| /* Control flow graph manipulation code for GNU compiler. |
| Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, |
| 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 2, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING. If not, write to the Free |
| Software Foundation, 59 Temple Place - Suite 330, Boston, MA |
| 02111-1307, USA. */ |
| |
| /* This file contains low level functions to manipulate the CFG and |
| analyze it. All other modules should not transform the data structure |
| directly and use abstraction instead. The file is supposed to be |
| ordered bottom-up and should not contain any code dependent on a |
| particular intermediate language (RTL or trees). |
| |
| Available functionality: |
| - Initialization/deallocation |
| init_flow, clear_edges |
| - Low level basic block manipulation |
| alloc_block, expunge_block |
| - Edge manipulation |
| make_edge, make_single_succ_edge, cached_make_edge, remove_edge |
| - Low level edge redirection (without updating instruction chain) |
| redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred |
| - Dumping and debugging |
| dump_flow_info, debug_flow_info, dump_edge_info |
| - Allocation of AUX fields for basic blocks |
| alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block |
| - clear_bb_flags |
| - Consistency checking |
| verify_flow_info |
| - Dumping and debugging |
| print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n |
| */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| #include "tree.h" |
| #include "rtl.h" |
| #include "hard-reg-set.h" |
| #include "basic-block.h" |
| #include "regs.h" |
| #include "flags.h" |
| #include "output.h" |
| #include "function.h" |
| #include "except.h" |
| #include "toplev.h" |
| #include "tm_p.h" |
| #include "obstack.h" |
| #include "alloc-pool.h" |
| |
| /* The obstack on which the flow graph components are allocated. */ |
| |
| struct obstack flow_obstack; |
| static char *flow_firstobj; |
| |
| /* Basic block object pool. */ |
| |
| static alloc_pool bb_pool; |
| |
| /* Edge object pool. */ |
| |
| static alloc_pool edge_pool; |
| |
| /* Number of basic blocks in the current function. */ |
| |
| int n_basic_blocks; |
| |
| /* First free basic block number. */ |
| |
| int last_basic_block; |
| |
| /* Number of edges in the current function. */ |
| |
| int n_edges; |
| |
| /* The basic block array. */ |
| |
| varray_type basic_block_info; |
| |
| /* The special entry and exit blocks. */ |
| |
| struct basic_block_def entry_exit_blocks[2] |
| = {{NULL, /* head */ |
| NULL, /* end */ |
| NULL, /* head_tree */ |
| NULL, /* end_tree */ |
| NULL, /* pred */ |
| NULL, /* succ */ |
| NULL, /* local_set */ |
| NULL, /* cond_local_set */ |
| NULL, /* global_live_at_start */ |
| NULL, /* global_live_at_end */ |
| NULL, /* aux */ |
| ENTRY_BLOCK, /* index */ |
| NULL, /* prev_bb */ |
| EXIT_BLOCK_PTR, /* next_bb */ |
| 0, /* loop_depth */ |
| NULL, /* loop_father */ |
| { NULL, NULL }, /* dom */ |
| 0, /* count */ |
| 0, /* frequency */ |
| 0, /* flags */ |
| NULL /* rbi */ |
| }, |
| { |
| NULL, /* head */ |
| NULL, /* end */ |
| NULL, /* head_tree */ |
| NULL, /* end_tree */ |
| NULL, /* pred */ |
| NULL, /* succ */ |
| NULL, /* local_set */ |
| NULL, /* cond_local_set */ |
| NULL, /* global_live_at_start */ |
| NULL, /* global_live_at_end */ |
| NULL, /* aux */ |
| EXIT_BLOCK, /* index */ |
| ENTRY_BLOCK_PTR, /* prev_bb */ |
| NULL, /* next_bb */ |
| 0, /* loop_depth */ |
| NULL, /* loop_father */ |
| { NULL, NULL }, /* dom */ |
| 0, /* count */ |
