| // verify.cc - verify bytecode |
| |
| /* Copyright (C) 2001, 2002, 2003 Free Software Foundation |
| |
| This file is part of libgcj. |
| |
| This software is copyrighted work licensed under the terms of the |
| Libgcj License. Please consult the file "LIBGCJ_LICENSE" for |
| details. */ |
| |
| // Written by Tom Tromey <tromey@redhat.com> |
| |
| // Define VERIFY_DEBUG to enable debugging output. |
| |
| #include <config.h> |
| |
| #include <jvm.h> |
| #include <gcj/cni.h> |
| #include <java-insns.h> |
| #include <java-interp.h> |
| |
| // On Solaris 10/x86, <signal.h> indirectly includes <ia32/sys/reg.h>, which |
| // defines PC since g++ predefines __EXTENSIONS__. Undef here to avoid clash |
| // with PC member of class _Jv_BytecodeVerifier below. |
| #undef PC |
| |
| #ifdef INTERPRETER |
| |
| #include <java/lang/Class.h> |
| #include <java/lang/VerifyError.h> |
| #include <java/lang/Throwable.h> |
| #include <java/lang/reflect/Modifier.h> |
| #include <java/lang/StringBuffer.h> |
| |
| #ifdef VERIFY_DEBUG |
| #include <stdio.h> |
| #endif /* VERIFY_DEBUG */ |
| |
| |
| static void debug_print (const char *fmt, ...) |
| __attribute__ ((format (printf, 1, 2))); |
| |
| static inline void |
| debug_print (const char *fmt, ...) |
| { |
| #ifdef VERIFY_DEBUG |
| va_list ap; |
| va_start (ap, fmt); |
| vfprintf (stderr, fmt, ap); |
| va_end (ap); |
| #endif /* VERIFY_DEBUG */ |
| } |
| |
| class _Jv_BytecodeVerifier |
| { |
| private: |
| |
| static const int FLAG_INSN_START = 1; |
| static const int FLAG_BRANCH_TARGET = 2; |
| |
| struct state; |
| struct type; |
| struct subr_info; |
| struct subr_entry_info; |
| struct linked_utf8; |
| struct ref_intersection; |
| |
| // The current PC. |
| int PC; |
| // The PC corresponding to the start of the current instruction. |
| int start_PC; |
| |
| // The current state of the stack, locals, etc. |
| state *current_state; |
| |
| // We store the state at branch targets, for merging. This holds |
| // such states. |
| state **states; |
| |
| // We keep a linked list of all the PCs which we must reverify. |
| // The link is done using the PC values. This is the head of the |
| // list. |
| int next_verify_pc; |
| |
| // We keep some flags for each instruction. The values are the |
| // FLAG_* constants defined above. |
| char *flags; |
| |
| // We need to keep track of which instructions can call a given |
| // subroutine. FIXME: this is inefficient. We keep a linked list |
| // of all calling `jsr's at at each jsr target. |
| subr_info **jsr_ptrs; |
| |
| // We keep a linked list of entries which map each `ret' instruction |
| // to its unique subroutine entry point. We expect that there won't |
| // be many `ret' instructions, so a linked list is ok. |
| subr_entry_info *entry_points; |
| |
| // The bytecode itself. |
| unsigned char *bytecode; |
| // The exceptions. |
| _Jv_InterpException *exception; |
| |
| // Defining class. |
| jclass current_class; |
| // This method. |
| _Jv_InterpMethod *current_method; |
| |
| // A linked list of utf8 objects we allocate. This is really ugly, |
| // but without this our utf8 objects would be collected. |
| linked_utf8 *utf8_list; |
| |
| // A linked list of all ref_intersection objects we allocate. |
| ref_intersection *isect_list; |
| |
| struct linked_utf8 |
| { |
| _Jv_Utf8Const *val; |
| linked_utf8 *next; |
| }; |
| |
| _Jv_Utf8Const *make_utf8_const (char *s, int len) |
| { |
| _Jv_Utf8Const *val = _Jv_makeUtf8Const (s, len); |
| _Jv_Utf8Const *r = (_Jv_Utf8Const *) _Jv_Malloc (sizeof (_Jv_Utf8Const) |
| + val->length |
| + 1); |
| r->length = val->length; |
| r->hash = val->hash; |
| memcpy (r->data, val->data, val->length + 1); |
| |
| linked_utf8 *lu = (linked_utf8 *) _Jv_Malloc (sizeof (linked_utf8)); |
| lu->val = r; |
| lu->next = utf8_list; |
| utf8_list = lu; |
| |
| return r; |
| } |
| |
| __attribute__ ((__noreturn__)) void verify_fail (char *s, jint pc = -1) |
| { |
| using namespace java::lang; |
| StringBuffer *buf = new StringBuffer (); |
| |
| buf->append (JvNewStringLatin1 ("verification failed")); |
| if (pc == -1) |
| pc = start_PC; |
| if (pc != -1) |
| { |
| buf->append (JvNewStringLatin1 (" at PC ")); |
| buf->append (pc); |
| } |
| |
| _Jv_InterpMethod *method = current_method; |
| buf->append (JvNewStringLatin1 (" in ")); |
| buf->append (current_class->getName()); |
| buf->append ((jchar) ':'); |
| buf->append (JvNewStringUTF (method->get_method()->name->data)); |
| buf->append ((jchar) '('); |
| buf->append (JvNewStringUTF (method->get_method()->signature->data)); |
| buf->append ((jchar) ')'); |
| |
| buf->append (JvNewStringLatin1 (": ")); |
| buf->append (JvNewStringLatin1 (s)); |
| throw new java::lang::VerifyError (buf->toString ()); |
| } |
| |
| // This enum holds a list of tags for all the different types we |
| // need to handle. Reference types are treated specially by the |
| // type class. |
| enum type_val |
| { |
| void_type, |
| |
| // The values for primitive types are chosen to correspond to values |
| // specified to newarray. |
| boolean_type = 4, |
| char_type = 5, |
| float_type = 6, |
| double_type = 7, |
| byte_type = 8, |
| short_type = 9, |
| int_type = 10, |
| long_type = 11, |
| |
| // Used when overwriting second word of a double or long in the |
| // local variables. Also used after merging local variable states |
| // to indicate an unusable value. |
| unsuitable_type, |
| return_address_type, |
| continuation_type, |
| |
| // There is an obscure special case which requires us to note when |
| // a local variable has not been used by a subroutine. See |
| // push_jump_merge for more information. |
| unused_by_subroutine_type, |
| |
| // Everything after `reference_type' must be a reference type. |
| reference_type, |
| null_type, |
| uninitialized_reference_type |
| }; |
| |
| // This represents a merged class type. Some verifiers (including |
| // earlier versions of this one) will compute the intersection of |
| // two class types when merging states. However, this loses |
| // critical information about interfaces implemented by the various |
| // classes. So instead we keep track of all the actual classes that |
| // have been merged. |
| struct ref_intersection |
| { |
| // Whether or not this type has been resolved. |
| bool is_resolved; |
| |
| // Actual type data. |
| union |
| { |
| // For a resolved reference type, this is a pointer to the class. |
| jclass klass; |
| // For other reference types, this it the name of the class. |
| _Jv_Utf8Const *name; |
| } data; |
| |
| // Link to the next reference in the intersection. |
| ref_intersection *ref_next; |
| |
| // This is used to keep track of all the allocated |
| // ref_intersection objects, so we can free them. |
| // FIXME: we should allocate these in chunks. |
| ref_intersection *alloc_next; |
| |
| ref_intersection (jclass klass, _Jv_BytecodeVerifier *verifier) |
| : ref_next (NULL) |
| { |
| is_resolved = true; |
| data.klass = klass; |
| alloc_next = verifier->isect_list; |
| verifier->isect_list = this; |
| } |
| |
| ref_intersection (_Jv_Utf8Const *name, _Jv_BytecodeVerifier *verifier) |
| : ref_next (NULL) |
| { |
| is_resolved = false; |
| data.name = name; |
| alloc_next = verifier->isect_list; |
| verifier->isect_list = this; |
| } |
| |
| ref_intersection (ref_intersection *dup, ref_intersection *tail, |
| _Jv_BytecodeVerifier *verifier) |
| : ref_next (tail) |
| { |
| is_resolved = dup->is_resolved; |
| data = dup->data; |
| alloc_next = verifier->isect_list; |
| verifier->isect_list = this; |
| } |
| |
| bool equals (ref_intersection *other, _Jv_BytecodeVerifier *verifier) |
| { |
| if (! is_resolved && ! other->is_resolved |
| && _Jv_equalUtf8Consts (data.name, other->data.name)) |
| return true; |
| if (! is_resolved) |
| resolve (verifier); |
| if (! other->is_resolved) |
| other->resolve (verifier); |
| return data.klass == other->data.klass; |
| } |
| |
| // Merge THIS type into OTHER, returning the result. This will |
| // return OTHER if all the classes in THIS already appear in |
| // OTHER. |
| ref_intersection *merge (ref_intersection *other, |
| _Jv_BytecodeVerifier *verifier) |
| { |
| ref_intersection *tail = other; |
| for (ref_intersection *self = this; self != NULL; self = self->ref_next) |
| { |
| bool add = true; |
| for (ref_intersection *iter = other; iter != NULL; |
| iter = iter->ref_next) |
| { |
| if (iter->equals (self, verifier)) |
| { |
| add = false; |
| break; |
| } |
| } |
| |
| if (add) |
| tail = new ref_intersection (self, tail, verifier); |
| } |
| return tail; |
| } |
| |
| void resolve (_Jv_BytecodeVerifier *verifier) |
| { |
| if (is_resolved) |
| return; |
| |
| using namespace java::lang; |
| java::lang::ClassLoader *loader |
| = verifier->current_class->getClassLoaderInternal(); |
| // We might see either kind of name. Sigh. |
| if (data.name->data[0] == 'L' |
| && data.name->data[data.name->length - 1] == ';') |
| data.klass = _Jv_FindClassFromSignature (data.name->data, loader); |
| else |
| data.klass = Class::forName (_Jv_NewStringUtf8Const (data.name), |
| false, loader); |
| is_resolved = true; |
| } |
| |
| // See if an object of type OTHER can be assigned to an object of |
| // type *THIS. This might resolve classes in one chain or the |
| // other. |
| bool compatible (ref_intersection *other, |
| _Jv_BytecodeVerifier *verifier) |
| { |
| ref_intersection *self = this; |
| |
| for (; self != NULL; self = self->ref_next) |
| { |
| ref_intersection *other_iter = other; |
| |
| for (; other_iter != NULL; other_iter = other_iter->ref_next) |
| { |
| // Avoid resolving if possible. |
| if (! self->is_resolved |
| && ! other_iter->is_resolved |
| && _Jv_equalUtf8Consts (self->data.name, |
| other_iter->data.name)) |
| continue; |
| |
| if (! self->is_resolved) |
| self->resolve(verifier); |
| if (! other_iter->is_resolved) |
| other_iter->resolve(verifier); |
| |
| if (! is_assignable_from_slow (self->data.klass, |
| other_iter->data.klass)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool isarray () |
| { |
| // assert (ref_next == NULL); |
| if (is_resolved) |
| return data.klass->isArray (); |
| else |
| return data.name->data[0] == '['; |
| } |
| |
| bool isinterface (_Jv_BytecodeVerifier *verifier) |
| { |
| // assert (ref_next == NULL); |
| if (! is_resolved) |
| resolve (verifier); |
| return data.klass->isInterface (); |
| } |
| |
| bool isabstract (_Jv_BytecodeVerifier *verifier) |
| { |
| // assert (ref_next == NULL); |
| if (! is_resolved) |
| resolve (verifier); |
| using namespace java::lang::reflect; |
| return Modifier::isAbstract (data.klass->getModifiers ()); |
| } |
| |
| jclass getclass (_Jv_BytecodeVerifier *verifier) |
