blob: 9e28de0b6b183b459a1347d85a4badcbb6a4c850 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M _ P R A G --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- This unit contains the semantic processing for all pragmas, both language
-- and implementation defined. For most pragmas, the parser only does the
-- most basic job of checking the syntax, so Sem_Prag also contains the code
-- to complete the syntax checks. Certain pragmas are handled partially or
-- completely by the parser (see Par.Prag for further details).
with Aspects; use Aspects;
with Atree; use Atree;
with Casing; use Casing;
with Checks; use Checks;
with Contracts; use Contracts;
with Csets; use Csets;
with Debug; use Debug;
with Einfo; use Einfo;
with Elists; use Elists;
with Errout; use Errout;
with Exp_Dist; use Exp_Dist;
with Exp_Util; use Exp_Util;
with Freeze; use Freeze;
with Ghost; use Ghost;
with Gnatvsn; use Gnatvsn;
with Lib; use Lib;
with Lib.Writ; use Lib.Writ;
with Lib.Xref; use Lib.Xref;
with Namet.Sp; use Namet.Sp;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Output; use Output;
with Par_SCO; use Par_SCO;
with Restrict; use Restrict;
with Rident; use Rident;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Aux; use Sem_Aux;
with Sem_Ch3; use Sem_Ch3;
with Sem_Ch6; use Sem_Ch6;
with Sem_Ch8; use Sem_Ch8;
with Sem_Ch12; use Sem_Ch12;
with Sem_Ch13; use Sem_Ch13;
with Sem_Disp; use Sem_Disp;
with Sem_Dist; use Sem_Dist;
with Sem_Elab; use Sem_Elab;
with Sem_Elim; use Sem_Elim;
with Sem_Eval; use Sem_Eval;
with Sem_Intr; use Sem_Intr;
with Sem_Mech; use Sem_Mech;
with Sem_Res; use Sem_Res;
with Sem_Type; use Sem_Type;
with Sem_Util; use Sem_Util;
with Sem_Warn; use Sem_Warn;
with Stand; use Stand;
with Sinfo; use Sinfo;
with Sinfo.CN; use Sinfo.CN;
with Sinput; use Sinput;
with Stringt; use Stringt;
with Stylesw; use Stylesw;
with Table;
with Targparm; use Targparm;
with Tbuild; use Tbuild;
with Ttypes;
with Uintp; use Uintp;
with Uname; use Uname;
with Urealp; use Urealp;
with Validsw; use Validsw;
with Warnsw; use Warnsw;
with System.Case_Util;
package body Sem_Prag is
----------------------------------------------
-- Common Handling of Import-Export Pragmas --
----------------------------------------------
-- In the following section, a number of Import_xxx and Export_xxx pragmas
-- are defined by GNAT. These are compatible with the DEC pragmas of the
-- same name, and all have the following common form and processing:
-- pragma Export_xxx
-- [Internal =>] LOCAL_NAME
-- [, [External =>] EXTERNAL_SYMBOL]
-- [, other optional parameters ]);
-- pragma Import_xxx
-- [Internal =>] LOCAL_NAME
-- [, [External =>] EXTERNAL_SYMBOL]
-- [, other optional parameters ]);
-- EXTERNAL_SYMBOL ::=
-- IDENTIFIER
-- | static_string_EXPRESSION
-- The internal LOCAL_NAME designates the entity that is imported or
-- exported, and must refer to an entity in the current declarative
-- part (as required by the rules for LOCAL_NAME).
-- The external linker name is designated by the External parameter if
-- given, or the Internal parameter if not (if there is no External
-- parameter, the External parameter is a copy of the Internal name).
-- If the External parameter is given as a string, then this string is
-- treated as an external name (exactly as though it had been given as an
-- External_Name parameter for a normal Import pragma).
-- If the External parameter is given as an identifier (or there is no
-- External parameter, so that the Internal identifier is used), then
-- the external name is the characters of the identifier, translated
-- to all lower case letters.
-- Note: the external name specified or implied by any of these special
-- Import_xxx or Export_xxx pragmas override an external or link name
-- specified in a previous Import or Export pragma.
-- Note: these and all other DEC-compatible GNAT pragmas allow full use of
-- named notation, following the standard rules for subprogram calls, i.e.
-- parameters can be given in any order if named notation is used, and
-- positional and named notation can be mixed, subject to the rule that all
-- positional parameters must appear first.
-- Note: All these pragmas are implemented exactly following the DEC design
-- and implementation and are intended to be fully compatible with the use
-- of these pragmas in the DEC Ada compiler.
--------------------------------------------
-- Checking for Duplicated External Names --
--------------------------------------------
-- It is suspicious if two separate Export pragmas use the same external
-- name. The following table is used to diagnose this situation so that
-- an appropriate warning can be issued.
-- The Node_Id stored is for the N_String_Literal node created to hold
-- the value of the external name. The Sloc of this node is used to
-- cross-reference the location of the duplication.
package Externals is new Table.Table (
Table_Component_Type => Node_Id,
Table_Index_Type => Int,
Table_Low_Bound => 0,
Table_Initial => 100,
Table_Increment => 100,
Table_Name => "Name_Externals");
-------------------------------------
-- Local Subprograms and Variables --
-------------------------------------
function Adjust_External_Name_Case (N : Node_Id) return Node_Id;
-- This routine is used for possible casing adjustment of an explicit
-- external name supplied as a string literal (the node N), according to
-- the casing requirement of Opt.External_Name_Casing. If this is set to
-- As_Is, then the string literal is returned unchanged, but if it is set
-- to Uppercase or Lowercase, then a new string literal with appropriate
-- casing is constructed.
procedure Analyze_Part_Of
(Indic : Node_Id;
Item_Id : Entity_Id;
Encap : Node_Id;
Encap_Id : out Entity_Id;
Legal : out Boolean);
-- Subsidiary to Analyze_Part_Of_In_Decl_Part, Analyze_Part_Of_Option and
-- Analyze_Pragma. Perform full analysis of indicator Part_Of. Indic is the
-- Part_Of indicator. Item_Id is the entity of an abstract state, object or
-- package instantiation. Encap denotes the encapsulating state or single
-- concurrent type. Encap_Id is the entity of Encap. Flag Legal is set when
-- the indicator is legal.
function Appears_In (List : Elist_Id; Item_Id : Entity_Id) return Boolean;
-- Subsidiary to analysis of pragmas Depends, Global and Refined_Depends.