| 0, /* frequency */ |
| 0, /* flags */ |
| NULL /* rbi */ |
| } |
| }; |
| |
| void debug_flow_info (void); |
| static void free_edge (edge); |
| |
| /* Called once at initialization time. */ |
| |
| void |
| init_flow (void) |
| { |
| static int initialized; |
| |
| n_edges = 0; |
| |
| if (!initialized) |
| { |
| gcc_obstack_init (&flow_obstack); |
| flow_firstobj = obstack_alloc (&flow_obstack, 0); |
| initialized = 1; |
| } |
| else |
| { |
| free_alloc_pool (bb_pool); |
| free_alloc_pool (edge_pool); |
| obstack_free (&flow_obstack, flow_firstobj); |
| flow_firstobj = obstack_alloc (&flow_obstack, 0); |
| } |
| bb_pool = create_alloc_pool ("Basic block pool", |
| sizeof (struct basic_block_def), 100); |
| edge_pool = create_alloc_pool ("Edge pool", |
| sizeof (struct edge_def), 100); |
| } |
| |
| /* Helper function for remove_edge and clear_edges. Frees edge structure |
| without actually unlinking it from the pred/succ lists. */ |
| |
| static void |
| free_edge (edge e) |
| { |
| n_edges--; |
| pool_free (edge_pool, e); |
| } |
| |
| /* Free the memory associated with the edge structures. */ |
| |
| void |
| clear_edges (void) |
| { |
| basic_block bb; |
| edge e; |
| |
| FOR_EACH_BB (bb) |
| { |
| edge e = bb->succ; |
| |
| while (e) |
| { |
| edge next = e->succ_next; |
| |
| free_edge (e); |
| e = next; |
| } |
| |
| bb->succ = NULL; |
| bb->pred = NULL; |
| } |
| |
| e = ENTRY_BLOCK_PTR->succ; |
| while (e) |
| { |
| edge next = e->succ_next; |
| |
| free_edge (e); |
| e = next; |
| } |
| |
| EXIT_BLOCK_PTR->pred = NULL; |
| ENTRY_BLOCK_PTR->succ = NULL; |
| |
| if (n_edges) |
| abort (); |
| } |
| |
| /* Allocate memory for basic_block. */ |
| |
| basic_block |
| alloc_block (void) |
| { |
| basic_block bb; |
| bb = pool_alloc (bb_pool); |
| memset (bb, 0, sizeof (*bb)); |
| return bb; |
| } |
| |
| /* Link block B to chain after AFTER. */ |
| void |
| link_block (basic_block b, basic_block after) |
| { |
| b->next_bb = after->next_bb; |
| b->prev_bb = after; |
| after->next_bb = b; |
| b->next_bb->prev_bb = b; |
| } |
| |
| /* Unlink block B from chain. */ |
| void |
| unlink_block (basic_block b) |
| { |
| b->next_bb->prev_bb = b->prev_bb; |
| b->prev_bb->next_bb = b->next_bb; |
| } |
| |
| /* Sequentially order blocks and compact the arrays. */ |
| void |
| compact_blocks (void) |
| { |
| int i; |
| basic_block bb; |
| |
| i = 0; |
| FOR_EACH_BB (bb) |
| { |
| BASIC_BLOCK (i) = bb; |
| bb->index = i; |
| i++; |
| } |
| |
| if (i != n_basic_blocks) |
| abort (); |
| |
| last_basic_block = n_basic_blocks; |
| } |
| |
| /* Remove block B from the basic block array. */ |
| |
| void |
| expunge_block (basic_block b) |
| { |
| unlink_block (b); |
| BASIC_BLOCK (b->index) = NULL; |
| n_basic_blocks--; |
| pool_free (bb_pool, b); |
| } |
| |
| /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly |
| created edge. Use this only if you are sure that this edge can't |
| possibly already exist. */ |
| |
| edge |
| unchecked_make_edge (basic_block src, basic_block dst, int flags) |
| { |
| edge e; |
| e = pool_alloc (edge_pool); |
| memset (e, 0, sizeof (*e)); |
| n_edges++; |
| |
| e->succ_next = src->succ; |
| e->pred_next = dst->pred; |
| e->src = src; |
| e->dest = dst; |
| e->flags = flags; |
| |
| src->succ = e; |
| dst->pred = e; |
| |
| return e; |
| } |
| |
| /* Create an edge connecting SRC and DST with FLAGS optionally using |
| edge cache CACHE. Return the new edge, NULL if already exist. */ |
| |
| edge |