| { |
| if (! is_resolved) |
| resolve (verifier); |
| return data.klass; |
| } |
| |
| int count_dimensions () |
| { |
| int ndims = 0; |
| if (is_resolved) |
| { |
| jclass k = data.klass; |
| while (k->isArray ()) |
| { |
| k = k->getComponentType (); |
| ++ndims; |
| } |
| } |
| else |
| { |
| char *p = data.name->data; |
| while (*p++ == '[') |
| ++ndims; |
| } |
| return ndims; |
| } |
| |
| void *operator new (size_t bytes) |
| { |
| return _Jv_Malloc (bytes); |
| } |
| |
| void operator delete (void *mem) |
| { |
| _Jv_Free (mem); |
| } |
| }; |
| |
| // Return the type_val corresponding to a primitive signature |
| // character. For instance `I' returns `int.class'. |
| type_val get_type_val_for_signature (jchar sig) |
| { |
| type_val rt; |
| switch (sig) |
| { |
| case 'Z': |
| rt = boolean_type; |
| break; |
| case 'B': |
| rt = byte_type; |
| break; |
| case 'C': |
| rt = char_type; |
| break; |
| case 'S': |
| rt = short_type; |
| break; |
| case 'I': |
| rt = int_type; |
| break; |
| case 'J': |
| rt = long_type; |
| break; |
| case 'F': |
| rt = float_type; |
| break; |
| case 'D': |
| rt = double_type; |
| break; |
| case 'V': |
| rt = void_type; |
| break; |
| default: |
| verify_fail ("invalid signature"); |
| } |
| return rt; |
| } |
| |
| // Return the type_val corresponding to a primitive class. |
| type_val get_type_val_for_signature (jclass k) |
| { |
| return get_type_val_for_signature ((jchar) k->method_count); |
| } |
| |
| // This is like _Jv_IsAssignableFrom, but it works even if SOURCE or |
| // TARGET haven't been prepared. |
| static bool is_assignable_from_slow (jclass target, jclass source) |
| { |
| // First, strip arrays. |
| while (target->isArray ()) |
| { |
| // If target is array, source must be as well. |
| if (! source->isArray ()) |
| return false; |
| target = target->getComponentType (); |
| source = source->getComponentType (); |
| } |
| |
| // Quick success. |
| if (target == &java::lang::Object::class$) |
| return true; |
| |
| do |
| { |
| if (source == target) |
| return true; |
| |
| if (target->isPrimitive () || source->isPrimitive ()) |
| return false; |
| |
| if (target->isInterface ()) |
| { |
| for (int i = 0; i < source->interface_count; ++i) |
| { |
| // We use a recursive call because we also need to |
| // check superinterfaces. |
| if (is_assignable_from_slow (target, source->interfaces[i])) |
| return true; |
| } |
| } |
| source = source->getSuperclass (); |
| } |
| while (source != NULL); |
| |
| return false; |
| } |
| |
| // This is used to keep track of which `jsr's correspond to a given |
| // jsr target. |
| struct subr_info |
| { |
| // PC of the instruction just after the jsr. |
| int pc; |
| // Link. |
| subr_info *next; |
| }; |
| |
| // This is used to keep track of which subroutine entry point |
| // corresponds to which `ret' instruction. |
| struct subr_entry_info |
| { |
| // PC of the subroutine entry point. |
| int pc; |
| // PC of the `ret' instruction. |
| int ret_pc; |
| // Link. |
| subr_entry_info *next; |
| }; |
| |
| // The `type' class is used to represent a single type in the |
| // verifier. |
| struct type |
| { |
| // The type key. |
| type_val key; |
| |
| // For reference types, the representation of the type. |
| ref_intersection *klass; |
| |
| // This is used when constructing a new object. It is the PC of the |
| // `new' instruction which created the object. We use the special |
| // value -2 to mean that this is uninitialized, and the special |
| // value -1 for the case where the current method is itself the |
| // <init> method. |
| int pc; |
| |
| static const int UNINIT = -2; |
| static const int SELF = -1; |
| |
| // Basic constructor. |
| type () |
| { |
| key = unsuitable_type; |
| klass = NULL; |
| pc = UNINIT; |
| } |
| |
| // Make a new instance given the type tag. We assume a generic |
| // `reference_type' means Object. |
| type (type_val k) |
| { |
| key = k; |
| // For reference_type, if KLASS==NULL then that means we are |
| // looking for a generic object of any kind, including an |
| // uninitialized reference. |
| klass = NULL; |
| pc = UNINIT; |
| } |
| |
| // Make a new instance given a class. |
| type (jclass k, _Jv_BytecodeVerifier *verifier) |
| { |
| key = reference_type; |
| klass = new ref_intersection (k, verifier); |
| pc = UNINIT; |
| } |
| |
| // Make a new instance given the name of a class. |
| type (_Jv_Utf8Const *n, _Jv_BytecodeVerifier *verifier) |
| { |
| key = reference_type; |
| klass = new ref_intersection (n, verifier); |
| pc = UNINIT; |
| } |
| |
| // Copy constructor. |
| type (const type &t) |
| { |
| key = t.key; |
| klass = t.klass; |
| pc = t.pc; |
| } |
| |
| // These operators are required because libgcj can't link in |
| // -lstdc++. |
| void *operator new[] (size_t bytes) |
| { |
| return _Jv_Malloc (bytes); |
| } |
| |
| void operator delete[] (void *mem) |
| { |
| _Jv_Free (mem); |
| } |
| |
| type& operator= (type_val k) |
| { |
| key = k; |
| klass = NULL; |
| pc = UNINIT; |
| return *this; |
| } |
| |
| type& operator= (const type& t) |
| { |
| key = t.key; |
| klass = t.klass; |
| pc = t.pc; |
| return *this; |
| } |
| |
| // Promote a numeric type. |
| type &promote () |
| { |
| if (key == boolean_type || key == char_type |
| || key == byte_type || key == short_type) |
| key = int_type; |
| return *this; |
| } |
| |
| // Mark this type as the uninitialized result of `new'. |
| void set_uninitialized (int npc, _Jv_BytecodeVerifier *verifier) |
| { |
| if (key == reference_type) |
| key = uninitialized_reference_type; |
| else |
| verifier->verify_fail ("internal error in type::uninitialized"); |
| pc = npc; |
| } |
| |
| // Mark this type as now initialized. |
| void set_initialized (int npc) |
| { |
| if (npc != UNINIT && pc == npc && key == uninitialized_reference_type) |
| { |
| key = reference_type; |
| pc = UNINIT; |
| } |
| } |
| |
| |
| // Return true if an object of type K can be assigned to a variable |
| // of type *THIS. Handle various special cases too. Might modify |
| // *THIS or K. Note however that this does not perform numeric |
| // promotion. |
| bool compatible (type &k, _Jv_BytecodeVerifier *verifier) |
| { |
| // Any type is compatible with the unsuitable type. |
| if (key == unsuitable_type) |
| return true; |
| |
| if (key < reference_type || k.key < reference_type) |
| return key == k.key; |
| |
| // The `null' type is convertible to any initialized reference |
| // type. |
| if (key == null_type) |
| return k.key != uninitialized_reference_type; |
| if (k.key == null_type) |
| return key != uninitialized_reference_type; |
| |
| // A special case for a generic reference. |
| if (klass == NULL) |
| return true; |
| if (k.klass == NULL) |
| verifier->verify_fail ("programmer error in type::compatible"); |
| |
| // An initialized type and an uninitialized type are not |
| // compatible. |
| if (isinitialized () != k.isinitialized ()) |
| return false; |
| |
| // Two uninitialized objects are compatible if either: |
| // * The PCs are identical, or |
| // * One PC is UNINIT. |
| if (! isinitialized ()) |
| { |
| if (pc != k.pc && pc != UNINIT && k.pc != UNINIT) |
| return false; |
| } |
| |
| return klass->compatible(k.klass, verifier); |
| } |
| |
| bool isvoid () const |
| { |
| return key == void_type; |
| } |
| |
| bool iswide () const |
| { |
| return key == long_type || key == double_type; |
| } |
| |
| // Return number of stack or local variable slots taken by this |
| // type. |
| int depth () const |
| { |
| return iswide () ? 2 : 1; |
| } |
| |
| bool isarray () const |
| { |
| // We treat null_type as not an array. This is ok based on the |
| // current uses of this method. |
| if (key == reference_type) |
| return klass->isarray (); |
| return false; |
| } |
| |
| bool isnull () const |
| { |
| return key == null_type; |
| } |
| |
| bool isinterface (_Jv_BytecodeVerifier *verifier) |
| { |
| if (key != reference_type) |
| return false; |
| return klass->isinterface (verifier); |
| } |
| |
| bool isabstract (_Jv_BytecodeVerifier *verifier) |
| { |
| if (key != reference_type) |
| return false; |
| return klass->isabstract (verifier); |
| } |
| |
| // Return the element type of an array. |
| type element_type (_Jv_BytecodeVerifier *verifier) |
| { |
| if (key != reference_type) |
| verifier->verify_fail ("programmer error in type::element_type()", -1); |
| |
| jclass k = klass->getclass (verifier)->getComponentType (); |
| if (k->isPrimitive ()) |
| return type (verifier->get_type_val_for_signature (k)); |
| return type (k, verifier); |
| } |
| |
| // Return the array type corresponding to an initialized |
| // reference. We could expand this to work for other kinds of |
| // types, but currently we don't need to. |
| type to_array (_Jv_BytecodeVerifier *verifier) |
| { |
| if (key != reference_type) |
| verifier->verify_fail ("internal error in type::to_array()"); |
| |
| jclass k = klass->getclass (verifier); |
| return type (_Jv_GetArrayClass (k, k->getClassLoaderInternal()), |
| verifier); |
| } |
| |
| bool isreference () const |
| { |
| return key >= reference_type; |
| } |
| |
| int get_pc () const |
| { |
| return pc; |
| } |
| |
| bool isinitialized () const |
| { |
| return key == reference_type || key == null_type; |
| } |
| |
| bool isresolved () const |
| { |
| return (key == reference_type |
| || key == null_type |
| || key == uninitialized_reference_type); |
| } |
| |
| void verify_dimensions (int ndims, _Jv_BytecodeVerifier *verifier) |
| { |
| // The way this is written, we don't need to check isarray(). |
| if (key != reference_type) |
| verifier->verify_fail ("internal error in verify_dimensions: not a reference type"); |
| |
| if (klass->count_dimensions () < ndims) |
| verifier->verify_fail ("array type has fewer dimensions than required"); |
| } |
| |
| // Merge OLD_TYPE into this. On error throw exception. |
| bool merge (type& old_type, bool local_semantics, |
| _Jv_BytecodeVerifier *verifier) |
| { |
| bool changed = false; |
| bool refo = old_type.isreference (); |
| bool refn = isreference (); |
| if (refo && refn) |
| { |
| if (old_type.key == null_type) |
| ; |
| else if (key == null_type) |
| { |
| *this = old_type; |
| changed = true; |
| } |
| else if (isinitialized () != old_type.isinitialized ()) |
| verifier->verify_fail ("merging initialized and uninitialized types"); |
| else |
| { |
| if (! isinitialized ()) |
| { |
| if (pc == UNINIT) |
| pc = old_type.pc; |
| else if (old_type.pc == UNINIT) |
| ; |
| else if (pc != old_type.pc) |
| verifier->verify_fail ("merging different uninitialized types"); |
| } |
| |
| ref_intersection *merged = old_type.klass->merge (klass, |
