| /* Transformations based on profile information for values. |
| Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 Free Software |
| Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| #include "rtl.h" |
| #include "expr.h" |
| #include "hard-reg-set.h" |
| #include "basic-block.h" |
| #include "value-prof.h" |
| #include "output.h" |
| #include "flags.h" |
| #include "insn-config.h" |
| #include "recog.h" |
| #include "optabs.h" |
| #include "regs.h" |
| #include "ggc.h" |
| #include "tree-flow.h" |
| #include "tree-flow-inline.h" |
| #include "diagnostic.h" |
| #include "coverage.h" |
| #include "tree.h" |
| #include "gcov-io.h" |
| #include "cgraph.h" |
| #include "timevar.h" |
| #include "tree-pass.h" |
| #include "toplev.h" |
| #include "pointer-set.h" |
| |
| static struct value_prof_hooks *value_prof_hooks; |
| |
| /* In this file value profile based optimizations are placed. Currently the |
| following optimizations are implemented (for more detailed descriptions |
| see comments at value_profile_transformations): |
| |
| 1) Division/modulo specialization. Provided that we can determine that the |
| operands of the division have some special properties, we may use it to |
| produce more effective code. |
| 2) Speculative prefetching. If we are able to determine that the difference |
| between addresses accessed by a memory reference is usually constant, we |
| may add the prefetch instructions. |
| FIXME: This transformation was removed together with RTL based value |
| profiling. |
| |
| 3) Indirect/virtual call specialization. If we can determine most |
| common function callee in indirect/virtual call. We can use this |
| information to improve code effectiveness (especially info for |
| inliner). |
| |
| Every such optimization should add its requirements for profiled values to |
| insn_values_to_profile function. This function is called from branch_prob |
| in profile.c and the requested values are instrumented by it in the first |
| compilation with -fprofile-arcs. The optimization may then read the |
| gathered data in the second compilation with -fbranch-probabilities. |
| |
| The measured data is pointed to from the histograms |
| field of the statement annotation of the instrumented insns. It is |
| kept as a linked list of struct histogram_value_t's, which contain the |
| same information as above. */ |
| |
| |
| static tree gimple_divmod_fixed_value (gimple, tree, int, gcov_type, gcov_type); |
| static tree gimple_mod_pow2 (gimple, int, gcov_type, gcov_type); |
| static tree gimple_mod_subtract (gimple, int, int, int, gcov_type, gcov_type, |
| gcov_type); |
| static bool gimple_divmod_fixed_value_transform (gimple_stmt_iterator *); |
| static bool gimple_mod_pow2_value_transform (gimple_stmt_iterator *); |
| static bool gimple_mod_subtract_transform (gimple_stmt_iterator *); |
| static bool gimple_stringops_transform (gimple_stmt_iterator *); |
| static bool gimple_ic_transform (gimple); |
| |
| /* Allocate histogram value. */ |
| |
| static histogram_value |
| gimple_alloc_histogram_value (struct function *fun ATTRIBUTE_UNUSED, |
| enum hist_type type, gimple stmt, tree value) |
| { |
| histogram_value hist = (histogram_value) xcalloc (1, sizeof (*hist)); |
| hist->hvalue.value = value; |
| hist->hvalue.stmt = stmt; |
| hist->type = type; |
| return hist; |
| } |
| |
| /* Hash value for histogram. */ |
| |
| static hashval_t |
| histogram_hash (const void *x) |
| { |
| return htab_hash_pointer (((const_histogram_value)x)->hvalue.stmt); |
| } |
| |
| /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */ |
| |
| static int |
| histogram_eq (const void *x, const void *y) |
| { |
| return ((const_histogram_value) x)->hvalue.stmt == (const_gimple) y; |
| } |
| |
| /* Set histogram for STMT. */ |
| |
| static void |
| set_histogram_value (struct function *fun, gimple stmt, histogram_value hist) |
| { |
| void **loc; |
| if (!hist && !VALUE_HISTOGRAMS (fun)) |
| return; |
| if (!VALUE_HISTOGRAMS (fun)) |
| VALUE_HISTOGRAMS (fun) = htab_create (1, histogram_hash, |
| histogram_eq, NULL); |
| loc = htab_find_slot_with_hash (VALUE_HISTOGRAMS (fun), stmt, |
| htab_hash_pointer (stmt), |
| hist ? INSERT : NO_INSERT); |
| if (!hist) |
| { |
| if (loc) |
| htab_clear_slot (VALUE_HISTOGRAMS (fun), loc); |
| return; |
| } |
| *loc = hist; |
| } |
| |
| /* Get histogram list for STMT. */ |
| |
| histogram_value |
| gimple_histogram_value (struct function *fun, gimple stmt) |
| { |
| if (!VALUE_HISTOGRAMS (fun)) |
| return NULL; |
| return (histogram_value) htab_find_with_hash (VALUE_HISTOGRAMS (fun), stmt, |
| htab_hash_pointer (stmt)); |
| } |
| |
| /* Add histogram for STMT. */ |
| |
| void |
| gimple_add_histogram_value (struct function *fun, gimple stmt, |
| histogram_value hist) |
| { |
| hist->hvalue.next = gimple_histogram_value (fun, stmt); |
| set_histogram_value (fun, stmt, hist); |
| } |
| |
| |
| /* Remove histogram HIST from STMT's histogram list. */ |
| |
| void |
| gimple_remove_histogram_value (struct function *fun, gimple stmt, |
| histogram_value hist) |
| { |
| histogram_value hist2 = gimple_histogram_value (fun, stmt); |
| if (hist == hist2) |
| { |
| set_histogram_value (fun, stmt, hist->hvalue.next); |
| } |
| else |
| { |
| while (hist2->hvalue.next != hist) |
| hist2 = hist2->hvalue.next; |
| hist2->hvalue.next = hist->hvalue.next; |
| } |
| free (hist->hvalue.counters); |
| #ifdef ENABLE_CHECKING |
| memset (hist, 0xab, sizeof (*hist)); |
| #endif |
| free (hist); |
| } |
| |
| |
| /* Lookup histogram of type TYPE in the STMT. */ |
| |
| histogram_value |
| gimple_histogram_value_of_type (struct function *fun, gimple stmt, |
| enum hist_type type) |
| { |
| histogram_value hist; |
| for (hist = gimple_histogram_value (fun, stmt); hist; |
| hist = hist->hvalue.next) |
| if (hist->type == type) |
| return hist; |
| return NULL; |
| } |
| |
| /* Dump information about HIST to DUMP_FILE. */ |
| |
| static void |
| dump_histogram_value (FILE *dump_file, histogram_value hist) |
| { |
| switch (hist->type) |
| { |
| case HIST_TYPE_INTERVAL: |
| fprintf (dump_file, "Interval counter range %d -- %d", |
| hist->hdata.intvl.int_start, |
| (hist->hdata.intvl.int_start |
| + hist->hdata.intvl.steps - 1)); |
| if (hist->hvalue.counters) |
| { |
| unsigned int i; |
| fprintf(dump_file, " ["); |