| cached_make_edge (sbitmap *edge_cache, basic_block src, basic_block dst, int flags) |
| { |
| int use_edge_cache; |
| edge e; |
| |
| /* Don't bother with edge cache for ENTRY or EXIT, if there aren't that |
| many edges to them, or we didn't allocate memory for it. */ |
| use_edge_cache = (edge_cache |
| && src != ENTRY_BLOCK_PTR && dst != EXIT_BLOCK_PTR); |
| |
| /* Make sure we don't add duplicate edges. */ |
| switch (use_edge_cache) |
| { |
| default: |
| /* Quick test for non-existence of the edge. */ |
| if (! TEST_BIT (edge_cache[src->index], dst->index)) |
| break; |
| |
| /* The edge exists; early exit if no work to do. */ |
| if (flags == 0) |
| return NULL; |
| |
| /* Fall through. */ |
| case 0: |
| for (e = src->succ; e; e = e->succ_next) |
| if (e->dest == dst) |
| { |
| e->flags |= flags; |
| return NULL; |
| } |
| break; |
| } |
| |
| e = unchecked_make_edge (src, dst, flags); |
| |
| if (use_edge_cache) |
| SET_BIT (edge_cache[src->index], dst->index); |
| |
| return e; |
| } |
| |
| /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly |
| created edge or NULL if already exist. */ |
| |
| edge |
| make_edge (basic_block src, basic_block dest, int flags) |
| { |
| return cached_make_edge (NULL, src, dest, flags); |
| } |
| |
| /* Create an edge connecting SRC to DEST and set probability by knowing |
| that it is the single edge leaving SRC. */ |
| |
| edge |
| make_single_succ_edge (basic_block src, basic_block dest, int flags) |
| { |
| edge e = make_edge (src, dest, flags); |
| |
| e->probability = REG_BR_PROB_BASE; |
| e->count = src->count; |
| return e; |
| } |
| |
| /* This function will remove an edge from the flow graph. */ |
| |
| void |
| remove_edge (edge e) |
| { |
| edge last_pred = NULL; |
| edge last_succ = NULL; |
| edge tmp; |
| basic_block src, dest; |
| |
| src = e->src; |
| dest = e->dest; |
| for (tmp = src->succ; tmp && tmp != e; tmp = tmp->succ_next) |
| last_succ = tmp; |
| |
| if (!tmp) |
| abort (); |
| if (last_succ) |
| last_succ->succ_next = e->succ_next; |
| else |
| src->succ = e->succ_next; |
| |
| for (tmp = dest->pred; tmp && tmp != e; tmp = tmp->pred_next) |
| last_pred = tmp; |
| |
| if (!tmp) |
| abort (); |
| if (last_pred) |
| last_pred->pred_next = e->pred_next; |
| else |
| dest->pred = e->pred_next; |
| |
| free_edge (e); |
| } |
| |
| /* Redirect an edge's successor from one block to another. */ |
| |
| void |
| redirect_edge_succ (edge e, basic_block new_succ) |
| { |
| edge *pe; |
| |
| /* Disconnect the edge from the old successor block. */ |
| for (pe = &e->dest->pred; *pe != e; pe = &(*pe)->pred_next) |
| continue; |
| *pe = (*pe)->pred_next; |
| |
| /* Reconnect the edge to the new successor block. */ |
| e->pred_next = new_succ->pred; |
| new_succ->pred = e; |
| e->dest = new_succ; |
| } |
| |
| /* Like previous but avoid possible duplicate edge. */ |
| |
| edge |
| redirect_edge_succ_nodup (edge e, basic_block new_succ) |
| { |
| edge s; |
| |
| /* Check whether the edge is already present. */ |
| for (s = e->src->succ; s; s = s->succ_next) |
| if (s->dest == new_succ && s != e) |
| break; |
| |
| if (s) |
| { |
| s->flags |= e->flags; |
| s->probability += e->probability; |
| if (s->probability > REG_BR_PROB_BASE) |
| s->probability = REG_BR_PROB_BASE; |
| s->count += e->count; |
| remove_edge (e); |
| e = s; |
| } |
| else |
| redirect_edge_succ (e, new_succ); |
| |
| return e; |
| } |
| |
| /* Redirect an edge's predecessor from one block to another. */ |
| |
| void |
| redirect_edge_pred (edge e, basic_block new_pred) |
| { |
| edge *pe; |
