blob: a1f7346f2ff04d9cad20e9257679e5a08bbdaf18 [file] [log] [blame]
/* Support routines for Value Range Propagation (VRP).
Copyright (C) 2005-2022 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "insn-codes.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "optabs-tree.h"
#include "gimple-pretty-print.h"
#include "diagnostic-core.h"
#include "flags.h"
#include "fold-const.h"
#include "calls.h"
#include "cfganal.h"
#include "gimple-iterator.h"
#include "gimple-fold.h"
#include "tree-cfg.h"
#include "tree-ssa-loop-niter.h"
#include "tree-ssa-loop.h"
#include "intl.h"
#include "cfgloop.h"
#include "tree-scalar-evolution.h"
#include "tree-ssa-propagate.h"
#include "tree-chrec.h"
#include "omp-general.h"
#include "case-cfn-macros.h"
#include "alloc-pool.h"
#include "attribs.h"
#include "range.h"
#include "vr-values.h"
#include "cfghooks.h"
#include "range-op.h"
#include "gimple-range.h"
/* Returns true if EXPR is a valid value (as expected by compare_values) --
a gimple invariant, or SSA_NAME +- CST. */
static bool
valid_value_p (tree expr)
{
if (TREE_CODE (expr) == SSA_NAME)
return true;
if (TREE_CODE (expr) == PLUS_EXPR
|| TREE_CODE (expr) == MINUS_EXPR)
return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
&& TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
return is_gimple_min_invariant (expr);
}
/* Return true if op is in a boolean [0, 1] value-range. */
bool
simplify_using_ranges::op_with_boolean_value_range_p (tree op, gimple *s)
{
if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
return true;
if (integer_zerop (op)
|| integer_onep (op))
return true;
if (TREE_CODE (op) != SSA_NAME)
return false;
/* ?? Errr, this should probably check for [0,0] and [1,1] as well
as [0,1]. */
const value_range *vr = query->get_value_range (op, s);
return *vr == value_range (build_zero_cst (TREE_TYPE (op)),
build_one_cst (TREE_TYPE (op)));
}
/* Helper function for simplify_internal_call_using_ranges and
extract_range_basic. Return true if OP0 SUBCODE OP1 for
SUBCODE {PLUS,MINUS,MULT}_EXPR is known to never overflow or
always overflow. Set *OVF to true if it is known to always
overflow. */
static bool
check_for_binary_op_overflow (range_query *query,
enum tree_code subcode, tree type,
tree op0, tree op1, bool *ovf, gimple *s = NULL)
{
value_range vr0, vr1;
if (TREE_CODE (op0) == SSA_NAME)
vr0 = *query->get_value_range (op0, s);
else if (TREE_CODE (op0) == INTEGER_CST)
vr0.set (op0, op0);
else
vr0.set_varying (TREE_TYPE (op0));
if (TREE_CODE (op1) == SSA_NAME)
vr1 = *query->get_value_range (op1, s);
else if (TREE_CODE (op1) == INTEGER_CST)
vr1.set (op1, op1);
else
vr1.set_varying (TREE_TYPE (op1));
tree vr0min = vr0.min (), vr0max = vr0.max ();
tree vr1min = vr1.min (), vr1max = vr1.max ();
if (!range_int_cst_p (&vr0)
|| TREE_OVERFLOW (vr0min)
|| TREE_OVERFLOW (vr0max))
{
vr0min = vrp_val_min (TREE_TYPE (op0));
vr0max = vrp_val_max (TREE_TYPE (op0));
}
if (!range_int_cst_p (&vr1)
|| TREE_OVERFLOW (vr1min)
|| TREE_OVERFLOW (vr1max))
{
vr1min = vrp_val_min (TREE_TYPE (op1));
vr1max = vrp_val_max (TREE_TYPE (op1));
}
*ovf = arith_overflowed_p (subcode, type, vr0min,
subcode == MINUS_EXPR ? vr1max : vr1min);
if (arith_overflowed_p (subcode, type, vr0max,
subcode == MINUS_EXPR ? vr1min : vr1max) != *ovf)
return false;
if (subcode == MULT_EXPR)
{
if (arith_overflowed_p (subcode, type, vr0min, vr1max) != *ovf
|| arith_overflowed_p (subcode, type, vr0max, vr1min) != *ovf)
return false;
}
if (*ovf)
{
/* So far we found that there is an overflow on the boundaries.
That doesn't prove that there is an overflow even for all values
in between the boundaries. For that compute widest_int range
of the result and see if it doesn't overlap the range of
type. */
widest_int wmin, wmax;
widest_int w[4];
int i;
w[0] = wi::to_widest (vr0min);
w[1] = wi::to_widest (vr0max);
w[2] = wi::to_widest (vr1min);
w[3] = wi::to_widest (vr1max);
for (i = 0; i < 4; i++)
{
widest_int wt;
switch (subcode)
{
case PLUS_EXPR:
wt = wi::add (w[i & 1], w[2 + (i & 2) / 2]);
break;
case MINUS_EXPR:
wt = wi::sub (w[i & 1], w[2 + (i & 2) / 2]);
break;
case MULT_EXPR:
wt = wi::mul (w[i & 1], w[2 + (i & 2) / 2]);
break;
default:
gcc_unreachable ();
}
if (i == 0)
{
wmin = wt;
wmax = wt;
}
else
{
wmin = wi::smin (wmin, wt);
wmax = wi::smax (wmax, wt);
}
}
/* The result of op0 CODE op1 is known to be in range
[wmin, wmax]. */
widest_int wtmin = wi::to_widest (vrp_val_min (type));
widest_int wtmax = wi::to_widest (vrp_val_max (type));
/* If all values in [wmin, wmax] are smaller than
[wtmin, wtmax] or all are larger than [wtmin, wtmax],
the arithmetic operation will always overflow. */
if (wmax < wtmin || wmin > wtmax)
return true;
return false;
}
return true;
}
/* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
- Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
all the values in the ranges.
- Return BOOLEAN_FALSE_NODE if the comparison always returns false.
- Return NULL_TREE if it is not always possible to determine the
value of the comparison.
Also set *STRICT_OVERFLOW_P to indicate whether comparision evaluation
assumed signed overflow is undefined. */
static tree
compare_ranges (enum tree_code comp, const value_range *vr0,
const value_range *vr1, bool *strict_overflow_p)
{
/* VARYING or UNDEFINED ranges cannot be compared. */
if (vr0->varying_p ()
|| vr0->undefined_p ()
|| vr1->varying_p ()
|| vr1->undefined_p ())
return NULL_TREE;
/* Anti-ranges need to be handled separately. */
if (vr0->kind () == VR_ANTI_RANGE || vr1->kind () == VR_ANTI_RANGE)
{
/* If both are anti-ranges, then we cannot compute any
comparison. */
if (vr0->kind () == VR_ANTI_RANGE && vr1->kind () == VR_ANTI_RANGE)
return NULL_TREE;
/* These comparisons are never statically computable. */
if (comp == GT_EXPR
|| comp == GE_EXPR
|| comp == LT_EXPR
|| comp == LE_EXPR)
return NULL_TREE;
/* Equality can be computed only between a range and an
anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
if (vr0->kind () == VR_RANGE)
/* To simplify processing, make VR0 the anti-range. */
std::swap (vr0, vr1);
gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
if (compare_values_warnv (vr0->min (), vr1->min (), strict_overflow_p) == 0
&& compare_values_warnv (vr0->max (), vr1->max (), strict_overflow_p) == 0)
return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
return NULL_TREE;
}
/* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
operands around and change the comparison code. */
if (comp == GT_EXPR || comp == GE_EXPR)
{
comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
std::swap (vr0, vr1);
}
if (comp == EQ_EXPR)
{
/* Equality may only be computed if both ranges represent
exactly one value. */
if (compare_values_warnv (vr0->min (), vr0->max (), strict_overflow_p) == 0
&& compare_values_warnv (vr1->min (), vr1->max (), strict_overflow_p) == 0)
{
int cmp_min = compare_values_warnv (vr0->min (), vr1->min (),
strict_overflow_p);
int cmp_max = compare_values_warnv (vr0->max (), vr1->max (),
strict_overflow_p);
if (cmp_min == 0 && cmp_max == 0)
return boolean_true_node;
else if (cmp_min != -2 && cmp_max != -2)
return boolean_false_node;
}
/* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
else if (compare_values_warnv (vr0->min (), vr1->max (),
strict_overflow_p) == 1
|| compare_values_warnv (vr1->min (), vr0->max (),
strict_overflow_p) == 1)
return boolean_false_node;
return NULL_TREE;
}
else if (comp == NE_EXPR)
{
int cmp1, cmp2;
/* If VR0 is completely to the left or completely to the right
of VR1, they are always different. Notice that we need to
make sure that both comparisons yield similar results to
avoid comparing values that cannot be compared at
compile-time. */
cmp1 = compare_values_warnv (vr0->max (), vr1->min (), strict_overflow_p);
cmp2 = compare_values_warnv (vr0->min (), vr1->max (), strict_overflow_p);
if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
return boolean_true_node;
/* If VR0 and VR1 represent a single value and are identical,
return false. */
else if (compare_values_warnv (vr0->min (), vr0->max (),
strict_overflow_p) == 0
&& compare_values_warnv (vr1->min (), vr1->max (),
strict_overflow_p) == 0