| for (i = 0; i < hist->hdata.intvl.steps; i++) |
| fprintf (dump_file, " %d:"HOST_WIDEST_INT_PRINT_DEC, |
| hist->hdata.intvl.int_start + i, |
| (HOST_WIDEST_INT) hist->hvalue.counters[i]); |
| fprintf (dump_file, " ] outside range:"HOST_WIDEST_INT_PRINT_DEC, |
| (HOST_WIDEST_INT) hist->hvalue.counters[i]); |
| } |
| fprintf (dump_file, ".\n"); |
| break; |
| |
| case HIST_TYPE_POW2: |
| fprintf (dump_file, "Pow2 counter "); |
| if (hist->hvalue.counters) |
| { |
| fprintf (dump_file, "pow2:"HOST_WIDEST_INT_PRINT_DEC |
| " nonpow2:"HOST_WIDEST_INT_PRINT_DEC, |
| (HOST_WIDEST_INT) hist->hvalue.counters[0], |
| (HOST_WIDEST_INT) hist->hvalue.counters[1]); |
| } |
| fprintf (dump_file, ".\n"); |
| break; |
| |
| case HIST_TYPE_SINGLE_VALUE: |
| fprintf (dump_file, "Single value "); |
| if (hist->hvalue.counters) |
| { |
| fprintf (dump_file, "value:"HOST_WIDEST_INT_PRINT_DEC |
| " match:"HOST_WIDEST_INT_PRINT_DEC |
| " wrong:"HOST_WIDEST_INT_PRINT_DEC, |
| (HOST_WIDEST_INT) hist->hvalue.counters[0], |
| (HOST_WIDEST_INT) hist->hvalue.counters[1], |
| (HOST_WIDEST_INT) hist->hvalue.counters[2]); |
| } |
| fprintf (dump_file, ".\n"); |
| break; |
| |
| case HIST_TYPE_AVERAGE: |
| fprintf (dump_file, "Average value "); |
| if (hist->hvalue.counters) |
| { |
| fprintf (dump_file, "sum:"HOST_WIDEST_INT_PRINT_DEC |
| " times:"HOST_WIDEST_INT_PRINT_DEC, |
| (HOST_WIDEST_INT) hist->hvalue.counters[0], |
| (HOST_WIDEST_INT) hist->hvalue.counters[1]); |
| } |
| fprintf (dump_file, ".\n"); |
| break; |
| |
| case HIST_TYPE_IOR: |
| fprintf (dump_file, "IOR value "); |
| if (hist->hvalue.counters) |
| { |
| fprintf (dump_file, "ior:"HOST_WIDEST_INT_PRINT_DEC, |
| (HOST_WIDEST_INT) hist->hvalue.counters[0]); |
| } |
| fprintf (dump_file, ".\n"); |
| break; |
| |
| case HIST_TYPE_CONST_DELTA: |
| fprintf (dump_file, "Constant delta "); |
| if (hist->hvalue.counters) |
| { |
| fprintf (dump_file, "value:"HOST_WIDEST_INT_PRINT_DEC |
| " match:"HOST_WIDEST_INT_PRINT_DEC |
| " wrong:"HOST_WIDEST_INT_PRINT_DEC, |
| (HOST_WIDEST_INT) hist->hvalue.counters[0], |
| (HOST_WIDEST_INT) hist->hvalue.counters[1], |
| (HOST_WIDEST_INT) hist->hvalue.counters[2]); |
| } |
| fprintf (dump_file, ".\n"); |
| break; |
| case HIST_TYPE_INDIR_CALL: |
| fprintf (dump_file, "Indirect call "); |
| if (hist->hvalue.counters) |
| { |
| fprintf (dump_file, "value:"HOST_WIDEST_INT_PRINT_DEC |
| " match:"HOST_WIDEST_INT_PRINT_DEC |
| " all:"HOST_WIDEST_INT_PRINT_DEC, |
| (HOST_WIDEST_INT) hist->hvalue.counters[0], |
| (HOST_WIDEST_INT) hist->hvalue.counters[1], |
| (HOST_WIDEST_INT) hist->hvalue.counters[2]); |
| } |
| fprintf (dump_file, ".\n"); |
| break; |
| } |
| } |
| |
| /* Dump all histograms attached to STMT to DUMP_FILE. */ |
| |
| void |
| dump_histograms_for_stmt (struct function *fun, FILE *dump_file, gimple stmt) |
| { |
| histogram_value hist; |
| for (hist = gimple_histogram_value (fun, stmt); hist; hist = hist->hvalue.next) |
| dump_histogram_value (dump_file, hist); |
| } |
| |
| /* Remove all histograms associated with STMT. */ |
| |
| void |
| gimple_remove_stmt_histograms (struct function *fun, gimple stmt) |
| { |
| histogram_value val; |
| while ((val = gimple_histogram_value (fun, stmt)) != NULL) |
| gimple_remove_histogram_value (fun, stmt, val); |
| } |
| |
| /* Duplicate all histograms associates with OSTMT to STMT. */ |
| |
| void |
| gimple_duplicate_stmt_histograms (struct function *fun, gimple stmt, |
| struct function *ofun, gimple ostmt) |
| { |
| histogram_value val; |
| for (val = gimple_histogram_value (ofun, ostmt); val != NULL; val = val->hvalue.next) |
| { |
| histogram_value new_val = gimple_alloc_histogram_value (fun, val->type, NULL, NULL); |
| memcpy (new_val, val, sizeof (*val)); |
| new_val->hvalue.stmt = stmt; |
| new_val->hvalue.counters = XNEWVAR (gcov_type, sizeof (*new_val->hvalue.counters) * new_val->n_counters); |
| memcpy (new_val->hvalue.counters, val->hvalue.counters, sizeof (*new_val->hvalue.counters) * new_val->n_counters); |
| gimple_add_histogram_value (fun, stmt, new_val); |
| } |
| } |
| |
| |
| /* Move all histograms associated with OSTMT to STMT. */ |
| |
| void |
| gimple_move_stmt_histograms (struct function *fun, gimple stmt, gimple ostmt) |
| { |
| histogram_value val = gimple_histogram_value (fun, ostmt); |
| if (val) |
| { |
| /* The following three statements can't be reordered, |
| because histogram hashtab relies on stmt field value |
| for finding the exact slot. */ |
| set_histogram_value (fun, ostmt, NULL); |
| for (; val != NULL; val = val->hvalue.next) |
| val->hvalue.stmt = stmt; |
| set_histogram_value (fun, stmt, val); |
| } |
| } |
| |
| static bool error_found = false; |
| |
| /* Helper function for verify_histograms. For each histogram reachable via htab |
| walk verify that it was reached via statement walk. */ |
| |
| static int |
| visit_hist (void **slot, void *data) |
| { |
| struct pointer_set_t *visited = (struct pointer_set_t *) data; |
| histogram_value hist = *(histogram_value *) slot; |
| if (!pointer_set_contains (visited, hist)) |
| { |
| error ("Dead histogram"); |
| dump_histogram_value (stderr, hist); |
| debug_gimple_stmt (hist->hvalue.stmt); |
| error_found = true; |
| } |
| return 1; |
| } |
| |
| |
| /* Verify sanity of the histograms. */ |
| |
| void |
| verify_histograms (void) |
| { |
| basic_block bb; |
| gimple_stmt_iterator gsi; |
| histogram_value hist; |
| struct pointer_set_t *visited_hists; |
| |
| error_found = false; |
| visited_hists = pointer_set_create (); |
| FOR_EACH_BB (bb) |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| gimple stmt = gsi_stmt (gsi); |
| |
| for (hist = gimple_histogram_value (cfun, stmt); hist; |
| hist = hist->hvalue.next) |
| { |
| if (hist->hvalue.stmt != stmt) |
| { |
| error ("Histogram value statement does not correspond to " |
| "the statement it is associated with"); |
| debug_gimple_stmt (stmt); |
| dump_histogram_value (stderr, hist); |
| error_found = true; |
| } |
| pointer_set_insert (visited_hists, hist); |
| } |
| } |
| if (VALUE_HISTOGRAMS (cfun)) |
| htab_traverse (VALUE_HISTOGRAMS (cfun), visit_hist, visited_hists); |
| pointer_set_destroy (visited_hists); |
| if (error_found) |
| internal_error ("verify_histograms failed"); |
| } |
| |
| /* Helper function for verify_histograms. For each histogram reachable via htab |