| |
| /* Disconnect the edge from the old predecessor block. */ |
| for (pe = &e->src->succ; *pe != e; pe = &(*pe)->succ_next) |
| continue; |
| |
| *pe = (*pe)->succ_next; |
| |
| /* Reconnect the edge to the new predecessor block. */ |
| e->succ_next = new_pred->succ; |
| new_pred->succ = e; |
| e->src = new_pred; |
| } |
| |
| void |
| clear_bb_flags (void) |
| { |
| basic_block bb; |
| |
| FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb) |
| bb->flags = 0; |
| } |
| |
| void |
| dump_flow_info (FILE *file) |
| { |
| int i; |
| int max_regno = max_reg_num (); |
| basic_block bb; |
| static const char * const reg_class_names[] = REG_CLASS_NAMES; |
| |
| fprintf (file, "%d registers.\n", max_regno); |
| if (reg_n_info) |
| for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) |
| if (REG_N_REFS (i)) |
| { |
| enum reg_class class, altclass; |
| |
| fprintf (file, "\nRegister %d used %d times across %d insns", |
| i, REG_N_REFS (i), REG_LIVE_LENGTH (i)); |
| if (REG_BASIC_BLOCK (i) >= 0) |
| fprintf (file, " in block %d", REG_BASIC_BLOCK (i)); |
| if (REG_N_SETS (i)) |
| fprintf (file, "; set %d time%s", REG_N_SETS (i), |
| (REG_N_SETS (i) == 1) ? "" : "s"); |
| if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i])) |
| fprintf (file, "; user var"); |
| if (REG_N_DEATHS (i) != 1) |
| fprintf (file, "; dies in %d places", REG_N_DEATHS (i)); |
| if (REG_N_CALLS_CROSSED (i) == 1) |
| fprintf (file, "; crosses 1 call"); |
| else if (REG_N_CALLS_CROSSED (i)) |
| fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i)); |
| if (regno_reg_rtx[i] != NULL |
| && PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD) |
| fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i)); |
| |
| class = reg_preferred_class (i); |
| altclass = reg_alternate_class (i); |
| if (class != GENERAL_REGS || altclass != ALL_REGS) |
| { |
| if (altclass == ALL_REGS || class == ALL_REGS) |
| fprintf (file, "; pref %s", reg_class_names[(int) class]); |
| else if (altclass == NO_REGS) |
| fprintf (file, "; %s or none", reg_class_names[(int) class]); |
| else |
| fprintf (file, "; pref %s, else %s", |
| reg_class_names[(int) class], |
| reg_class_names[(int) altclass]); |
| } |
| |
| if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i])) |
| fprintf (file, "; pointer"); |
| fprintf (file, ".\n"); |
| } |
| |
| fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges); |
| FOR_EACH_BB (bb) |
| { |
| edge e; |
| int sum; |
| gcov_type lsum; |
| |
| fprintf (file, "\nBasic block %d: first insn %d, last %d, ", |
| bb->index, INSN_UID (BB_HEAD (bb)), INSN_UID (BB_END (bb))); |
| fprintf (file, "prev %d, next %d, ", |
| bb->prev_bb->index, bb->next_bb->index); |
| fprintf (file, "loop_depth %d, count ", bb->loop_depth); |
| fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count); |
| fprintf (file, ", freq %i", bb->frequency); |
| if (maybe_hot_bb_p (bb)) |
| fprintf (file, ", maybe hot"); |
| if (probably_never_executed_bb_p (bb)) |
| fprintf (file, ", probably never executed"); |
| fprintf (file, ".\n"); |
| |
| fprintf (file, "Predecessors: "); |
| for (e = bb->pred; e; e = e->pred_next) |
| dump_edge_info (file, e, 0); |
| |
| fprintf (file, "\nSuccessors: "); |
| for (e = bb->succ; e; e = e->succ_next) |
| dump_edge_info (file, e, 1); |
| |
| fprintf (file, "\nRegisters live at start:"); |
| dump_regset (bb->global_live_at_start, file); |
| |
| fprintf (file, "\nRegisters live at end:"); |
| dump_regset (bb->global_live_at_end, file); |
| |
| putc ('\n', file); |
| |
