
| gimple_set_references_memory (stmt, true); |
| |
| /* If aliases have been computed already, add VDEF or VUSE |
| operands for all the symbols that have been found to be |
| call-clobbered. */ |
| if (gimple_aliases_computed_p (cfun) && !(call_flags & ECF_NOVOPS)) |
| { |
| /* A 'pure' or a 'const' function never call-clobbers anything. |
| A 'noreturn' function might, but since we don't return anyway |
| there is no point in recording that. */ |
| if (!(call_flags & (ECF_PURE | ECF_CONST | ECF_NORETURN))) |
| add_call_clobber_ops (stmt, gimple_call_fndecl (stmt)); |
| else if (!(call_flags & ECF_CONST)) |
| add_call_read_ops (stmt, gimple_call_fndecl (stmt)); |
| } |
| } |
| |
| |
| /* Scan operands in the ASM_EXPR stmt referred to in INFO. */ |
| |
| static void |
| get_asm_expr_operands (gimple stmt) |
| { |
| size_t i, noutputs; |
| const char **oconstraints; |
| const char *constraint; |
| bool allows_mem, allows_reg, is_inout; |
| |
| noutputs = gimple_asm_noutputs (stmt); |
| oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *)); |
| |
| /* Gather all output operands. */ |
| for (i = 0; i < gimple_asm_noutputs (stmt); i++) |
| { |
| tree link = gimple_asm_output_op (stmt, i); |
| constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link))); |
| oconstraints[i] = constraint; |
| parse_output_constraint (&constraint, i, 0, 0, &allows_mem, |
| &allows_reg, &is_inout); |
| |
| /* This should have been split in gimplify_asm_expr. */ |
| gcc_assert (!allows_reg || !is_inout); |
| |
| /* Memory operands are addressable. Note that STMT needs the |
| address of this operand. */ |
| if (!allows_reg && allows_mem) |
| { |
| tree t = get_base_address (TREE_VALUE (link)); |
| if (t && DECL_P (t)) |
| gimple_add_to_addresses_taken (stmt, t); |
| } |
| |
| get_expr_operands (stmt, &TREE_VALUE (link), opf_def); |
| } |
| |
| /* Gather all input operands. */ |
| for (i = 0; i < gimple_asm_ninputs (stmt); i++) |
| { |
| tree link = gimple_asm_input_op (stmt, i); |
| constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link))); |
| parse_input_constraint (&constraint, 0, 0, noutputs, 0, oconstraints, |
| &allows_mem, &allows_reg); |
| |
| /* Memory operands are addressable. Note that STMT needs the |
| address of this operand. */ |
| if (!allows_reg && allows_mem) |
| { |
| tree t = get_base_address (TREE_VALUE (link)); |
| if (t && DECL_P (t)) |
| gimple_add_to_addresses_taken (stmt, t); |
| } |
| |
| get_expr_operands (stmt, &TREE_VALUE (link), 0); |
| } |
| |
| /* Clobber all memory and addressable symbols for asm ("" : : : "memory"); */ |
| for (i = 0; i < gimple_asm_nclobbers (stmt); i++) |
| { |
| tree link = gimple_asm_clobber_op (stmt, i); |
| if (strcmp (TREE_STRING_POINTER (TREE_VALUE (link)), "memory") == 0) |
| { |
| unsigned i; |
| bitmap_iterator bi; |
| |
| /* Mark the statement as having memory operands. */ |
| gimple_set_references_memory (stmt, true); |
| |
| EXECUTE_IF_SET_IN_BITMAP (gimple_call_clobbered_vars (cfun), 0, i, bi) |
| { |
| tree var = referenced_var (i); |
| add_stmt_operand (&var, stmt, opf_def | opf_implicit); |
| } |
| |
| EXECUTE_IF_SET_IN_BITMAP (gimple_addressable_vars (cfun), 0, i, bi) |
| { |
| tree var = referenced_var (i); |
| add_stmt_operand (&var, stmt, opf_def | opf_implicit); |
| } |
| break; |
| } |
| } |
| } |
| |
| |
| /* Recursively scan the expression pointed to by EXPR_P in statement |
| STMT. FLAGS is one of the OPF_* constants modifying how to |