| walk verify that it was reached via statement walk. */ |
| |
| static int |
| free_hist (void **slot, void *data ATTRIBUTE_UNUSED) |
| { |
| histogram_value hist = *(histogram_value *) slot; |
| free (hist->hvalue.counters); |
| #ifdef ENABLE_CHECKING |
| memset (hist, 0xab, sizeof (*hist)); |
| #endif |
| free (hist); |
| return 1; |
| } |
| |
| void |
| free_histograms (void) |
| { |
| if (VALUE_HISTOGRAMS (cfun)) |
| { |
| htab_traverse (VALUE_HISTOGRAMS (cfun), free_hist, NULL); |
| htab_delete (VALUE_HISTOGRAMS (cfun)); |
| VALUE_HISTOGRAMS (cfun) = NULL; |
| } |
| } |
| |
| |
| /* The overall number of invocations of the counter should match |
| execution count of basic block. Report it as error rather than |
| internal error as it might mean that user has misused the profile |
| somehow. */ |
| |
| static bool |
| check_counter (gimple stmt, const char * name, |
| gcov_type *count, gcov_type *all, gcov_type bb_count) |
| { |
| if (*all != bb_count || *count > *all) |
| { |
| location_t locus; |
| locus = (stmt != NULL) |
| ? gimple_location (stmt) |
| : DECL_SOURCE_LOCATION (current_function_decl); |
| if (flag_profile_correction) |
| { |
| inform (locus, "Correcting inconsistent value profile: " |
| "%s profiler overall count (%d) does not match BB count " |
| "(%d)", name, (int)*all, (int)bb_count); |
| *all = bb_count; |
| if (*count > *all) |
| *count = *all; |
| return false; |
| } |
| else |
| { |
| error ("%HCorrupted value profile: %s profiler overall count (%d) " |
| "does not match BB count (%d)", &locus, name, (int)*all, |
| (int)bb_count); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| |
| /* GIMPLE based transformations. */ |
| |
| static bool |
| gimple_value_profile_transformations (void) |
| { |
| basic_block bb; |
| gimple_stmt_iterator gsi; |
| bool changed = false; |
| |
| FOR_EACH_BB (bb) |
| { |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| gimple stmt = gsi_stmt (gsi); |
| histogram_value th = gimple_histogram_value (cfun, stmt); |
| if (!th) |
| continue; |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "Trying transformations on stmt "); |
| print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); |
| dump_histograms_for_stmt (cfun, dump_file, stmt); |
| } |
| |
| /* Transformations: */ |
| /* The order of things in this conditional controls which |
| transformation is used when more than one is applicable. */ |
| /* It is expected that any code added by the transformations |
| will be added before the current statement, and that the |
| current statement remain valid (although possibly |
| modified) upon return. */ |
| if (flag_value_profile_transformations |
| && (gimple_mod_subtract_transform (&gsi) |
| || gimple_divmod_fixed_value_transform (&gsi) |
| || gimple_mod_pow2_value_transform (&gsi) |
| || gimple_stringops_transform (&gsi) |
| || gimple_ic_transform (stmt))) |
| { |
| stmt = gsi_stmt (gsi); |
| changed = true; |
| /* Original statement may no longer be in the same block. */ |
| if (bb != gimple_bb (stmt)) |
| { |
| bb = gimple_bb (stmt); |
| gsi = gsi_for_stmt (stmt); |
| } |
| } |
| } |
| } |
| |
| if (changed) |
| { |
| counts_to_freqs (); |
| } |
| |
| return changed; |
| } |
| |
| |
| /* Generate code for transformation 1 (with parent gimple assignment |
| STMT and probability of taking the optimal path PROB, which is |
| equivalent to COUNT/ALL within roundoff error). This generates the |
| result into a temp and returns the temp; it does not replace or |
| alter the original STMT. */ |
| |
| static tree |
| gimple_divmod_fixed_value (gimple stmt, tree value, int prob, gcov_type count, |
| gcov_type all) |
| { |
| gimple stmt1, stmt2, stmt3; |
| tree tmp1, tmp2, tmpv; |
| gimple bb1end, bb2end, bb3end; |
| basic_block bb, bb2, bb3, bb4; |
| tree optype, op1, op2; |
| edge e12, e13, e23, e24, e34; |
| gimple_stmt_iterator gsi; |
| |
| gcc_assert (is_gimple_assign (stmt) |
| && (gimple_assign_rhs_code (stmt) == TRUNC_DIV_EXPR |
| || gimple_assign_rhs_code (stmt) == TRUNC_MOD_EXPR)); |
| |
| optype = TREE_TYPE (gimple_assign_lhs (stmt)); |
| op1 = gimple_assign_rhs1 (stmt); |
| op2 = gimple_assign_rhs2 (stmt); |
| |
| bb = gimple_bb (stmt); |
| gsi = gsi_for_stmt (stmt); |
| |
| tmpv = create_tmp_var (optype, "PROF"); |
| tmp1 = create_tmp_var (optype, "PROF"); |
| stmt1 = gimple_build_assign (tmpv, fold_convert (optype, value)); |
| stmt2 = gimple_build_assign (tmp1, op2); |
| stmt3 = gimple_build_cond (NE_EXPR, tmp1, tmpv, NULL_TREE, NULL_TREE); |
| gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT); |
| gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT); |
| gsi_insert_before (&gsi, stmt3, GSI_SAME_STMT); |
| bb1end = stmt3; |
| |
| tmp2 = create_tmp_var (optype, "PROF"); |
| stmt1 = gimple_build_assign_with_ops (gimple_assign_rhs_code (stmt), tmp2, |
| op1, tmpv); |
| gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT); |
| bb2end = stmt1; |
| |
| stmt1 = gimple_build_assign_with_ops (gimple_assign_rhs_code (stmt), tmp2, |
| op1, op2); |
| gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT); |
| bb3end = stmt1; |
| |
| /* Fix CFG. */ |
| /* Edge e23 connects bb2 to bb3, etc. */ |
| e12 = split_block (bb, bb1end); |
| bb2 = e12->dest; |
| bb2->count = count; |
| e23 = split_block (bb2, bb2end); |
| bb3 = e23->dest; |
| bb3->count = all - count; |
| e34 = split_block (bb3, bb3end); |
| bb4 = e34->dest; |
| bb4->count = all; |
| |
| e12->flags &= ~EDGE_FALLTHRU; |
| e12->flags |= EDGE_FALSE_VALUE; |
| e12->probability = prob; |
| e12->count = count; |
| |
| e13 = make_edge (bb, bb3, EDGE_TRUE_VALUE); |
| e13->probability = REG_BR_PROB_BASE - prob; |
| e13->count = all - count; |
| |
| remove_edge (e23); |
| |
| e24 = make_edge (bb2, bb4, EDGE_FALLTHRU); |
| e24->probability = REG_BR_PROB_BASE; |
| e24->count = count; |
| |
| e34->probability = REG_BR_PROB_BASE; |
| e34->count = all - count; |
| |
| return tmp2; |
| } |
| |
| |
| /* Do transform 1) on INSN if applicable. */ |
| |
| static bool |
| gimple_divmod_fixed_value_transform (gimple_stmt_iterator *si) |
| { |
| histogram_value histogram; |
| enum tree_code code; |
| gcov_type val, count, all; |
| tree result, value, tree_val; |
| gcov_type prob; |
| gimple stmt; |
| |
| stmt = gsi_stmt (*si); |
| if (gimple_code (stmt) != GIMPLE_ASSIGN) |