| verifier); |
| if (merged != klass) |
| { |
| klass = merged; |
| changed = true; |
| } |
| } |
| } |
| else if (refo || refn || key != old_type.key) |
| { |
| if (local_semantics) |
| { |
| // If we're merging into an "unused" slot, then we |
| // simply accept whatever we're merging from. |
| if (key == unused_by_subroutine_type) |
| { |
| *this = old_type; |
| changed = true; |
| } |
| else if (old_type.key == unused_by_subroutine_type) |
| { |
| // Do nothing. |
| } |
| // If we already have an `unsuitable' type, then we |
| // don't need to change again. |
| else if (key != unsuitable_type) |
| { |
| key = unsuitable_type; |
| changed = true; |
| } |
| } |
| else |
| verifier->verify_fail ("unmergeable type"); |
| } |
| return changed; |
| } |
| |
| #ifdef VERIFY_DEBUG |
| void print (void) const |
| { |
| char c = '?'; |
| switch (key) |
| { |
| case boolean_type: c = 'Z'; break; |
| case byte_type: c = 'B'; break; |
| case char_type: c = 'C'; break; |
| case short_type: c = 'S'; break; |
| case int_type: c = 'I'; break; |
| case long_type: c = 'J'; break; |
| case float_type: c = 'F'; break; |
| case double_type: c = 'D'; break; |
| case void_type: c = 'V'; break; |
| case unsuitable_type: c = '-'; break; |
| case return_address_type: c = 'r'; break; |
| case continuation_type: c = '+'; break; |
| case unused_by_subroutine_type: c = '_'; break; |
| case reference_type: c = 'L'; break; |
| case null_type: c = '@'; break; |
| case uninitialized_reference_type: c = 'U'; break; |
| } |
| debug_print ("%c", c); |
| } |
| #endif /* VERIFY_DEBUG */ |
| }; |
| |
| // This class holds all the state information we need for a given |
| // location. |
| struct state |
| { |
| // The current top of the stack, in terms of slots. |
| int stacktop; |
| // The current depth of the stack. This will be larger than |
| // STACKTOP when wide types are on the stack. |
| int stackdepth; |
| // The stack. |
| type *stack; |
| // The local variables. |
| type *locals; |
| // Flags are used in subroutines to keep track of which local |
| // variables have been accessed. They are also used after |
| char *flags; |
| // If not 0, then we are in a subroutine. The value is the PC of |
| // the subroutine's entry point. We can use 0 as an exceptional |
| // value because PC=0 can never be a subroutine. |
| int subroutine; |
| // This is used to keep a linked list of all the states which |
| // require re-verification. We use the PC to keep track. |
| int next; |
| // We keep track of the type of `this' specially. This is used to |
| // ensure that an instance initializer invokes another initializer |
| // on `this' before returning. We must keep track of this |
| // specially because otherwise we might be confused by code which |
| // assigns to locals[0] (overwriting `this') and then returns |
| // without really initializing. |
| type this_type; |
| // This is a list of all subroutines that have been seen at this |
| // point. Ordinarily this is NULL; it is only allocated and used |
| // in relatively weird situations involving non-ret exit from a |
| // subroutine. We have to keep track of this in this way to avoid |
| // endless recursion in these cases. |
| subr_info *seen_subrs; |
| |
| // INVALID marks a state which is not on the linked list of states |
| // requiring reverification. |
| static const int INVALID = -1; |
| // NO_NEXT marks the state at the end of the reverification list. |
| static const int NO_NEXT = -2; |
| |
| // This is used to mark the stack depth at the instruction just |
| // after a `jsr' when we haven't yet processed the corresponding |
| // `ret'. See handle_jsr_insn for more information. |
| static const int NO_STACK = -1; |
| |
| // This flag indicates that the local was changed in this |
| // subroutine. |
| static const int FLAG_CHANGED = 1; |
| // This is set only on the flags of the state of an instruction |
| // directly following a "jsr". It indicates that the local |
| // variable was changed by the subroutine corresponding to the |
| // "jsr". |
| static const int FLAG_USED = 2; |
| |
| state () |
| : this_type () |
| { |
| stack = NULL; |
| locals = NULL; |
| flags = NULL; |
| seen_subrs = NULL; |
| } |
| |
| state (int max_stack, int max_locals) |
| : this_type () |
| { |
| stacktop = 0; |
| stackdepth = 0; |
| stack = new type[max_stack]; |
| for (int i = 0; i < max_stack; ++i) |
| stack[i] = unsuitable_type; |
| locals = new type[max_locals]; |
| flags = (char *) _Jv_Malloc (sizeof (char) * max_locals); |
| seen_subrs = NULL; |
| for (int i = 0; i < max_locals; ++i) |
| { |
| locals[i] = unsuitable_type; |
| flags[i] = 0; |
| } |
| next = INVALID; |
| subroutine = 0; |
| } |
| |
| state (const state *orig, int max_stack, int max_locals, |
| bool ret_semantics = false) |
| { |
| stack = new type[max_stack]; |
| locals = new type[max_locals]; |
| flags = (char *) _Jv_Malloc (sizeof (char) * max_locals); |
| seen_subrs = NULL; |
| copy (orig, max_stack, max_locals, ret_semantics); |
| next = INVALID; |
| } |
| |
| ~state () |
| { |
| if (stack) |
| delete[] stack; |
| if (locals) |
| delete[] locals; |
| if (flags) |
| _Jv_Free (flags); |
| clean_subrs (); |
| } |
| |
| void *operator new[] (size_t bytes) |
| { |
| return _Jv_Malloc (bytes); |
| } |
| |
| void operator delete[] (void *mem) |
| { |
| _Jv_Free (mem); |
| } |
| |
| void *operator new (size_t bytes) |
| { |
| return _Jv_Malloc (bytes); |
| } |
| |
| void operator delete (void *mem) |
| { |
| _Jv_Free (mem); |
| } |
| |
| void clean_subrs () |
| { |
| subr_info *info = seen_subrs; |
| while (info != NULL) |
| { |
| subr_info *next = info->next; |
| _Jv_Free (info); |
| info = next; |
| } |
| seen_subrs = NULL; |
| } |
| |
| void copy (const state *copy, int max_stack, int max_locals, |
| bool ret_semantics = false) |
| { |
| stacktop = copy->stacktop; |
| stackdepth = copy->stackdepth; |
| subroutine = copy->subroutine; |
| for (int i = 0; i < max_stack; ++i) |
| stack[i] = copy->stack[i]; |
| for (int i = 0; i < max_locals; ++i) |
| { |
| // See push_jump_merge to understand this case. |
| if (ret_semantics) |
| { |
| if ((copy->flags[i] & FLAG_CHANGED)) |
| { |
| // Changed in the subroutine, so we copy it here. |
| locals[i] = copy->locals[i]; |
| flags[i] |= FLAG_USED; |
| } |
| else |
| { |
| // Not changed in the subroutine. Use a special |
| // type so the coming merge will overwrite. |
| locals[i] = type (unused_by_subroutine_type); |
| } |
| } |
| else |
| locals[i] = copy->locals[i]; |
| |
| // Clear the flag unconditionally just so printouts look ok, |
| // then only set it if we're still in a subroutine and it |
| // did in fact change. |
| flags[i] &= ~FLAG_CHANGED; |
| if (subroutine && (copy->flags[i] & FLAG_CHANGED) != 0) |
| flags[i] |= FLAG_CHANGED; |
| } |
| |
| clean_subrs (); |
| if (copy->seen_subrs) |
| { |
| for (subr_info *info = copy->seen_subrs; |
| info != NULL; info = info->next) |
| add_subr (info->pc); |
| } |
| |
| this_type = copy->this_type; |
| // Don't modify `next'. |
| } |
| |
| // Modify this state to reflect entry to an exception handler. |
| void set_exception (type t, int max_stack) |
| { |
| stackdepth = 1; |
| stacktop = 1; |
| stack[0] = t; |
| for (int i = stacktop; i < max_stack; ++i) |
| stack[i] = unsuitable_type; |
| } |
| |
| // Modify this state to reflect entry into a subroutine. |
| void enter_subroutine (int npc, int max_locals) |
| { |
| subroutine = npc; |
| // Mark all items as unchanged. Each subroutine needs to keep |
| // track of its `changed' state independently. In the case of |
| // nested subroutines, this information will be merged back into |
| // parent by the `ret'. |
| for (int i = 0; i < max_locals; ++i) |
| flags[i] &= ~FLAG_CHANGED; |
| } |
| |
| // Indicate that we've been in this this subroutine. |
| void add_subr (int pc) |
| { |
| subr_info *n = (subr_info *) _Jv_Malloc (sizeof (subr_info)); |
| n->pc = pc; |
| n->next = seen_subrs; |
| seen_subrs = n; |
| } |
| |
| // Merge STATE_OLD into this state. Destructively modifies this |
| // state. Returns true if the new state was in fact changed. |
| // Will throw an exception if the states are not mergeable. |
| bool merge (state *state_old, bool ret_semantics, |
| int max_locals, _Jv_BytecodeVerifier *verifier, |
| bool jsr_semantics = false) |
| { |
| bool changed = false; |
| |
| // Special handling for `this'. If one or the other is |
| // uninitialized, then the merge is uninitialized. |
| if (this_type.isinitialized ()) |
| this_type = state_old->this_type; |
| |
| // Merge subroutine states. Here we just keep track of what |
| // subroutine we think we're in. We only check for a merge |
| // (which is invalid) when we see a `ret'. |
| if (subroutine == state_old->subroutine) |
| { |
| // Nothing. |
| } |
| else if (subroutine == 0) |
| { |
| subroutine = state_old->subroutine; |
| changed = true; |
| } |
| else |
| { |
| // If the subroutines differ, and we haven't seen this |
| // subroutine before, indicate that the state changed. This |
| // is needed to detect when subroutines have merged. |
| bool found = false; |
| for (subr_info *info = seen_subrs; info != NULL; info = info->next) |
| { |
| if (info->pc == state_old->subroutine) |
| { |
| found = true; |
| break; |
| } |
| } |
| if (! found) |
| { |
| add_subr (state_old->subroutine); |
| changed = true; |
| } |
| } |
| |
| // Merge stacks, including special handling for NO_STACK case. |
| // If the destination is NO_STACK, this means it is the |
| // instruction following a "jsr" and has not yet been processed |
| // in any way. In this situation, if we are currently |
| // processing a "ret", then we must *copy* any locals changed in |
| // the subroutine into the current state. Merging in this |
| // situation is incorrect because the locals we've noted didn't |
| // come real program flow, they are just an artifact of how |
| // we've chosen to handle the post-jsr state. |
| bool copy_in_locals = ret_semantics && stacktop == NO_STACK; |
| |
| if (state_old->stacktop == NO_STACK) |
| { |
| // This can happen if we're doing a pass-through jsr merge. |
| // Here we can just ignore the stack. |
| } |
| else if (stacktop == NO_STACK) |
| { |
| stacktop = state_old->stacktop; |
| stackdepth = state_old->stackdepth; |
| for (int i = 0; i < stacktop; ++i) |
| stack[i] = state_old->stack[i]; |
| changed = true; |
| } |
| else if (state_old->stacktop != stacktop) |
| verifier->verify_fail ("stack sizes differ"); |
| else |
| { |
| for (int i = 0; i < state_old->stacktop; ++i) |
| { |
| if (stack[i].merge (state_old->stack[i], false, verifier)) |
| changed = true; |
| } |
| } |
| |
| // Merge local variables. |