| interpret the operands found. */ |
| |
| static void |
| get_expr_operands (gimple stmt, tree *expr_p, int flags) |
| { |
| enum tree_code code; |
| enum tree_code_class codeclass; |
| tree expr = *expr_p; |
| |
| if (expr == NULL) |
| return; |
| |
| code = TREE_CODE (expr); |
| codeclass = TREE_CODE_CLASS (code); |
| |
| switch (code) |
| { |
| case ADDR_EXPR: |
| /* Taking the address of a variable does not represent a |
| reference to it, but the fact that the statement takes its |
| address will be of interest to some passes (e.g. alias |
| resolution). */ |
| gimple_add_to_addresses_taken (stmt, TREE_OPERAND (expr, 0)); |
| |
| /* If the address is invariant, there may be no interesting |
| variable references inside. */ |
| if (is_gimple_min_invariant (expr)) |
| return; |
| |
| /* Otherwise, there may be variables referenced inside but there |
| should be no VUSEs created, since the referenced objects are |
| not really accessed. The only operands that we should find |
| here are ARRAY_REF indices which will always be real operands |
| (GIMPLE does not allow non-registers as array indices). */ |
| flags |= opf_no_vops; |
| get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags); |
| return; |
| |
| case SSA_NAME: |
| case SYMBOL_MEMORY_TAG: |
| case NAME_MEMORY_TAG: |
| add_stmt_operand (expr_p, stmt, flags); |
| return; |
| |
| case VAR_DECL: |
| case PARM_DECL: |
| case RESULT_DECL: |
| add_stmt_operand (expr_p, stmt, flags); |
| return; |
| |
| case MISALIGNED_INDIRECT_REF: |
| get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags); |
| /* fall through */ |
| |
| case ALIGN_INDIRECT_REF: |
| case INDIRECT_REF: |
| get_indirect_ref_operands (stmt, expr, flags, expr, 0, -1, true); |
| return; |
| |
| case TARGET_MEM_REF: |
| get_tmr_operands (stmt, expr, flags); |
| return; |
| |
| case ARRAY_REF: |
| case ARRAY_RANGE_REF: |
| case COMPONENT_REF: |
| case REALPART_EXPR: |
| case IMAGPART_EXPR: |
| { |
| tree ref; |
| HOST_WIDE_INT offset, size, maxsize; |
| |
| if (TREE_THIS_VOLATILE (expr)) |
| gimple_set_has_volatile_ops (stmt, true); |
| |
| ref = get_ref_base_and_extent (expr, &offset, &size, &maxsize); |
| if (TREE_CODE (ref) == INDIRECT_REF) |
| { |
| get_indirect_ref_operands (stmt, ref, flags, expr, offset, |
| maxsize, false); |
| flags |= opf_no_vops; |
| } |
| |
| get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags); |
| |
| if (code == COMPONENT_REF) |
| { |
| if (TREE_THIS_VOLATILE (TREE_OPERAND (expr, 1))) |
| gimple_set_has_volatile_ops (stmt, true); |
| get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_use); |
| } |
| else if (code == ARRAY_REF || code == ARRAY_RANGE_REF) |
| { |
| get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_use); |
| get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_use); |
| get_expr_operands (stmt, &TREE_OPERAND (expr, 3), opf_use); |
| } |
| |
| return; |
| } |
| |
| case WITH_SIZE_EXPR: |
| /* WITH_SIZE_EXPR is a pass-through reference to its first argument, |
| and an rvalue reference to its second argument. */ |
| get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_use); |
| get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags); |
| return; |
| |
| case COND_EXPR: |
| case VEC_COND_EXPR: |
| get_expr_operands (stmt, &TREE_OPERAND (expr, 0), opf_use); |
| get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_use); |
| get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_use); |