| return false; |
| |
| if (!INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt)))) |
| return false; |
| |
| code = gimple_assign_rhs_code (stmt); |
| |
| if (code != TRUNC_DIV_EXPR && code != TRUNC_MOD_EXPR) |
| return false; |
| |
| histogram = gimple_histogram_value_of_type (cfun, stmt, |
| HIST_TYPE_SINGLE_VALUE); |
| if (!histogram) |
| return false; |
| |
| value = histogram->hvalue.value; |
| val = histogram->hvalue.counters[0]; |
| count = histogram->hvalue.counters[1]; |
| all = histogram->hvalue.counters[2]; |
| gimple_remove_histogram_value (cfun, stmt, histogram); |
| |
| /* We require that count is at least half of all; this means |
| that for the transformation to fire the value must be constant |
| at least 50% of time (and 75% gives the guarantee of usage). */ |
| if (simple_cst_equal (gimple_assign_rhs2 (stmt), value) != 1 |
| || 2 * count < all |
| || optimize_bb_for_size_p (gimple_bb (stmt))) |
| return false; |
| |
| if (check_counter (stmt, "value", &count, &all, gimple_bb (stmt)->count)) |
| return false; |
| |
| /* Compute probability of taking the optimal path. */ |
| if (all > 0) |
| prob = (count * REG_BR_PROB_BASE + all / 2) / all; |
| else |
| prob = 0; |
| |
| tree_val = build_int_cst_wide (get_gcov_type (), |
| (unsigned HOST_WIDE_INT) val, |
| val >> (HOST_BITS_PER_WIDE_INT - 1) >> 1); |
| result = gimple_divmod_fixed_value (stmt, tree_val, prob, count, all); |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "Div/mod by constant "); |
| print_generic_expr (dump_file, value, TDF_SLIM); |
| fprintf (dump_file, "="); |
| print_generic_expr (dump_file, tree_val, TDF_SLIM); |
| fprintf (dump_file, " transformation on insn "); |
| print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); |
| } |
| |
| gimple_assign_set_rhs_from_tree (si, result); |
| |
| return true; |
| } |
| |
| /* Generate code for transformation 2 (with parent gimple assign STMT and |
| probability of taking the optimal path PROB, which is equivalent to COUNT/ALL |
| within roundoff error). This generates the result into a temp and returns |
| the temp; it does not replace or alter the original STMT. */ |
| static tree |
| gimple_mod_pow2 (gimple stmt, int prob, gcov_type count, gcov_type all) |
| { |
| gimple stmt1, stmt2, stmt3, stmt4; |
| tree tmp2, tmp3; |
| gimple bb1end, bb2end, bb3end; |
| basic_block bb, bb2, bb3, bb4; |
| tree optype, op1, op2; |
| edge e12, e13, e23, e24, e34; |
| gimple_stmt_iterator gsi; |
| tree result; |
| |
| gcc_assert (is_gimple_assign (stmt) |
| && gimple_assign_rhs_code (stmt) == TRUNC_MOD_EXPR); |
| |
| optype = TREE_TYPE (gimple_assign_lhs (stmt)); |
| op1 = gimple_assign_rhs1 (stmt); |
| op2 = gimple_assign_rhs2 (stmt); |
| |
| bb = gimple_bb (stmt); |
| gsi = gsi_for_stmt (stmt); |
| |
| result = create_tmp_var (optype, "PROF"); |
| tmp2 = create_tmp_var (optype, "PROF"); |
| tmp3 = create_tmp_var (optype, "PROF"); |
| stmt2 = gimple_build_assign_with_ops (PLUS_EXPR, tmp2, op2, |
| build_int_cst (optype, -1)); |
| stmt3 = gimple_build_assign_with_ops (BIT_AND_EXPR, tmp3, tmp2, op2); |
| stmt4 = gimple_build_cond (NE_EXPR, tmp3, build_int_cst (optype, 0), |
| NULL_TREE, NULL_TREE); |
| gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT); |
| gsi_insert_before (&gsi, stmt3, GSI_SAME_STMT); |
| gsi_insert_before (&gsi, stmt4, GSI_SAME_STMT); |
| bb1end = stmt4; |
| |
| /* tmp2 == op2-1 inherited from previous block. */ |
| stmt1 = gimple_build_assign_with_ops (BIT_AND_EXPR, result, op1, tmp2); |
| gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT); |
| bb2end = stmt1; |
| |
| stmt1 = gimple_build_assign_with_ops (gimple_assign_rhs_code (stmt), result, |
| op1, op2); |
| gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT); |
| bb3end = stmt1; |
| |
| /* Fix CFG. */ |
| /* Edge e23 connects bb2 to bb3, etc. */ |
| e12 = split_block (bb, bb1end); |
| bb2 = e12->dest; |
| bb2->count = count; |
| e23 = split_block (bb2, bb2end); |
| bb3 = e23->dest; |
| bb3->count = all - count; |
| e34 = split_block (bb3, bb3end); |
| bb4 = e34->dest; |
| bb4->count = all; |
| |
| e12->flags &= ~EDGE_FALLTHRU; |
| e12->flags |= EDGE_FALSE_VALUE; |
| e12->probability = prob; |
| e12->count = count; |
| |
| e13 = make_edge (bb, bb3, EDGE_TRUE_VALUE); |
| e13->probability = REG_BR_PROB_BASE - prob; |
| e13->count = all - count; |
| |
| remove_edge (e23); |
| |
| e24 = make_edge (bb2, bb4, EDGE_FALLTHRU); |
| e24->probability = REG_BR_PROB_BASE; |
| e24->count = count; |
| |
| e34->probability = REG_BR_PROB_BASE; |
| e34->count = all - count; |
| |
| return result; |
| } |
| |
| /* Do transform 2) on INSN if applicable. */ |
| static bool |
| gimple_mod_pow2_value_transform (gimple_stmt_iterator *si) |
| { |
| histogram_value histogram; |
| enum tree_code code; |
| gcov_type count, wrong_values, all; |
| tree lhs_type, result, value; |
| gcov_type prob; |
| gimple stmt; |
| |
| stmt = gsi_stmt (*si); |
| if (gimple_code (stmt) != GIMPLE_ASSIGN) |
| return false; |
| |
| lhs_type = TREE_TYPE (gimple_assign_lhs (stmt)); |
| if (!INTEGRAL_TYPE_P (lhs_type)) |
| return false; |
| |
| code = gimple_assign_rhs_code (stmt); |
| |
| if (code != TRUNC_MOD_EXPR || !TYPE_UNSIGNED (lhs_type)) |
| return false; |
| |
| histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_POW2); |
| if (!histogram) |
| return false; |
| |
| value = histogram->hvalue.value; |
| wrong_values = histogram->hvalue.counters[0]; |
| count = histogram->hvalue.counters[1]; |
| |
| gimple_remove_histogram_value (cfun, stmt, histogram); |
| |
| /* We require that we hit a power of 2 at least half of all evaluations. */ |
| if (simple_cst_equal (gimple_assign_rhs2 (stmt), value) != 1 |
| || count < wrong_values |
| || optimize_bb_for_size_p (gimple_bb (stmt))) |
| return false; |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "Mod power of 2 transformation on insn "); |
| print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); |
| } |
| |
| /* Compute probability of taking the optimal path. */ |
| all = count + wrong_values; |
| |
| if (check_counter (stmt, "pow2", &count, &all, gimple_bb (stmt)->count)) |
| return false; |
| |
| if (all > 0) |
| prob = (count * REG_BR_PROB_BASE + all / 2) / all; |
| else |
| prob = 0; |
| |
| result = gimple_mod_pow2 (stmt, prob, count, all); |
| |