| /* Check the consistency of profile information. We can't do that |
| in verify_flow_info, as the counts may get invalid for incompletely |
| solved graphs, later eliminating of conditionals or roundoff errors. |
| It is still practical to have them reported for debugging of simple |
| testcases. */ |
| sum = 0; |
| for (e = bb->succ; e; e = e->succ_next) |
| sum += e->probability; |
| if (bb->succ && abs (sum - REG_BR_PROB_BASE) > 100) |
| fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n", |
| sum * 100.0 / REG_BR_PROB_BASE); |
| sum = 0; |
| for (e = bb->pred; e; e = e->pred_next) |
| sum += EDGE_FREQUENCY (e); |
| if (abs (sum - bb->frequency) > 100) |
| fprintf (file, |
| "Invalid sum of incomming frequencies %i, should be %i\n", |
| sum, bb->frequency); |
| lsum = 0; |
| for (e = bb->pred; e; e = e->pred_next) |
| lsum += e->count; |
| if (lsum - bb->count > 100 || lsum - bb->count < -100) |
| fprintf (file, "Invalid sum of incomming counts %i, should be %i\n", |
| (int)lsum, (int)bb->count); |
| lsum = 0; |
| for (e = bb->succ; e; e = e->succ_next) |
| lsum += e->count; |
| if (bb->succ && (lsum - bb->count > 100 || lsum - bb->count < -100)) |
| fprintf (file, "Invalid sum of incomming counts %i, should be %i\n", |
| (int)lsum, (int)bb->count); |
| } |
| |
| putc ('\n', file); |
| } |
| |
| void |
| debug_flow_info (void) |
| { |
| dump_flow_info (stderr); |
| } |
| |
| void |
| dump_edge_info (FILE *file, edge e, int do_succ) |
| { |
| basic_block side = (do_succ ? e->dest : e->src); |
| |
| if (side == ENTRY_BLOCK_PTR) |
| fputs (" ENTRY", file); |
| else if (side == EXIT_BLOCK_PTR) |
| fputs (" EXIT", file); |
| else |
| fprintf (file, " %d", side->index); |
| |
| if (e->probability) |
| fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE); |
| |
| if (e->count) |
| { |
| fprintf (file, " count:"); |
| fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count); |
| } |
| |
| if (e->flags) |
| { |
| static const char * const bitnames[] = { |
| "fallthru", "ab", "abcall", "eh", "fake", "dfs_back", |
| "can_fallthru", "irreducible", "sibcall", "loop_exit" |
| }; |
| int comma = 0; |
| int i, flags = e->flags; |
| |
| fputs (" (", file); |
| for (i = 0; flags; i++) |
| if (flags & (1 << i)) |
| { |
| flags &= ~(1 << i); |
| |
| if (comma) |
| fputc (',', file); |
| if (i < (int) ARRAY_SIZE (bitnames)) |
| fputs (bitnames[i], file); |
| else |
| fprintf (file, "%d", i); |
| comma = 1; |
| } |
| |
| fputc (')', file); |
| } |
| } |
| |
| /* Simple routines to easily allocate AUX fields of basic blocks. */ |
| |
| static struct obstack block_aux_obstack; |
| static void *first_block_aux_obj = 0; |
| static struct obstack edge_aux_obstack; |
| static void *first_edge_aux_obj = 0; |
| |
| /* Allocate a memory block of SIZE as BB->aux. The obstack must |
| be first initialized by alloc_aux_for_blocks. */ |
| |
| inline void |
| alloc_aux_for_block (basic_block bb, int size) |
| { |
| /* Verify that aux field is clear. */ |
| if (bb->aux || !first_block_aux_obj) |
| abort (); |
| bb->aux = obstack_alloc (&block_aux_obstack, size); |
| memset (bb->aux, 0, size); |
| } |
| |
| /* Initialize the block_aux_obstack and if SIZE is nonzero, call |
| alloc_aux_for_block for each basic block. */ |
| |
| void |
| alloc_aux_for_blocks (int size) |
| { |
| static int initialized; |
| |
| if (!initialized) |
| { |
| gcc_obstack_init (&block_aux_obstack); |
| initialized = 1; |
| } |
| |
| /* Check whether AUX data are still allocated. */ |
| else if (first_block_aux_obj) |