| return; |
| |
| case CONSTRUCTOR: |
| { |
| /* General aggregate CONSTRUCTORs have been decomposed, but they |
| are still in use as the COMPLEX_EXPR equivalent for vectors. */ |
| constructor_elt *ce; |
| unsigned HOST_WIDE_INT idx; |
| |
| for (idx = 0; |
| VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (expr), idx, ce); |
| idx++) |
| get_expr_operands (stmt, &ce->value, opf_use); |
| |
| return; |
| } |
| |
| case BIT_FIELD_REF: |
| if (TREE_THIS_VOLATILE (expr)) |
| gimple_set_has_volatile_ops (stmt, true); |
| /* FALLTHRU */ |
| |
| case TRUTH_NOT_EXPR: |
| case VIEW_CONVERT_EXPR: |
| do_unary: |
| get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags); |
| return; |
| |
| case TRUTH_AND_EXPR: |
| case TRUTH_OR_EXPR: |
| case TRUTH_XOR_EXPR: |
| case COMPOUND_EXPR: |
| case OBJ_TYPE_REF: |
| case ASSERT_EXPR: |
| do_binary: |
| { |
| get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags); |
| get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags); |
| return; |
| } |
| |
| case DOT_PROD_EXPR: |
| case REALIGN_LOAD_EXPR: |
| { |
| get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags); |
| get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags); |
| get_expr_operands (stmt, &TREE_OPERAND (expr, 2), flags); |
| return; |
| } |
| |
| case CHANGE_DYNAMIC_TYPE_EXPR: |
| gcc_unreachable (); |
| |
| case FUNCTION_DECL: |
| case LABEL_DECL: |
| case CONST_DECL: |
| case CASE_LABEL_EXPR: |
| case FILTER_EXPR: |
| case EXC_PTR_EXPR: |
| /* Expressions that make no memory references. */ |
| return; |
| |
| default: |
| if (codeclass == tcc_unary) |
| goto do_unary; |
| if (codeclass == tcc_binary || codeclass == tcc_comparison) |
| goto do_binary; |
| if (codeclass == tcc_constant || codeclass == tcc_type) |
| return; |
| } |
| |
| /* If we get here, something has gone wrong. */ |
| #ifdef ENABLE_CHECKING |
| fprintf (stderr, "unhandled expression in get_expr_operands():\n"); |
| debug_tree (expr); |
| fputs ("\n", stderr); |
| #endif |
| gcc_unreachable (); |
| } |
| |
| |
| /* Parse STMT looking for operands. When finished, the various |
| build_* operand vectors will have potential operands in them. */ |
| |
| static void |
| parse_ssa_operands (gimple stmt) |
| { |
| enum gimple_code code = gimple_code (stmt); |
| |
| if (code == GIMPLE_ASM) |
| get_asm_expr_operands (stmt); |
| else |
| { |
| size_t i, start = 0; |
| |
| if (code == GIMPLE_ASSIGN || code == GIMPLE_CALL) |
| { |
| get_expr_operands (stmt, gimple_op_ptr (stmt, 0), opf_def); |
| start = 1; |
| } |
| |
| for (i = start; i < gimple_num_ops (stmt); i++) |
| get_expr_operands (stmt, gimple_op_ptr (stmt, i), opf_use); |
| |
| /* Add call-clobbered operands, if needed. */ |
| if (code == GIMPLE_CALL) |
| maybe_add_call_clobbered_vops (stmt); |
| |
| /* Make sure the return value is addressable in case of NRV. */ |
| if (code == GIMPLE_CALL |
| && gimple_call_lhs (stmt) != NULL_TREE |
| && gimple_call_return_slot_opt_p (stmt) |
| && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt)))) |
| gimple_add_to_addresses_taken (stmt, gimple_call_lhs (stmt)); |
| } |
| } |
| |
| |
| /* Create an operands cache for STMT. */ |
| |
| static void |
| build_ssa_operands (gimple stmt) |
| { |
| /* Initially assume that the statement has no volatile operands and |
| makes no memory references. */ |
| gimple_set_has_volatile_ops (stmt, false); |
| gimple_set_references_memory (stmt, false); |
| |