&& compare_values_warnv (vr0->min (), vr1->min (),
strict_overflow_p) == 0
&& compare_values_warnv (vr0->max (), vr1->max (),
strict_overflow_p) == 0)
return boolean_false_node;
/* Otherwise, they may or may not be different. */
else
return NULL_TREE;
}
else if (comp == LT_EXPR || comp == LE_EXPR)
{
int tst;
/* If VR0 is to the left of VR1, return true. */
tst = compare_values_warnv (vr0->max (), vr1->min (), strict_overflow_p);
if ((comp == LT_EXPR && tst == -1)
|| (comp == LE_EXPR && (tst == -1 || tst == 0)))
return boolean_true_node;
/* If VR0 is to the right of VR1, return false. */
tst = compare_values_warnv (vr0->min (), vr1->max (), strict_overflow_p);
if ((comp == LT_EXPR && (tst == 0 || tst == 1))
|| (comp == LE_EXPR && tst == 1))
return boolean_false_node;
/* Otherwise, we don't know. */
return NULL_TREE;
}
gcc_unreachable ();
}
/* Given a value range VR, a value VAL and a comparison code COMP, return
BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
values in VR. Return BOOLEAN_FALSE_NODE if the comparison
always returns false. Return NULL_TREE if it is not always
possible to determine the value of the comparison. Also set
*STRICT_OVERFLOW_P to indicate whether comparision evaluation
assumed signed overflow is undefined. */
static tree
compare_range_with_value (enum tree_code comp, const value_range *vr,
tree val, bool *strict_overflow_p)
{
if (vr->varying_p () || vr->undefined_p ())
return NULL_TREE;
/* Anti-ranges need to be handled separately. */
if (vr->kind () == VR_ANTI_RANGE)
{
/* For anti-ranges, the only predicates that we can compute at
compile time are equality and inequality. */
if (comp == GT_EXPR
|| comp == GE_EXPR
|| comp == LT_EXPR
|| comp == LE_EXPR)
return NULL_TREE;
/* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
if (!vr->may_contain_p (val))
return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
return NULL_TREE;
}
if (comp == EQ_EXPR)
{
/* EQ_EXPR may only be computed if VR represents exactly
one value. */
if (compare_values_warnv (vr->min (), vr->max (), strict_overflow_p) == 0)
{
int cmp = compare_values_warnv (vr->min (), val, strict_overflow_p);
if (cmp == 0)
return boolean_true_node;
else if (cmp == -1 || cmp == 1 || cmp == 2)
return boolean_false_node;
}
else if (compare_values_warnv (val, vr->min (), strict_overflow_p) == -1
|| compare_values_warnv (vr->max (), val, strict_overflow_p) == -1)
return boolean_false_node;
return NULL_TREE;
}
else if (comp == NE_EXPR)
{
/* If VAL is not inside VR, then they are always different. */
if (compare_values_warnv (vr->max (), val, strict_overflow_p) == -1
|| compare_values_warnv (vr->min (), val, strict_overflow_p) == 1)
return boolean_true_node;
/* If VR represents exactly one value equal to VAL, then return
false. */
if (compare_values_warnv (vr->min (), vr->max (), strict_overflow_p) == 0
&& compare_values_warnv (vr->min (), val, strict_overflow_p) == 0)
return boolean_false_node;
/* Otherwise, they may or may not be different. */
return NULL_TREE;
}
else if (comp == LT_EXPR || comp == LE_EXPR)
{
int tst;
/* If VR is to the left of VAL, return true. */
tst = compare_values_warnv (vr->max (), val, strict_overflow_p);
if ((comp == LT_EXPR && tst == -1)
|| (comp == LE_EXPR && (tst == -1 || tst == 0)))
return boolean_true_node;
/* If VR is to the right of VAL, return false. */
tst = compare_values_warnv (vr->min (), val, strict_overflow_p);
if ((comp == LT_EXPR && (tst == 0 || tst == 1))
|| (comp == LE_EXPR && tst == 1))
return boolean_false_node;
/* Otherwise, we don't know. */
return NULL_TREE;
}
else if (comp == GT_EXPR || comp == GE_EXPR)
{
int tst;
/* If VR is to the right of VAL, return true. */
tst = compare_values_warnv (vr->min (), val, strict_overflow_p);
if ((comp == GT_EXPR && tst == 1)
|| (comp == GE_EXPR && (tst == 0 || tst == 1)))
return boolean_true_node;
/* If VR is to the left of VAL, return false. */
tst = compare_values_warnv (vr->max (), val, strict_overflow_p);
if ((comp == GT_EXPR && (tst == -1 || tst == 0))
|| (comp == GE_EXPR && tst == -1))
return boolean_false_node;
/* Otherwise, we don't know. */
return NULL_TREE;
}
gcc_unreachable ();
}
static inline void
fix_overflow (tree *min, tree *max)
{
/* Even for valid range info, sometimes overflow flag will leak in.
As GIMPLE IL should have no constants with TREE_OVERFLOW set, we
drop them. */
if (TREE_OVERFLOW_P (*min))
*min = drop_tree_overflow (*min);
if (TREE_OVERFLOW_P (*max))
*max = drop_tree_overflow (*max);
gcc_checking_assert (compare_values (*min, *max) != 1);
}
/* Given a VAR in STMT within LOOP, determine the bounds of the
variable and store it in MIN/MAX and return TRUE. If no bounds
could be determined, return FALSE. */
bool
bounds_of_var_in_loop (tree *min, tree *max, range_query *query,
class loop *loop, gimple *stmt, tree var)
{
tree init, step, chrec, tmin, tmax, type = TREE_TYPE (var);
enum ev_direction dir;
int_range<2> r;
chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
/* Like in PR19590, scev can return a constant function. */
if (is_gimple_min_invariant (chrec))
{
*min = *max = chrec;
fix_overflow (min, max);
return true;
}
if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
return false;
init = initial_condition_in_loop_num (chrec, loop->num);
step = evolution_part_in_loop_num (chrec, loop->num);
if (!init || !step)
return false;
Value_Range rinit (TREE_TYPE (init));
Value_Range rstep (TREE_TYPE (step));
/* If INIT is an SSA with a singleton range, set INIT to said
singleton, otherwise leave INIT alone. */
if (TREE_CODE (init) == SSA_NAME
&& query->range_of_expr (rinit, init, stmt))
rinit.singleton_p (&init);
/* Likewise for step. */
if (TREE_CODE (step) == SSA_NAME
&& query->range_of_expr (rstep, step, stmt))
rstep.singleton_p (&step);
/* If STEP is symbolic, we can't know whether INIT will be the
minimum or maximum value in the range. Also, unless INIT is
a simple expression, compare_values and possibly other functions
in tree-vrp won't be able to handle it. */
if (step == NULL_TREE
|| !is_gimple_min_invariant (step)
|| !valid_value_p (init))
return false;
dir = scev_direction (chrec);
if (/* Do not adjust ranges if we do not know whether the iv increases
or decreases, ... */
dir == EV_DIR_UNKNOWN
/* ... or if it may wrap. */
|| scev_probably_wraps_p (NULL_TREE, init, step, stmt,
get_chrec_loop (chrec), true))
return false;
if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
tmin = lower_bound_in_type (type, type);
else
tmin = TYPE_MIN_VALUE (type);
if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
tmax = upper_bound_in_type (type, type);
else
tmax = TYPE_MAX_VALUE (type);
/* Try to use estimated number of iterations for the loop to constrain the
final value in the evolution. */
if (TREE_CODE (step) == INTEGER_CST
&& is_gimple_val (init)
&& (TREE_CODE (init) != SSA_NAME
|| (query->range_of_expr (r, init, stmt)
&& r.kind () == VR_RANGE)))
{
widest_int nit;
/* We are only entering here for loop header PHI nodes, so using
the number of latch executions is the correct thing to use. */
if (max_loop_iterations (loop, &nit))
{
signop sgn = TYPE_SIGN (TREE_TYPE (step));
wi::overflow_type overflow;
widest_int wtmp = wi::mul (wi::to_widest (step), nit, sgn,
&overflow);
/* If the multiplication overflowed we can't do a meaningful
adjustment. Likewise if the result doesn't fit in the type
of the induction variable. For a signed type we have to
check whether the result has the expected signedness which
is that of the step as number of iterations is unsigned. */
if (!overflow
&& wi::fits_to_tree_p (wtmp, TREE_TYPE (init))
&& (sgn == UNSIGNED
|| wi::gts_p (wtmp, 0) == wi::gts_p (wi::to_wide (step), 0)))
{
value_range maxvr, vr0, vr1;
if (TREE_CODE (init) == SSA_NAME)
query->range_of_expr (vr0, init, stmt);
else if (is_gimple_min_invariant (init))
vr0.set (init, init);
else
vr0.set_varying (TREE_TYPE (init));
tree tem = wide_int_to_tree (TREE_TYPE (init), wtmp);
vr1.set (tem, tem);
range_fold_binary_expr (&maxvr, PLUS_EXPR,
TREE_TYPE (init), &vr0, &vr1);
/* Likewise if the addition did. */
if (maxvr.kind () == VR_RANGE)
{
int_range<2> initvr;
if (TREE_CODE (init) == SSA_NAME)
query->range_of_expr (initvr, init, stmt);