| gimple_assign_set_rhs_from_tree (si, result); |
| |
| return true; |
| } |
| |
| /* Generate code for transformations 3 and 4 (with parent gimple assign STMT, and |
| NCOUNTS the number of cases to support. Currently only NCOUNTS==0 or 1 is |
| supported and this is built into this interface. The probabilities of taking |
| the optimal paths are PROB1 and PROB2, which are equivalent to COUNT1/ALL and |
| COUNT2/ALL respectively within roundoff error). This generates the |
| result into a temp and returns the temp; it does not replace or alter |
| the original STMT. */ |
| /* FIXME: Generalize the interface to handle NCOUNTS > 1. */ |
| |
| static tree |
| gimple_mod_subtract (gimple stmt, int prob1, int prob2, int ncounts, |
| gcov_type count1, gcov_type count2, gcov_type all) |
| { |
| gimple stmt1, stmt2, stmt3; |
| tree tmp1; |
| gimple bb1end, bb2end = NULL, bb3end; |
| basic_block bb, bb2, bb3, bb4; |
| tree optype, op1, op2; |
| edge e12, e23 = 0, e24, e34, e14; |
| gimple_stmt_iterator gsi; |
| tree result; |
| |
| gcc_assert (is_gimple_assign (stmt) |
| && gimple_assign_rhs_code (stmt) == TRUNC_MOD_EXPR); |
| |
| optype = TREE_TYPE (gimple_assign_lhs (stmt)); |
| op1 = gimple_assign_rhs1 (stmt); |
| op2 = gimple_assign_rhs2 (stmt); |
| |
| bb = gimple_bb (stmt); |
| gsi = gsi_for_stmt (stmt); |
| |
| result = create_tmp_var (optype, "PROF"); |
| tmp1 = create_tmp_var (optype, "PROF"); |
| stmt1 = gimple_build_assign (result, op1); |
| stmt2 = gimple_build_assign (tmp1, op2); |
| stmt3 = gimple_build_cond (LT_EXPR, result, tmp1, NULL_TREE, NULL_TREE); |
| gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT); |
| gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT); |
| gsi_insert_before (&gsi, stmt3, GSI_SAME_STMT); |
| bb1end = stmt3; |
| |
| if (ncounts) /* Assumed to be 0 or 1 */ |
| { |
| stmt1 = gimple_build_assign_with_ops (MINUS_EXPR, result, result, tmp1); |
| stmt2 = gimple_build_cond (LT_EXPR, result, tmp1, NULL_TREE, NULL_TREE); |
| gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT); |
| gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT); |
| bb2end = stmt2; |
| } |
| |
| /* Fallback case. */ |
| stmt1 = gimple_build_assign_with_ops (gimple_assign_rhs_code (stmt), result, |
| result, tmp1); |
| gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT); |
| bb3end = stmt1; |
| |
| /* Fix CFG. */ |
| /* Edge e23 connects bb2 to bb3, etc. */ |
| /* However block 3 is optional; if it is not there, references |
| to 3 really refer to block 2. */ |
| e12 = split_block (bb, bb1end); |
| bb2 = e12->dest; |
| bb2->count = all - count1; |
| |
| if (ncounts) /* Assumed to be 0 or 1. */ |
| { |
| e23 = split_block (bb2, bb2end); |
| bb3 = e23->dest; |
| bb3->count = all - count1 - count2; |
| } |
| |
| e34 = split_block (ncounts ? bb3 : bb2, bb3end); |
| bb4 = e34->dest; |
| bb4->count = all; |
| |
| e12->flags &= ~EDGE_FALLTHRU; |
| e12->flags |= EDGE_FALSE_VALUE; |
| e12->probability = REG_BR_PROB_BASE - prob1; |
| e12->count = all - count1; |
| |
| e14 = make_edge (bb, bb4, EDGE_TRUE_VALUE); |
| e14->probability = prob1; |
| e14->count = count1; |
| |
| if (ncounts) /* Assumed to be 0 or 1. */ |
| { |
| e23->flags &= ~EDGE_FALLTHRU; |
| e23->flags |= EDGE_FALSE_VALUE; |
| e23->count = all - count1 - count2; |
| e23->probability = REG_BR_PROB_BASE - prob2; |
| |
| e24 = make_edge (bb2, bb4, EDGE_TRUE_VALUE); |
| e24->probability = prob2; |
| e24->count = count2; |
| } |
| |
| e34->probability = REG_BR_PROB_BASE; |
| e34->count = all - count1 - count2; |
| |
| return result; |
| } |
| |
| |
| /* Do transforms 3) and 4) on the statement pointed-to by SI if applicable. */ |
| |
| static bool |
| gimple_mod_subtract_transform (gimple_stmt_iterator *si) |
| { |
| histogram_value histogram; |
| enum tree_code code; |
| gcov_type count, wrong_values, all; |
| tree lhs_type, result, value; |
| gcov_type prob1, prob2; |
| unsigned int i, steps; |
| gcov_type count1, count2; |
| gimple stmt; |
| |
| stmt = gsi_stmt (*si); |
| if (gimple_code (stmt) != GIMPLE_ASSIGN) |
| return false; |
| |
| lhs_type = TREE_TYPE (gimple_assign_lhs (stmt)); |
| if (!INTEGRAL_TYPE_P (lhs_type)) |
| return false; |
| |
| code = gimple_assign_rhs_code (stmt); |
| |
| if (code != TRUNC_MOD_EXPR || !TYPE_UNSIGNED (lhs_type)) |
| return false; |
| |
| histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_INTERVAL); |
| if (!histogram) |
| return false; |
| |
| value = histogram->hvalue.value; |
| all = 0; |
| wrong_values = 0; |
| for (i = 0; i < histogram->hdata.intvl.steps; i++) |
| all += histogram->hvalue.counters[i]; |
| |
| wrong_values += histogram->hvalue.counters[i]; |
| wrong_values += histogram->hvalue.counters[i+1]; |
| steps = histogram->hdata.intvl.steps; |
| all += wrong_values; |
| count1 = histogram->hvalue.counters[0]; |
| count2 = histogram->hvalue.counters[1]; |
| |
| /* Compute probability of taking the optimal path. */ |
| if (check_counter (stmt, "interval", &count1, &all, gimple_bb (stmt)->count)) |
| { |
| gimple_remove_histogram_value (cfun, stmt, histogram); |
| return false; |
| } |
| |
| if (flag_profile_correction && count1 + count2 > all) |
| all = count1 + count2; |
| |
| gcc_assert (count1 + count2 <= all); |
| |
| /* We require that we use just subtractions in at least 50% of all |
| evaluations. */ |
| count = 0; |
| for (i = 0; i < histogram->hdata.intvl.steps; i++) |
| { |
| count += histogram->hvalue.counters[i]; |
| if (count * 2 >= all) |
| break; |
| } |
| if (i == steps |
| || optimize_bb_for_size_p (gimple_bb (stmt))) |
| return false; |
| |
| gimple_remove_histogram_value (cfun, stmt, histogram); |
| if (dump_file) |
| { |
| fprintf (dump_file, "Mod subtract transformation on insn "); |
| print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); |
| } |
| |
| /* Compute probability of taking the optimal path(s). */ |
| if (all > 0) |
| { |
| prob1 = (count1 * REG_BR_PROB_BASE + all / 2) / all; |
| prob2 = (count2 * REG_BR_PROB_BASE + all / 2) / all; |
| } |
| else |
| { |
| prob1 = prob2 = 0; |
| } |
| |
| /* In practice, "steps" is always 2. This interface reflects this, |
| and will need to be changed if "steps" can change. */ |
| result = gimple_mod_subtract (stmt, prob1, prob2, i, count1, count2, all); |
| |
| gimple_assign_set_rhs_from_tree (si, result); |
| |
| return true; |