| for (int i = 0; i < max_locals; ++i) |
| { |
| // If we're not processing a `ret', then we merge every |
| // local variable. If we are processing a `ret', then we |
| // only merge locals which changed in the subroutine. When |
| // processing a `ret', STATE_OLD is the state at the point |
| // of the `ret', and THIS is the state just after the `jsr'. |
| // See comment above for explanation of COPY_IN_LOCALS. |
| if (copy_in_locals) |
| { |
| if ((state_old->flags[i] & FLAG_CHANGED) != 0) |
| { |
| locals[i] = state_old->locals[i]; |
| changed = true; |
| // There's no point in calling note_variable here, |
| // since we call it under the same condition before |
| // the loop ends. |
| } |
| } |
| else if (jsr_semantics && (flags[i] & FLAG_USED) != 0) |
| { |
| // We are processing the "pass-through" part of a jsr |
| // statement. In this particular case, the local was |
| // changed by the subroutine. So, we have no work to |
| // do, as the pre-jsr value does not survive the |
| // subroutine call. |
| } |
| else if (! ret_semantics |
| || (state_old->flags[i] & FLAG_CHANGED) != 0) |
| { |
| // If we have ordinary (not ret) semantics, then we have |
| // merging flow control, so we merge types. Or, we have |
| // jsr pass-through semantics and the type survives the |
| // subroutine (see above), so again we merge. Or, |
| // finally, we have ret semantics and this value did |
| // change, in which case we merge the change from the |
| // subroutine into the post-jsr instruction. |
| if (locals[i].merge (state_old->locals[i], true, verifier)) |
| { |
| // Note that we don't call `note_variable' here. |
| // This change doesn't represent a real change to a |
| // local, but rather a merge artifact. If we're in |
| // a subroutine which is called with two |
| // incompatible types in a slot that is unused by |
| // the subroutine, then we don't want to mark that |
| // variable as having been modified. |
| changed = true; |
| } |
| } |
| |
| // If we're in a subroutine, we must compute the union of |
| // all the changed local variables. |
| if ((state_old->flags[i] & FLAG_CHANGED) != 0) |
| note_variable (i); |
| |
| // If we're returning from a subroutine, we must mark the |
| // post-jsr instruction with information about what changed, |
| // so that future "pass-through" jsr merges work correctly. |
| if (ret_semantics && (state_old->flags[i] & FLAG_CHANGED) != 0) |
| flags[i] |= FLAG_USED; |
| } |
| |
| return changed; |
| } |
| |
| // Throw an exception if there is an uninitialized object on the |
| // stack or in a local variable. EXCEPTION_SEMANTICS controls |
| // whether we're using backwards-branch or exception-handing |
| // semantics. |
| void check_no_uninitialized_objects (int max_locals, |
| _Jv_BytecodeVerifier *verifier, |
| bool exception_semantics = false) |
| { |
| if (! exception_semantics) |
| { |
| for (int i = 0; i < stacktop; ++i) |
| if (stack[i].isreference () && ! stack[i].isinitialized ()) |
| verifier->verify_fail ("uninitialized object on stack"); |
| } |
| |
| for (int i = 0; i < max_locals; ++i) |
| if (locals[i].isreference () && ! locals[i].isinitialized ()) |
| verifier->verify_fail ("uninitialized object in local variable"); |
| |
| check_this_initialized (verifier); |
| } |
| |
| // Ensure that `this' has been initialized. |
| void check_this_initialized (_Jv_BytecodeVerifier *verifier) |
| { |
| if (this_type.isreference () && ! this_type.isinitialized ()) |
| verifier->verify_fail ("`this' is uninitialized"); |
| } |
| |
| // Set type of `this'. |
| void set_this_type (const type &k) |
| { |
| this_type = k; |
| } |
| |
| // Note that a local variable was modified. |
| void note_variable (int index) |
| { |
| if (subroutine > 0) |
| flags[index] |= FLAG_CHANGED; |
| } |
| |
| // Mark each `new'd object we know of that was allocated at PC as |
| // initialized. |
| void set_initialized (int pc, int max_locals) |
| { |
| for (int i = 0; i < stacktop; ++i) |
| stack[i].set_initialized (pc); |
| for (int i = 0; i < max_locals; ++i) |
| locals[i].set_initialized (pc); |
| this_type.set_initialized (pc); |
| } |
| |
| // Return true if this state is the unmerged result of a `ret'. |
| bool is_unmerged_ret_state (int max_locals) const |
| { |
| if (stacktop == NO_STACK) |
| return true; |
| for (int i = 0; i < max_locals; ++i) |
| { |
| if (locals[i].key == unused_by_subroutine_type) |
| return true; |
| } |
| return false; |
| } |
| |
| #ifdef VERIFY_DEBUG |
| void print (const char *leader, int pc, |
| int max_stack, int max_locals) const |
| { |
| debug_print ("%s [%4d]: [stack] ", leader, pc); |
| int i; |
| for (i = 0; i < stacktop; ++i) |
| stack[i].print (); |
| for (; i < max_stack; ++i) |
| debug_print ("."); |
| debug_print (" [local] "); |
| for (i = 0; i < max_locals; ++i) |
| { |
| locals[i].print (); |
| if ((flags[i] & FLAG_USED) != 0) |
| debug_print ((flags[i] & FLAG_CHANGED) ? ">" : "<"); |
| else |
| debug_print ((flags[i] & FLAG_CHANGED) ? "+" : " "); |
| } |
| if (subroutine == 0) |
| debug_print (" | None"); |
| else |
| debug_print (" | %4d", subroutine); |
| debug_print (" | %p\n", this); |
| } |
| #else |
| inline void print (const char *, int, int, int) const |
| { |
| } |
| #endif /* VERIFY_DEBUG */ |
| }; |
| |
| type pop_raw () |
| { |
| if (current_state->stacktop <= 0) |
| verify_fail ("stack empty"); |
| type r = current_state->stack[--current_state->stacktop]; |
| current_state->stackdepth -= r.depth (); |
| if (current_state->stackdepth < 0) |
| verify_fail ("stack empty", start_PC); |
| return r; |
| } |
| |
| type pop32 () |
| { |
| type r = pop_raw (); |
| if (r.iswide ()) |
| verify_fail ("narrow pop of wide type"); |
| return r; |
| } |
| |
| type pop_type (type match) |
| { |
| match.promote (); |
| type t = pop_raw (); |
| if (! match.compatible (t, this)) |
| verify_fail ("incompatible type on stack"); |
| return t; |
| } |
| |
| // Pop a reference which is guaranteed to be initialized. MATCH |
| // doesn't have to be a reference type; in this case this acts like |
| // pop_type. |
| type pop_init_ref (type match) |
| { |
| type t = pop_raw (); |
| if (t.isreference () && ! t.isinitialized ()) |
| verify_fail ("initialized reference required"); |
| else if (! match.compatible (t, this)) |
| verify_fail ("incompatible type on stack"); |
| return t; |
| } |
| |
| // Pop a reference type or a return address. |
| type pop_ref_or_return () |
| { |
| type t = pop_raw (); |
| if (! t.isreference () && t.key != return_address_type) |
| verify_fail ("expected reference or return address on stack"); |
| return t; |
| } |
| |
| void push_type (type t) |
| { |
| // If T is a numeric type like short, promote it to int. |
| t.promote (); |
| |
| int depth = t.depth (); |
| if (current_state->stackdepth + depth > current_method->max_stack) |
| verify_fail ("stack overflow"); |
| current_state->stack[current_state->stacktop++] = t; |
| current_state->stackdepth += depth; |
| } |
| |
| void set_variable (int index, type t) |
| { |
| // If T is a numeric type like short, promote it to int. |
| t.promote (); |
| |
| int depth = t.depth (); |
| if (index > current_method->max_locals - depth) |
| verify_fail ("invalid local variable"); |
| current_state->locals[index] = t; |
| current_state->note_variable (index); |
| |
| if (depth == 2) |
| { |
| current_state->locals[index + 1] = continuation_type; |
| current_state->note_variable (index + 1); |
| } |
| if (index > 0 && current_state->locals[index - 1].iswide ()) |
| { |
| current_state->locals[index - 1] = unsuitable_type; |
| // There's no need to call note_variable here. |
| } |
| } |
| |
| type get_variable (int index, type t) |
| { |
| int depth = t.depth (); |
| if (index > current_method->max_locals - depth) |
| verify_fail ("invalid local variable"); |
| if (! t.compatible (current_state->locals[index], this)) |
| verify_fail ("incompatible type in local variable"); |
| if (depth == 2) |
| { |
| type t (continuation_type); |
| if (! current_state->locals[index + 1].compatible (t, this)) |
| verify_fail ("invalid local variable"); |
| } |
| return current_state->locals[index]; |
| } |
| |
| // Make sure ARRAY is an array type and that its elements are |
| // compatible with type ELEMENT. Returns the actual element type. |
| type require_array_type (type array, type element) |
| { |
| // An odd case. Here we just pretend that everything went ok. If |
| // the requested element type is some kind of reference, return |
| // the null type instead. |
| if (array.isnull ()) |
| return element.isreference () ? type (null_type) : element; |
| |
| if (! array.isarray ()) |
| verify_fail ("array required"); |
| |
| type t = array.element_type (this); |
| if (! element.compatible (t, this)) |
| { |
| // Special case for byte arrays, which must also be boolean |
| // arrays. |
| bool ok = true; |
| if (element.key == byte_type) |
| { |
| type e2 (boolean_type); |
| ok = e2.compatible (t, this); |
| } |
| if (! ok) |
| verify_fail ("incompatible array element type"); |
| } |
| |
| // Return T and not ELEMENT, because T might be specialized. |
| return t; |
| } |
| |
| jint get_byte () |
| { |
| if (PC >= current_method->code_length) |
| verify_fail ("premature end of bytecode"); |
| return (jint) bytecode[PC++] & 0xff; |
| } |
| |
| jint get_ushort () |
| { |
| jint b1 = get_byte (); |
| jint b2 = get_byte (); |
| return (jint) ((b1 << 8) | b2) & 0xffff; |
| } |
| |
| jint get_short () |
| { |
| jint b1 = get_byte (); |
| jint b2 = get_byte (); |
| jshort s = (b1 << 8) | b2; |
| return (jint) s; |
| } |
| |
| jint get_int () |
| { |
| jint b1 = get_byte (); |
| jint b2 = get_byte (); |
| jint b3 = get_byte (); |
| jint b4 = get_byte (); |
| return (b1 << 24) | (b2 << 16) | (b3 << 8) | b4; |
| } |
| |
| int compute_jump (int offset) |
| { |
| int npc = start_PC + offset; |
| if (npc < 0 || npc >= current_method->code_length) |
| verify_fail ("branch out of range", start_PC); |
| return npc; |
| } |
| |
| // Merge the indicated state into the state at the branch target and |
| // schedule a new PC if there is a change. If RET_SEMANTICS is |
| // true, then we are merging from a `ret' instruction into the |
| // instruction after a `jsr'. This is a special case with its own |
| // modified semantics. If JSR_SEMANTICS is true, then we're merging |
| // some type information from a "jsr" instruction to the immediately |
| // following instruction. In this situation we have to be careful |
| // not to merge local variables whose values are modified by the |
| // subroutine we're about to call. |
| void push_jump_merge (int npc, state *nstate, |
| bool ret_semantics = false, |
| bool jsr_semantics = false) |
| { |