| /* Just clear the bitmap so we don't end up reallocating it over and over. */ |
| if (gimple_addresses_taken (stmt)) |
| bitmap_clear (gimple_addresses_taken (stmt)); |
| |
| start_ssa_stmt_operands (); |
| parse_ssa_operands (stmt); |
| operand_build_sort_virtual (build_vuses); |
| operand_build_sort_virtual (build_vdefs); |
| finalize_ssa_stmt_operands (stmt); |
| |
| /* For added safety, assume that statements with volatile operands |
| also reference memory. */ |
| if (gimple_has_volatile_ops (stmt)) |
| gimple_set_references_memory (stmt, true); |
| } |
| |
| |
| /* Releases the operands of STMT back to their freelists, and clears |
| the stmt operand lists. */ |
| |
| void |
| free_stmt_operands (gimple stmt) |
| { |
| def_optype_p defs = gimple_def_ops (stmt), last_def; |
| use_optype_p uses = gimple_use_ops (stmt), last_use; |
| voptype_p vuses = gimple_vuse_ops (stmt); |
| voptype_p vdefs = gimple_vdef_ops (stmt), vdef, next_vdef; |
| unsigned i; |
| |
| if (defs) |
| { |
| for (last_def = defs; last_def->next; last_def = last_def->next) |
| continue; |
| last_def->next = gimple_ssa_operands (cfun)->free_defs; |
| gimple_ssa_operands (cfun)->free_defs = defs; |
| gimple_set_def_ops (stmt, NULL); |
| } |
| |
| if (uses) |
| { |
| for (last_use = uses; last_use->next; last_use = last_use->next) |
| delink_imm_use (USE_OP_PTR (last_use)); |
| delink_imm_use (USE_OP_PTR (last_use)); |
| last_use->next = gimple_ssa_operands (cfun)->free_uses; |
| gimple_ssa_operands (cfun)->free_uses = uses; |
| gimple_set_use_ops (stmt, NULL); |
| } |
| |
| if (vuses) |
| { |
| for (i = 0; i < VUSE_NUM (vuses); i++) |
| delink_imm_use (VUSE_OP_PTR (vuses, i)); |
| add_vop_to_freelist (vuses); |
| gimple_set_vuse_ops (stmt, NULL); |
| } |
| |
| if (vdefs) |
| { |
| for (vdef = vdefs; vdef; vdef = next_vdef) |
| { |
| next_vdef = vdef->next; |
| delink_imm_use (VDEF_OP_PTR (vdef, 0)); |
| add_vop_to_freelist (vdef); |
| } |
| gimple_set_vdef_ops (stmt, NULL); |
| } |
| |
| if (gimple_has_ops (stmt)) |
| gimple_set_addresses_taken (stmt, NULL); |
| |
| if (gimple_has_mem_ops (stmt)) |
| { |
| gimple_set_stored_syms (stmt, NULL, &operands_bitmap_obstack); |
| gimple_set_loaded_syms (stmt, NULL, &operands_bitmap_obstack); |
| } |
| } |
| |
| |
| /* Get the operands of statement STMT. */ |
| |
| void |
| update_stmt_operands (gimple stmt) |
| { |
| /* If update_stmt_operands is called before SSA is initialized, do |
| nothing. */ |
| if (!ssa_operands_active ()) |
| return; |
| |
| timevar_push (TV_TREE_OPS); |
| |
| gcc_assert (gimple_modified_p (stmt)); |
| build_ssa_operands (stmt); |
| gimple_set_modified (stmt, false); |
| |
| timevar_pop (TV_TREE_OPS); |
| } |
| |
| |
| /* Copies virtual operands from SRC to DST. */ |
| |
| void |
| copy_virtual_operands (gimple dest, gimple src) |
| { |
| unsigned int i, n; |
| voptype_p src_vuses, dest_vuses; |
| voptype_p src_vdefs, dest_vdefs; |
| struct voptype_d vuse; |
| struct voptype_d vdef; |
| |
| if (!gimple_has_mem_ops (src)) |
| return; |
| |
| gimple_set_vdef_ops (dest, NULL); |
| gimple_set_vuse_ops (dest, NULL); |
| |
| gimple_set_stored_syms (dest, gimple_stored_syms (src), |
| &operands_bitmap_obstack); |
| gimple_set_loaded_syms (dest, gimple_loaded_syms (src), |
| &operands_bitmap_obstack); |
| |
| /* Copy all the VUSE operators and corresponding operands. */ |
| dest_vuses = &vuse; |
| for (src_vuses = gimple_vuse_ops (src); |
| src_vuses; |
| src_vuses = src_vuses->next) |