| abort (); |
| first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0); |
| if (size) |
| { |
| basic_block bb; |
| |
| FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb) |
| alloc_aux_for_block (bb, size); |
| } |
| } |
| |
| /* Clear AUX pointers of all blocks. */ |
| |
| void |
| clear_aux_for_blocks (void) |
| { |
| basic_block bb; |
| |
| FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb) |
| bb->aux = NULL; |
| } |
| |
| /* Free data allocated in block_aux_obstack and clear AUX pointers |
| of all blocks. */ |
| |
| void |
| free_aux_for_blocks (void) |
| { |
| if (!first_block_aux_obj) |
| abort (); |
| obstack_free (&block_aux_obstack, first_block_aux_obj); |
| first_block_aux_obj = NULL; |
| |
| clear_aux_for_blocks (); |
| } |
| |
| /* Allocate a memory edge of SIZE as BB->aux. The obstack must |
| be first initialized by alloc_aux_for_edges. */ |
| |
| inline void |
| alloc_aux_for_edge (edge e, int size) |
| { |
| /* Verify that aux field is clear. */ |
| if (e->aux || !first_edge_aux_obj) |
| abort (); |
| e->aux = obstack_alloc (&edge_aux_obstack, size); |
| memset (e->aux, 0, size); |
| } |
| |
| /* Initialize the edge_aux_obstack and if SIZE is nonzero, call |
| alloc_aux_for_edge for each basic edge. */ |
| |
| void |
| alloc_aux_for_edges (int size) |
| { |
| static int initialized; |
| |
| if (!initialized) |
| { |
| gcc_obstack_init (&edge_aux_obstack); |
| initialized = 1; |
| } |
| |
| /* Check whether AUX data are still allocated. */ |
| else if (first_edge_aux_obj) |
| abort (); |
| |
| first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0); |
| if (size) |
| { |
| basic_block bb; |
| |
| FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb) |
| { |
| edge e; |
| |
| for (e = bb->succ; e; e = e->succ_next) |
| alloc_aux_for_edge (e, size); |
| } |
| } |
| } |
| |
| /* Clear AUX pointers of all edges. */ |
| |
| void |
| clear_aux_for_edges (void) |
| { |
| basic_block bb; |
| edge e; |
| |
| FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb) |
| { |
| for (e = bb->succ; e; e = e->succ_next) |
| e->aux = NULL; |
| } |
| } |
| |
| /* Free data allocated in edge_aux_obstack and clear AUX pointers |
| of all edges. */ |
| |
| void |
| free_aux_for_edges (void) |
| { |
| if (!first_edge_aux_obj) |
| abort (); |
| obstack_free (&edge_aux_obstack, first_edge_aux_obj); |
| first_edge_aux_obj = NULL; |
| |
| clear_aux_for_edges (); |
| } |
| |
| /* Verify the CFG consistency. |
| |
| Currently it does following checks edge and basic block list correctness |
| and calls into IL dependent checking then. */ |
| void |
| verify_flow_info (void) |
| { |
| size_t *edge_checksum; |
| int num_bb_notes, err = 0; |
| basic_block bb, last_bb_seen; |
| basic_block *last_visited; |
| |
| last_visited = xcalloc (last_basic_block + 2, sizeof (basic_block)); |
| edge_checksum = xcalloc (last_basic_block + 2, sizeof (size_t)); |
| |
| /* Check bb chain & numbers. */ |
| last_bb_seen = ENTRY_BLOCK_PTR; |
| FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb) |
| { |
| if (bb != EXIT_BLOCK_PTR |
| && bb != BASIC_BLOCK (bb->index)) |
| { |
| error ("bb %d on wrong place", bb->index); |
| err = 1; |
| } |
| |
| if (bb->prev_bb != last_bb_seen) |
| { |
| error ("prev_bb of %d should be %d, not %d", |
| bb->index, last_bb_seen->index, bb->prev_bb->index); |
| err = 1; |
| } |
| |
| last_bb_seen = bb; |
| } |
| |
| /* Now check the basic blocks (boundaries etc.) */ |
| FOR_EACH_BB_REVERSE (bb) |
| { |
| int n_fallthru = 0; |
| edge e; |
| |