| bool changed = true; |
| if (states[npc] == NULL) |
| { |
| // There's a weird situation here. If are examining the |
| // branch that results from a `ret', and there is not yet a |
| // state available at the branch target (the instruction just |
| // after the `jsr'), then we have to construct a special kind |
| // of state at that point for future merging. This special |
| // state has the type `unused_by_subroutine_type' in each slot |
| // which was not modified by the subroutine. |
| states[npc] = new state (nstate, current_method->max_stack, |
| current_method->max_locals, ret_semantics); |
| debug_print ("== New state in push_jump_merge (ret_semantics = %s)\n", |
| ret_semantics ? "true" : "false"); |
| states[npc]->print ("New", npc, current_method->max_stack, |
| current_method->max_locals); |
| } |
| else |
| { |
| debug_print ("== Merge states in push_jump_merge\n"); |
| nstate->print ("Frm", start_PC, current_method->max_stack, |
| current_method->max_locals); |
| states[npc]->print (" To", npc, current_method->max_stack, |
| current_method->max_locals); |
| changed = states[npc]->merge (nstate, ret_semantics, |
| current_method->max_locals, this, |
| jsr_semantics); |
| states[npc]->print ("New", npc, current_method->max_stack, |
| current_method->max_locals); |
| } |
| |
| if (changed && states[npc]->next == state::INVALID) |
| { |
| // The merge changed the state, and the new PC isn't yet on our |
| // list of PCs to re-verify. |
| states[npc]->next = next_verify_pc; |
| next_verify_pc = npc; |
| } |
| } |
| |
| void push_jump (int offset) |
| { |
| int npc = compute_jump (offset); |
| if (npc < PC) |
| current_state->check_no_uninitialized_objects (current_method->max_locals, this); |
| push_jump_merge (npc, current_state); |
| } |
| |
| void push_exception_jump (type t, int pc) |
| { |
| current_state->check_no_uninitialized_objects (current_method->max_locals, |
| this, true); |
| state s (current_state, current_method->max_stack, |
| current_method->max_locals); |
| if (current_method->max_stack < 1) |
| verify_fail ("stack overflow at exception handler"); |
| s.set_exception (t, current_method->max_stack); |
| push_jump_merge (pc, &s); |
| } |
| |
| int pop_jump () |
| { |
| int *prev_loc = &next_verify_pc; |
| int npc = next_verify_pc; |
| |
| while (npc != state::NO_NEXT) |
| { |
| // If the next available PC is an unmerged `ret' state, then |
| // we aren't yet ready to handle it. That's because we would |
| // need all kind of special cases to do so. So instead we |
| // defer this jump until after we've processed it via a |
| // fall-through. This has to happen because the instruction |
| // before this one must be a `jsr'. |
| if (! states[npc]->is_unmerged_ret_state (current_method->max_locals)) |
| { |
| *prev_loc = states[npc]->next; |
| states[npc]->next = state::INVALID; |
| return npc; |
| } |
| |
| prev_loc = &states[npc]->next; |
| npc = states[npc]->next; |
| } |
| |
| // Note that we might have gotten here even when there are |
| // remaining states to process. That can happen if we find a |
| // `jsr' without a `ret'. |
| return state::NO_NEXT; |
| } |
| |
| void invalidate_pc () |
| { |
| PC = state::NO_NEXT; |
| } |
| |
| void note_branch_target (int pc, bool is_jsr_target = false) |
| { |
| // Don't check `pc <= PC', because we've advanced PC after |
| // fetching the target and we haven't yet checked the next |
| // instruction. |
| if (pc < PC && ! (flags[pc] & FLAG_INSN_START)) |
| verify_fail ("branch not to instruction start", start_PC); |
| flags[pc] |= FLAG_BRANCH_TARGET; |
| if (is_jsr_target) |
| { |
| // Record the jsr which called this instruction. |
| subr_info *info = (subr_info *) _Jv_Malloc (sizeof (subr_info)); |
| info->pc = PC; |
| info->next = jsr_ptrs[pc]; |
| jsr_ptrs[pc] = info; |
| } |
| } |
| |
| void skip_padding () |
| { |
| while ((PC % 4) > 0) |
| if (get_byte () != 0) |
| verify_fail ("found nonzero padding byte"); |
| } |
| |
| // Return the subroutine to which the instruction at PC belongs. |
| int get_subroutine (int pc) |
| { |
| if (states[pc] == NULL) |
| return 0; |
| return states[pc]->subroutine; |
| } |
| |
| // Do the work for a `ret' instruction. INDEX is the index into the |
| // local variables. |
| void handle_ret_insn (int index) |
| { |
| get_variable (index, return_address_type); |
| |
| int csub = current_state->subroutine; |
| if (csub == 0) |
| verify_fail ("no subroutine"); |
| |
| // Check to see if we've merged subroutines. |
| subr_entry_info *entry; |
| for (entry = entry_points; entry != NULL; entry = entry->next) |
| { |
| if (entry->ret_pc == start_PC) |
| break; |
| } |
| if (entry == NULL) |
| { |
| entry = (subr_entry_info *) _Jv_Malloc (sizeof (subr_entry_info)); |
| entry->pc = csub; |
| entry->ret_pc = start_PC; |
| entry->next = entry_points; |
| entry_points = entry; |
| } |
| else if (entry->pc != csub) |
| verify_fail ("subroutines merged"); |
| |
| for (subr_info *subr = jsr_ptrs[csub]; subr != NULL; subr = subr->next) |
| { |
| // We might be returning to a `jsr' that is at the end of the |
| // bytecode. This is ok if we never return from the called |
| // subroutine, but if we see this here it is an error. |
| if (subr->pc >= current_method->code_length) |
| verify_fail ("fell off end"); |
| |
| // Temporarily modify the current state so it looks like we're |
| // in the enclosing context. |
| current_state->subroutine = get_subroutine (subr->pc); |
| if (subr->pc < PC) |
| current_state->check_no_uninitialized_objects (current_method->max_locals, this); |
| push_jump_merge (subr->pc, current_state, true); |
| } |
| |
| current_state->subroutine = csub; |
| invalidate_pc (); |
| } |
| |
| // We're in the subroutine SUB, calling a subroutine at DEST. Make |
| // sure this subroutine isn't already on the stack. |
| void check_nonrecursive_call (int sub, int dest) |
| { |
| if (sub == 0) |
| return; |
| if (sub == dest) |
| verify_fail ("recursive subroutine call"); |
| for (subr_info *info = jsr_ptrs[sub]; info != NULL; info = info->next) |
| check_nonrecursive_call (get_subroutine (info->pc), dest); |
| } |
| |
| void handle_jsr_insn (int offset) |
| { |
| int npc = compute_jump (offset); |
| |
| if (npc < PC) |
| current_state->check_no_uninitialized_objects (current_method->max_locals, this); |
| check_nonrecursive_call (current_state->subroutine, npc); |
| |
| // Modify our state as appropriate for entry into a subroutine. |
| push_type (return_address_type); |
| push_jump_merge (npc, current_state); |
| // Clean up. |
| pop_type (return_address_type); |
| |
| // On entry to the subroutine, the subroutine number must be set |
| // and the locals must be marked as cleared. We do this after |
| // merging state so that we don't erroneously "notice" a variable |
| // change merely on entry. |
| states[npc]->enter_subroutine (npc, current_method->max_locals); |
| |
| // Indicate that we don't know the stack depth of the instruction |
| // following the `jsr'. The idea here is that we need to merge |
| // the local variable state across the jsr, but the subroutine |
| // might change the stack depth, so we can't make any assumptions |
| // about it. So we have yet another special case. We know that |
| // at this point PC points to the instruction after the jsr. Note |
| // that it is ok to have a `jsr' at the end of the bytecode, |
| // provided that the called subroutine never returns. So, we have |
| // a special case here and another one when we handle the ret. |
| if (PC < current_method->code_length) |
| { |
| current_state->stacktop = state::NO_STACK; |
| push_jump_merge (PC, current_state, false, true); |
| } |
| invalidate_pc (); |
| } |
| |
| jclass construct_primitive_array_type (type_val prim) |
| { |
| jclass k = NULL; |
| switch (prim) |
| { |
| case boolean_type: |
| k = JvPrimClass (boolean); |
| break; |
| case char_type: |
| k = JvPrimClass (char); |
| break; |
| case float_type: |
| k = JvPrimClass (float); |
| break; |
| case double_type: |
| k = JvPrimClass (double); |
| break; |
| case byte_type: |
| k = JvPrimClass (byte); |
| break; |
| case short_type: |
| k = JvPrimClass (short); |
| break; |
| case int_type: |
| k = JvPrimClass (int); |
| break; |
| case long_type: |
| k = JvPrimClass (long); |
| break; |
| |
| // These aren't used here but we call them out to avoid |
| // warnings. |
| case void_type: |
| case unsuitable_type: |
| case return_address_type: |
| case continuation_type: |
| case unused_by_subroutine_type: |
| case reference_type: |
| case null_type: |
| case uninitialized_reference_type: |
| default: |
| verify_fail ("unknown type in construct_primitive_array_type"); |
| } |
| k = _Jv_GetArrayClass (k, NULL); |
| return k; |
| } |
| |
| // This pass computes the location of branch targets and also |
| // instruction starts. |
| void branch_prepass () |
| { |
| flags = (char *) _Jv_Malloc (current_method->code_length); |
| jsr_ptrs = (subr_info **) _Jv_Malloc (sizeof (subr_info *) |
| * current_method->code_length); |
| |
| for (int i = 0; i < current_method->code_length; ++i) |
| { |
| flags[i] = 0; |
| jsr_ptrs[i] = NULL; |
| } |
| |
| bool last_was_jsr = false; |
| |
| PC = 0; |
| while (PC < current_method->code_length) |
| { |
| // Set `start_PC' early so that error checking can have the |
| // correct value. |
| start_PC = PC; |
| flags[PC] |= FLAG_INSN_START; |
| |
| // If the previous instruction was a jsr, then the next |
| // instruction is a branch target -- the branch being the |
| // corresponding `ret'. |
| if (last_was_jsr) |
| note_branch_target (PC); |
| last_was_jsr = false; |
| |
| java_opcode opcode = (java_opcode) bytecode[PC++]; |
| switch (opcode) |
| { |
| case op_nop: |
| case op_aconst_null: |
| case op_iconst_m1: |
| case op_iconst_0: |
| case op_iconst_1: |
| case op_iconst_2: |
| case op_iconst_3: |
| case op_iconst_4: |
| case op_iconst_5: |
| case op_lconst_0: |
| case op_lconst_1: |
| case op_fconst_0: |
| case op_fconst_1: |
| case op_fconst_2: |
| case op_dconst_0: |
| case op_dconst_1: |
| case op_iload_0: |
| case op_iload_1: |
| case op_iload_2: |
| case op_iload_3: |
| case op_lload_0: |
| case op_lload_1: |
| case op_lload_2: |
| case op_lload_3: |
| case op_fload_0: |
| case op_fload_1: |
| case op_fload_2: |
| case op_fload_3: |
| case op_dload_0: |
| case op_dload_1: |
| case op_dload_2: |
| case op_dload_3: |
| case op_aload_0: |
| case op_aload_1: |
| case op_aload_2: |
| case op_aload_3: |
| case op_iaload: |
| case op_laload: |
| case op_faload: |
| case op_daload: |
| case op_aaload: |
| case op_baload: |
| case op_caload: |
| case op_saload: |
| case op_istore_0: |
| case op_istore_1: |
| case op_istore_2: |