| } |
| |
| static struct cgraph_node** pid_map = NULL; |
| |
| /* Initialize map of pids (pid -> cgraph node) */ |
| |
| static void |
| init_pid_map (void) |
| { |
| struct cgraph_node *n; |
| |
| if (pid_map != NULL) |
| return; |
| |
| pid_map |
| = (struct cgraph_node**) xmalloc (sizeof (struct cgraph_node*) * cgraph_max_pid); |
| |
| for (n = cgraph_nodes; n; n = n->next) |
| { |
| if (n->pid != -1) |
| pid_map [n->pid] = n; |
| } |
| } |
| |
| /* Return cgraph node for function with pid */ |
| |
| static inline struct cgraph_node* |
| find_func_by_pid (int pid) |
| { |
| init_pid_map (); |
| |
| return pid_map [pid]; |
| } |
| |
| /* Do transformation |
| |
| if (actual_callee_address == address_of_most_common_function/method) |
| do direct call |
| else |
| old call |
| */ |
| |
| static gimple |
| gimple_ic (gimple stmt, gimple call, struct cgraph_node *direct_call, |
| int prob, gcov_type count, gcov_type all) |
| { |
| gimple stmt1, stmt2, stmt3; |
| tree tmp1, tmpv, tmp; |
| gimple bb1end, bb2end, bb3end; |
| basic_block bb, bb2, bb3, bb4; |
| tree optype = build_pointer_type (void_type_node); |
| edge e12, e13, e23, e24, e34; |
| gimple_stmt_iterator gsi; |
| int region; |
| |
| bb = gimple_bb (stmt); |
| gsi = gsi_for_stmt (stmt); |
| |
| tmpv = create_tmp_var (optype, "PROF"); |
| tmp1 = create_tmp_var (optype, "PROF"); |
| stmt1 = gimple_build_assign (tmpv, unshare_expr (gimple_call_fn (call))); |
| |
| tmp = fold_convert (optype, build_addr (direct_call->decl, |
| current_function_decl)); |
| stmt2 = gimple_build_assign (tmp1, tmp); |
| stmt3 = gimple_build_cond (NE_EXPR, tmp1, tmpv, NULL_TREE, NULL_TREE); |
| gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT); |
| gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT); |
| gsi_insert_before (&gsi, stmt3, GSI_SAME_STMT); |
| bb1end = stmt3; |
| |
| stmt1 = gimple_copy (stmt); |
| gimple_call_set_fndecl (stmt1, direct_call->decl); |
| gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT); |
| bb2end = stmt1; |
| bb3end = stmt; |
| |
| /* Fix CFG. */ |
| /* Edge e23 connects bb2 to bb3, etc. */ |
| e12 = split_block (bb, bb1end); |
| bb2 = e12->dest; |
| bb2->count = count; |
| e23 = split_block (bb2, bb2end); |
| bb3 = e23->dest; |
| bb3->count = all - count; |
| e34 = split_block (bb3, bb3end); |
| bb4 = e34->dest; |
| bb4->count = all; |
| |
| e12->flags &= ~EDGE_FALLTHRU; |
| e12->flags |= EDGE_FALSE_VALUE; |
| e12->probability = prob; |
| e12->count = count; |
| |
| e13 = make_edge (bb, bb3, EDGE_TRUE_VALUE); |
| e13->probability = REG_BR_PROB_BASE - prob; |
| e13->count = all - count; |
| |
| remove_edge (e23); |
| |
| e24 = make_edge (bb2, bb4, EDGE_FALLTHRU); |
| e24->probability = REG_BR_PROB_BASE; |
| e24->count = count; |
| e34->probability = REG_BR_PROB_BASE; |
| e34->count = all - count; |
| |
| /* Fix eh edges */ |
| region = lookup_stmt_eh_region (stmt); |
| if (region >= 0 && stmt_could_throw_p (stmt1)) |
| { |
| add_stmt_to_eh_region (stmt1, region); |
| make_eh_edges (stmt1); |
| } |
| |
| if (region >= 0 && stmt_could_throw_p (stmt)) |
| { |
| gimple_purge_dead_eh_edges (bb4); |
| make_eh_edges (stmt); |
| } |
| |
| return stmt1; |
| } |
| |
| /* |
| For every checked indirect/virtual call determine if most common pid of |
| function/class method has probability more than 50%. If yes modify code of |
| this call to: |
| */ |
| |
| static bool |
| gimple_ic_transform (gimple stmt) |
| { |
| histogram_value histogram; |
| gcov_type val, count, all, bb_all; |
| gcov_type prob; |
| tree callee; |
| gimple modify; |
| struct cgraph_node *direct_call; |
| |
| if (gimple_code (stmt) != GIMPLE_CALL) |
| return false; |
| |
| callee = gimple_call_fn (stmt); |
| |
| if (TREE_CODE (callee) == FUNCTION_DECL) |
| return false; |
| |
| histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_INDIR_CALL); |
| if (!histogram) |
| return false; |
| |
| val = histogram->hvalue.counters [0]; |
| count = histogram->hvalue.counters [1]; |
| all = histogram->hvalue.counters [2]; |
| gimple_remove_histogram_value (cfun, stmt, histogram); |
| |
| if (4 * count <= 3 * all) |
| return false; |
| |
| bb_all = gimple_bb (stmt)->count; |
| /* The order of CHECK_COUNTER calls is important - |
| since check_counter can correct the third parameter |
| and we want to make count <= all <= bb_all. */ |
| if ( check_counter (stmt, "ic", &all, &bb_all, bb_all) |
| || check_counter (stmt, "ic", &count, &all, all)) |
| return false; |
| |
| if (all > 0) |
| prob = (count * REG_BR_PROB_BASE + all / 2) / all; |
| else |
| prob = 0; |
| direct_call = find_func_by_pid ((int)val); |
| |
| if (direct_call == NULL) |
| return false; |
| |
| modify = gimple_ic (stmt, stmt, direct_call, prob, count, all); |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "Indirect call -> direct call "); |
| print_generic_expr (dump_file, gimple_call_fn (stmt), TDF_SLIM); |
| fprintf (dump_file, "=> "); |
| print_generic_expr (dump_file, direct_call->decl, TDF_SLIM); |
| fprintf (dump_file, " transformation on insn "); |
| print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); |
| fprintf (dump_file, " to "); |
| print_gimple_stmt (dump_file, modify, 0, TDF_SLIM); |
| fprintf (dump_file, "hist->count "HOST_WIDEST_INT_PRINT_DEC |
| " hist->all "HOST_WIDEST_INT_PRINT_DEC"\n", count, all); |
| } |
| |
| return true; |
| } |
| |
| /* Return true if the stringop CALL with FNDECL shall be profiled. */ |
| static bool |
| interesting_stringop_to_profile_p (tree fndecl, gimple call) |
| { |
| enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl); |
| |
| if (fcode != BUILT_IN_MEMCPY && fcode != BUILT_IN_MEMPCPY |
| && fcode != BUILT_IN_MEMSET && fcode != BUILT_IN_BZERO) |
| return false; |
| |
| switch (fcode) |
| { |
| case BUILT_IN_MEMCPY: |
| case BUILT_IN_MEMPCPY: |
| return validate_gimple_arglist (call, POINTER_TYPE, POINTER_TYPE, |
| INTEGER_TYPE, VOID_TYPE); |
| case BUILT_IN_MEMSET: |
| return validate_gimple_arglist (call, POINTER_TYPE, INTEGER_TYPE, |
| INTEGER_TYPE, VOID_TYPE); |
| case BUILT_IN_BZERO: |
| return validate_gimple_arglist (call, POINTER_TYPE, INTEGER_TYPE, |
| VOID_TYPE); |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| /* Convert stringop (..., size) |
| into |
| if (size == VALUE) |
| stringop (...., VALUE); |
| else |
| stringop (...., size); |