| if (bb->count < 0) |
| { |
| error ("verify_flow_info: Wrong count of block %i %i", |
| bb->index, (int)bb->count); |
| err = 1; |
| } |
| if (bb->frequency < 0) |
| { |
| error ("verify_flow_info: Wrong frequency of block %i %i", |
| bb->index, bb->frequency); |
| err = 1; |
| } |
| for (e = bb->succ; e; e = e->succ_next) |
| { |
| if (last_visited [e->dest->index + 2] == bb) |
| { |
| error ("verify_flow_info: Duplicate edge %i->%i", |
| e->src->index, e->dest->index); |
| err = 1; |
| } |
| if (e->probability < 0 || e->probability > REG_BR_PROB_BASE) |
| { |
| error ("verify_flow_info: Wrong probability of edge %i->%i %i", |
| e->src->index, e->dest->index, e->probability); |
| err = 1; |
| } |
| if (e->count < 0) |
| { |
| error ("verify_flow_info: Wrong count of edge %i->%i %i", |
| e->src->index, e->dest->index, (int)e->count); |
| err = 1; |
| } |
| |
| last_visited [e->dest->index + 2] = bb; |
| |
| if (e->flags & EDGE_FALLTHRU) |
| n_fallthru++; |
| |
| if (e->src != bb) |
| { |
| error ("verify_flow_info: Basic block %d succ edge is corrupted", |
| bb->index); |
| fprintf (stderr, "Predecessor: "); |
| dump_edge_info (stderr, e, 0); |
| fprintf (stderr, "\nSuccessor: "); |
| dump_edge_info (stderr, e, 1); |
| fprintf (stderr, "\n"); |
| err = 1; |
| } |
| |
| edge_checksum[e->dest->index + 2] += (size_t) e; |
| } |
| if (n_fallthru > 1) |
| { |
| error ("Wrong amount of branch edges after unconditional jump %i", bb->index); |
| err = 1; |
| } |
| |
| for (e = bb->pred; e; e = e->pred_next) |
| { |
| if (e->dest != bb) |
| { |
| error ("basic block %d pred edge is corrupted", bb->index); |
| fputs ("Predecessor: ", stderr); |
| dump_edge_info (stderr, e, 0); |
| fputs ("\nSuccessor: ", stderr); |
| dump_edge_info (stderr, e, 1); |
| fputc ('\n', stderr); |
| err = 1; |
| } |
| edge_checksum[e->dest->index + 2] -= (size_t) e; |
| } |
| } |
| |
| /* Complete edge checksumming for ENTRY and EXIT. */ |
| { |
| edge e; |
| |
| for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next) |
| edge_checksum[e->dest->index + 2] += (size_t) e; |
| |
| for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next) |
| edge_checksum[e->dest->index + 2] -= (size_t) e; |
| } |
| |
| FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb) |
| if (edge_checksum[bb->index + 2]) |
| { |
| error ("basic block %i edge lists are corrupted", bb->index); |
| err = 1; |
| } |
| |
| num_bb_notes = 0; |
| last_bb_seen = ENTRY_BLOCK_PTR; |
| |
| /* Clean up. */ |
| free (last_visited); |
| free (edge_checksum); |
| err |= cfg_hooks->cfgh_verify_flow_info (); |
| if (err) |
| internal_error ("verify_flow_info failed"); |
| } |
| |
| /* Print out one basic block with live information at start and end. */ |
| |
| void |
| dump_bb (basic_block bb, FILE *outf) |
| { |
| edge e; |
| |
| fprintf (outf, ";; Basic block %d, loop depth %d, count ", |
| bb->index, bb->loop_depth); |
| fprintf (outf, HOST_WIDEST_INT_PRINT_DEC, (HOST_WIDEST_INT) bb->count); |
| putc ('\n', outf); |
| fputs (";; Predecessors: ", outf); |
| for (e = bb->pred; e; e = e->pred_next) |
| dump_edge_info (outf, e, 0); |
| putc ('\n', outf); |
| |
| cfg_hooks->dump_bb (bb, outf); |
| |
| fputs (";; Successors: ", outf); |
| for (e = bb->succ; e; e = e->succ_next) |
| dump_edge_info (outf, e, 1); |
| putc ('\n', outf); |
| } |
| |
| void |
| debug_bb (basic_block bb) |
| { |
| dump_bb (bb, stderr); |
| } |
| |
| basic_block |
| debug_bb_n (int n) |
| { |
| basic_block bb = BASIC_BLOCK (n); |
| dump_bb (bb, stderr); |
| return bb; |
| } |