else if (is_gimple_min_invariant (init))
initvr.set (init, init);
else
return false;
/* Check if init + nit * step overflows. Though we checked
scev {init, step}_loop doesn't wrap, it is not enough
because the loop may exit immediately. Overflow could
happen in the plus expression in this case. */
if ((dir == EV_DIR_DECREASES
&& compare_values (maxvr.min (), initvr.min ()) != -1)
|| (dir == EV_DIR_GROWS
&& compare_values (maxvr.max (), initvr.max ()) != 1))
return false;
tmin = maxvr.min ();
tmax = maxvr.max ();
}
}
}
}
*min = tmin;
*max = tmax;
if (dir == EV_DIR_DECREASES)
*max = init;
else
*min = init;
fix_overflow (min, max);
return true;
}
/* Helper that gets the value range of the SSA_NAME with version I
or a symbolic range containing the SSA_NAME only if the value range
is varying or undefined. Uses TEM as storage for the alternate range. */
const value_range *
simplify_using_ranges::get_vr_for_comparison (int i, value_range *tem,
gimple *s)
{
/* Shallow-copy equiv bitmap. */
const value_range *vr = query->get_value_range (ssa_name (i), s);
/* If name N_i does not have a valid range, use N_i as its own
range. This allows us to compare against names that may
have N_i in their ranges. */
if (vr->varying_p () || vr->undefined_p ())
{
tree ssa = ssa_name (i);
tem->set (ssa, ssa);
return tem;
}
return vr;
}
/* Compare all the value ranges for names equivalent to VAR with VAL
using comparison code COMP. Return the same value returned by
compare_range_with_value, including the setting of
*STRICT_OVERFLOW_P. */
tree
simplify_using_ranges::compare_name_with_value
(enum tree_code comp, tree var, tree val,
bool *strict_overflow_p, gimple *s)
{
/* Start at -1. Set it to 0 if we do a comparison without relying
on overflow, or 1 if all comparisons rely on overflow. */
int used_strict_overflow = -1;
/* Compare vars' value range with val. */
value_range tem_vr;
const value_range *equiv_vr
= get_vr_for_comparison (SSA_NAME_VERSION (var), &tem_vr, s);
bool sop = false;
tree retval = compare_range_with_value (comp, equiv_vr, val, &sop);
if (retval)
used_strict_overflow = sop ? 1 : 0;
if (retval && used_strict_overflow > 0)
*strict_overflow_p = true;
return retval;
}
/* Helper function for vrp_evaluate_conditional_warnv & other
optimizers. */
tree
simplify_using_ranges::vrp_evaluate_conditional_warnv_with_ops_using_ranges
(enum tree_code code, tree op0, tree op1, bool * strict_overflow_p,
gimple *s)
{
const value_range *vr0, *vr1;
vr0 = (TREE_CODE (op0) == SSA_NAME) ? query->get_value_range (op0, s) : NULL;
vr1 = (TREE_CODE (op1) == SSA_NAME) ? query->get_value_range (op1, s) : NULL;
tree res = NULL_TREE;
if (vr0 && vr1)
res = compare_ranges (code, vr0, vr1, strict_overflow_p);
if (!res && vr0)
res = compare_range_with_value (code, vr0, op1, strict_overflow_p);
if (!res && vr1)
res = (compare_range_with_value
(swap_tree_comparison (code), vr1, op0, strict_overflow_p));
return res;
}
/* Helper function for vrp_evaluate_conditional_warnv. */
tree
simplify_using_ranges::vrp_evaluate_conditional_warnv_with_ops
(gimple *stmt,
enum tree_code code,
tree op0, tree op1,
bool *strict_overflow_p,
bool *only_ranges)
{
tree ret;
if (only_ranges)
*only_ranges = true;
/* We only deal with integral and pointer types. */
if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
&& !POINTER_TYPE_P (TREE_TYPE (op0)))
return NULL_TREE;
/* If OP0 CODE OP1 is an overflow comparison, if it can be expressed
as a simple equality test, then prefer that over its current form
for evaluation.
An overflow test which collapses to an equality test can always be
expressed as a comparison of one argument against zero. Overflow
occurs when the chosen argument is zero and does not occur if the
chosen argument is not zero. */
tree x;
if (overflow_comparison_p (code, op0, op1, &x))
{
wide_int max = wi::max_value (TYPE_PRECISION (TREE_TYPE (op0)), UNSIGNED);
/* B = A - 1; if (A < B) -> B = A - 1; if (A == 0)
B = A - 1; if (A > B) -> B = A - 1; if (A != 0)
B = A + 1; if (B < A) -> B = A + 1; if (B == 0)
B = A + 1; if (B > A) -> B = A + 1; if (B != 0) */
if (integer_zerop (x))
{
op1 = x;
code = (code == LT_EXPR || code == LE_EXPR) ? EQ_EXPR : NE_EXPR;
}
/* B = A + 1; if (A > B) -> B = A + 1; if (B == 0)
B = A + 1; if (A < B) -> B = A + 1; if (B != 0)
B = A - 1; if (B > A) -> B = A - 1; if (A == 0)
B = A - 1; if (B < A) -> B = A - 1; if (A != 0) */
else if (wi::to_wide (x) == max - 1)
{
op0 = op1;
op1 = wide_int_to_tree (TREE_TYPE (op0), 0);
code = (code == GT_EXPR || code == GE_EXPR) ? EQ_EXPR : NE_EXPR;
}
else
{
value_range vro, vri;
if (code == GT_EXPR || code == GE_EXPR)
{
vro.set (TYPE_MIN_VALUE (TREE_TYPE (op0)), x, VR_ANTI_RANGE);
vri.set (TYPE_MIN_VALUE (TREE_TYPE (op0)), x);
}
else if (code == LT_EXPR || code == LE_EXPR)
{
vro.set (TYPE_MIN_VALUE (TREE_TYPE (op0)), x);
vri.set (TYPE_MIN_VALUE (TREE_TYPE (op0)), x, VR_ANTI_RANGE);
}
else
gcc_unreachable ();
const value_range *vr0 = query->get_value_range (op0, stmt);
/* If vro, the range for OP0 to pass the overflow test, has
no intersection with *vr0, OP0's known range, then the
overflow test can't pass, so return the node for false.
If it is the inverted range, vri, that has no
intersection, then the overflow test must pass, so return
the node for true. In other cases, we could proceed with
a simplified condition comparing OP0 and X, with LE_EXPR
for previously LE_ or LT_EXPR and GT_EXPR otherwise, but
the comments next to the enclosing if suggest it's not
generally profitable to do so. */
vro.legacy_verbose_intersect (vr0);
if (vro.undefined_p ())
return boolean_false_node;
vri.legacy_verbose_intersect (vr0);
if (vri.undefined_p ())
return boolean_true_node;
}
}
if ((ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
(code, op0, op1, strict_overflow_p, stmt)))
return ret;
if (only_ranges)
*only_ranges = false;
if (TREE_CODE (op0) == SSA_NAME)
return compare_name_with_value (code, op0, op1, strict_overflow_p, stmt);
else if (TREE_CODE (op1) == SSA_NAME)
return compare_name_with_value (swap_tree_comparison (code), op1, op0,
strict_overflow_p, stmt);
return NULL_TREE;
}
/* Visit conditional statement STMT. If we can determine which edge
will be taken out of STMT's basic block, record it in
*TAKEN_EDGE_P. Otherwise, set *TAKEN_EDGE_P to NULL. */
void
simplify_using_ranges::vrp_visit_cond_stmt (gcond *stmt, edge *taken_edge_p)
{
tree val;
*taken_edge_p = NULL;
if (dump_file && (dump_flags & TDF_DETAILS))
{
tree use;
ssa_op_iter i;
fprintf (dump_file, "\nVisiting conditional with predicate: ");
print_gimple_stmt (dump_file, stmt, 0);
fprintf (dump_file, "\nWith known ranges\n");
FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
{
fprintf (dump_file, "\t");
print_generic_expr (dump_file, use);
fprintf (dump_file, ": ");
Value_Range r (TREE_TYPE (use));
query->range_of_expr (r, use, stmt);
r.dump (dump_file);
}
fprintf (dump_file, "\n");
}
bool sop;
val = vrp_evaluate_conditional_warnv_with_ops (stmt,
gimple_cond_code (stmt),
gimple_cond_lhs (stmt),
gimple_cond_rhs (stmt),
&sop, NULL);
if (val)
*taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\nPredicate evaluates to: ");
if (val == NULL_TREE)
fprintf (dump_file, "DON'T KNOW\n");
else
print_generic_stmt (dump_file, val);
}
}
/* Searches the case label vector VEC for the ranges of CASE_LABELs that are
used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
Returns true if the default label is not needed. */
static bool
find_case_label_ranges (gswitch *stmt, const value_range *vr,
size_t *min_idx1, size_t *max_idx1,
size_t *min_idx2, size_t *max_idx2)
{
size_t i, j, k, l;
unsigned int n = gimple_switch_num_labels (stmt);
bool take_default;
tree case_low, case_high;
tree min = vr->min (), max = vr->max ();
gcc_checking_assert (!vr->varying_p () && !vr->undefined_p ());
take_default = !find_case_label_range (stmt, min, max, &i, &j);
/* Set second range to empty. */
*min_idx2 = 1;
*max_idx2 = 0;
if (vr->kind () == VR_RANGE)
{
*min_idx1 = i;
*max_idx1 = j;
return !take_default;
}
/* Set first range to all case labels. */
*min_idx1 = 1;
*max_idx1 = n - 1;
if (i > j)
return false;
/* Make sure all the values of case labels [i , j] are contained in