-- Query whether a particular item appears in a mixed list of nodes and
-- entities. It is assumed that all nodes in the list have entities.
procedure Check_Postcondition_Use_In_Inlined_Subprogram
(Prag : Node_Id;
Spec_Id : Entity_Id);
-- Subsidiary to the analysis of pragmas Contract_Cases, Postcondition,
-- Precondition, Refined_Post, and Test_Case. Emit a warning when pragma
-- Prag is associated with subprogram Spec_Id subject to Inline_Always,
-- and assertions are enabled.
procedure Check_State_And_Constituent_Use
(States : Elist_Id;
Constits : Elist_Id;
Context : Node_Id);
-- Subsidiary to the analysis of pragmas [Refined_]Depends, [Refined_]
-- Global and Initializes. Determine whether a state from list States and a
-- corresponding constituent from list Constits (if any) appear in the same
-- context denoted by Context. If this is the case, emit an error.
procedure Contract_Freeze_Error
(Contract_Id : Entity_Id;
Freeze_Id : Entity_Id);
-- Subsidiary to the analysis of pragmas Contract_Cases, Part_Of, Post, and
-- Pre. Emit a freezing-related error message where Freeze_Id is the entity
-- of a body which caused contract freezing and Contract_Id denotes the
-- entity of the affected contstruct.
procedure Duplication_Error (Prag : Node_Id; Prev : Node_Id);
-- Subsidiary to all Find_Related_xxx routines. Emit an error on pragma
-- Prag that duplicates previous pragma Prev.
function Find_Encapsulating_State
(States : Elist_Id;
Constit_Id : Entity_Id) return Entity_Id;
-- Given the entity of a constituent Constit_Id, find the corresponding
-- encapsulating state which appears in States. The routine returns Empty
-- if no such state is found.
function Find_Related_Context
(Prag : Node_Id;
Do_Checks : Boolean := False) return Node_Id;
-- Subsidiary to the analysis of pragmas
-- Async_Readers
-- Async_Writers
-- Constant_After_Elaboration
-- Effective_Reads
-- Effective_Writers
-- Part_Of
-- Find the first source declaration or statement found while traversing
-- the previous node chain starting from pragma Prag. If flag Do_Checks is
-- set, the routine reports duplicate pragmas. The routine returns Empty
-- when reaching the start of the node chain.
function Get_Base_Subprogram (Def_Id : Entity_Id) return Entity_Id;
-- If Def_Id refers to a renamed subprogram, then the base subprogram (the
-- original one, following the renaming chain) is returned. Otherwise the
-- entity is returned unchanged. Should be in Einfo???
function Get_SPARK_Mode_Type (N : Name_Id) return SPARK_Mode_Type;
-- Subsidiary to the analysis of pragma SPARK_Mode as well as subprogram
-- Get_SPARK_Mode_From_Annotation. Convert a name into a corresponding
-- value of type SPARK_Mode_Type.
function Has_Extra_Parentheses (Clause : Node_Id) return Boolean;
-- Subsidiary to the analysis of pragmas Depends and Refined_Depends.
-- Determine whether dependency clause Clause is surrounded by extra
-- parentheses. If this is the case, issue an error message.
function Is_Unconstrained_Or_Tagged_Item (Item : Entity_Id) return Boolean;
-- Subsidiary to Collect_Subprogram_Inputs_Outputs and the analysis of
-- pragma Depends. Determine whether the type of dependency item Item is
-- tagged, unconstrained array, unconstrained record or a record with at
-- least one unconstrained component.
procedure Record_Possible_Body_Reference
(State_Id : Entity_Id;
Ref : Node_Id);
-- Subsidiary to the analysis of pragmas [Refined_]Depends and [Refined_]
-- Global. Given an abstract state denoted by State_Id and a reference Ref
-- to it, determine whether the reference appears in a package body that
-- will eventually refine the state. If this is the case, record the
-- reference for future checks (see Analyze_Refined_State_In_Decls).
procedure Resolve_State (N : Node_Id);
-- Handle the overloading of state names by functions. When N denotes a
-- function, this routine finds the corresponding state and sets the entity
-- of N to that of the state.
procedure Rewrite_Assertion_Kind
(N : Node_Id;
From_Policy : Boolean := False);
-- If N is Pre'Class, Post'Class, Invariant'Class, or Type_Invariant'Class,
-- then it is rewritten as an identifier with the corresponding special
-- name _Pre, _Post, _Invariant, or _Type_Invariant. Used by pragmas Check
-- and Check_Policy. If the names are Precondition or Postcondition, this
-- combination is deprecated in favor of Assertion_Policy and Ada2012
-- Aspect names. The parameter From_Policy indicates that the pragma
-- is the old non-standard Check_Policy and not a rewritten pragma.
procedure Set_Elab_Unit_Name (N : Node_Id; With_Item : Node_Id);
-- Place semantic information on the argument of an Elaborate/Elaborate_All
-- pragma. Entity name for unit and its parents is taken from item in
-- previous with_clause that mentions the unit.
Dummy : Integer := 0;
pragma Volatile (Dummy);
-- Dummy volatile integer used in bodies of ip/rv to prevent optimization
procedure ip;
pragma No_Inline (ip);
-- A dummy procedure called when pragma Inspection_Point is analyzed. This
-- is just to help debugging the front end. If a pragma Inspection_Point
-- is added to a source program, then breaking on ip will get you to that
-- point in the program.
procedure rv;
pragma No_Inline (rv);
-- This is a dummy function called by the processing for pragma Reviewable.
-- It is there for assisting front end debugging. By placing a Reviewable
-- pragma in the source program, a breakpoint on rv catches this place in
-- the source, allowing convenient stepping to the point of interest.
-------------------------------
-- Adjust_External_Name_Case --
-------------------------------
function Adjust_External_Name_Case (N : Node_Id) return Node_Id is
CC : Char_Code;
begin
-- Adjust case of literal if required
if Opt.External_Name_Exp_Casing = As_Is then
return N;
else
-- Copy existing string
Start_String;
-- Set proper casing
for J in 1 .. String_Length (Strval (N)) loop
CC := Get_String_Char (Strval (N), J);
if Opt.External_Name_Exp_Casing = Uppercase
and then CC >= Get_Char_Code ('a')
and then CC <= Get_Char_Code ('z')
then
Store_String_Char (CC - 32);
elsif Opt.External_Name_Exp_Casing = Lowercase
and then CC >= Get_Char_Code ('A')
and then CC <= Get_Char_Code ('Z')
then
Store_String_Char (CC + 32);
else
Store_String_Char (CC);
end if;
end loop;
return
Make_String_Literal (Sloc (N),
Strval => End_String);
end if;
end Adjust_External_Name_Case;
-----------------------------------------
-- Analyze_Contract_Cases_In_Decl_Part --
-----------------------------------------
-- WARNING: This routine manages Ghost regions. Return statements must be
-- replaced by gotos which jump to the end of the routine and restore the
-- Ghost mode.
procedure Analyze_Contract_Cases_In_Decl_Part
(N : Node_Id;
Freeze_Id : Entity_Id := Empty)
is
Subp_Decl : constant Node_Id := Find_Related_Declaration_Or_Body (N);
Spec_Id : constant Entity_Id := Unique_Defining_Entity (Subp_Decl);
Others_Seen : Boolean := False;
-- This flag is set when an "others" choice is encountered. It is used
-- to detect multiple illegal occurrences of "others".