| { |
| n = VUSE_NUM (src_vuses); |
| dest_vuses = add_vuse_op (dest, NULL_TREE, n, dest_vuses); |
| for (i = 0; i < n; i++) |
| SET_USE (VUSE_OP_PTR (dest_vuses, i), VUSE_OP (src_vuses, i)); |
| |
| if (gimple_vuse_ops (dest) == NULL) |
| gimple_set_vuse_ops (dest, vuse.next); |
| } |
| |
| /* Copy all the VDEF operators and corresponding operands. */ |
| dest_vdefs = &vdef; |
| for (src_vdefs = gimple_vdef_ops (src); |
| src_vdefs; |
| src_vdefs = src_vdefs->next) |
| { |
| n = VUSE_NUM (src_vdefs); |
| dest_vdefs = add_vdef_op (dest, NULL_TREE, n, dest_vdefs); |
| VDEF_RESULT (dest_vdefs) = VDEF_RESULT (src_vdefs); |
| for (i = 0; i < n; i++) |
| SET_USE (VUSE_OP_PTR (dest_vdefs, i), VUSE_OP (src_vdefs, i)); |
| |
| if (gimple_vdef_ops (dest) == NULL) |
| gimple_set_vdef_ops (dest, vdef.next); |
| } |
| } |
| |
| |
| /* Specifically for use in DOM's expression analysis. Given a store, we |
| create an artificial stmt which looks like a load from the store, this can |
| be used to eliminate redundant loads. OLD_OPS are the operands from the |
| store stmt, and NEW_STMT is the new load which represents a load of the |
| values stored. If DELINK_IMM_USES_P is specified, the immediate |
| uses of this stmt will be de-linked. */ |
| |
| void |
| create_ssa_artificial_load_stmt (gimple new_stmt, gimple old_stmt, |
| bool delink_imm_uses_p) |
| { |
| tree op; |
| ssa_op_iter iter; |
| use_operand_p use_p; |
| unsigned i; |
| |
| gimple_set_modified (new_stmt, false); |
| |
| /* Process NEW_STMT looking for operands. */ |
| start_ssa_stmt_operands (); |
| parse_ssa_operands (new_stmt); |
| |
| for (i = 0; VEC_iterate (tree, build_vuses, i, op); i++) |
| if (TREE_CODE (op) != SSA_NAME) |
| var_ann (op)->in_vuse_list = false; |
| |
| for (i = 0; VEC_iterate (tree, build_vdefs, i, op); i++) |
| if (TREE_CODE (op) != SSA_NAME) |
| var_ann (op)->in_vdef_list = false; |
| |
| /* Remove any virtual operands that were found. */ |
| VEC_truncate (tree, build_vdefs, 0); |
| VEC_truncate (tree, build_vuses, 0); |
| |
| /* Clear the loads and stores bitmaps. */ |
| bitmap_clear (build_loads); |
| bitmap_clear (build_stores); |
| |
| /* For each VDEF on the original statement, we want to create a |
| VUSE of the VDEF result operand on the new statement. */ |
| FOR_EACH_SSA_TREE_OPERAND (op, old_stmt, iter, SSA_OP_VDEF) |
| append_vuse (op); |
| |
| finalize_ssa_stmt_operands (new_stmt); |
| |
| /* All uses in this fake stmt must not be in the immediate use lists. */ |
| if (delink_imm_uses_p) |
| FOR_EACH_SSA_USE_OPERAND (use_p, new_stmt, iter, SSA_OP_ALL_USES) |
| delink_imm_use (use_p); |
| } |
| |
| |
| /* Swap operands EXP0 and EXP1 in statement STMT. No attempt is done |
| to test the validity of the swap operation. */ |
| |
| void |
| swap_tree_operands (gimple stmt, tree *exp0, tree *exp1) |
| { |
| tree op0, op1; |
| op0 = *exp0; |
| op1 = *exp1; |
| |
| /* If the operand cache is active, attempt to preserve the relative |
| positions of these two operands in their respective immediate use |
| lists. */ |
| if (ssa_operands_active () && op0 != op1) |
| { |
| use_optype_p use0, use1, ptr; |
| use0 = use1 = NULL; |
| |
| /* Find the 2 operands in the cache, if they are there. */ |
| for (ptr = gimple_use_ops (stmt); ptr; ptr = ptr->next) |
| if (USE_OP_PTR (ptr)->use == exp0) |
| { |
| use0 = ptr; |
| break; |
| } |
| |
| for (ptr = gimple_use_ops (stmt); ptr; ptr = ptr->next) |
| if (USE_OP_PTR (ptr)->use == exp1) |