range [MIN, MAX]. */
case_low = CASE_LOW (gimple_switch_label (stmt, i));
case_high = CASE_HIGH (gimple_switch_label (stmt, j));
if (tree_int_cst_compare (case_low, min) < 0)
i += 1;
if (case_high != NULL_TREE
&& tree_int_cst_compare (max, case_high) < 0)
j -= 1;
if (i > j)
return false;
/* If the range spans case labels [i, j], the corresponding anti-range spans
the labels [1, i - 1] and [j + 1, n - 1]. */
k = j + 1;
l = n - 1;
if (k > l)
{
k = 1;
l = 0;
}
j = i - 1;
i = 1;
if (i > j)
{
i = k;
j = l;
k = 1;
l = 0;
}
*min_idx1 = i;
*max_idx1 = j;
*min_idx2 = k;
*max_idx2 = l;
return false;
}
/* Simplify boolean operations if the source is known
to be already a boolean. */
bool
simplify_using_ranges::simplify_truth_ops_using_ranges
(gimple_stmt_iterator *gsi,
gimple *stmt)
{
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
tree lhs, op0, op1;
bool need_conversion;
/* We handle only !=/== case here. */
gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
op0 = gimple_assign_rhs1 (stmt);
if (!op_with_boolean_value_range_p (op0, stmt))
return false;
op1 = gimple_assign_rhs2 (stmt);
if (!op_with_boolean_value_range_p (op1, stmt))
return false;
/* Reduce number of cases to handle to NE_EXPR. As there is no
BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
if (rhs_code == EQ_EXPR)
{
if (TREE_CODE (op1) == INTEGER_CST)
op1 = int_const_binop (BIT_XOR_EXPR, op1,
build_int_cst (TREE_TYPE (op1), 1));
else
return false;
}
lhs = gimple_assign_lhs (stmt);
need_conversion
= !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
/* Make sure to not sign-extend a 1-bit 1 when converting the result. */
if (need_conversion
&& !TYPE_UNSIGNED (TREE_TYPE (op0))
&& TYPE_PRECISION (TREE_TYPE (op0)) == 1
&& TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
return false;
/* For A != 0 we can substitute A itself. */
if (integer_zerop (op1))
gimple_assign_set_rhs_with_ops (gsi,
need_conversion
? NOP_EXPR : TREE_CODE (op0), op0);
/* For A != B we substitute A ^ B. Either with conversion. */
else if (need_conversion)
{
tree tem = make_ssa_name (TREE_TYPE (op0));
gassign *newop
= gimple_build_assign (tem, BIT_XOR_EXPR, op0, op1);
gsi_insert_before (gsi, newop, GSI_SAME_STMT);
if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
&& TYPE_PRECISION (TREE_TYPE (tem)) > 1)
{
value_range vr (TREE_TYPE (tem),
wi::zero (TYPE_PRECISION (TREE_TYPE (tem))),
wi::one (TYPE_PRECISION (TREE_TYPE (tem))));
set_range_info (tem, vr);
}
gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem);
}
/* Or without. */
else
gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
update_stmt (gsi_stmt (*gsi));
fold_stmt (gsi, follow_single_use_edges);
return true;
}
/* Simplify a division or modulo operator to a right shift or bitwise and
if the first operand is unsigned or is greater than zero and the second
operand is an exact power of two. For TRUNC_MOD_EXPR op0 % op1 with
constant op1 (op1min = op1) or with op1 in [op1min, op1max] range,
optimize it into just op0 if op0's range is known to be a subset of
[-op1min + 1, op1min - 1] for signed and [0, op1min - 1] for unsigned
modulo. */
bool
simplify_using_ranges::simplify_div_or_mod_using_ranges
(gimple_stmt_iterator *gsi,
gimple *stmt)
{
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
tree val = NULL;
tree op0 = gimple_assign_rhs1 (stmt);
tree op1 = gimple_assign_rhs2 (stmt);
tree op0min = NULL_TREE, op0max = NULL_TREE;
tree op1min = op1;
const value_range *vr = NULL;
if (TREE_CODE (op0) == INTEGER_CST)
{
op0min = op0;
op0max = op0;
}
else
{
vr = query->get_value_range (op0, stmt);
if (range_int_cst_p (vr))
{
op0min = vr->min ();
op0max = vr->max ();
}
}
if (rhs_code == TRUNC_MOD_EXPR
&& TREE_CODE (op1) == SSA_NAME)
{
const value_range *vr1 = query->get_value_range (op1, stmt);
if (range_int_cst_p (vr1))
op1min = vr1->min ();
}
if (rhs_code == TRUNC_MOD_EXPR
&& TREE_CODE (op1min) == INTEGER_CST
&& tree_int_cst_sgn (op1min) == 1
&& op0max
&& tree_int_cst_lt (op0max, op1min))
{
if (TYPE_UNSIGNED (TREE_TYPE (op0))
|| tree_int_cst_sgn (op0min) >= 0
|| tree_int_cst_lt (fold_unary (NEGATE_EXPR, TREE_TYPE (op1min), op1min),
op0min))
{
/* If op0 already has the range op0 % op1 has,
then TRUNC_MOD_EXPR won't change anything. */
gimple_assign_set_rhs_from_tree (gsi, op0);
return true;
}
}
if (TREE_CODE (op0) != SSA_NAME)
return false;
if (!integer_pow2p (op1))
{
/* X % -Y can be only optimized into X % Y either if
X is not INT_MIN, or Y is not -1. Fold it now, as after
remove_range_assertions the range info might be not available
anymore. */
if (rhs_code == TRUNC_MOD_EXPR
&& fold_stmt (gsi, follow_single_use_edges))
return true;
return false;
}
if (TYPE_UNSIGNED (TREE_TYPE (op0)))
val = integer_one_node;
else
{
bool sop = false;
val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
if (val
&& sop
&& integer_onep (val)
&& issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
{
location_t location;
if (!gimple_has_location (stmt))
location = input_location;
else
location = gimple_location (stmt);
warning_at (location, OPT_Wstrict_overflow,
"assuming signed overflow does not occur when "
"simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
}
}
if (val && integer_onep (val))
{
tree t;
if (rhs_code == TRUNC_DIV_EXPR)
{
t = build_int_cst (integer_type_node, tree_log2 (op1));
gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
gimple_assign_set_rhs1 (stmt, op0);
gimple_assign_set_rhs2 (stmt, t);
}
else
{
t = build_int_cst (TREE_TYPE (op1), 1);
t = int_const_binop (MINUS_EXPR, op1, t);
t = fold_convert (TREE_TYPE (op0), t);
gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
gimple_assign_set_rhs1 (stmt, op0);
gimple_assign_set_rhs2 (stmt, t);
}
update_stmt (stmt);
fold_stmt (gsi, follow_single_use_edges);
return true;
}
return false;
}
/* Simplify a min or max if the ranges of the two operands are
disjoint. Return true if we do simplify. */
bool
simplify_using_ranges::simplify_min_or_max_using_ranges
(gimple_stmt_iterator *gsi,
gimple *stmt)
{
tree op0 = gimple_assign_rhs1 (stmt);
tree op1 = gimple_assign_rhs2 (stmt);
bool sop = false;
tree val;
val = (vrp_evaluate_conditional_warnv_with_ops_using_ranges
(LE_EXPR, op0, op1, &sop, stmt));
if (!val)
{
sop = false;
val = (vrp_evaluate_conditional_warnv_with_ops_using_ranges
(LT_EXPR, op0, op1, &sop, stmt));
}
if (val)
{
if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
{
location_t location;
if (!gimple_has_location (stmt))
location = input_location;
else
location = gimple_location (stmt);
warning_at (location, OPT_Wstrict_overflow,
"assuming signed overflow does not occur when "
"simplifying %<min/max (X,Y)%> to %<X%> or %<Y%>");
}
/* VAL == TRUE -> OP0 < or <= op1
VAL == FALSE -> OP0 > or >= op1. */
tree res = ((gimple_assign_rhs_code (stmt) == MAX_EXPR)
== integer_zerop (val)) ? op0 : op1;
gimple_assign_set_rhs_from_tree (gsi, res);
return true;
}
return false;
}
/* If the operand to an ABS_EXPR is >= 0, then eliminate the
ABS_EXPR. If the operand is <= 0, then simplify the
ABS_EXPR into a NEGATE_EXPR. */
bool
simplify_using_ranges::simplify_abs_using_ranges (gimple_stmt_iterator *gsi,
gimple *stmt)
{
tree op = gimple_assign_rhs1 (stmt);
const value_range *vr = query->get_value_range (op, stmt);
if (vr)
{
tree val = NULL;
bool sop = false;
val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
if (!val)
{
/* The range is neither <= 0 nor > 0. Now see if it is
either < 0 or >= 0. */
sop = false;
val = compare_range_with_value (LT_EXPR, vr, integer_zero_node,
&sop);
}
if (val)
{
if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
{
location_t location;
if (!gimple_has_location (stmt))
location = input_location;
else
location = gimple_location (stmt);
warning_at (location, OPT_Wstrict_overflow,
"assuming signed overflow does not occur when "
"simplifying %<abs (X)%> to %<X%> or %<-X%>");
}
gimple_assign_set_rhs1 (stmt, op);
if (integer_zerop (val))
gimple_assign_set_rhs_code (stmt, SSA_NAME);
else
gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
update_stmt (stmt);
fold_stmt (gsi, follow_single_use_edges);
return true;
}
}
return false;
}
/* value_range wrapper for wi_set_zero_nonzero_bits.
