blob: 6cc533b58b2254992c3d65a395ab30bad5c32b79 [file] [log] [blame]
/* Header file for gimple range GORI structures.
Copyright (C) 2017-2022 Free Software Foundation, Inc.
Contributed by Andrew MacLeod <>
and Aldy Hernandez <>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<>. */
// RANGE_DEF_CHAIN is used to determine which SSA names in a block can
// have range information calculated for them, and what the
// dependencies on each other are.
class range_def_chain
range_def_chain ();
~range_def_chain ();
tree depend1 (tree name) const;
tree depend2 (tree name) const;
bool in_chain_p (tree name, tree def);
bool chain_import_p (tree name, tree import);
void register_dependency (tree name, tree ssa1, basic_block bb = NULL);
void dump (FILE *f, basic_block bb, const char *prefix = NULL);
bool has_def_chain (tree name);
bool def_chain_in_bitmap_p (tree name, bitmap b);
void add_def_chain_to_bitmap (bitmap b, tree name);
bitmap get_def_chain (tree name);
bitmap get_imports (tree name);
bitmap_obstack m_bitmaps;
struct rdc {
tree ssa1; // First direct dependency
tree ssa2; // Second direct dependency
bitmap bm; // All dependencies
bitmap m_import;
vec<rdc> m_def_chain; // SSA_NAME : def chain components.
void set_import (struct rdc &data, tree imp, bitmap b);
int m_logical_depth;
// Return the first direct dependency for NAME, if there is one.
// Direct dependencies are those which occur on the defintion statement.
// Only the first 2 such names are cached.
inline tree
range_def_chain::depend1 (tree name) const
unsigned v = SSA_NAME_VERSION (name);
if (v >= m_def_chain.length ())
return NULL_TREE;
return m_def_chain[v].ssa1;
// Return the second direct dependency for NAME, if there is one.
inline tree
range_def_chain::depend2 (tree name) const
unsigned v = SSA_NAME_VERSION (name);
if (v >= m_def_chain.length ())
return NULL_TREE;
return m_def_chain[v].ssa2;
// GORI_MAP is used to accumulate what SSA names in a block can
// generate range information, and provides tools for the block ranger
// to enable it to efficiently calculate these ranges.
class gori_map : public range_def_chain
gori_map ();
~gori_map ();
bool is_export_p (tree name, basic_block bb = NULL);
bool is_import_p (tree name, basic_block bb);
bitmap exports (basic_block bb);
bitmap imports (basic_block bb);
void set_range_invariant (tree name, bool invariant = true);
void dump (FILE *f);
void dump (FILE *f, basic_block bb, bool verbose = true);
vec<bitmap> m_outgoing; // BB: Outgoing ranges calculatable on edges
vec<bitmap> m_incoming; // BB: Incoming ranges which can affect exports.
bitmap m_maybe_variant; // Names which might have outgoing ranges.
void maybe_add_gori (tree name, basic_block bb);
void calculate_gori (basic_block bb);
// This class is used to determine which SSA_NAMES can have ranges
// calculated for them on outgoing edges from basic blocks. This represents
// ONLY the effect of the basic block edge->src on a range.
// There are 2 primary entry points:
// has_edge_range_p (tree name, edge e)
// returns true if the outgoing edge *may* be able to produce range
// information for ssa_name NAME on edge E.
// FALSE is returned if this edge does not affect the range of NAME.
// if no edge is specified, return TRUE if name may have a value calculated
// on *ANY* edge that has been seen. FALSE indicates that the global value
// is applicable everywhere that has been processed.
// outgoing_edge_range_p (vrange &range, edge e, tree name)
// Actually does the calculation of RANGE for name on E
// This represents application of whatever static range effect edge E
// may have on NAME, not any cumulative effect.