| assuming constant propagation of VALUE will happen later. |
| */ |
| static void |
| gimple_stringop_fixed_value (gimple stmt, tree value, int prob, gcov_type count, |
| gcov_type all) |
| { |
| gimple stmt1, stmt2, stmt3; |
| tree tmp1, tmpv; |
| gimple bb1end, bb2end; |
| basic_block bb, bb2, bb3, bb4; |
| edge e12, e13, e23, e24, e34; |
| gimple_stmt_iterator gsi; |
| tree blck_size = gimple_call_arg (stmt, 2); |
| tree optype = TREE_TYPE (blck_size); |
| int region; |
| |
| bb = gimple_bb (stmt); |
| gsi = gsi_for_stmt (stmt); |
| |
| if (gsi_end_p (gsi)) |
| { |
| edge_iterator ei; |
| for (ei = ei_start (bb->succs); (e34 = ei_safe_edge (ei)); ) |
| if (!(e34->flags & EDGE_ABNORMAL)) |
| break; |
| } |
| else |
| { |
| e34 = split_block (bb, stmt); |
| gsi = gsi_for_stmt (stmt); |
| } |
| bb4 = e34->dest; |
| |
| tmpv = create_tmp_var (optype, "PROF"); |
| tmp1 = create_tmp_var (optype, "PROF"); |
| stmt1 = gimple_build_assign (tmpv, fold_convert (optype, value)); |
| stmt2 = gimple_build_assign (tmp1, blck_size); |
| stmt3 = gimple_build_cond (NE_EXPR, tmp1, tmpv, NULL_TREE, NULL_TREE); |
| gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT); |
| gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT); |
| gsi_insert_before (&gsi, stmt3, GSI_SAME_STMT); |
| bb1end = stmt3; |
| |
| stmt1 = gimple_copy (stmt); |
| gimple_call_set_arg (stmt1, 2, value); |
| gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT); |
| region = lookup_stmt_eh_region (stmt); |
| if (region >= 0) |
| add_stmt_to_eh_region (stmt1, region); |
| bb2end = stmt1; |
| |
| /* Fix CFG. */ |
| /* Edge e23 connects bb2 to bb3, etc. */ |
| e12 = split_block (bb, bb1end); |
| bb2 = e12->dest; |
| bb2->count = count; |
| e23 = split_block (bb2, bb2end); |
| bb3 = e23->dest; |
| bb3->count = all - count; |
| |
| e12->flags &= ~EDGE_FALLTHRU; |
| e12->flags |= EDGE_FALSE_VALUE; |
| e12->probability = prob; |
| e12->count = count; |
| |
| e13 = make_edge (bb, bb3, EDGE_TRUE_VALUE); |
| e13->probability = REG_BR_PROB_BASE - prob; |
| e13->count = all - count; |
| |
| remove_edge (e23); |
| |
| e24 = make_edge (bb2, bb4, EDGE_FALLTHRU); |
| e24->probability = REG_BR_PROB_BASE; |
| e24->count = count; |
| |
| e34->probability = REG_BR_PROB_BASE; |
| e34->count = all - count; |
| } |
| |
| /* Find values inside STMT for that we want to measure histograms for |
| division/modulo optimization. */ |
| static bool |
| gimple_stringops_transform (gimple_stmt_iterator *gsi) |
| { |
| gimple stmt = gsi_stmt (*gsi); |
| tree fndecl; |
| tree blck_size; |
| enum built_in_function fcode; |
| histogram_value histogram; |
| gcov_type count, all, val; |
| tree value; |
| tree dest, src; |
| unsigned int dest_align, src_align; |
| gcov_type prob; |
| tree tree_val; |
| |
| if (gimple_code (stmt) != GIMPLE_CALL) |
| return false; |
| fndecl = gimple_call_fndecl (stmt); |
| if (!fndecl) |
| return false; |
| fcode = DECL_FUNCTION_CODE (fndecl); |
| if (!interesting_stringop_to_profile_p (fndecl, stmt)) |
| return false; |
| |
| if (fcode == BUILT_IN_BZERO) |
| blck_size = gimple_call_arg (stmt, 1); |
| else |
| blck_size = gimple_call_arg (stmt, 2); |
| if (TREE_CODE (blck_size) == INTEGER_CST) |
| return false; |
| |
| histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_SINGLE_VALUE); |
| if (!histogram) |
| return false; |
| value = histogram->hvalue.value; |
| val = histogram->hvalue.counters[0]; |
| count = histogram->hvalue.counters[1]; |
| all = histogram->hvalue.counters[2]; |
| gimple_remove_histogram_value (cfun, stmt, histogram); |
| /* We require that count is at least half of all; this means |
| that for the transformation to fire the value must be constant |
| at least 80% of time. */ |
| if ((6 * count / 5) < all || optimize_bb_for_size_p (gimple_bb (stmt))) |
| return false; |
| if (check_counter (stmt, "value", &count, &all, gimple_bb (stmt)->count)) |
| return false; |
| if (all > 0) |
| prob = (count * REG_BR_PROB_BASE + all / 2) / all; |
| else |
| prob = 0; |
| dest = gimple_call_arg (stmt, 0); |
| dest_align = get_pointer_alignment (dest, BIGGEST_ALIGNMENT); |
| switch (fcode) |
| { |
| case BUILT_IN_MEMCPY: |
| case BUILT_IN_MEMPCPY: |
| src = gimple_call_arg (stmt, 1); |
| src_align = get_pointer_alignment (src, BIGGEST_ALIGNMENT); |
| if (!can_move_by_pieces (val, MIN (dest_align, src_align))) |
| return false; |
| break; |
| case BUILT_IN_MEMSET: |
| if (!can_store_by_pieces (val, builtin_memset_read_str, |
| gimple_call_arg (stmt, 1), |
| dest_align, true)) |
| return false; |
| break; |
| case BUILT_IN_BZERO: |
| if (!can_store_by_pieces (val, builtin_memset_read_str, |
| integer_zero_node, |
| dest_align, true)) |
| return false; |
| break; |
| default: |
| gcc_unreachable (); |
| } |
| tree_val = build_int_cst_wide (get_gcov_type (), |
| (unsigned HOST_WIDE_INT) val, |
| val >> (HOST_BITS_PER_WIDE_INT - 1) >> 1); |
| if (dump_file) |
| { |
| fprintf (dump_file, "Single value %i stringop transformation on ", |
| (int)val); |
| print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); |
| } |
| gimple_stringop_fixed_value (stmt, tree_val, prob, count, all); |
| |
| return true; |
| } |
| |
| void |
| stringop_block_profile (gimple stmt, unsigned int *expected_align, |
| HOST_WIDE_INT *expected_size) |
| { |
| histogram_value histogram; |
| histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_AVERAGE); |
| if (!histogram) |
| *expected_size = -1; |
| else if (!histogram->hvalue.counters[1]) |
| { |
| *expected_size = -1; |
| gimple_remove_histogram_value (cfun, stmt, histogram); |
| } |
| else |
| { |
| gcov_type size; |
| size = ((histogram->hvalue.counters[0] |
| + histogram->hvalue.counters[1] / 2) |
| / histogram->hvalue.counters[1]); |
| /* Even if we can hold bigger value in SIZE, INT_MAX |
| is safe "infinity" for code generation strategies. */ |
| if (size > INT_MAX) |
| size = INT_MAX; |
| *expected_size = size; |
| gimple_remove_histogram_value (cfun, stmt, histogram); |
| } |
| histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_IOR); |
| if (!histogram) |
| *expected_align = 0; |
| else if (!histogram->hvalue.counters[0]) |
| { |
| gimple_remove_histogram_value (cfun, stmt, histogram); |
| *expected_align = 0; |
| } |
| else |
| { |
| gcov_type count; |
| int alignment; |
| |