Return TRUE if VR was a constant range and we were able to compute
the bit masks. */
static bool
vr_set_zero_nonzero_bits (const tree expr_type,
const value_range *vr,
wide_int *may_be_nonzero,
wide_int *must_be_nonzero)
{
if (range_int_cst_p (vr))
{
wi_set_zero_nonzero_bits (expr_type,
wi::to_wide (vr->min ()),
wi::to_wide (vr->max ()),
*may_be_nonzero, *must_be_nonzero);
return true;
}
*may_be_nonzero = wi::minus_one (TYPE_PRECISION (expr_type));
*must_be_nonzero = wi::zero (TYPE_PRECISION (expr_type));
return false;
}
/* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
If all the bits that are being cleared by & are already
known to be zero from VR, or all the bits that are being
set by | are already known to be one from VR, the bit
operation is redundant. */
bool
simplify_using_ranges::simplify_bit_ops_using_ranges
(gimple_stmt_iterator *gsi,
gimple *stmt)
{
tree op0 = gimple_assign_rhs1 (stmt);
tree op1 = gimple_assign_rhs2 (stmt);
tree op = NULL_TREE;
value_range vr0, vr1;
wide_int may_be_nonzero0, may_be_nonzero1;
wide_int must_be_nonzero0, must_be_nonzero1;
wide_int mask;
if (TREE_CODE (op0) == SSA_NAME)
vr0 = *(query->get_value_range (op0, stmt));
else if (is_gimple_min_invariant (op0))
vr0.set (op0, op0);
else
return false;
if (TREE_CODE (op1) == SSA_NAME)
vr1 = *(query->get_value_range (op1, stmt));
else if (is_gimple_min_invariant (op1))
vr1.set (op1, op1);
else
return false;
if (!vr_set_zero_nonzero_bits (TREE_TYPE (op0), &vr0, &may_be_nonzero0,
&must_be_nonzero0))
return false;
if (!vr_set_zero_nonzero_bits (TREE_TYPE (op1), &vr1, &may_be_nonzero1,
&must_be_nonzero1))
return false;
switch (gimple_assign_rhs_code (stmt))
{
case BIT_AND_EXPR:
mask = wi::bit_and_not (may_be_nonzero0, must_be_nonzero1);
if (mask == 0)
{
op = op0;
break;
}
mask = wi::bit_and_not (may_be_nonzero1, must_be_nonzero0);
if (mask == 0)
{
op = op1;
break;
}
break;
case BIT_IOR_EXPR:
mask = wi::bit_and_not (may_be_nonzero0, must_be_nonzero1);
if (mask == 0)
{
op = op1;
break;
}
mask = wi::bit_and_not (may_be_nonzero1, must_be_nonzero0);
if (mask == 0)
{
op = op0;
break;
}
break;
default:
gcc_unreachable ();
}
if (op == NULL_TREE)
return false;
gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op);
update_stmt (gsi_stmt (*gsi));
return true;
}
/* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
a known value range VR.
If there is one and only one value which will satisfy the
conditional, then return that value. Else return NULL.
If signed overflow must be undefined for the value to satisfy
the conditional, then set *STRICT_OVERFLOW_P to true. */
static tree
test_for_singularity (enum tree_code cond_code, tree op0,
tree op1, const value_range *vr)
{
tree min = NULL;
tree max = NULL;
/* Extract minimum/maximum values which satisfy the conditional as it was
written. */
if (cond_code == LE_EXPR || cond_code == LT_EXPR)
{
min = TYPE_MIN_VALUE (TREE_TYPE (op0));
max = op1;
if (cond_code == LT_EXPR)
{
tree one = build_int_cst (TREE_TYPE (op0), 1);
max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
/* Signal to compare_values_warnv this expr doesn't overflow. */
if (EXPR_P (max))
suppress_warning (max, OPT_Woverflow);
}
}
else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
{
max = TYPE_MAX_VALUE (TREE_TYPE (op0));
min = op1;
if (cond_code == GT_EXPR)
{
tree one = build_int_cst (TREE_TYPE (op0), 1);
min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
/* Signal to compare_values_warnv this expr doesn't overflow. */
if (EXPR_P (min))
suppress_warning (min, OPT_Woverflow);
}
}
/* Now refine the minimum and maximum values using any
value range information we have for op0. */
if (min && max)
{
tree type = TREE_TYPE (op0);
tree tmin = wide_int_to_tree (type, vr->lower_bound ());
tree tmax = wide_int_to_tree (type, vr->upper_bound ());
if (compare_values (tmin, min) == 1)
min = tmin;
if (compare_values (tmax, max) == -1)
max = tmax;
/* If the new min/max values have converged to a single value,
then there is only one value which can satisfy the condition,
return that value. */
if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
return min;
}
return NULL;
}
/* Return whether the value range *VR fits in an integer type specified
by PRECISION and UNSIGNED_P. */
bool
range_fits_type_p (const value_range *vr,
unsigned dest_precision, signop dest_sgn)
{
tree src_type;
unsigned src_precision;
widest_int tem;
signop src_sgn;
/* We can only handle integral and pointer types. */
src_type = vr->type ();
if (!INTEGRAL_TYPE_P (src_type)
&& !POINTER_TYPE_P (src_type))
return false;
/* An extension is fine unless VR is SIGNED and dest_sgn is UNSIGNED,
and so is an identity transform. */
src_precision = TYPE_PRECISION (vr->type ());
src_sgn = TYPE_SIGN (src_type);
if ((src_precision < dest_precision
&& !(dest_sgn == UNSIGNED && src_sgn == SIGNED))
|| (src_precision == dest_precision && src_sgn == dest_sgn))
return true;
/* Now we can only handle ranges with constant bounds. */
if (!range_int_cst_p (vr))
return false;
/* For sign changes, the MSB of the wide_int has to be clear.
An unsigned value with its MSB set cannot be represented by
a signed wide_int, while a negative value cannot be represented
by an unsigned wide_int. */
if (src_sgn != dest_sgn
&& (wi::lts_p (wi::to_wide (vr->min ()), 0)
|| wi::lts_p (wi::to_wide (vr->max ()), 0)))
return false;
/* Then we can perform the conversion on both ends and compare
the result for equality. */
tem = wi::ext (wi::to_widest (vr->min ()), dest_precision, dest_sgn);
if (tem != wi::to_widest (vr->min ()))
return false;
tem = wi::ext (wi::to_widest (vr->max ()), dest_precision, dest_sgn);
if (tem != wi::to_widest (vr->max ()))
return false;
return true;
}
// Clear edge E of EDGE_EXECUTABLE (it is unexecutable). If it wasn't
// previously clear, propagate to successor blocks if appropriate.
void
simplify_using_ranges::set_and_propagate_unexecutable (edge e)
{
// If not_executable is already set, we're done.
// This works in the absence of a flag as well.
if ((e->flags & m_not_executable_flag) == m_not_executable_flag)
return;
e->flags |= m_not_executable_flag;
m_flag_set_edges.safe_push (e);
// Check if the destination block needs to propagate the property.
basic_block bb = e->dest;
// If any incoming edge is executable, we are done.
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->preds)
if ((e->flags & m_not_executable_flag) == 0)
return;
// This block is also unexecutable, propagate to all exit edges as well.
FOR_EACH_EDGE (e, ei, bb->succs)
set_and_propagate_unexecutable (e);
}
/* If COND can be folded entirely as TRUE or FALSE, rewrite the
conditional as such, and return TRUE. */
bool
simplify_using_ranges::fold_cond (gcond *cond)
{
int_range_max r;
if (query->range_of_stmt (r, cond) && r.singleton_p ())
{
// COND has already been folded if arguments are constant.
if (TREE_CODE (gimple_cond_lhs (cond)) != SSA_NAME
&& TREE_CODE (gimple_cond_rhs (cond)) != SSA_NAME)
return false;
if (dump_file)
{
fprintf (dump_file, "Folding predicate ");
print_gimple_expr (dump_file, cond, 0);
fprintf (dump_file, " to ");
}
edge e0 = EDGE_SUCC (gimple_bb (cond), 0);
edge e1 = EDGE_SUCC (gimple_bb (cond), 1);
if (r.zero_p ())
{
if (dump_file)
fprintf (dump_file, "0\n");
gimple_cond_make_false (cond);
if (e0->flags & EDGE_TRUE_VALUE)
set_and_propagate_unexecutable (e0);
else
set_and_propagate_unexecutable (e1);
}
else
{
if (dump_file)
fprintf (dump_file, "1\n");
gimple_cond_make_true (cond);
if (e0->flags & EDGE_FALSE_VALUE)
set_and_propagate_unexecutable (e0);
else
set_and_propagate_unexecutable (e1);
}
update_stmt (cond);
return true;
}
// FIXME: Audit the code below and make sure it never finds anything.