procedure Analyze_Contract_Case (CCase : Node_Id);
-- Verify the legality of a single contract case
---------------------------
-- Analyze_Contract_Case --
---------------------------
procedure Analyze_Contract_Case (CCase : Node_Id) is
Case_Guard : Node_Id;
Conseq : Node_Id;
Errors : Nat;
Extra_Guard : Node_Id;
begin
if Nkind (CCase) = N_Component_Association then
Case_Guard := First (Choices (CCase));
Conseq := Expression (CCase);
-- Each contract case must have exactly one case guard
Extra_Guard := Next (Case_Guard);
if Present (Extra_Guard) then
Error_Msg_N
("contract case must have exactly one case guard",
Extra_Guard);
end if;
-- Check placement of OTHERS if available (SPARK RM 6.1.3(1))
if Nkind (Case_Guard) = N_Others_Choice then
if Others_Seen then
Error_Msg_N
("only one others choice allowed in contract cases",
Case_Guard);
else
Others_Seen := True;
end if;
elsif Others_Seen then
Error_Msg_N
("others must be the last choice in contract cases", N);
end if;
-- Preanalyze the case guard and consequence
if Nkind (Case_Guard) /= N_Others_Choice then
Errors := Serious_Errors_Detected;
Preanalyze_Assert_Expression (Case_Guard, Standard_Boolean);
-- Emit a clarification message when the case guard contains
-- at least one undefined reference, possibly due to contract
-- freezing.
if Errors /= Serious_Errors_Detected
and then Present (Freeze_Id)
and then Has_Undefined_Reference (Case_Guard)
then
Contract_Freeze_Error (Spec_Id, Freeze_Id);
end if;
end if;
Errors := Serious_Errors_Detected;
Preanalyze_Assert_Expression (Conseq, Standard_Boolean);
-- Emit a clarification message when the consequence contains
-- at least one undefined reference, possibly due to contract
-- freezing.
if Errors /= Serious_Errors_Detected
and then Present (Freeze_Id)
and then Has_Undefined_Reference (Conseq)
then
Contract_Freeze_Error (Spec_Id, Freeze_Id);
end if;
-- The contract case is malformed
else
Error_Msg_N ("wrong syntax in contract case", CCase);
end if;
end Analyze_Contract_Case;
-- Local variables
CCases : constant Node_Id := Expression (Get_Argument (N, Spec_Id));
Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
-- Save the Ghost mode to restore on exit
CCase : Node_Id;
Restore_Scope : Boolean := False;
-- Start of processing for Analyze_Contract_Cases_In_Decl_Part
begin
-- Do not analyze the pragma multiple times
if Is_Analyzed_Pragma (N) then
return;
end if;
-- Set the Ghost mode in effect from the pragma. Due to the delayed
-- analysis of the pragma, the Ghost mode at point of declaration and
-- point of analysis may not necessarily be the same. Use the mode in
-- effect at the point of declaration.
Set_Ghost_Mode (N);
-- Single and multiple contract cases must appear in aggregate form. If
-- this is not the case, then either the parser of the analysis of the
-- pragma failed to produce an aggregate.
pragma Assert (Nkind (CCases) = N_Aggregate);
if Present (Component_Associations (CCases)) then
-- Ensure that the formal parameters are visible when analyzing all
-- clauses. This falls out of the general rule of aspects pertaining
-- to subprogram declarations.
if not In_Open_Scopes (Spec_Id) then
Restore_Scope := True;
Push_Scope (Spec_Id);
if Is_Generic_Subprogram (Spec_Id) then
Install_Generic_Formals (Spec_Id);
else
Install_Formals (Spec_Id);
end if;
end if;
CCase := First (Component_Associations (CCases));
while Present (CCase) loop
Analyze_Contract_Case (CCase);
Next (CCase);
end loop;
if Restore_Scope then
End_Scope;
end if;
-- Currently it is not possible to inline pre/postconditions on a
-- subprogram subject to pragma Inline_Always.
Check_Postcondition_Use_In_Inlined_Subprogram (N, Spec_Id);
-- Otherwise the pragma is illegal
else
Error_Msg_N ("wrong syntax for constract cases", N);
end if;
Set_Is_Analyzed_Pragma (N);
Restore_Ghost_Mode (Saved_GM);
end Analyze_Contract_Cases_In_Decl_Part;
----------------------------------
-- Analyze_Depends_In_Decl_Part --
----------------------------------
procedure Analyze_Depends_In_Decl_Part (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Subp_Decl : constant Node_Id := Find_Related_Declaration_Or_Body (N);
Spec_Id : constant Entity_Id := Unique_Defining_Entity (Subp_Decl);
All_Inputs_Seen : Elist_Id := No_Elist;
-- A list containing the entities of all the inputs processed so far.
-- The list is populated with unique entities because the same input
-- may appear in multiple input lists.
All_Outputs_Seen : Elist_Id := No_Elist;
-- A list containing the entities of all the outputs processed so far.
-- The list is populated with unique entities because output items are
-- unique in a dependence relation.
Constits_Seen : Elist_Id := No_Elist;
-- A list containing the entities of all constituents processed so far.
-- It aids in detecting illegal usage of a state and a corresponding
-- constituent in pragma [Refinde_]Depends.
Global_Seen : Boolean := False;
-- A flag set when pragma Global has been processed
Null_Output_Seen : Boolean := False;
-- A flag used to track the legality of a null output
Result_Seen : Boolean := False;
-- A flag set when Spec_Id'Result is processed
States_Seen : Elist_Id := No_Elist;
-- A list containing the entities of all states processed so far. It
-- helps in detecting illegal usage of a state and a corresponding
-- constituent in pragma [Refined_]Depends.
Subp_Inputs : Elist_Id := No_Elist;
Subp_Outputs : Elist_Id := No_Elist;
-- Two lists containing the full set of inputs and output of the related
-- subprograms. Note that these lists contain both nodes and entities.
Task_Input_Seen : Boolean := False;
Task_Output_Seen : Boolean := False;
-- Flags used to track the implicit dependence of a task unit on itself
procedure Add_Item_To_Name_Buffer (Item_Id : Entity_Id);
-- Subsidiary routine to Check_Role and Check_Usage. Add the item kind
-- to the name buffer. The individual kinds are as follows:
-- E_Abstract_State - "state"
-- E_Constant - "constant"
-- E_Generic_In_Out_Parameter - "generic parameter"
-- E_Generic_In_Parameter - "generic parameter"
-- E_In_Parameter - "parameter"
-- E_In_Out_Parameter - "parameter"
-- E_Loop_Parameter - "loop parameter"
-- E_Out_Parameter - "parameter"
-- E_Protected_Type - "current instance of protected type"
-- E_Task_Type - "current instance of task type"
-- E_Variable - "global"
procedure Analyze_Dependency_Clause
(Clause : Node_Id;
Is_Last : Boolean);
-- Verify the legality of a single dependency clause. Flag Is_Last
-- denotes whether Clause is the last clause in the relation.
procedure Check_Function_Return;
-- Verify that Funtion'Result appears as one of the outputs
-- (SPARK RM 6.1.5(10)).