| { |
| use1 = ptr; |
| break; |
| } |
| |
| /* If both uses don't have operand entries, there isn't much we can do |
| at this point. Presumably we don't need to worry about it. */ |
| if (use0 && use1) |
| { |
| tree *tmp = USE_OP_PTR (use1)->use; |
| USE_OP_PTR (use1)->use = USE_OP_PTR (use0)->use; |
| USE_OP_PTR (use0)->use = tmp; |
| } |
| } |
| |
| /* Now swap the data. */ |
| *exp0 = op1; |
| *exp1 = op0; |
| } |
| |
| /* Add the base address of REF to SET. */ |
| |
| void |
| add_to_addressable_set (tree ref, bitmap *set) |
| { |
| tree var; |
| |
| /* Note that it is *NOT OKAY* to use the target of a COMPONENT_REF |
| as the only thing we take the address of. If VAR is a structure, |
| taking the address of a field means that the whole structure may |
| be referenced using pointer arithmetic. See PR 21407 and the |
| ensuing mailing list discussion. */ |
| var = get_base_address (ref); |
| if (var && SSA_VAR_P (var)) |
| { |
| if (*set == NULL) |
| *set = BITMAP_ALLOC (&operands_bitmap_obstack); |
| |
| bitmap_set_bit (*set, DECL_UID (var)); |
| TREE_ADDRESSABLE (var) = 1; |
| } |
| } |
| |
| |
| /* Add the base address of REF to the set of addresses taken by STMT. |
| REF may be a single variable whose address has been taken or any |
| other valid GIMPLE memory reference (structure reference, array, |
| etc). If the base address of REF is a decl that has sub-variables, |
| also add all of its sub-variables. */ |
| |
| void |
| gimple_add_to_addresses_taken (gimple stmt, tree ref) |
| { |
| gcc_assert (gimple_has_ops (stmt)); |
| add_to_addressable_set (ref, gimple_addresses_taken_ptr (stmt)); |
| } |
| |
| |
| /* Scan the immediate_use list for VAR making sure its linked properly. |
| Return TRUE if there is a problem and emit an error message to F. */ |
| |
| bool |
| verify_imm_links (FILE *f, tree var) |
| { |
| use_operand_p ptr, prev, list; |
| int count; |
| |
| gcc_assert (TREE_CODE (var) == SSA_NAME); |
| |
| list = &(SSA_NAME_IMM_USE_NODE (var)); |
| gcc_assert (list->use == NULL); |
| |
| if (list->prev == NULL) |
| { |
| gcc_assert (list->next == NULL); |
| return false; |
| } |
| |
| prev = list; |
| count = 0; |
| for (ptr = list->next; ptr != list; ) |
| { |
| if (prev != ptr->prev) |
| goto error; |
| |
| if (ptr->use == NULL) |
| goto error; /* 2 roots, or SAFE guard node. */ |
| else if (*(ptr->use) != var) |
| goto error; |
| |
| prev = ptr; |
| ptr = ptr->next; |
| |
| /* Avoid infinite loops. 50,000,000 uses probably indicates a |
| problem. */ |
| if (count++ > 50000000) |
| goto error; |
| } |
| |
| /* Verify list in the other direction. */ |
| prev = list; |
| for (ptr = list->prev; ptr != list; ) |
| { |
| if (prev != ptr->next) |
| goto error; |
| prev = ptr; |
| ptr = ptr->prev; |
| if (count-- < 0) |
| goto error; |
| } |
| |
| if (count != 0) |
| goto error; |
| |
| return false; |
| |
| error: |
| if (ptr->loc.stmt && gimple_modified_p (ptr->loc.stmt)) |
| { |
| fprintf (f, " STMT MODIFIED. - <%p> ", (void *)ptr->loc.stmt); |
| print_gimple_stmt (f, ptr->loc.stmt, 0, TDF_SLIM); |
| } |
| fprintf (f, " IMM ERROR : (use_p : tree - %p:%p)", (void *)ptr, |
| (void *)ptr->use); |
| print_generic_expr (f, USE_FROM_PTR (ptr), TDF_SLIM); |
| fprintf(f, "\n"); |
| return true; |
| } |
| |
| |
| /* Dump all the immediate uses to FILE. */ |
| |
| void |
| dump_immediate_uses_for (FILE *file, tree var) |
| { |
| imm_use_iterator iter; |
| use_operand_p use_p; |