| case op_istore_3: |
| case op_lstore_0: |
| case op_lstore_1: |
| case op_lstore_2: |
| case op_lstore_3: |
| case op_fstore_0: |
| case op_fstore_1: |
| case op_fstore_2: |
| case op_fstore_3: |
| case op_dstore_0: |
| case op_dstore_1: |
| case op_dstore_2: |
| case op_dstore_3: |
| case op_astore_0: |
| case op_astore_1: |
| case op_astore_2: |
| case op_astore_3: |
| case op_iastore: |
| case op_lastore: |
| case op_fastore: |
| case op_dastore: |
| case op_aastore: |
| case op_bastore: |
| case op_castore: |
| case op_sastore: |
| case op_pop: |
| case op_pop2: |
| case op_dup: |
| case op_dup_x1: |
| case op_dup_x2: |
| case op_dup2: |
| case op_dup2_x1: |
| case op_dup2_x2: |
| case op_swap: |
| case op_iadd: |
| case op_isub: |
| case op_imul: |
| case op_idiv: |
| case op_irem: |
| case op_ishl: |
| case op_ishr: |
| case op_iushr: |
| case op_iand: |
| case op_ior: |
| case op_ixor: |
| case op_ladd: |
| case op_lsub: |
| case op_lmul: |
| case op_ldiv: |
| case op_lrem: |
| case op_lshl: |
| case op_lshr: |
| case op_lushr: |
| case op_land: |
| case op_lor: |
| case op_lxor: |
| case op_fadd: |
| case op_fsub: |
| case op_fmul: |
| case op_fdiv: |
| case op_frem: |
| case op_dadd: |
| case op_dsub: |
| case op_dmul: |
| case op_ddiv: |
| case op_drem: |
| case op_ineg: |
| case op_i2b: |
| case op_i2c: |
| case op_i2s: |
| case op_lneg: |
| case op_fneg: |
| case op_dneg: |
| case op_i2l: |
| case op_i2f: |
| case op_i2d: |
| case op_l2i: |
| case op_l2f: |
| case op_l2d: |
| case op_f2i: |
| case op_f2l: |
| case op_f2d: |
| case op_d2i: |
| case op_d2l: |
| case op_d2f: |
| case op_lcmp: |
| case op_fcmpl: |
| case op_fcmpg: |
| case op_dcmpl: |
| case op_dcmpg: |
| case op_monitorenter: |
| case op_monitorexit: |
| case op_ireturn: |
| case op_lreturn: |
| case op_freturn: |
| case op_dreturn: |
| case op_areturn: |
| case op_return: |
| case op_athrow: |
| case op_arraylength: |
| break; |
| |
| case op_bipush: |
| case op_ldc: |
| case op_iload: |
| case op_lload: |
| case op_fload: |
| case op_dload: |
| case op_aload: |
| case op_istore: |
| case op_lstore: |
| case op_fstore: |
| case op_dstore: |
| case op_astore: |
| case op_ret: |
| case op_newarray: |
| get_byte (); |
| break; |
| |
| case op_iinc: |
| case op_sipush: |
| case op_ldc_w: |
| case op_ldc2_w: |
| case op_getstatic: |
| case op_getfield: |
| case op_putfield: |
| case op_putstatic: |
| case op_new: |
| case op_anewarray: |
| case op_instanceof: |
| case op_checkcast: |
| case op_invokespecial: |
| case op_invokestatic: |
| case op_invokevirtual: |
| get_short (); |
| break; |
| |
| case op_multianewarray: |
| get_short (); |
| get_byte (); |
| break; |
| |
| case op_jsr: |
| last_was_jsr = true; |
| // Fall through. |
| case op_ifeq: |
| case op_ifne: |
| case op_iflt: |
| case op_ifge: |
| case op_ifgt: |
| case op_ifle: |
| case op_if_icmpeq: |
| case op_if_icmpne: |
| case op_if_icmplt: |
| case op_if_icmpge: |
| case op_if_icmpgt: |
| case op_if_icmple: |
| case op_if_acmpeq: |
| case op_if_acmpne: |
| case op_ifnull: |
| case op_ifnonnull: |
| case op_goto: |
| note_branch_target (compute_jump (get_short ()), last_was_jsr); |
| break; |
| |
| case op_tableswitch: |
| { |
| skip_padding (); |
| note_branch_target (compute_jump (get_int ())); |
| jint low = get_int (); |
| jint hi = get_int (); |
| if (low > hi) |
| verify_fail ("invalid tableswitch", start_PC); |
| for (int i = low; i <= hi; ++i) |
| note_branch_target (compute_jump (get_int ())); |
| } |
| break; |
| |
| case op_lookupswitch: |
| { |
| skip_padding (); |
| note_branch_target (compute_jump (get_int ())); |
| int npairs = get_int (); |
| if (npairs < 0) |
| verify_fail ("too few pairs in lookupswitch", start_PC); |
| while (npairs-- > 0) |
| { |
| get_int (); |
| note_branch_target (compute_jump (get_int ())); |
| } |
| } |
| break; |
| |
| case op_invokeinterface: |
| get_short (); |
| get_byte (); |
| get_byte (); |
| break; |
| |
| case op_wide: |
| { |
| opcode = (java_opcode) get_byte (); |
| get_short (); |
| if (opcode == op_iinc) |
| get_short (); |
| } |
| break; |
| |
| case op_jsr_w: |
| last_was_jsr = true; |
| // Fall through. |
| case op_goto_w: |
| note_branch_target (compute_jump (get_int ()), last_was_jsr); |
| break; |
| |
| // These are unused here, but we call them out explicitly |
| // so that -Wswitch-enum doesn't complain. |
| case op_putfield_1: |
| case op_putfield_2: |
| case op_putfield_4: |
| case op_putfield_8: |
| case op_putfield_a: |
| case op_putstatic_1: |
| case op_putstatic_2: |
| case op_putstatic_4: |
| case op_putstatic_8: |
| case op_putstatic_a: |
| case op_getfield_1: |
| case op_getfield_2s: |
| case op_getfield_2u: |
| case op_getfield_4: |
| case op_getfield_8: |
| case op_getfield_a: |
| case op_getstatic_1: |
| case op_getstatic_2s: |
| case op_getstatic_2u: |
| case op_getstatic_4: |
| case op_getstatic_8: |
| case op_getstatic_a: |
| default: |
| verify_fail ("unrecognized instruction in branch_prepass", |
| start_PC); |
| } |
| |
| // See if any previous branch tried to branch to the middle of |
| // this instruction. |
| for (int pc = start_PC + 1; pc < PC; ++pc) |
| { |
| if ((flags[pc] & FLAG_BRANCH_TARGET)) |
| verify_fail ("branch to middle of instruction", pc); |
| } |
| } |
| |
| // Verify exception handlers. |
| for (int i = 0; i < current_method->exc_count; ++i) |
| { |
| if (! (flags[exception[i].handler_pc.i] & FLAG_INSN_START)) |
| verify_fail ("exception handler not at instruction start", |
| exception[i].handler_pc.i); |
| if (! (flags[exception[i].start_pc.i] & FLAG_INSN_START)) |
| verify_fail ("exception start not at instruction start", |
| exception[i].start_pc.i); |
| if (exception[i].end_pc.i != current_method->code_length |
| && ! (flags[exception[i].end_pc.i] & FLAG_INSN_START)) |
| verify_fail ("exception end not at instruction start", |
| exception[i].end_pc.i); |
| |
| flags[exception[i].handler_pc.i] |= FLAG_BRANCH_TARGET; |
| } |
| } |
| |
| void check_pool_index (int index) |
| { |
| if (index < 0 || index >= current_class->constants.size) |
| verify_fail ("constant pool index out of range", start_PC); |
| } |
| |
| type check_class_constant (int index) |
| { |
| check_pool_index (index); |
| _Jv_Constants *pool = ¤t_class->constants; |
| if (pool->tags[index] == JV_CONSTANT_ResolvedClass) |
| return type (pool->data[index].clazz, this); |
| else if (pool->tags[index] == JV_CONSTANT_Class) |
| return type (pool->data[index].utf8, this); |
| verify_fail ("expected class constant", start_PC); |
| } |
| |
| type check_constant (int index) |
| { |
| check_pool_index (index); |
| _Jv_Constants *pool = ¤t_class->constants; |
| if (pool->tags[index] == JV_CONSTANT_ResolvedString |
| || pool->tags[index] == JV_CONSTANT_String) |
| return type (&java::lang::String::class$, this); |
| else if (pool->tags[index] == JV_CONSTANT_Integer) |
| return type (int_type); |
| else if (pool->tags[index] == JV_CONSTANT_Float) |
| return type (float_type); |
| verify_fail ("String, int, or float constant expected", start_PC); |
| } |
| |
| type check_wide_constant (int index) |
| { |
| check_pool_index (index); |
| _Jv_Constants *pool = ¤t_class->constants; |
| if (pool->tags[index] == JV_CONSTANT_Long) |
| return type (long_type); |
| else if (pool->tags[index] == JV_CONSTANT_Double) |
| return type (double_type); |
| verify_fail ("long or double constant expected", start_PC); |
| } |
| |
| // Helper for both field and method. These are laid out the same in |
| // the constant pool. |
| type handle_field_or_method (int index, int expected, |
| _Jv_Utf8Const **name, |
| _Jv_Utf8Const **fmtype) |
| { |
| check_pool_index (index); |
| _Jv_Constants *pool = ¤t_class->constants; |
| if (pool->tags[index] != expected) |
| verify_fail ("didn't see expected constant", start_PC); |
| // Once we know we have a Fieldref or Methodref we assume that it |
| // is correctly laid out in the constant pool. I think the code |
| // in defineclass.cc guarantees this. |
| _Jv_ushort class_index, name_and_type_index; |
| _Jv_loadIndexes (&pool->data[index], |
| class_index, |
| name_and_type_index); |
| _Jv_ushort name_index, desc_index; |
| _Jv_loadIndexes (&pool->data[name_and_type_index], |
| name_index, desc_index); |
| |
| *name = pool->data[name_index].utf8; |
| *fmtype = pool->data[desc_index].utf8; |
| |
| return check_class_constant (class_index); |
| } |
| |
| // Return field's type, compute class' type if requested. |
| type check_field_constant (int index, type *class_type = NULL) |
| { |
| _Jv_Utf8Const *name, *field_type; |
| type ct = handle_field_or_method (index, |
| JV_CONSTANT_Fieldref, |
| &name, &field_type); |
| if (class_type) |
| *class_type = ct; |
| if (field_type->data[0] == '[' || field_type->data[0] == 'L') |
| return type (field_type, this); |
| return get_type_val_for_signature (field_type->data[0]); |
| } |
| |
| type check_method_constant (int index, bool is_interface, |
| _Jv_Utf8Const **method_name, |
| _Jv_Utf8Const **method_signature) |
| { |
| return handle_field_or_method (index, |
| (is_interface |
| ? JV_CONSTANT_InterfaceMethodref |
| : JV_CONSTANT_Methodref), |
| method_name, method_signature); |
| } |
| |
| type get_one_type (char *&p) |
| { |
| char *start = p; |
| |
| int arraycount = 0; |
| while (*p == '[') |
| { |
| ++arraycount; |
| ++p; |
| } |
| |
| char v = *p++; |
| |
| if (v == 'L') |
| { |
| while (*p != ';') |
| ++p; |
| ++p; |
| _Jv_Utf8Const *name = make_utf8_const (start, p - start); |
| return type (name, this); |
| } |
| |
| // Casting to jchar here is ok since we are looking at an ASCII |
| // character. |
| type_val rt = get_type_val_for_signature (jchar (v)); |
| |
| if (arraycount == 0) |
| { |
| // Callers of this function eventually push their arguments on |
| // the stack. So, promote them here. |
| return type (rt).promote (); |
| } |
| |
| jclass k = construct_primitive_array_type (rt); |
| while (--arraycount > 0) |
| k = _Jv_GetArrayClass (k, NULL); |
| return type (k, this); |
| } |
| |
| void compute_argument_types (_Jv_Utf8Const *signature, |
| type *types) |
| { |
| char *p = signature->data; |
| // Skip `('. |
| ++p; |
| |
| int i = 0; |
| while (*p != ')') |
| types[i++] = get_one_type (p); |
| } |
| |
| type compute_return_type (_Jv_Utf8Const *signature) |
| { |
| char *p = signature->data; |
| while (*p != ')') |
| ++p; |
| ++p; |
| return get_one_type (p); |
| } |
| |
| void check_return_type (type onstack) |
| { |
| type rt = compute_return_type (current_method->self->signature); |
| if (! rt.compatible (onstack, this)) |
| verify_fail ("incompatible return type"); |
| } |
| |
| // Initialize the stack for the new method. Returns true if this |