edge taken_edge;
vrp_visit_cond_stmt (cond, &taken_edge);
if (taken_edge)
{
if (taken_edge->flags & EDGE_TRUE_VALUE)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\nVRP Predicate evaluates to: 1\n");
gimple_cond_make_true (cond);
}
else if (taken_edge->flags & EDGE_FALSE_VALUE)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\nVRP Predicate evaluates to: 0\n");
gimple_cond_make_false (cond);
}
else
gcc_unreachable ();
update_stmt (cond);
return true;
}
return false;
}
/* Simplify a conditional using a relational operator to an equality
test if the range information indicates only one value can satisfy
the original conditional. */
bool
simplify_using_ranges::simplify_cond_using_ranges_1 (gcond *stmt)
{
tree op0 = gimple_cond_lhs (stmt);
tree op1 = gimple_cond_rhs (stmt);
enum tree_code cond_code = gimple_cond_code (stmt);
if (fold_cond (stmt))
return true;
if (cond_code != NE_EXPR
&& cond_code != EQ_EXPR
&& TREE_CODE (op0) == SSA_NAME
&& INTEGRAL_TYPE_P (TREE_TYPE (op0))
&& is_gimple_min_invariant (op1))
{
const value_range *vr = query->get_value_range (op0, stmt);
/* If we have range information for OP0, then we might be
able to simplify this conditional. */
if (!vr->undefined_p () && !vr->varying_p ())
{
tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
if (new_tree)
{
if (dump_file)
{
fprintf (dump_file, "Simplified relational ");
print_gimple_stmt (dump_file, stmt, 0);
fprintf (dump_file, " into ");
}
gimple_cond_set_code (stmt, EQ_EXPR);
gimple_cond_set_lhs (stmt, op0);
gimple_cond_set_rhs (stmt, new_tree);
update_stmt (stmt);
if (dump_file)
{
print_gimple_stmt (dump_file, stmt, 0);
fprintf (dump_file, "\n");
}
return true;
}
/* Try again after inverting the condition. We only deal
with integral types here, so no need to worry about
issues with inverting FP comparisons. */
new_tree = test_for_singularity
(invert_tree_comparison (cond_code, false),
op0, op1, vr);
if (new_tree)
{
if (dump_file)
{
fprintf (dump_file, "Simplified relational ");
print_gimple_stmt (dump_file, stmt, 0);
fprintf (dump_file, " into ");
}
gimple_cond_set_code (stmt, NE_EXPR);
gimple_cond_set_lhs (stmt, op0);
gimple_cond_set_rhs (stmt, new_tree);
update_stmt (stmt);
if (dump_file)
{
print_gimple_stmt (dump_file, stmt, 0);
fprintf (dump_file, "\n");
}
return true;
}
}
}
// Try to simplify casted conditions.
return simplify_casted_cond (stmt);
}
/* STMT is a conditional at the end of a basic block.
If the conditional is of the form SSA_NAME op constant and the SSA_NAME
was set via a type conversion, try to replace the SSA_NAME with the RHS
of the type conversion. Doing so makes the conversion dead which helps
subsequent passes. */
bool
simplify_using_ranges::simplify_casted_cond (gcond *stmt)
{
tree op0 = gimple_cond_lhs (stmt);
tree op1 = gimple_cond_rhs (stmt);
/* If we have a comparison of an SSA_NAME (OP0) against a constant,
see if OP0 was set by a type conversion where the source of
the conversion is another SSA_NAME with a range that fits
into the range of OP0's type.
If so, the conversion is redundant as the earlier SSA_NAME can be
used for the comparison directly if we just massage the constant in the
comparison. */
if (TREE_CODE (op0) == SSA_NAME
&& TREE_CODE (op1) == INTEGER_CST)
{
gimple *def_stmt = SSA_NAME_DEF_STMT (op0);
tree innerop;
if (!is_gimple_assign (def_stmt))
return false;
switch (gimple_assign_rhs_code (def_stmt))
{
CASE_CONVERT:
innerop = gimple_assign_rhs1 (def_stmt);
break;
case VIEW_CONVERT_EXPR:
innerop = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0);
if (!INTEGRAL_TYPE_P (TREE_TYPE (innerop)))
return false;
break;
default:
return false;
}
if (TREE_CODE (innerop) == SSA_NAME
&& !POINTER_TYPE_P (TREE_TYPE (innerop))
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop)
&& desired_pro_or_demotion_p (TREE_TYPE (innerop), TREE_TYPE (op0)))
{
const value_range *vr = query->get_value_range (innerop);
if (range_int_cst_p (vr)
&& range_fits_type_p (vr,
TYPE_PRECISION (TREE_TYPE (op0)),
TYPE_SIGN (TREE_TYPE (op0)))
&& int_fits_type_p (op1, TREE_TYPE (innerop)))
{
tree newconst = fold_convert (TREE_TYPE (innerop), op1);
gimple_cond_set_lhs (stmt, innerop);
gimple_cond_set_rhs (stmt, newconst);
update_stmt (stmt);
return true;
}
}
}
return false;
}
/* Simplify a switch statement using the value range of the switch
argument. */
bool
simplify_using_ranges::simplify_switch_using_ranges (gswitch *stmt)
{
tree op = gimple_switch_index (stmt);
const value_range *vr = NULL;
bool take_default;
edge e;
edge_iterator ei;
size_t i = 0, j = 0, n, n2;
tree vec2;
switch_update su;
size_t k = 1, l = 0;
if (TREE_CODE (op) == SSA_NAME)
{
vr = query->get_value_range (op, stmt);
/* We can only handle integer ranges. */
if (vr->varying_p ()
|| vr->undefined_p ()
|| vr->symbolic_p ())
return false;
/* Find case label for min/max of the value range. */
take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
}
else if (TREE_CODE (op) == INTEGER_CST)
{
take_default = !find_case_label_index (stmt, 1, op, &i);
if (take_default)
{
i = 1;
j = 0;
}
else
{
j = i;
}
}
else
return false;
n = gimple_switch_num_labels (stmt);
/* We can truncate the case label ranges that partially overlap with OP's
value range. */
size_t min_idx = 1, max_idx = 0;
if (vr != NULL)
find_case_label_range (stmt, vr->min (), vr->max (), &min_idx, &max_idx);
if (min_idx <= max_idx)
{
tree min_label = gimple_switch_label (stmt, min_idx);
tree max_label = gimple_switch_label (stmt, max_idx);
/* Avoid changing the type of the case labels when truncating. */
tree case_label_type = TREE_TYPE (CASE_LOW (min_label));
tree vr_min = fold_convert (case_label_type, vr->min ());
tree vr_max = fold_convert (case_label_type, vr->max ());
if (vr->kind () == VR_RANGE)
{
/* If OP's value range is [2,8] and the low label range is
0 ... 3, truncate the label's range to 2 .. 3. */
if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
&& CASE_HIGH (min_label) != NULL_TREE
&& tree_int_cst_compare (CASE_HIGH (min_label), vr_min) >= 0)
CASE_LOW (min_label) = vr_min;
/* If OP's value range is [2,8] and the high label range is
7 ... 10, truncate the label's range to 7 .. 8. */
if (tree_int_cst_compare (CASE_LOW (max_label), vr_max) <= 0
&& CASE_HIGH (max_label) != NULL_TREE
&& tree_int_cst_compare (CASE_HIGH (max_label), vr_max) > 0)
CASE_HIGH (max_label) = vr_max;
}
else if (vr->kind () == VR_ANTI_RANGE)
{
tree one_cst = build_one_cst (case_label_type);
if (min_label == max_label)
{
/* If OP's value range is ~[7,8] and the label's range is
7 ... 10, truncate the label's range to 9 ... 10. */
if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) == 0
&& CASE_HIGH (min_label) != NULL_TREE
&& tree_int_cst_compare (CASE_HIGH (min_label), vr_max) > 0)
CASE_LOW (min_label)
= int_const_binop (PLUS_EXPR, vr_max, one_cst);
/* If OP's value range is ~[7,8] and the label's range is
5 ... 8, truncate the label's range to 5 ... 6. */
if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
&& CASE_HIGH (min_label) != NULL_TREE
&& tree_int_cst_compare (CASE_HIGH (min_label), vr_max) == 0)
CASE_HIGH (min_label)
= int_const_binop (MINUS_EXPR, vr_min, one_cst);
}
else
{
/* If OP's value range is ~[2,8] and the low label range is
0 ... 3, truncate the label's range to 0 ... 1. */
if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
&& CASE_HIGH (min_label) != NULL_TREE
&& tree_int_cst_compare (CASE_HIGH (min_label), vr_min) >= 0)
CASE_HIGH (min_label)
= int_const_binop (MINUS_EXPR, vr_min, one_cst);
/* If OP's value range is ~[2,8] and the high label range is
7 ... 10, truncate the label's range to 9 ... 10. */
if (tree_int_cst_compare (CASE_LOW (max_label), vr_max) <= 0
&& CASE_HIGH (max_label) != NULL_TREE
&& tree_int_cst_compare (CASE_HIGH (max_label), vr_max) > 0)
CASE_LOW (max_label)
= int_const_binop (PLUS_EXPR, vr_max, one_cst);
}
}
/* Canonicalize singleton case ranges. */
if (tree_int_cst_equal (CASE_LOW (min_label), CASE_HIGH (min_label)))