| |
| gcc_assert (var && TREE_CODE (var) == SSA_NAME); |
| |
| print_generic_expr (file, var, TDF_SLIM); |
| fprintf (file, " : -->"); |
| if (has_zero_uses (var)) |
| fprintf (file, " no uses.\n"); |
| else |
| if (has_single_use (var)) |
| fprintf (file, " single use.\n"); |
| else |
| fprintf (file, "%d uses.\n", num_imm_uses (var)); |
| |
| FOR_EACH_IMM_USE_FAST (use_p, iter, var) |
| { |
| if (use_p->loc.stmt == NULL && use_p->use == NULL) |
| fprintf (file, "***end of stmt iterator marker***\n"); |
| else |
| if (!is_gimple_reg (USE_FROM_PTR (use_p))) |
| print_gimple_stmt (file, USE_STMT (use_p), 0, TDF_VOPS|TDF_MEMSYMS); |
| else |
| print_gimple_stmt (file, USE_STMT (use_p), 0, TDF_SLIM); |
| } |
| fprintf(file, "\n"); |
| } |
| |
| |
| /* Dump all the immediate uses to FILE. */ |
| |
| void |
| dump_immediate_uses (FILE *file) |
| { |
| tree var; |
| unsigned int x; |
| |
| fprintf (file, "Immediate_uses: \n\n"); |
| for (x = 1; x < num_ssa_names; x++) |
| { |
| var = ssa_name(x); |
| if (!var) |
| continue; |
| dump_immediate_uses_for (file, var); |
| } |
| } |
| |
| |
| /* Dump def-use edges on stderr. */ |
| |
| void |
| debug_immediate_uses (void) |
| { |
| dump_immediate_uses (stderr); |
| } |
| |
| |
| /* Dump def-use edges on stderr. */ |
| |
| void |
| debug_immediate_uses_for (tree var) |
| { |
| dump_immediate_uses_for (stderr, var); |
| } |
| |
| |
| /* Create a new change buffer for the statement pointed by STMT_P and |
| push the buffer into SCB_STACK. Each change buffer |
| records state information needed to determine what changed in the |
| statement. Mainly, this keeps track of symbols that may need to be |
| put into SSA form, SSA name replacements and other information |
| needed to keep the SSA form up to date. */ |
| |
| void |
| push_stmt_changes (gimple *stmt_p) |
| { |
| gimple stmt; |
| scb_t buf; |
| |
| stmt = *stmt_p; |
| |
| /* It makes no sense to keep track of PHI nodes. */ |
| if (gimple_code (stmt) == GIMPLE_PHI) |
| return; |
| |
| buf = XNEW (struct scb_d); |
| memset (buf, 0, sizeof *buf); |
| |
| buf->stmt_p = stmt_p; |
| |
| if (gimple_references_memory_p (stmt)) |
| { |
| tree op; |
| ssa_op_iter i; |
| |
| FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_VUSE) |
| { |
| tree sym = TREE_CODE (op) == SSA_NAME ? SSA_NAME_VAR (op) : op; |
| if (buf->loads == NULL) |
| buf->loads = BITMAP_ALLOC (NULL); |
| bitmap_set_bit (buf->loads, DECL_UID (sym)); |
| } |
| |
| FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_VDEF) |
| { |
| tree sym = TREE_CODE (op) == SSA_NAME ? SSA_NAME_VAR (op) : op; |
| if (buf->stores == NULL) |
| buf->stores = BITMAP_ALLOC (NULL); |
| bitmap_set_bit (buf->stores, DECL_UID (sym)); |
| } |
| } |
| |
| VEC_safe_push (scb_t, heap, scb_stack, buf); |
| } |
| |
| |
| /* Given two sets S1 and S2, mark the symbols that differ in S1 and S2 |
| for renaming. The set to mark for renaming is (S1 & ~S2) | (S2 & ~S1). */ |
| |
| static void |
| mark_difference_for_renaming (bitmap s1, bitmap s2) |
| { |
| if (s1 == NULL && s2 == NULL) |
| return; |
| |
| if (s1 && s2 == NULL) |
| mark_set_for_renaming (s1); |
| else if (s1 == NULL && s2) |
| mark_set_for_renaming (s2); |
| else if (!bitmap_equal_p (s1, s2)) |
| { |
| bitmap t1 = BITMAP_ALLOC (NULL); |
| bitmap_xor (t1, s1, s2); |
| mark_set_for_renaming (t1); |
| BITMAP_FREE (t1); |
| } |
| } |
| |
| |
| /* Pop the top SCB from SCB_STACK and act on the differences between |