procedure Check_Role
(Item : Node_Id;
Item_Id : Entity_Id;
Is_Input : Boolean;
Self_Ref : Boolean);
-- Ensure that an item fulfills its designated input and/or output role
-- as specified by pragma Global (if any) or the enclosing context. If
-- this is not the case, emit an error. Item and Item_Id denote the
-- attributes of an item. Flag Is_Input should be set when item comes
-- from an input list. Flag Self_Ref should be set when the item is an
-- output and the dependency clause has operator "+".
procedure Check_Usage
(Subp_Items : Elist_Id;
Used_Items : Elist_Id;
Is_Input : Boolean);
-- Verify that all items from Subp_Items appear in Used_Items. Emit an
-- error if this is not the case.
procedure Normalize_Clause (Clause : Node_Id);
-- Remove a self-dependency "+" from the input list of a clause
-----------------------------
-- Add_Item_To_Name_Buffer --
-----------------------------
procedure Add_Item_To_Name_Buffer (Item_Id : Entity_Id) is
begin
if Ekind (Item_Id) = E_Abstract_State then
Add_Str_To_Name_Buffer ("state");
elsif Ekind (Item_Id) = E_Constant then
Add_Str_To_Name_Buffer ("constant");
elsif Ekind_In (Item_Id, E_Generic_In_Out_Parameter,
E_Generic_In_Parameter)
then
Add_Str_To_Name_Buffer ("generic parameter");
elsif Is_Formal (Item_Id) then
Add_Str_To_Name_Buffer ("parameter");
elsif Ekind (Item_Id) = E_Loop_Parameter then
Add_Str_To_Name_Buffer ("loop parameter");
elsif Ekind (Item_Id) = E_Protected_Type
or else Is_Single_Protected_Object (Item_Id)
then
Add_Str_To_Name_Buffer ("current instance of protected type");
elsif Ekind (Item_Id) = E_Task_Type
or else Is_Single_Task_Object (Item_Id)
then
Add_Str_To_Name_Buffer ("current instance of task type");
elsif Ekind (Item_Id) = E_Variable then
Add_Str_To_Name_Buffer ("global");
-- The routine should not be called with non-SPARK items
else
raise Program_Error;
end if;
end Add_Item_To_Name_Buffer;
-------------------------------
-- Analyze_Dependency_Clause --
-------------------------------
procedure Analyze_Dependency_Clause
(Clause : Node_Id;
Is_Last : Boolean)
is
procedure Analyze_Input_List (Inputs : Node_Id);
-- Verify the legality of a single input list
procedure Analyze_Input_Output
(Item : Node_Id;
Is_Input : Boolean;
Self_Ref : Boolean;
Top_Level : Boolean;
Seen : in out Elist_Id;
Null_Seen : in out Boolean;
Non_Null_Seen : in out Boolean);
-- Verify the legality of a single input or output item. Flag
-- Is_Input should be set whenever Item is an input, False when it
-- denotes an output. Flag Self_Ref should be set when the item is an
-- output and the dependency clause has a "+". Flag Top_Level should
-- be set whenever Item appears immediately within an input or output
-- list. Seen is a collection of all abstract states, objects and
-- formals processed so far. Flag Null_Seen denotes whether a null
-- input or output has been encountered. Flag Non_Null_Seen denotes
-- whether a non-null input or output has been encountered.
------------------------
-- Analyze_Input_List --
------------------------
procedure Analyze_Input_List (Inputs : Node_Id) is
Inputs_Seen : Elist_Id := No_Elist;
-- A list containing the entities of all inputs that appear in the
-- current input list.
Non_Null_Input_Seen : Boolean := False;
Null_Input_Seen : Boolean := False;
-- Flags used to check the legality of an input list
Input : Node_Id;
begin
-- Multiple inputs appear as an aggregate
if Nkind (Inputs) = N_Aggregate then
if Present (Component_Associations (Inputs)) then
SPARK_Msg_N
("nested dependency relations not allowed", Inputs);
elsif Present (Expressions (Inputs)) then
Input := First (Expressions (Inputs));
while Present (Input) loop
Analyze_Input_Output
(Item => Input,
Is_Input => True,
Self_Ref => False,
Top_Level => False,
Seen => Inputs_Seen,
Null_Seen => Null_Input_Seen,
Non_Null_Seen => Non_Null_Input_Seen);
Next (Input);
end loop;
-- Syntax error, always report
else
Error_Msg_N ("malformed input dependency list", Inputs);
end if;
-- Process a solitary input
else
Analyze_Input_Output
(Item => Inputs,
Is_Input => True,
Self_Ref => False,
Top_Level => False,
Seen => Inputs_Seen,
Null_Seen => Null_Input_Seen,
Non_Null_Seen => Non_Null_Input_Seen);
end if;
-- Detect an illegal dependency clause of the form
-- (null =>[+] null)
if Null_Output_Seen and then Null_Input_Seen then
SPARK_Msg_N
("null dependency clause cannot have a null input list",
Inputs);
end if;
end Analyze_Input_List;
--------------------------
-- Analyze_Input_Output --
--------------------------
procedure Analyze_Input_Output
(Item : Node_Id;
Is_Input : Boolean;
Self_Ref : Boolean;
Top_Level : Boolean;
Seen : in out Elist_Id;
Null_Seen : in out Boolean;
Non_Null_Seen : in out Boolean)
is
procedure Current_Task_Instance_Seen;
-- Set the appropriate global flag when the current instance of a
-- task unit is encountered.
--------------------------------
-- Current_Task_Instance_Seen --
--------------------------------
procedure Current_Task_Instance_Seen is
begin
if Is_Input then
Task_Input_Seen := True;
else
Task_Output_Seen := True;
end if;
end Current_Task_Instance_Seen;
-- Local variables
Is_Output : constant Boolean := not Is_Input;
Grouped : Node_Id;
Item_Id : Entity_Id;
-- Start of processing for Analyze_Input_Output
begin
-- Multiple input or output items appear as an aggregate
if Nkind (Item) = N_Aggregate then
if not Top_Level then
SPARK_Msg_N ("nested grouping of items not allowed", Item);
elsif Present (Component_Associations (Item)) then
SPARK_Msg_N
("nested dependency relations not allowed", Item);
-- Recursively analyze the grouped items
elsif Present (Expressions (Item)) then
Grouped := First (Expressions (Item));
while Present (Grouped) loop
Analyze_Input_Output
(Item => Grouped,
Is_Input => Is_Input,
Self_Ref => Self_Ref,
Top_Level => False,
Seen => Seen,
Null_Seen => Null_Seen,
Non_Null_Seen => Non_Null_Seen);
Next (Grouped);
end loop;
-- Syntax error, always report
else
Error_Msg_N ("malformed dependency list", Item);
end if;
-- Process attribute 'Result in the context of a dependency clause
elsif Is_Attribute_Result (Item) then
Non_Null_Seen := True;
Analyze (Item);
-- Attribute 'Result is allowed to appear on the output side of
-- a dependency clause (SPARK RM 6.1.5(6)).
if Is_Input then
SPARK_Msg_N ("function result cannot act as input", Item);
elsif Null_Seen then
SPARK_Msg_N
("cannot mix null and non-null dependency items", Item);
else
Result_Seen := True;
end if;
-- Detect multiple uses of null in a single dependency list or
-- throughout the whole relation. Verify the placement of a null
-- output list relative to the other clauses (SPARK RM 6.1.5(12)).