CASE_HIGH (min_label) = NULL_TREE;
if (tree_int_cst_equal (CASE_LOW (max_label), CASE_HIGH (max_label)))
CASE_HIGH (max_label) = NULL_TREE;
}
/* We can also eliminate case labels that lie completely outside OP's value
range. */
/* Bail out if this is just all edges taken. */
if (i == 1
&& j == n - 1
&& take_default)
return false;
/* Build a new vector of taken case labels. */
vec2 = make_tree_vec (j - i + 1 + l - k + 1 + (int)take_default);
n2 = 0;
/* Add the default edge, if necessary. */
if (take_default)
TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
for (; i <= j; ++i, ++n2)
TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
for (; k <= l; ++k, ++n2)
TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, k);
/* Mark needed edges. */
for (i = 0; i < n2; ++i)
{
e = find_edge (gimple_bb (stmt),
label_to_block (cfun,
CASE_LABEL (TREE_VEC_ELT (vec2, i))));
e->aux = (void *)-1;
}
/* Queue not needed edges for later removal. */
FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
{
if (e->aux == (void *)-1)
{
e->aux = NULL;
continue;
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "removing unreachable case label\n");
}
to_remove_edges.safe_push (e);
set_and_propagate_unexecutable (e);
e->flags &= ~EDGE_EXECUTABLE;
e->flags |= EDGE_IGNORE;
}
/* And queue an update for the stmt. */
su.stmt = stmt;
su.vec = vec2;
to_update_switch_stmts.safe_push (su);
return true;
}
void
simplify_using_ranges::cleanup_edges_and_switches (void)
{
int i;
edge e;
switch_update *su;
/* Clear any edges marked as not executable. */
if (m_not_executable_flag)
{
FOR_EACH_VEC_ELT (m_flag_set_edges, i, e)
e->flags &= ~m_not_executable_flag;
}
/* Remove dead edges from SWITCH_EXPR optimization. This leaves the
CFG in a broken state and requires a cfg_cleanup run. */
FOR_EACH_VEC_ELT (to_remove_edges, i, e)
remove_edge (e);
/* Update SWITCH_EXPR case label vector. */
FOR_EACH_VEC_ELT (to_update_switch_stmts, i, su)
{
size_t j;
size_t n = TREE_VEC_LENGTH (su->vec);
tree label;
gimple_switch_set_num_labels (su->stmt, n);
for (j = 0; j < n; j++)
gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
/* As we may have replaced the default label with a regular one
make sure to make it a real default label again. This ensures
optimal expansion. */
label = gimple_switch_label (su->stmt, 0);
CASE_LOW (label) = NULL_TREE;
CASE_HIGH (label) = NULL_TREE;
}
if (!to_remove_edges.is_empty ())
{
free_dominance_info (CDI_DOMINATORS);
loops_state_set (LOOPS_NEED_FIXUP);
}
to_remove_edges.release ();
to_update_switch_stmts.release ();
}
/* Simplify an integral conversion from an SSA name in STMT. */
static bool
simplify_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
{
tree innerop, middleop, finaltype;
gimple *def_stmt;
signop inner_sgn, middle_sgn, final_sgn;
unsigned inner_prec, middle_prec, final_prec;
widest_int innermin, innermed, innermax, middlemin, middlemed, middlemax;
finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
if (!INTEGRAL_TYPE_P (finaltype))
return false;
middleop = gimple_assign_rhs1 (stmt);
def_stmt = SSA_NAME_DEF_STMT (middleop);
if (!is_gimple_assign (def_stmt)
|| !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
return false;
innerop = gimple_assign_rhs1 (def_stmt);
if (TREE_CODE (innerop) != SSA_NAME
|| SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop))
return false;
/* Get the value-range of the inner operand. Use global ranges in
case innerop was created during substitute-and-fold. */
wide_int imin, imax;
value_range vr;
if (!INTEGRAL_TYPE_P (TREE_TYPE (innerop)))
return false;
get_range_query (cfun)->range_of_expr (vr, innerop, stmt);
if (vr.undefined_p () || vr.varying_p ())
return false;
innermin = widest_int::from (vr.lower_bound (), TYPE_SIGN (TREE_TYPE (innerop)));
innermax = widest_int::from (vr.upper_bound (), TYPE_SIGN (TREE_TYPE (innerop)));
/* Simulate the conversion chain to check if the result is equal if
the middle conversion is removed. */
inner_prec = TYPE_PRECISION (TREE_TYPE (innerop));
middle_prec = TYPE_PRECISION (TREE_TYPE (middleop));
final_prec = TYPE_PRECISION (finaltype);
/* If the first conversion is not injective, the second must not
be widening. */
if (wi::gtu_p (innermax - innermin,
wi::mask <widest_int> (middle_prec, false))
&& middle_prec < final_prec)
return false;
/* We also want a medium value so that we can track the effect that
narrowing conversions with sign change have. */
inner_sgn = TYPE_SIGN (TREE_TYPE (innerop));
if (inner_sgn == UNSIGNED)
innermed = wi::shifted_mask <widest_int> (1, inner_prec - 1, false);
else
innermed = 0;
if (wi::cmp (innermin, innermed, inner_sgn) >= 0
|| wi::cmp (innermed, innermax, inner_sgn) >= 0)
innermed = innermin;
middle_sgn = TYPE_SIGN (TREE_TYPE (middleop));
middlemin = wi::ext (innermin, middle_prec, middle_sgn);
middlemed = wi::ext (innermed, middle_prec, middle_sgn);
middlemax = wi::ext (innermax, middle_prec, middle_sgn);
/* Require that the final conversion applied to both the original
and the intermediate range produces the same result. */
final_sgn = TYPE_SIGN (finaltype);
if (wi::ext (middlemin, final_prec, final_sgn)
!= wi::ext (innermin, final_prec, final_sgn)
|| wi::ext (middlemed, final_prec, final_sgn)
!= wi::ext (innermed, final_prec, final_sgn)
|| wi::ext (middlemax, final_prec, final_sgn)
!= wi::ext (innermax, final_prec, final_sgn))
return false;
gimple_assign_set_rhs1 (stmt, innerop);
fold_stmt (gsi, follow_single_use_edges);
return true;
}
/* Simplify a conversion from integral SSA name to float in STMT. */
bool
simplify_using_ranges::simplify_float_conversion_using_ranges
(gimple_stmt_iterator *gsi,
gimple *stmt)
{
tree rhs1 = gimple_assign_rhs1 (stmt);
const value_range *vr = query->get_value_range (rhs1, stmt);
scalar_float_mode fltmode
= SCALAR_FLOAT_TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
scalar_int_mode mode;
tree tem;
gassign *conv;
/* We can only handle constant ranges. */
if (!range_int_cst_p (vr))
return false;
/* First check if we can use a signed type in place of an unsigned. */
scalar_int_mode rhs_mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (rhs1));
if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
&& can_float_p (fltmode, rhs_mode, 0) != CODE_FOR_nothing
&& range_fits_type_p (vr, TYPE_PRECISION (TREE_TYPE (rhs1)), SIGNED))
mode = rhs_mode;
/* If we can do the conversion in the current input mode do nothing. */
else if (can_float_p (fltmode, rhs_mode,
TYPE_UNSIGNED (TREE_TYPE (rhs1))) != CODE_FOR_nothing)
return false;
/* Otherwise search for a mode we can use, starting from the narrowest
integer mode available. */
else
{
mode = NARROWEST_INT_MODE;
for (;;)
{
/* If we cannot do a signed conversion to float from mode
or if the value-range does not fit in the signed type
try with a wider mode. */
if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
&& range_fits_type_p (vr, GET_MODE_PRECISION (mode), SIGNED))
break;
/* But do not widen the input. Instead leave that to the
optabs expansion code. */
if (!GET_MODE_WIDER_MODE (mode).exists (&mode)
|| GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
return false;
}
}
/* It works, insert a truncation or sign-change before the
float conversion. */
tem = make_ssa_name (build_nonstandard_integer_type
(GET_MODE_PRECISION (mode), 0));
conv = gimple_build_assign (tem, NOP_EXPR, rhs1);
gsi_insert_before (gsi, conv, GSI_SAME_STMT);
gimple_assign_set_rhs1 (stmt, tem);
fold_stmt (gsi, follow_single_use_edges);
return true;
}
/* Simplify an internal fn call using ranges if possible. */
bool
simplify_using_ranges::simplify_internal_call_using_ranges
(gimple_stmt_iterator *gsi,
gimple *stmt)
{
enum tree_code subcode;
bool is_ubsan = false;
bool ovf = false;
switch (gimple_call_internal_fn (stmt))
{
case IFN_UBSAN_CHECK_ADD:
subcode = PLUS_EXPR;
is_ubsan = true;
break;
case IFN_UBSAN_CHECK_SUB:
subcode = MINUS_EXPR;
is_ubsan = true;
break;
case IFN_UBSAN_CHECK_MUL:
subcode = MULT_EXPR;