| what was recorded by push_stmt_changes and the current state of |
| the statement. */ |
| |
| void |
| pop_stmt_changes (gimple *stmt_p) |
| { |
| tree op; |
| gimple stmt; |
| ssa_op_iter iter; |
| bitmap loads, stores; |
| scb_t buf; |
| |
| stmt = *stmt_p; |
| |
| /* It makes no sense to keep track of PHI nodes. */ |
| if (gimple_code (stmt) == GIMPLE_PHI) |
| return; |
| |
| buf = VEC_pop (scb_t, scb_stack); |
| gcc_assert (stmt_p == buf->stmt_p); |
| |
| /* Force an operand re-scan on the statement and mark any newly |
| exposed variables. */ |
| update_stmt (stmt); |
| |
| /* Determine whether any memory symbols need to be renamed. If the |
| sets of loads and stores are different after the statement is |
| modified, then the affected symbols need to be renamed. |
| |
| Note that it may be possible for the statement to not reference |
| memory anymore, but we still need to act on the differences in |
| the sets of symbols. */ |
| loads = stores = NULL; |
| if (gimple_references_memory_p (stmt)) |
| { |
| tree op; |
| ssa_op_iter i; |
| |
| FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_VUSE) |
| { |
| tree sym = TREE_CODE (op) == SSA_NAME ? SSA_NAME_VAR (op) : op; |
| if (loads == NULL) |
| loads = BITMAP_ALLOC (NULL); |
| bitmap_set_bit (loads, DECL_UID (sym)); |
| } |
| |
| FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_VDEF) |
| { |
| tree sym = TREE_CODE (op) == SSA_NAME ? SSA_NAME_VAR (op) : op; |
| if (stores == NULL) |
| stores = BITMAP_ALLOC (NULL); |
| bitmap_set_bit (stores, DECL_UID (sym)); |
| } |
| } |
| |
| /* If LOADS is different from BUF->LOADS, the affected |
| symbols need to be marked for renaming. */ |
| mark_difference_for_renaming (loads, buf->loads); |
| |
| /* Similarly for STORES and BUF->STORES. */ |
| mark_difference_for_renaming (stores, buf->stores); |
| |
| /* Mark all the naked GIMPLE register operands for renaming. */ |
| FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_DEF|SSA_OP_USE) |
| if (DECL_P (op)) |
| mark_sym_for_renaming (op); |
| |
| /* FIXME, need to add more finalizers here. Cleanup EH info, |
| recompute invariants for address expressions, add |
| SSA replacement mappings, etc. For instance, given |
| testsuite/gcc.c-torture/compile/pr16808.c, we fold a statement of |
| the form: |
| |
| # SMT.4_20 = VDEF <SMT.4_16> |
| D.1576_11 = 1.0e+0; |
| |
| So, the VDEF will disappear, but instead of marking SMT.4 for |
| renaming it would be far more efficient to establish a |
| replacement mapping that would replace every reference of |
| SMT.4_20 with SMT.4_16. */ |
| |
| /* Free memory used by the buffer. */ |
| BITMAP_FREE (buf->loads); |
| BITMAP_FREE (buf->stores); |
| BITMAP_FREE (loads); |
| BITMAP_FREE (stores); |
| buf->stmt_p = NULL; |
| free (buf); |
| } |
| |
| |
| /* Discard the topmost change buffer from SCB_STACK. This is useful |
| when the caller realized that it did not actually modified the |
| statement. It avoids the expensive operand re-scan. */ |
| |
| void |
| discard_stmt_changes (gimple *stmt_p) |
| { |
| scb_t buf; |
| gimple stmt; |
| |
| /* It makes no sense to keep track of PHI nodes. */ |
| stmt = *stmt_p; |
| if (gimple_code (stmt) == GIMPLE_PHI) |
| return; |
| |
| buf = VEC_pop (scb_t, scb_stack); |
| gcc_assert (stmt_p == buf->stmt_p); |
| |
| /* Free memory used by the buffer. */ |
| BITMAP_FREE (buf->loads); |
| BITMAP_FREE (buf->stores); |
| buf->stmt_p = NULL; |
| free (buf); |
| } |