elsif Nkind (Item) = N_Null then
if Null_Seen then
SPARK_Msg_N
("multiple null dependency relations not allowed", Item);
elsif Non_Null_Seen then
SPARK_Msg_N
("cannot mix null and non-null dependency items", Item);
else
Null_Seen := True;
if Is_Output then
if not Is_Last then
SPARK_Msg_N
("null output list must be the last clause in a "
& "dependency relation", Item);
-- Catch a useless dependence of the form:
-- null =>+ ...
elsif Self_Ref then
SPARK_Msg_N
("useless dependence, null depends on itself", Item);
end if;
end if;
end if;
-- Default case
else
Non_Null_Seen := True;
if Null_Seen then
SPARK_Msg_N ("cannot mix null and non-null items", Item);
end if;
Analyze (Item);
Resolve_State (Item);
-- Find the entity of the item. If this is a renaming, climb
-- the renaming chain to reach the root object. Renamings of
-- non-entire objects do not yield an entity (Empty).
Item_Id := Entity_Of (Item);
if Present (Item_Id) then
-- Constants
if Ekind_In (Item_Id, E_Constant, E_Loop_Parameter)
or else
-- Current instances of concurrent types
Ekind_In (Item_Id, E_Protected_Type, E_Task_Type)
or else
-- Formal parameters
Ekind_In (Item_Id, E_Generic_In_Out_Parameter,
E_Generic_In_Parameter,
E_In_Parameter,
E_In_Out_Parameter,
E_Out_Parameter)
or else
-- States, variables
Ekind_In (Item_Id, E_Abstract_State, E_Variable)
then
-- The item denotes a concurrent type. Note that single
-- protected/task types are not considered here because
-- they behave as objects in the context of pragma
-- [Refined_]Depends.
if Ekind_In (Item_Id, E_Protected_Type, E_Task_Type) then
-- This use is legal as long as the concurrent type is
-- the current instance of an enclosing type.
if Is_CCT_Instance (Item_Id, Spec_Id) then
-- The dependence of a task unit on itself is
-- implicit and may or may not be explicitly
-- specified (SPARK RM 6.1.4).
if Ekind (Item_Id) = E_Task_Type then
Current_Task_Instance_Seen;
end if;
-- Otherwise this is not the current instance
else
SPARK_Msg_N
("invalid use of subtype mark in dependency "
& "relation", Item);
end if;
-- The dependency of a task unit on itself is implicit
-- and may or may not be explicitly specified
-- (SPARK RM 6.1.4).
elsif Is_Single_Task_Object (Item_Id)
and then Is_CCT_Instance (Etype (Item_Id), Spec_Id)
then
Current_Task_Instance_Seen;
end if;
-- Ensure that the item fulfills its role as input and/or
-- output as specified by pragma Global or the enclosing
-- context.
Check_Role (Item, Item_Id, Is_Input, Self_Ref);
-- Detect multiple uses of the same state, variable or
-- formal parameter. If this is not the case, add the
-- item to the list of processed relations.
if Contains (Seen, Item_Id) then
SPARK_Msg_NE
("duplicate use of item &", Item, Item_Id);
else
Append_New_Elmt (Item_Id, Seen);
end if;
-- Detect illegal use of an input related to a null
-- output. Such input items cannot appear in other
-- input lists (SPARK RM 6.1.5(13)).
if Is_Input
and then Null_Output_Seen
and then Contains (All_Inputs_Seen, Item_Id)
then
SPARK_Msg_N
("input of a null output list cannot appear in "
& "multiple input lists", Item);
end if;
-- Add an input or a self-referential output to the list
-- of all processed inputs.
if Is_Input or else Self_Ref then
Append_New_Elmt (Item_Id, All_Inputs_Seen);
end if;
-- State related checks (SPARK RM 6.1.5(3))
if Ekind (Item_Id) = E_Abstract_State then
-- Package and subprogram bodies are instantiated
-- individually in a separate compiler pass. Due to
-- this mode of instantiation, the refinement of a
-- state may no longer be visible when a subprogram
-- body contract is instantiated. Since the generic
-- template is legal, do not perform this check in
-- the instance to circumvent this oddity.
if Is_Generic_Instance (Spec_Id) then
null;
-- An abstract state with visible refinement cannot
-- appear in pragma [Refined_]Depends as its place
-- must be taken by some of its constituents
-- (SPARK RM 6.1.4(7)).
elsif Has_Visible_Refinement (Item_Id) then
SPARK_Msg_NE
("cannot mention state & in dependence relation",
Item, Item_Id);
SPARK_Msg_N ("\use its constituents instead", Item);
return;
-- If the reference to the abstract state appears in
-- an enclosing package body that will eventually
-- refine the state, record the reference for future
-- checks.
else
Record_Possible_Body_Reference
(State_Id => Item_Id,
Ref => Item);
end if;
end if;
-- When the item renames an entire object, replace the
-- item with a reference to the object.
if Entity (Item) /= Item_Id then
Rewrite (Item,
New_Occurrence_Of (Item_Id, Sloc (Item)));
Analyze (Item);
end if;
-- Add the entity of the current item to the list of
-- processed items.
if Ekind (Item_Id) = E_Abstract_State then
Append_New_Elmt (Item_Id, States_Seen);
-- The variable may eventually become a constituent of a
-- single protected/task type. Record the reference now
-- and verify its legality when analyzing the contract of
-- the variable (SPARK RM 9.3).
elsif Ekind (Item_Id) = E_Variable then
Record_Possible_Part_Of_Reference
(Var_Id => Item_Id,
Ref => Item);
end if;
if Ekind_In (Item_Id, E_Abstract_State,
E_Constant,
E_Variable)
and then Present (Encapsulating_State (Item_Id))
then
Append_New_Elmt (Item_Id, Constits_Seen);
end if;
-- All other input/output items are illegal
-- (SPARK RM 6.1.5(1)).
else
SPARK_Msg_N
("item must denote parameter, variable, state or "
& "current instance of concurrent type", Item);
end if;
-- All other input/output items are illegal
-- (SPARK RM 6.1.5(1)). This is a syntax error, always report.
else
Error_Msg_N
("item must denote parameter, variable, state or current "
& "instance of concurrent type", Item);
end if;
end if;
end Analyze_Input_Output;
-- Local variables
Inputs : Node_Id;
Output : Node_Id;
Self_Ref : Boolean;
Non_Null_Output_Seen : Boolean := False;
-- Flag used to check the legality of an output list
-- Start of processing for Analyze_Dependency_Clause
begin
Inputs := Expression (Clause);
Self_Ref := False;
-- An input list with a self-dependency appears as operator "+" where
-- the actuals inputs are the right operand.