| count = histogram->hvalue.counters[0]; |
| alignment = 1; |
| while (!(count & alignment) |
| && (alignment * 2 * BITS_PER_UNIT)) |
| alignment <<= 1; |
| *expected_align = alignment * BITS_PER_UNIT; |
| gimple_remove_histogram_value (cfun, stmt, histogram); |
| } |
| } |
| |
| struct value_prof_hooks { |
| /* Find list of values for which we want to measure histograms. */ |
| void (*find_values_to_profile) (histogram_values *); |
| |
| /* Identify and exploit properties of values that are hard to analyze |
| statically. See value-prof.c for more detail. */ |
| bool (*value_profile_transformations) (void); |
| }; |
| |
| /* Find values inside STMT for that we want to measure histograms for |
| division/modulo optimization. */ |
| static void |
| gimple_divmod_values_to_profile (gimple stmt, histogram_values *values) |
| { |
| tree lhs, divisor, op0, type; |
| histogram_value hist; |
| |
| if (gimple_code (stmt) != GIMPLE_ASSIGN) |
| return; |
| |
| lhs = gimple_assign_lhs (stmt); |
| type = TREE_TYPE (lhs); |
| if (!INTEGRAL_TYPE_P (type)) |
| return; |
| |
| switch (gimple_assign_rhs_code (stmt)) |
| { |
| case TRUNC_DIV_EXPR: |
| case TRUNC_MOD_EXPR: |
| divisor = gimple_assign_rhs2 (stmt); |
| op0 = gimple_assign_rhs1 (stmt); |
| |
| VEC_reserve (histogram_value, heap, *values, 3); |
| |
| if (is_gimple_reg (divisor)) |
| /* Check for the case where the divisor is the same value most |
| of the time. */ |
| VEC_quick_push (histogram_value, *values, |
| gimple_alloc_histogram_value (cfun, |
| HIST_TYPE_SINGLE_VALUE, |
| stmt, divisor)); |
| |
| /* For mod, check whether it is not often a noop (or replaceable by |
| a few subtractions). */ |
| if (gimple_assign_rhs_code (stmt) == TRUNC_MOD_EXPR |
| && TYPE_UNSIGNED (type)) |
| { |
| tree val; |
| /* Check for a special case where the divisor is power of 2. */ |
| VEC_quick_push (histogram_value, *values, |
| gimple_alloc_histogram_value (cfun, HIST_TYPE_POW2, |
| stmt, divisor)); |
| |
| val = build2 (TRUNC_DIV_EXPR, type, op0, divisor); |
| hist = gimple_alloc_histogram_value (cfun, HIST_TYPE_INTERVAL, |
| stmt, val); |
| hist->hdata.intvl.int_start = 0; |
| hist->hdata.intvl.steps = 2; |
| VEC_quick_push (histogram_value, *values, hist); |
| } |
| return; |
| |
| default: |
| return; |
| } |
| } |
| |
| /* Find calls inside STMT for that we want to measure histograms for |
| indirect/virtual call optimization. */ |
| |
| static void |
| gimple_indirect_call_to_profile (gimple stmt, histogram_values *values) |
| { |
| tree callee; |
| |
| if (gimple_code (stmt) != GIMPLE_CALL |
| || gimple_call_fndecl (stmt) != NULL_TREE) |
| return; |
| |
| callee = gimple_call_fn (stmt); |
| |
| VEC_reserve (histogram_value, heap, *values, 3); |
| |
| VEC_quick_push (histogram_value, *values, |
| gimple_alloc_histogram_value (cfun, HIST_TYPE_INDIR_CALL, |
| stmt, callee)); |
| |
| return; |
| } |
| |
| /* Find values inside STMT for that we want to measure histograms for |
| string operations. */ |
| static void |
| gimple_stringops_values_to_profile (gimple stmt, histogram_values *values) |
| { |
| tree fndecl; |
| tree blck_size; |
| tree dest; |
| enum built_in_function fcode; |
| |
| if (gimple_code (stmt) != GIMPLE_CALL) |
| return; |
| fndecl = gimple_call_fndecl (stmt); |
| if (!fndecl) |
| return; |
| fcode = DECL_FUNCTION_CODE (fndecl); |
| |
| if (!interesting_stringop_to_profile_p (fndecl, stmt)) |
| return; |
| |
| dest = gimple_call_arg (stmt, 0); |
| if (fcode == BUILT_IN_BZERO) |
| blck_size = gimple_call_arg (stmt, 1); |
| else |
| blck_size = gimple_call_arg (stmt, 2); |
| |
| if (TREE_CODE (blck_size) != INTEGER_CST) |
| { |
| VEC_safe_push (histogram_value, heap, *values, |
| gimple_alloc_histogram_value (cfun, HIST_TYPE_SINGLE_VALUE, |
| stmt, blck_size)); |
| VEC_safe_push (histogram_value, heap, *values, |
| gimple_alloc_histogram_value (cfun, HIST_TYPE_AVERAGE, |
| stmt, blck_size)); |
| } |
| if (TREE_CODE (blck_size) != INTEGER_CST) |
| VEC_safe_push (histogram_value, heap, *values, |
| gimple_alloc_histogram_value (cfun, HIST_TYPE_IOR, |
| stmt, dest)); |
| } |
| |
| /* Find values inside STMT for that we want to measure histograms and adds |
| them to list VALUES. */ |
| |
| static void |
| gimple_values_to_profile (gimple stmt, histogram_values *values) |
| { |
| if (flag_value_profile_transformations) |
| { |
| gimple_divmod_values_to_profile (stmt, values); |
| gimple_stringops_values_to_profile (stmt, values); |
| gimple_indirect_call_to_profile (stmt, values); |
| } |
| } |
| |
| static void |
| gimple_find_values_to_profile (histogram_values *values) |
| { |
| basic_block bb; |
| gimple_stmt_iterator gsi; |
| unsigned i; |
| histogram_value hist = NULL; |
| |
| *values = NULL; |
| FOR_EACH_BB (bb) |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| gimple_values_to_profile (gsi_stmt (gsi), values); |
| |
| for (i = 0; VEC_iterate (histogram_value, *values, i, hist); i++) |
| { |
| switch (hist->type) |
| { |
| case HIST_TYPE_INTERVAL: |
| hist->n_counters = hist->hdata.intvl.steps + 2; |
| break; |
| |
| case HIST_TYPE_POW2: |
| hist->n_counters = 2; |
| break; |
| |
| case HIST_TYPE_SINGLE_VALUE: |
| hist->n_counters = 3; |
| break; |
| |
| case HIST_TYPE_CONST_DELTA: |
| hist->n_counters = 4; |
| break; |
| |
| case HIST_TYPE_INDIR_CALL: |
| hist->n_counters = 3; |
| break; |
| |
| case HIST_TYPE_AVERAGE: |
| hist->n_counters = 2; |
| break; |
| |
| case HIST_TYPE_IOR: |
| hist->n_counters = 1; |
| break; |
| |
| default: |
| gcc_unreachable (); |
| } |
| if (dump_file) |
| { |
| fprintf (dump_file, "Stmt "); |
| print_gimple_stmt (dump_file, hist->hvalue.stmt, 0, TDF_SLIM); |
| dump_histogram_value (dump_file, hist); |
| } |
| } |
| } |
| |
| static struct value_prof_hooks gimple_value_prof_hooks = { |
| gimple_find_values_to_profile, |
| gimple_value_profile_transformations |
| }; |
| |
| void |
| gimple_register_value_prof_hooks (void) |
| { |
| gcc_assert (current_ir_type () == IR_GIMPLE); |
| value_prof_hooks = &gimple_value_prof_hooks; |
| } |
| |
| /* IR-independent entry points. */ |
| void |
| find_values_to_profile (histogram_values *values) |
| { |
| (value_prof_hooks->find_values_to_profile) (values); |
| } |
| |
| bool |
| value_profile_transformations (void) |
| { |
| return (value_prof_hooks->value_profile_transformations) (); |
| } |
| |