// There are also some internal APIs
// ssa_range_in_bb () is an internal routine which is used to start any
// calculation chain using SSA_NAMES which come from outside the block. ie
// a_2 = b_4 - 8
// if (a_2 < 30)
// on the true edge, a_2 is known to be [0, 29]
// b_4 can be calculated as [8, 37]
// during this calculation, b_4 is considered an "import" and ssa_range_in_bb
// is queried for a starting range which is used in the calculation.
// A default value of VARYING provides the raw static info for the edge.
// If there is any known range for b_4 coming into this block, it can refine
// the results. This allows for cascading results to be propogated.
// if b_4 is [100, 200] on entry to the block, feeds into the calculation
// of a_2 = [92, 192], and finally on the true edge the range would be
// an empty range [] because it is not possible for the true edge to be taken.
// expr_range_in_bb is simply a wrapper which calls ssa_range_in_bb for
// SSA_NAMES and otherwise simply calculates the range of the expression.
// The constructor takes a flag value to use on edges to check for the
// NON_EXECUTABLE_EDGE property. The zero default means no flag is checked.
// All value requests from NON_EXECUTABLE_EDGE edges are returned UNDEFINED.
// The remaining routines are internal use only.
class value_relation;
class gori_compute : public gori_map
gori_compute (int not_executable_flag = 0);
bool outgoing_edge_range_p (vrange &r, edge e, tree name, range_query &q);
bool condexpr_adjust (vrange &r1, vrange &r2, gimple *s, tree cond, tree op1,
tree op2, fur_source &src);
bool has_edge_range_p (tree name, basic_block bb = NULL);
bool has_edge_range_p (tree name, edge e);
void dump (FILE *f);
bool compute_operand_range (vrange &r, gimple *stmt, const vrange &lhs,
tree name, class fur_source &src,
value_relation *rel = NULL);
bool refine_using_relation (tree op1, vrange &op1_range,
tree op2, vrange &op2_range,
fur_source &src, relation_kind k);
bool may_recompute_p (tree name, edge e);
bool may_recompute_p (tree name, basic_block bb = NULL);
bool compute_operand_range_switch (vrange &r, gswitch *s, const vrange &lhs,
tree name, fur_source &src);
bool compute_operand1_range (vrange &r, gimple_range_op_handler &handler,
const vrange &lhs, tree name, fur_source &src,
value_relation *rel = NULL);
bool compute_operand2_range (vrange &r, gimple_range_op_handler &handler,
const vrange &lhs, tree name, fur_source &src,
value_relation *rel = NULL);
bool compute_operand1_and_operand2_range (vrange &r,
gimple_range_op_handler &handler,
const vrange &lhs, tree name,
fur_source &src,
value_relation *rel = NULL);
void compute_logical_operands (vrange &true_range, vrange &false_range,
gimple_range_op_handler &handler,
const irange &lhs, tree name, fur_source &src,
tree op, bool op_in_chain);
bool logical_combine (vrange &r, enum tree_code code, const irange &lhs,
const vrange &op1_true, const vrange &op1_false,
const vrange &op2_true, const vrange &op2_false);
int_range<2> m_bool_zero; // Boolean false cached.
int_range<2> m_bool_one; // Boolean true cached.
gimple_outgoing_range outgoing; // Edge values for COND_EXPR & SWITCH_EXPR.
range_tracer tracer;
int m_not_executable_flag;
// For each name that is an import into BB's exports..
#define FOR_EACH_GORI_IMPORT_NAME(gori, bb, name) \
for (gori_export_iterator iter ((gori).imports ((bb))); \
((name) = iter.get_name ()); \ ())
// For each name possibly exported from block BB.
#define FOR_EACH_GORI_EXPORT_NAME(gori, bb, name) \
for (gori_export_iterator iter ((gori).exports ((bb))); \
((name) = iter.get_name ()); \ ())
// Used to assist with iterating over the GORI export list in various ways
class gori_export_iterator {
gori_export_iterator (bitmap b);
void next ();
tree get_name ();
bitmap bm;
bitmap_iterator bi;
unsigned y;