if Nkind (Inputs) = N_Op_Plus then
Inputs := Right_Opnd (Inputs);
Self_Ref := True;
end if;
-- Process the output_list of a dependency_clause
Output := First (Choices (Clause));
while Present (Output) loop
Analyze_Input_Output
(Item => Output,
Is_Input => False,
Self_Ref => Self_Ref,
Top_Level => True,
Seen => All_Outputs_Seen,
Null_Seen => Null_Output_Seen,
Non_Null_Seen => Non_Null_Output_Seen);
Next (Output);
end loop;
-- Process the input_list of a dependency_clause
Analyze_Input_List (Inputs);
end Analyze_Dependency_Clause;
---------------------------
-- Check_Function_Return --
---------------------------
procedure Check_Function_Return is
begin
if Ekind_In (Spec_Id, E_Function, E_Generic_Function)
and then not Result_Seen
then
SPARK_Msg_NE
("result of & must appear in exactly one output list",
N, Spec_Id);
end if;
end Check_Function_Return;
----------------
-- Check_Role --
----------------
procedure Check_Role
(Item : Node_Id;
Item_Id : Entity_Id;
Is_Input : Boolean;
Self_Ref : Boolean)
is
procedure Find_Role
(Item_Is_Input : out Boolean;
Item_Is_Output : out Boolean);
-- Find the input/output role of Item_Id. Flags Item_Is_Input and
-- Item_Is_Output are set depending on the role.
procedure Role_Error
(Item_Is_Input : Boolean;
Item_Is_Output : Boolean);
-- Emit an error message concerning the incorrect use of Item in
-- pragma [Refined_]Depends. Flags Item_Is_Input and Item_Is_Output
-- denote whether the item is an input and/or an output.
---------------
-- Find_Role --
---------------
procedure Find_Role
(Item_Is_Input : out Boolean;
Item_Is_Output : out Boolean)
is
begin
case Ekind (Item_Id) is
-- Abstract states
when E_Abstract_State =>
-- When pragma Global is present it determines the mode of
-- the abstract state.
if Global_Seen then
Item_Is_Input := Appears_In (Subp_Inputs, Item_Id);
Item_Is_Output := Appears_In (Subp_Outputs, Item_Id);
-- Otherwise the state has a default IN OUT mode, because it
-- behaves as a variable.
else
Item_Is_Input := True;
Item_Is_Output := True;
end if;
-- Constants and IN parameters
when E_Constant
| E_Generic_In_Parameter
| E_In_Parameter
| E_Loop_Parameter
=>
-- When pragma Global is present it determines the mode
-- of constant objects as inputs (and such objects cannot
-- appear as outputs in the Global contract).
if Global_Seen then
Item_Is_Input := Appears_In (Subp_Inputs, Item_Id);
else
Item_Is_Input := True;
end if;
Item_Is_Output := False;
-- Variables and IN OUT parameters
when E_Generic_In_Out_Parameter
| E_In_Out_Parameter
| E_Variable
=>
-- When pragma Global is present it determines the mode of
-- the object.
if Global_Seen then
-- A variable has mode IN when its type is unconstrained
-- or tagged because array bounds, discriminants or tags
-- can be read.
Item_Is_Input :=
Appears_In (Subp_Inputs, Item_Id)
or else Is_Unconstrained_Or_Tagged_Item (Item_Id);
Item_Is_Output := Appears_In (Subp_Outputs, Item_Id);
-- Otherwise the variable has a default IN OUT mode
else
Item_Is_Input := True;
Item_Is_Output := True;
end if;
when E_Out_Parameter =>
-- An OUT parameter of the related subprogram; it cannot
-- appear in Global.
if Scope (Item_Id) = Spec_Id then
-- The parameter has mode IN if its type is unconstrained
-- or tagged because array bounds, discriminants or tags
-- can be read.
Item_Is_Input :=
Is_Unconstrained_Or_Tagged_Item (Item_Id);
Item_Is_Output := True;
-- An OUT parameter of an enclosing subprogram; it can
-- appear in Global and behaves as a read-write variable.
else
-- When pragma Global is present it determines the mode
-- of the object.
if Global_Seen then
-- A variable has mode IN when its type is
-- unconstrained or tagged because array
-- bounds, discriminants or tags can be read.
Item_Is_Input :=
Appears_In (Subp_Inputs, Item_Id)
or else Is_Unconstrained_Or_Tagged_Item (Item_Id);
Item_Is_Output := Appears_In (Subp_Outputs, Item_Id);
-- Otherwise the variable has a default IN OUT mode
else
Item_Is_Input := True;
Item_Is_Output := True;
end if;
end if;
-- Protected types
when E_Protected_Type =>
if Global_Seen then
-- A variable has mode IN when its type is unconstrained
-- or tagged because array bounds, discriminants or tags
-- can be read.
Item_Is_Input :=
Appears_In (Subp_Inputs, Item_Id)
or else Is_Unconstrained_Or_Tagged_Item (Item_Id);
Item_Is_Output := Appears_In (Subp_Outputs, Item_Id);
else
-- A protected type acts as a formal parameter of mode IN
-- when it applies to a protected function.
if Ekind (Spec_Id) = E_Function then
Item_Is_Input := True;
Item_Is_Output := False;
-- Otherwise the protected type acts as a formal of mode
-- IN OUT.
else
Item_Is_Input := True;
Item_Is_Output := True;
end if;
end if;
-- Task types
when E_Task_Type =>
-- When pragma Global is present it determines the mode of
-- the object.
if Global_Seen then
Item_Is_Input :=
Appears_In (Subp_Inputs, Item_Id)
or else Is_Unconstrained_Or_Tagged_Item (Item_Id);
Item_Is_Output := Appears_In (Subp_Outputs, Item_Id);
-- Otherwise task types act as IN OUT parameters
else
Item_Is_Input := True;
Item_Is_Output := True;
end if;
when others =>
raise Program_Error;
end case;
end Find_Role;
----------------
-- Role_Error --
----------------
procedure Role_Error
(Item_Is_Input : Boolean;
Item_Is_Output : Boolean)
is
Error_Msg : Name_Id;
begin
Name_Len := 0;
-- When the item is not part of the input and the output set of
-- the related subprogram, then it appears as extra in pragma
-- [Refined_]Depends.
if not Item_Is_Input and then not Item_Is_Output then
Add_Item_To_Name_Buffer (Item_Id);
Add_Str_To_Name_Buffer
(" & cannot appear in dependence relation");
Error_Msg := Name_Find;
SPARK_Msg_NE (Get_Name_String (Error_Msg), Item, Item_Id);
Error_Msg_Name_1 := Chars (Spec_Id);
SPARK_Msg_NE
(Fix_Msg (Spec_Id, "\& is not part of the input or output "
& "set of subprogram %"), Item, Item_Id);
-- The mode of the item and its role in pragma [Refined_]Depends
-- are in conflict. Construct a detailed message explaining the
-- illegality (SPARK RM 6.1.5(5-6)).