is_ubsan = true;
break;
case IFN_ADD_OVERFLOW:
subcode = PLUS_EXPR;
break;
case IFN_SUB_OVERFLOW:
subcode = MINUS_EXPR;
break;
case IFN_MUL_OVERFLOW:
subcode = MULT_EXPR;
break;
default:
return false;
}
tree op0 = gimple_call_arg (stmt, 0);
tree op1 = gimple_call_arg (stmt, 1);
tree type;
if (is_ubsan)
{
type = TREE_TYPE (op0);
if (VECTOR_TYPE_P (type))
return false;
}
else if (gimple_call_lhs (stmt) == NULL_TREE)
return false;
else
type = TREE_TYPE (TREE_TYPE (gimple_call_lhs (stmt)));
if (!check_for_binary_op_overflow (query, subcode, type, op0, op1, &ovf, stmt)
|| (is_ubsan && ovf))
return false;
gimple *g;
location_t loc = gimple_location (stmt);
if (is_ubsan)
g = gimple_build_assign (gimple_call_lhs (stmt), subcode, op0, op1);
else
{
int prec = TYPE_PRECISION (type);
tree utype = type;
if (ovf
|| !useless_type_conversion_p (type, TREE_TYPE (op0))
|| !useless_type_conversion_p (type, TREE_TYPE (op1)))
utype = build_nonstandard_integer_type (prec, 1);
if (TREE_CODE (op0) == INTEGER_CST)
op0 = fold_convert (utype, op0);
else if (!useless_type_conversion_p (utype, TREE_TYPE (op0)))
{
g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op0);
gimple_set_location (g, loc);
gsi_insert_before (gsi, g, GSI_SAME_STMT);
op0 = gimple_assign_lhs (g);
}
if (TREE_CODE (op1) == INTEGER_CST)
op1 = fold_convert (utype, op1);
else if (!useless_type_conversion_p (utype, TREE_TYPE (op1)))
{
g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op1);
gimple_set_location (g, loc);
gsi_insert_before (gsi, g, GSI_SAME_STMT);
op1 = gimple_assign_lhs (g);
}
g = gimple_build_assign (make_ssa_name (utype), subcode, op0, op1);
gimple_set_location (g, loc);
gsi_insert_before (gsi, g, GSI_SAME_STMT);
if (utype != type)
{
g = gimple_build_assign (make_ssa_name (type), NOP_EXPR,
gimple_assign_lhs (g));
gimple_set_location (g, loc);
gsi_insert_before (gsi, g, GSI_SAME_STMT);
}
g = gimple_build_assign (gimple_call_lhs (stmt), COMPLEX_EXPR,
gimple_assign_lhs (g),
build_int_cst (type, ovf));
}
gimple_set_location (g, loc);
gsi_replace (gsi, g, false);
return true;
}
/* Return true if VAR is a two-valued variable. Set a and b with the
two-values when it is true. Return false otherwise. */
bool
simplify_using_ranges::two_valued_val_range_p (tree var, tree *a, tree *b,
gimple *s)
{
value_range vr = *query->get_value_range (var, s);
vr.normalize_symbolics ();
if (vr.varying_p () || vr.undefined_p ())
return false;
if ((vr.num_pairs () == 1 && vr.upper_bound () - vr.lower_bound () == 1)
|| (vr.num_pairs () == 2
&& vr.lower_bound (0) == vr.upper_bound (0)
&& vr.lower_bound (1) == vr.upper_bound (1)))
{
*a = wide_int_to_tree (TREE_TYPE (var), vr.lower_bound ());
*b = wide_int_to_tree (TREE_TYPE (var), vr.upper_bound ());
return true;
}
return false;
}
simplify_using_ranges::simplify_using_ranges (range_query *query,
int not_executable_flag)
: query (query)
{
to_remove_edges = vNULL;
to_update_switch_stmts = vNULL;
m_not_executable_flag = not_executable_flag;
m_flag_set_edges = vNULL;
}
simplify_using_ranges::~simplify_using_ranges ()
{
cleanup_edges_and_switches ();
m_flag_set_edges.release ();
}
/* Simplify STMT using ranges if possible. */
bool
simplify_using_ranges::simplify (gimple_stmt_iterator *gsi)
{
gcc_checking_assert (query);
gimple *stmt = gsi_stmt (*gsi);
if (is_gimple_assign (stmt))
{
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
tree rhs1 = gimple_assign_rhs1 (stmt);
tree rhs2 = gimple_assign_rhs2 (stmt);
tree lhs = gimple_assign_lhs (stmt);
tree val1 = NULL_TREE, val2 = NULL_TREE;
use_operand_p use_p;
gimple *use_stmt;
/* Convert:
LHS = CST BINOP VAR
Where VAR is two-valued and LHS is used in GIMPLE_COND only
To:
LHS = VAR == VAL1 ? (CST BINOP VAL1) : (CST BINOP VAL2)
Also handles:
LHS = VAR BINOP CST
Where VAR is two-valued and LHS is used in GIMPLE_COND only
To:
LHS = VAR == VAL1 ? (VAL1 BINOP CST) : (VAL2 BINOP CST) */
if (TREE_CODE_CLASS (rhs_code) == tcc_binary
&& INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
&& ((TREE_CODE (rhs1) == INTEGER_CST
&& TREE_CODE (rhs2) == SSA_NAME)
|| (TREE_CODE (rhs2) == INTEGER_CST
&& TREE_CODE (rhs1) == SSA_NAME))
&& single_imm_use (lhs, &use_p, &use_stmt)
&& gimple_code (use_stmt) == GIMPLE_COND)
{
tree new_rhs1 = NULL_TREE;
tree new_rhs2 = NULL_TREE;
tree cmp_var = NULL_TREE;
if (TREE_CODE (rhs2) == SSA_NAME
&& two_valued_val_range_p (rhs2, &val1, &val2, stmt))
{
/* Optimize RHS1 OP [VAL1, VAL2]. */
new_rhs1 = int_const_binop (rhs_code, rhs1, val1);
new_rhs2 = int_const_binop (rhs_code, rhs1, val2);
cmp_var = rhs2;
}
else if (TREE_CODE (rhs1) == SSA_NAME
&& two_valued_val_range_p (rhs1, &val1, &val2, stmt))
{
/* Optimize [VAL1, VAL2] OP RHS2. */
new_rhs1 = int_const_binop (rhs_code, val1, rhs2);
new_rhs2 = int_const_binop (rhs_code, val2, rhs2);
cmp_var = rhs1;
}
/* If we could not find two-vals or the optimzation is invalid as
in divide by zero, new_rhs1 / new_rhs will be NULL_TREE. */
if (new_rhs1 && new_rhs2)
{
tree cond = gimple_build (gsi, true, GSI_SAME_STMT,
UNKNOWN_LOCATION,
EQ_EXPR, boolean_type_node,
cmp_var, val1);
gimple_assign_set_rhs_with_ops (gsi,
COND_EXPR, cond,
new_rhs1,
new_rhs2);
update_stmt (gsi_stmt (*gsi));
fold_stmt (gsi, follow_single_use_edges);
return true;
}
}
switch (rhs_code)
{
case EQ_EXPR:
case NE_EXPR:
/* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
if the RHS is zero or one, and the LHS are known to be boolean
values. */
if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
return simplify_truth_ops_using_ranges (gsi, stmt);
break;
/* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
and BIT_AND_EXPR respectively if the first operand is greater
than zero and the second operand is an exact power of two.
Also optimize TRUNC_MOD_EXPR away if the second operand is
constant and the first operand already has the right value
range. */
case TRUNC_DIV_EXPR:
case TRUNC_MOD_EXPR:
if ((TREE_CODE (rhs1) == SSA_NAME
|| TREE_CODE (rhs1) == INTEGER_CST)
&& INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
return simplify_div_or_mod_using_ranges (gsi, stmt);
break;
/* Transform ABS (X) into X or -X as appropriate. */
case ABS_EXPR:
if (TREE_CODE (rhs1) == SSA_NAME
&& INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
return simplify_abs_using_ranges (gsi, stmt);
break;
case BIT_AND_EXPR:
case BIT_IOR_EXPR:
/* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
if all the bits being cleared are already cleared or
all the bits being set are already set. */
if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
return simplify_bit_ops_using_ranges (gsi, stmt);
break;
CASE_CONVERT:
if (TREE_CODE (rhs1) == SSA_NAME
&& INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
return simplify_conversion_using_ranges (gsi, stmt);
break;
case FLOAT_EXPR:
if (TREE_CODE (rhs1) == SSA_NAME
&& INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
return simplify_float_conversion_using_ranges (gsi, stmt);
break;
case MIN_EXPR:
case MAX_EXPR:
if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
return simplify_min_or_max_using_ranges (gsi, stmt);
break;
case RSHIFT_EXPR:
{
tree op0 = gimple_assign_rhs1 (stmt);
tree type = TREE_TYPE (op0);
int_range_max range;
if (TYPE_SIGN (type) == SIGNED
&& query->range_of_expr (range, op0, stmt))
{
unsigned prec = TYPE_PRECISION (TREE_TYPE (op0));
int_range<2> nzm1 (type, wi::minus_one (prec), wi::zero (prec),
VR_ANTI_RANGE);
range.intersect (nzm1);
// If there are no ranges other than [-1, 0] remove the shift.
if (range.undefined_p ())
{
gimple_assign_set_rhs_from_tree (gsi, op0);
return true;
}
return false;
}
break;
}
default:
break;
}
}
else if (gimple_code (stmt) == GIMPLE_COND)
return simplify_cond_using_ranges_1 (as_a <gcond *> (stmt));
else if (gimple_code (stmt) == GIMPLE_SWITCH)
return simplify_switch_using_ranges (as_a <gswitch *> (stmt));
else if (is_gimple_call (stmt)
&& gimple_call_internal_p (stmt))
return simplify_internal_call_using_ranges (gsi, stmt);
return false;
}