| // method is an instance initializer. |
| bool initialize_stack () |
| { |
| int var = 0; |
| bool is_init = _Jv_equalUtf8Consts (current_method->self->name, |
| gcj::init_name); |
| bool is_clinit = _Jv_equalUtf8Consts (current_method->self->name, |
| gcj::clinit_name); |
| |
| using namespace java::lang::reflect; |
| if (! Modifier::isStatic (current_method->self->accflags)) |
| { |
| type kurr (current_class, this); |
| if (is_init) |
| { |
| kurr.set_uninitialized (type::SELF, this); |
| is_init = true; |
| } |
| else if (is_clinit) |
| verify_fail ("<clinit> method must be static"); |
| set_variable (0, kurr); |
| current_state->set_this_type (kurr); |
| ++var; |
| } |
| else |
| { |
| if (is_init) |
| verify_fail ("<init> method must be non-static"); |
| } |
| |
| // We have to handle wide arguments specially here. |
| int arg_count = _Jv_count_arguments (current_method->self->signature); |
| type arg_types[arg_count]; |
| compute_argument_types (current_method->self->signature, arg_types); |
| for (int i = 0; i < arg_count; ++i) |
| { |
| set_variable (var, arg_types[i]); |
| ++var; |
| if (arg_types[i].iswide ()) |
| ++var; |
| } |
| |
| return is_init; |
| } |
| |
| void verify_instructions_0 () |
| { |
| current_state = new state (current_method->max_stack, |
| current_method->max_locals); |
| |
| PC = 0; |
| start_PC = 0; |
| |
| // True if we are verifying an instance initializer. |
| bool this_is_init = initialize_stack (); |
| |
| states = (state **) _Jv_Malloc (sizeof (state *) |
| * current_method->code_length); |
| for (int i = 0; i < current_method->code_length; ++i) |
| states[i] = NULL; |
| |
| next_verify_pc = state::NO_NEXT; |
| |
| while (true) |
| { |
| // If the PC was invalidated, get a new one from the work list. |
| if (PC == state::NO_NEXT) |
| { |
| PC = pop_jump (); |
| if (PC == state::INVALID) |
| verify_fail ("can't happen: saw state::INVALID"); |
| if (PC == state::NO_NEXT) |
| break; |
| debug_print ("== State pop from pending list\n"); |
| // Set up the current state. |
| current_state->copy (states[PC], current_method->max_stack, |
| current_method->max_locals); |
| } |
| else |
| { |
| // Control can't fall off the end of the bytecode. We |
| // only need to check this in the fall-through case, |
| // because branch bounds are checked when they are |
| // pushed. |
| if (PC >= current_method->code_length) |
| verify_fail ("fell off end"); |
| |
| // We only have to do this checking in the situation where |
| // control flow falls through from the previous |
| // instruction. Otherwise merging is done at the time we |
| // push the branch. |
| if (states[PC] != NULL) |
| { |
| // We've already visited this instruction. So merge |
| // the states together. If this yields no change then |
| // we don't have to re-verify. However, if the new |
| // state is an the result of an unmerged `ret', we |
| // must continue through it. |
| debug_print ("== Fall through merge\n"); |
| states[PC]->print ("Old", PC, current_method->max_stack, |
| current_method->max_locals); |
| current_state->print ("Cur", PC, current_method->max_stack, |
| current_method->max_locals); |
| if (! current_state->merge (states[PC], false, |
| current_method->max_locals, this) |
| && ! states[PC]->is_unmerged_ret_state (current_method->max_locals)) |
| { |
| debug_print ("== Fall through optimization\n"); |
| invalidate_pc (); |
| continue; |
| } |
| // Save a copy of it for later. |
| states[PC]->copy (current_state, current_method->max_stack, |
| current_method->max_locals); |
| current_state->print ("New", PC, current_method->max_stack, |
| current_method->max_locals); |
| } |
| } |
| |
| // We only have to keep saved state at branch targets. If |
| // we're at a branch target and the state here hasn't been set |
| // yet, we set it now. |
| if (states[PC] == NULL && (flags[PC] & FLAG_BRANCH_TARGET)) |
| { |
| states[PC] = new state (current_state, current_method->max_stack, |
| current_method->max_locals); |
| } |
| |
| // Set this before handling exceptions so that debug output is |
| // sane. |
| start_PC = PC; |
| |
| // Update states for all active exception handlers. Ordinarily |
| // there are not many exception handlers. So we simply run |
| // through them all. |
| for (int i = 0; i < current_method->exc_count; ++i) |
| { |
| if (PC >= exception[i].start_pc.i && PC < exception[i].end_pc.i) |
| { |
| type handler (&java::lang::Throwable::class$, this); |
| if (exception[i].handler_type.i != 0) |
| handler = check_class_constant (exception[i].handler_type.i); |
| push_exception_jump (handler, exception[i].handler_pc.i); |
| } |
| } |
| |
| current_state->print (" ", PC, current_method->max_stack, |
| current_method->max_locals); |
| java_opcode opcode = (java_opcode) bytecode[PC++]; |
| switch (opcode) |
| { |
| case op_nop: |
| break; |
| |
| case op_aconst_null: |
| push_type (null_type); |
| break; |
| |
| case op_iconst_m1: |
| case op_iconst_0: |
| case op_iconst_1: |
| case op_iconst_2: |
| case op_iconst_3: |
| case op_iconst_4: |
| case op_iconst_5: |
| push_type (int_type); |
| break; |
| |
| case op_lconst_0: |
| case op_lconst_1: |
| push_type (long_type); |
| break; |
| |
| case op_fconst_0: |
| case op_fconst_1: |
| case op_fconst_2: |
| push_type (float_type); |
| break; |
| |
| case op_dconst_0: |
| case op_dconst_1: |
| push_type (double_type); |
| break; |
| |
| case op_bipush: |
| get_byte (); |
| push_type (int_type); |
| break; |
| |
| case op_sipush: |
| get_short (); |
| push_type (int_type); |
| break; |
| |
| case op_ldc: |
| push_type (check_constant (get_byte ())); |
| break; |
| case op_ldc_w: |
| push_type (check_constant (get_ushort ())); |
| break; |
| case op_ldc2_w: |
| push_type (check_wide_constant (get_ushort ())); |
| break; |
| |
| case op_iload: |
| push_type (get_variable (get_byte (), int_type)); |
| break; |
| case op_lload: |
| push_type (get_variable (get_byte (), long_type)); |
| break; |
| case op_fload: |
| push_type (get_variable (get_byte (), float_type)); |
| break; |
| case op_dload: |
| push_type (get_variable (get_byte (), double_type)); |
| break; |
| case op_aload: |
| push_type (get_variable (get_byte (), reference_type)); |
| break; |
| |
| case op_iload_0: |
| case op_iload_1: |
| case op_iload_2: |
| case op_iload_3: |
| push_type (get_variable (opcode - op_iload_0, int_type)); |
| break; |
| case op_lload_0: |
| case op_lload_1: |
| case op_lload_2: |
| case op_lload_3: |
| push_type (get_variable (opcode - op_lload_0, long_type)); |
| break; |
| case op_fload_0: |
| case op_fload_1: |
| case op_fload_2: |
| case op_fload_3: |
| push_type (get_variable (opcode - op_fload_0, float_type)); |
| break; |
| case op_dload_0: |
| case op_dload_1: |
| case op_dload_2: |
| case op_dload_3: |
| push_type (get_variable (opcode - op_dload_0, double_type)); |
| break; |
| case op_aload_0: |
| case op_aload_1: |
| case op_aload_2: |
| case op_aload_3: |
| push_type (get_variable (opcode - op_aload_0, reference_type)); |
| break; |
| case op_iaload: |
| pop_type (int_type); |
| push_type (require_array_type (pop_init_ref (reference_type), |
| int_type)); |
| break; |
| case op_laload: |
| pop_type (int_type); |
| push_type (require_array_type (pop_init_ref (reference_type), |
| long_type)); |
| break; |
| case op_faload: |
| pop_type (int_type); |
| push_type (require_array_type (pop_init_ref (reference_type), |
| float_type)); |
| break; |
| case op_daload: |
| pop_type (int_type); |
| push_type (require_array_type (pop_init_ref (reference_type), |
| double_type)); |
| break; |
| case op_aaload: |
| pop_type (int_type); |
| push_type (require_array_type (pop_init_ref (reference_type), |
| reference_type)); |
| break; |
| case op_baload: |
| pop_type (int_type); |
| require_array_type (pop_init_ref (reference_type), byte_type); |
| push_type (int_type); |
| break; |
| case op_caload: |
| pop_type (int_type); |
| require_array_type (pop_init_ref (reference_type), char_type); |
| push_type (int_type); |
| break; |
| case op_saload: |
| pop_type (int_type); |
| require_array_type (pop_init_ref (reference_type), short_type); |
| push_type (int_type); |
| break; |
| case op_istore: |
| set_variable (get_byte (), pop_type (int_type)); |
| break; |
| case op_lstore: |
| set_variable (get_byte (), pop_type (long_type)); |
| break; |
| case op_fstore: |
| set_variable (get_byte (), pop_type (float_type)); |
| break; |
| case op_dstore: |
| set_variable (get_byte (), pop_type (double_type)); |
| break; |
| case op_astore: |
| set_variable (get_byte (), pop_ref_or_return ()); |
| break; |
| case op_istore_0: |
| case op_istore_1: |
| case op_istore_2: |
| case op_istore_3: |
| set_variable (opcode - op_istore_0, pop_type (int_type)); |
| break; |
| case op_lstore_0: |
| case op_lstore_1: |
| case op_lstore_2: |
| case op_lstore_3: |
| set_variable (opcode - op_lstore_0, pop_type (long_type)); |
| break; |
| case op_fstore_0: |
| case op_fstore_1: |
| case op_fstore_2: |
| case op_fstore_3: |
| set_variable (opcode - op_fstore_0, pop_type (float_type)); |
| break; |
| case op_dstore_0: |
| case op_dstore_1: |
| case op_dstore_2: |
| case op_dstore_3: |
| set_variable (opcode - op_dstore_0, pop_type (double_type)); |
| break; |
| case op_astore_0: |
| case op_astore_1: |
| case op_astore_2: |
| case op_astore_3: |
| set_variable (opcode - op_astore_0, pop_ref_or_return ()); |
| break; |
| case op_iastore: |
| pop_type (int_type); |
| pop_type (int_type); |
| require_array_type (pop_init_ref (reference_type), int_type); |
| break; |
| case op_lastore: |
| pop_type (long_type); |
| pop_type (int_type); |
| require_array_type (pop_init_ref (reference_type), long_type); |
| break; |
| case op_fastore: |
| pop_type (float_type); |
| pop_type (int_type); |
| require_array_type (pop_init_ref (reference_type), float_type); |
| break; |
| case op_dastore: |
| pop_type (double_type); |
| pop_type (int_type); |
| require_array_type (pop_init_ref (reference_type), double_type); |
| break; |
| case op_aastore: |
| pop_type (reference_type); |
| pop_type (int_type); |
| require_array_type (pop_init_ref (reference_type), reference_type); |
| break; |
| case op_bastore: |
| pop_type (int_type); |
| pop_type (int_type); |
| require_array_type (pop_init_ref (reference_type), byte_type); |
| break; |
| case op_castore: |
| pop_type (int_type); |
| pop_type (int_type); |
| require_array_type (pop_init_ref (reference_type), char_type); |
| break; |
| case op_sastore: |
| pop_type (int_type); |
| pop_type (int_type); |
| require_array_type (pop_init_ref (reference_type), short_type); |
| break; |
| case op_pop: |
| pop32 (); |
| break; |
| case op_pop2: |