else
if Item_Is_Input then
Add_Str_To_Name_Buffer ("read-only");
else
Add_Str_To_Name_Buffer ("write-only");
end if;
Add_Char_To_Name_Buffer (' ');
Add_Item_To_Name_Buffer (Item_Id);
Add_Str_To_Name_Buffer (" & cannot appear as ");
if Item_Is_Input then
Add_Str_To_Name_Buffer ("output");
else
Add_Str_To_Name_Buffer ("input");
end if;
Add_Str_To_Name_Buffer (" in dependence relation");
Error_Msg := Name_Find;
SPARK_Msg_NE (Get_Name_String (Error_Msg), Item, Item_Id);
end if;
end Role_Error;
-- Local variables
Item_Is_Input : Boolean;
Item_Is_Output : Boolean;
-- Start of processing for Check_Role
begin
Find_Role (Item_Is_Input, Item_Is_Output);
-- Input item
if Is_Input then
if not Item_Is_Input then
Role_Error (Item_Is_Input, Item_Is_Output);
end if;
-- Self-referential item
elsif Self_Ref then
if not Item_Is_Input or else not Item_Is_Output then
Role_Error (Item_Is_Input, Item_Is_Output);
end if;
-- Output item
elsif not Item_Is_Output then
Role_Error (Item_Is_Input, Item_Is_Output);
end if;
end Check_Role;
-----------------
-- Check_Usage --
-----------------
procedure Check_Usage
(Subp_Items : Elist_Id;
Used_Items : Elist_Id;
Is_Input : Boolean)
is
procedure Usage_Error (Item_Id : Entity_Id);
-- Emit an error concerning the illegal usage of an item
-----------------
-- Usage_Error --
-----------------
procedure Usage_Error (Item_Id : Entity_Id) is
Error_Msg : Name_Id;
begin
-- Input case
if Is_Input then
-- Unconstrained and tagged items are not part of the explicit
-- input set of the related subprogram, they do not have to be
-- present in a dependence relation and should not be flagged
-- (SPARK RM 6.1.5(5)).
if not Is_Unconstrained_Or_Tagged_Item (Item_Id) then
Name_Len := 0;
Add_Item_To_Name_Buffer (Item_Id);
Add_Str_To_Name_Buffer
(" & is missing from input dependence list");
Error_Msg := Name_Find;
SPARK_Msg_NE (Get_Name_String (Error_Msg), N, Item_Id);
SPARK_Msg_NE
("\add `null ='> &` dependency to ignore this input",
N, Item_Id);
end if;
-- Output case (SPARK RM 6.1.5(10))
else
Name_Len := 0;
Add_Item_To_Name_Buffer (Item_Id);
Add_Str_To_Name_Buffer
(" & is missing from output dependence list");
Error_Msg := Name_Find;
SPARK_Msg_NE (Get_Name_String (Error_Msg), N, Item_Id);
end if;
end Usage_Error;
-- Local variables
Elmt : Elmt_Id;
Item : Node_Id;
Item_Id : Entity_Id;
-- Start of processing for Check_Usage
begin
if No (Subp_Items) then
return;
end if;
-- Each input or output of the subprogram must appear in a dependency
-- relation.
Elmt := First_Elmt (Subp_Items);
while Present (Elmt) loop
Item := Node (Elmt);
if Nkind (Item) = N_Defining_Identifier then
Item_Id := Item;
else
Item_Id := Entity_Of (Item);
end if;
-- The item does not appear in a dependency
if Present (Item_Id)
and then not Contains (Used_Items, Item_Id)
then
if Is_Formal (Item_Id) then
Usage_Error (Item_Id);
-- The current instance of a protected type behaves as a formal
-- parameter (SPARK RM 6.1.4).
elsif Ekind (Item_Id) = E_Protected_Type
or else Is_Single_Protected_Object (Item_Id)
then
Usage_Error (Item_Id);
-- The current instance of a task type behaves as a formal
-- parameter (SPARK RM 6.1.4).
elsif Ekind (Item_Id) = E_Task_Type
or else Is_Single_Task_Object (Item_Id)
then
-- The dependence of a task unit on itself is implicit and
-- may or may not be explicitly specified (SPARK RM 6.1.4).
-- Emit an error if only one input/output is present.
if Task_Input_Seen /= Task_Output_Seen then
Usage_Error (Item_Id);
end if;
-- States and global objects are not used properly only when
-- the subprogram is subject to pragma Global.
elsif Global_Seen then
Usage_Error (Item_Id);
end if;
end if;
Next_Elmt (Elmt);
end loop;
end Check_Usage;
----------------------
-- Normalize_Clause --
----------------------
procedure Normalize_Clause (Clause : Node_Id) is
procedure Create_Or_Modify_Clause
(Output : Node_Id;
Outputs : Node_Id;
Inputs : Node_Id;
After : Node_Id;
In_Place : Boolean;
Multiple : Boolean);
-- Create a brand new clause to represent the self-reference or
-- modify the input and/or output lists of an existing clause. Output
-- denotes a self-referencial output. Outputs is the output list of a
-- clause. Inputs is the input list of a clause. After denotes the
-- clause after which the new clause is to be inserted. Flag In_Place
-- should be set when normalizing the last output of an output list.
-- Flag Multiple should be set when Output comes from a list with
-- multiple items.
-----------------------------
-- Create_Or_Modify_Clause --
-----------------------------
procedure Create_Or_Modify_Clause
(Output : Node_Id;
Outputs : Node_Id;
Inputs : Node_Id;
After : Node_Id;
In_Place : Boolean;
Multiple : Boolean)
is
procedure Propagate_Output
(Output : Node_Id;
Inputs : Node_Id);
-- Handle the various cases of output propagation to the input
-- list. Output denotes a self-referencial output item. Inputs
-- is the input list of a clause.
----------------------
-- Propagate_Output --
----------------------
procedure Propagate_Output
(Output : Node_Id;
Inputs : Node_Id)
is
function In_Input_List
(Item : Entity_Id;
Inputs : List_Id) return Boolean;
-- Determine whether a particulat item appears in the input
-- list of a clause.
-------------------
-- In_Input_List --
-------------------
function In_Input_List
(Item : Entity_Id;
Inputs : List_Id) return Boolean
is
Elmt : Node_Id;
begin
Elmt := First (Inputs);
while Present (Elmt) loop
if Entity_Of (Elmt) = Item then
return True;
end if;
Next (Elmt);
end loop;
return False;
end In_Input_List;
-- Local variables
Output_Id : constant Entity_Id := Entity_Of (Output);
Grouped : List_Id;
-- Start of processing for Propagate_Output
begin
-- The clause is of the form:
-- (Output =>+ null)
-- Remove null input and replace it with a copy of the output:
-- (Output => Output)
if Nkind (Inputs) = N_Null then
Rewrite (Inputs, New_Copy_Tree (Output));
-- The clause is of the form:
-- (Output =>+ (Input1, ..., InputN))
-- Determine whether the output is not already mentioned in the
-- input list and if not, add it to the list of inputs:
-- (Output => (Output, Input1, ..., InputN))
elsif Nkind (Inputs) = N_Aggregate then
Grouped := Expressions (Inputs);
if not In_Input_List
(Item => Output_Id,
Inputs => Grouped)
then
Prepend_To (Grouped, New_Copy_Tree (Output));
end if;
-- The clause is of the form:
-- (Output =>+ Input)
-- If the input does not mention the output, group the two
-- together:
-- (Output => (Output, Input))
elsif Entity_Of (Inputs) /= Output_Id then
Rewrite (Inputs,
Make_Aggregate (Loc,
Expressions => New_List (
New_Copy_Tree (Output),
New_Copy_Tree (Inputs))));
end if;
end Propagate_Output;
-- Local variables
Loc : constant Source_Ptr := Sloc (Clause);
New_Clause : Node_Id;
-- Start of processing for Create_Or_Modify_Clause
begin
-- A null output depending on itself does not require any
-- normalization.