| { |
| type t = pop_raw (); |
| if (! t.iswide ()) |
| pop32 (); |
| } |
| break; |
| case op_dup: |
| { |
| type t = pop32 (); |
| push_type (t); |
| push_type (t); |
| } |
| break; |
| case op_dup_x1: |
| { |
| type t1 = pop32 (); |
| type t2 = pop32 (); |
| push_type (t1); |
| push_type (t2); |
| push_type (t1); |
| } |
| break; |
| case op_dup_x2: |
| { |
| type t1 = pop32 (); |
| type t2 = pop_raw (); |
| if (! t2.iswide ()) |
| { |
| type t3 = pop32 (); |
| push_type (t1); |
| push_type (t3); |
| } |
| else |
| push_type (t1); |
| push_type (t2); |
| push_type (t1); |
| } |
| break; |
| case op_dup2: |
| { |
| type t = pop_raw (); |
| if (! t.iswide ()) |
| { |
| type t2 = pop32 (); |
| push_type (t2); |
| push_type (t); |
| push_type (t2); |
| } |
| else |
| push_type (t); |
| push_type (t); |
| } |
| break; |
| case op_dup2_x1: |
| { |
| type t1 = pop_raw (); |
| type t2 = pop32 (); |
| if (! t1.iswide ()) |
| { |
| type t3 = pop32 (); |
| push_type (t2); |
| push_type (t1); |
| push_type (t3); |
| } |
| else |
| push_type (t1); |
| push_type (t2); |
| push_type (t1); |
| } |
| break; |
| case op_dup2_x2: |
| { |
| type t1 = pop_raw (); |
| if (t1.iswide ()) |
| { |
| type t2 = pop_raw (); |
| if (t2.iswide ()) |
| { |
| push_type (t1); |
| push_type (t2); |
| } |
| else |
| { |
| type t3 = pop32 (); |
| push_type (t1); |
| push_type (t3); |
| push_type (t2); |
| } |
| push_type (t1); |
| } |
| else |
| { |
| type t2 = pop32 (); |
| type t3 = pop_raw (); |
| if (t3.iswide ()) |
| { |
| push_type (t2); |
| push_type (t1); |
| } |
| else |
| { |
| type t4 = pop32 (); |
| push_type (t2); |
| push_type (t1); |
| push_type (t4); |
| } |
| push_type (t3); |
| push_type (t2); |
| push_type (t1); |
| } |
| } |
| break; |
| case op_swap: |
| { |
| type t1 = pop32 (); |
| type t2 = pop32 (); |
| push_type (t1); |
| push_type (t2); |
| } |
| break; |
| case op_iadd: |
| case op_isub: |
| case op_imul: |
| case op_idiv: |
| case op_irem: |
| case op_ishl: |
| case op_ishr: |
| case op_iushr: |
| case op_iand: |
| case op_ior: |
| case op_ixor: |
| pop_type (int_type); |
| push_type (pop_type (int_type)); |
| break; |
| case op_ladd: |
| case op_lsub: |
| case op_lmul: |
| case op_ldiv: |
| case op_lrem: |
| case op_land: |
| case op_lor: |
| case op_lxor: |
| pop_type (long_type); |
| push_type (pop_type (long_type)); |
| break; |
| case op_lshl: |
| case op_lshr: |
| case op_lushr: |
| pop_type (int_type); |
| push_type (pop_type (long_type)); |
| break; |
| case op_fadd: |
| case op_fsub: |
| case op_fmul: |
| case op_fdiv: |
| case op_frem: |
| pop_type (float_type); |
| push_type (pop_type (float_type)); |
| break; |
| case op_dadd: |
| case op_dsub: |
| case op_dmul: |
| case op_ddiv: |
| case op_drem: |
| pop_type (double_type); |
| push_type (pop_type (double_type)); |
| break; |
| case op_ineg: |
| case op_i2b: |
| case op_i2c: |
| case op_i2s: |
| push_type (pop_type (int_type)); |
| break; |
| case op_lneg: |
| push_type (pop_type (long_type)); |
| break; |
| case op_fneg: |
| push_type (pop_type (float_type)); |
| break; |
| case op_dneg: |
| push_type (pop_type (double_type)); |
| break; |
| case op_iinc: |
| get_variable (get_byte (), int_type); |
| get_byte (); |
| break; |
| case op_i2l: |
| pop_type (int_type); |
| push_type (long_type); |
| break; |
| case op_i2f: |
| pop_type (int_type); |
| push_type (float_type); |
| break; |
| case op_i2d: |
| pop_type (int_type); |
| push_type (double_type); |
| break; |
| case op_l2i: |
| pop_type (long_type); |
| push_type (int_type); |
| break; |
| case op_l2f: |
| pop_type (long_type); |
| push_type (float_type); |
| break; |
| case op_l2d: |
| pop_type (long_type); |
| push_type (double_type); |
| break; |
| case op_f2i: |
| pop_type (float_type); |
| push_type (int_type); |
| break; |
| case op_f2l: |
| pop_type (float_type); |
| push_type (long_type); |
| break; |
| case op_f2d: |
| pop_type (float_type); |
| push_type (double_type); |
| break; |
| case op_d2i: |
| pop_type (double_type); |
| push_type (int_type); |
| break; |
| case op_d2l: |
| pop_type (double_type); |
| push_type (long_type); |
| break; |
| case op_d2f: |
| pop_type (double_type); |
| push_type (float_type); |
| break; |
| case op_lcmp: |
| pop_type (long_type); |
| pop_type (long_type); |
| push_type (int_type); |
| break; |
| case op_fcmpl: |
| case op_fcmpg: |
| pop_type (float_type); |
| pop_type (float_type); |
| push_type (int_type); |
| break; |
| case op_dcmpl: |
| case op_dcmpg: |
| pop_type (double_type); |
| pop_type (double_type); |
| push_type (int_type); |
| break; |
| case op_ifeq: |
| case op_ifne: |
| case op_iflt: |
| case op_ifge: |
| case op_ifgt: |
| case op_ifle: |
| pop_type (int_type); |
| push_jump (get_short ()); |
| break; |
| case op_if_icmpeq: |
| case op_if_icmpne: |
| case op_if_icmplt: |
| case op_if_icmpge: |
| case op_if_icmpgt: |
| case op_if_icmple: |
| pop_type (int_type); |
| pop_type (int_type); |
| push_jump (get_short ()); |
| break; |
| case op_if_acmpeq: |
| case op_if_acmpne: |
| pop_type (reference_type); |
| pop_type (reference_type); |
| push_jump (get_short ()); |
| break; |
| case op_goto: |
| push_jump (get_short ()); |
| invalidate_pc (); |
| break; |
| case op_jsr: |
| handle_jsr_insn (get_short ()); |
| break; |
| case op_ret: |
| handle_ret_insn (get_byte ()); |
| break; |
| case op_tableswitch: |
| { |
| pop_type (int_type); |
| skip_padding (); |
| push_jump (get_int ()); |
| jint low = get_int (); |
| jint high = get_int (); |
| // Already checked LOW -vs- HIGH. |
| for (int i = low; i <= high; ++i) |
| push_jump (get_int ()); |
| invalidate_pc (); |
| } |
| break; |
| |
| case op_lookupswitch: |
| { |
| pop_type (int_type); |
| skip_padding (); |
| push_jump (get_int ()); |
| jint npairs = get_int (); |
| // Already checked NPAIRS >= 0. |
| jint lastkey = 0; |
| for (int i = 0; i < npairs; ++i) |
| { |
| jint key = get_int (); |
| if (i > 0 && key <= lastkey) |
| verify_fail ("lookupswitch pairs unsorted", start_PC); |
| lastkey = key; |
| push_jump (get_int ()); |
| } |
| invalidate_pc (); |
| } |
| break; |
| case op_ireturn: |
| check_return_type (pop_type (int_type)); |
| invalidate_pc (); |
| break; |
| case op_lreturn: |
| check_return_type (pop_type (long_type)); |
| invalidate_pc (); |
| break; |
| case op_freturn: |
| check_return_type (pop_type (float_type)); |
| invalidate_pc (); |
| break; |
| case op_dreturn: |
| check_return_type (pop_type (double_type)); |
| invalidate_pc (); |
| break; |
| case op_areturn: |
| check_return_type (pop_init_ref (reference_type)); |
| invalidate_pc (); |
| break; |
| case op_return: |
| // We only need to check this when the return type is |
| // void, because all instance initializers return void. |
| if (this_is_init) |
| current_state->check_this_initialized (this); |
| check_return_type (void_type); |
| invalidate_pc (); |
| break; |
| case op_getstatic: |
| push_type (check_field_constant (get_ushort ())); |
| break; |
| case op_putstatic: |
| pop_type (check_field_constant (get_ushort ())); |
| break; |
| case op_getfield: |
| { |
| type klass; |
| type field = check_field_constant (get_ushort (), &klass); |
| pop_type (klass); |
| push_type (field); |
| } |
| break; |
| case op_putfield: |
| { |
| type klass; |
| type field = check_field_constant (get_ushort (), &klass); |
| pop_type (field); |
| |
| // We have an obscure special case here: we can use |
| // `putfield' on a field declared in this class, even if |
| // `this' has not yet been initialized. |
| if (! current_state->this_type.isinitialized () |
| && current_state->this_type.pc == type::SELF) |
| klass.set_uninitialized (type::SELF, this); |
| pop_type (klass); |
| } |
| break; |
| |
| case op_invokevirtual: |
| case op_invokespecial: |
| case op_invokestatic: |
| case op_invokeinterface: |
| { |
| _Jv_Utf8Const *method_name, *method_signature; |
| type class_type |
| = check_method_constant (get_ushort (), |
| opcode == op_invokeinterface, |
| &method_name, |
| &method_signature); |
| // NARGS is only used when we're processing |
| // invokeinterface. It is simplest for us to compute it |
| // here and then verify it later. |
| int nargs = 0; |
| if (opcode == op_invokeinterface) |
| { |
| nargs = get_byte (); |
| if (get_byte () != 0) |
| verify_fail ("invokeinterface dummy byte is wrong"); |
| } |
| |
| bool is_init = false; |
| if (_Jv_equalUtf8Consts (method_name, gcj::init_name)) |
| { |
| is_init = true; |
| if (opcode != op_invokespecial) |
| verify_fail ("can't invoke <init>"); |
| } |
| else if (method_name->data[0] == '<') |
| verify_fail ("can't invoke method starting with `<'"); |
| |
| // Pop arguments and check types. |
| int arg_count = _Jv_count_arguments (method_signature); |
| type arg_types[arg_count]; |
| compute_argument_types (method_signature, arg_types); |
| for (int i = arg_count - 1; i >= 0; --i) |
| { |
| // This is only used for verifying the byte for |
| // invokeinterface. |
| nargs -= arg_types[i].depth (); |
| pop_init_ref (arg_types[i]); |
| } |
| |
| if (opcode == op_invokeinterface |
| && nargs != 1) |
| verify_fail ("wrong argument count for invokeinterface"); |
| |
| if (opcode != op_invokestatic) |
| { |
| type t = class_type; |
| if (is_init) |
| { |
| // In this case the PC doesn't matter. |
| t.set_uninitialized (type::UNINIT, this); |
| // FIXME: check to make sure that the <init> |
| // call is to the right class. |
| // It must either be super or an exact class |
| // match. |
| } |
| type raw = pop_raw (); |
| if (! t.compatible (raw, this)) |
| verify_fail ("incompatible type on stack"); |
| |
| if (is_init) |
| current_state->set_initialized (raw.get_pc (), |
| current_method->max_locals); |
| } |
| |
| type rt = compute_return_type (method_signature); |
| if (! rt.isvoid ()) |
| push_type (rt); |
| } |
| break; |
| |
| case op_new: |
| { |
| type t = check_class_constant (get_ushort ()); |
| if (t.isarray () || t.isinterface (this) || t.isabstract (this)) |
| verify_fail ("type is array, interface, or abstract"); |
| t.set_uninitialized (start_PC, this); |
| push_type (t); |
| } |
| break; |
| |
| case op_newarray: |
| { |
| int atype = get_byte (); |
| // We intentionally have chosen constants to make this |
| // valid. |
| if (atype < boolean_type || atype > long_type) |
| verify_fail ("type not primitive", start_PC); |
| pop_type (int_type); |
| type t (construct_primitive_array_type (type_val (atype)), this); |
| push_type (t); |
| } |
| break; |
| case op_anewarray: |
| pop_type (int_type); |
| push_type (check_class_constant (get_ushort ()).to_array (this)); |
| break; |
| case op_arraylength: |
| { |
| type t = pop_init_ref (reference_type); |
| |