if Nkind (Output) = N_Null then
return;
-- A function result cannot depend on itself because it cannot
-- appear in the input list of a relation (SPARK RM 6.1.5(10)).
elsif Is_Attribute_Result (Output) then
SPARK_Msg_N ("function result cannot depend on itself", Output);
return;
end if;
-- When performing the transformation in place, simply add the
-- output to the list of inputs (if not already there). This
-- case arises when dealing with the last output of an output
-- list. Perform the normalization in place to avoid generating
-- a malformed tree.
if In_Place then
Propagate_Output (Output, Inputs);
-- A list with multiple outputs is slowly trimmed until only
-- one element remains. When this happens, replace aggregate
-- with the element itself.
if Multiple then
Remove (Output);
Rewrite (Outputs, Output);
end if;
-- Default case
else
-- Unchain the output from its output list as it will appear in
-- a new clause. Note that we cannot simply rewrite the output
-- as null because this will violate the semantics of pragma
-- Depends.
Remove (Output);
-- Generate a new clause of the form:
-- (Output => Inputs)
New_Clause :=
Make_Component_Association (Loc,
Choices => New_List (Output),
Expression => New_Copy_Tree (Inputs));
-- The new clause contains replicated content that has already
-- been analyzed. There is not need to reanalyze or renormalize
-- it again.
Set_Analyzed (New_Clause);
Propagate_Output
(Output => First (Choices (New_Clause)),
Inputs => Expression (New_Clause));
Insert_After (After, New_Clause);
end if;
end Create_Or_Modify_Clause;
-- Local variables
Outputs : constant Node_Id := First (Choices (Clause));
Inputs : Node_Id;
Last_Output : Node_Id;
Next_Output : Node_Id;
Output : Node_Id;
-- Start of processing for Normalize_Clause
begin
-- A self-dependency appears as operator "+". Remove the "+" from the
-- tree by moving the real inputs to their proper place.
if Nkind (Expression (Clause)) = N_Op_Plus then
Rewrite (Expression (Clause), Right_Opnd (Expression (Clause)));
Inputs := Expression (Clause);
-- Multiple outputs appear as an aggregate
if Nkind (Outputs) = N_Aggregate then
Last_Output := Last (Expressions (Outputs));
Output := First (Expressions (Outputs));
while Present (Output) loop
-- Normalization may remove an output from its list,
-- preserve the subsequent output now.
Next_Output := Next (Output);
Create_Or_Modify_Clause
(Output => Output,
Outputs => Outputs,
Inputs => Inputs,
After => Clause,
In_Place => Output = Last_Output,
Multiple => True);
Output := Next_Output;
end loop;
-- Solitary output
else
Create_Or_Modify_Clause
(Output => Outputs,
Outputs => Empty,
Inputs => Inputs,
After => Empty,
In_Place => True,
Multiple => False);
end if;
end if;
end Normalize_Clause;
-- Local variables
Deps : constant Node_Id := Expression (Get_Argument (N, Spec_Id));
Subp_Id : constant Entity_Id := Defining_Entity (Subp_Decl);
Clause : Node_Id;
Errors : Nat;
Last_Clause : Node_Id;
Restore_Scope : Boolean := False;
-- Start of processing for Analyze_Depends_In_Decl_Part
begin
-- Do not analyze the pragma multiple times
if Is_Analyzed_Pragma (N) then
return;
end if;
-- Empty dependency list
if Nkind (Deps) = N_Null then
-- Gather all states, objects and formal parameters that the
-- subprogram may depend on. These items are obtained from the
-- parameter profile or pragma [Refined_]Global (if available).
Collect_Subprogram_Inputs_Outputs
(Subp_Id => Subp_Id,
Subp_Inputs => Subp_Inputs,
Subp_Outputs => Subp_Outputs,
Global_Seen => Global_Seen);
-- Verify that every input or output of the subprogram appear in a
-- dependency.
Check_Usage (Subp_Inputs, All_Inputs_Seen, True);
Check_Usage (Subp_Outputs, All_Outputs_Seen, False);
Check_Function_Return;
-- Dependency clauses appear as component associations of an aggregate
elsif Nkind (Deps) = N_Aggregate then
-- Do not attempt to perform analysis of a syntactically illegal
-- clause as this will lead to misleading errors.
if Has_Extra_Parentheses (Deps) then
return;
end if;
if Present (Component_Associations (Deps)) then
Last_Clause := Last (Component_Associations (Deps));
-- Gather all states, objects and formal parameters that the
-- subprogram may depend on. These items are obtained from the
-- parameter profile or pragma [Refined_]Global (if available).
Collect_Subprogram_Inputs_Outputs
(Subp_Id => Subp_Id,
Subp_Inputs => Subp_Inputs,
Subp_Outputs => Subp_Outputs,
Global_Seen => Global_Seen);
-- When pragma [Refined_]Depends appears on a single concurrent
-- type, it is relocated to the anonymous object.
if Is_Single_Concurrent_Object (Spec_Id) then
null;
-- Ensure that the formal parameters are visible when analyzing
-- all clauses. This falls out of the general rule of aspects
-- pertaining to subprogram declarations.
elsif not In_Open_Scopes (Spec_Id) then
Restore_Scope := True;
Push_Scope (Spec_Id);
if Ekind (Spec_Id) = E_Task_Type then
if Has_Discriminants (Spec_Id) then
Install_Discriminants (Spec_Id);
end if;
elsif Is_Generic_Subprogram (Spec_Id) then
Install_Generic_Formals (Spec_Id);
else
Install_Formals (Spec_Id);
end if;
end if;
Clause := First (Component_Associations (Deps));
while Present (Clause) loop
Errors := Serious_Errors_Detected;
-- The normalization mechanism may create extra clauses that
-- contain replicated input and output names. There is no need
-- to reanalyze them.
if not Analyzed (Clause) then
Set_Analyzed (Clause);
Analyze_Dependency_Clause
(Clause => Clause,
Is_Last => Clause = Last_Clause);
end if;
-- Do not normalize a clause if errors were detected (count
-- of Serious_Errors has increased) because the inputs and/or
-- outputs may denote illegal items. Normalization is disabled
-- in ASIS mode as it alters the tree by introducing new nodes
-- similar to expansion.
if Serious_Errors_Detected = Errors and then not ASIS_Mode then
Normalize_Clause (Clause);
end if;
Next (Clause);
end loop;
if Restore_Scope then
End_Scope;
end if;
-- Verify that every input or output of the subprogram appear in a
-- dependency.
Check_Usage (Subp_Inputs, All_Inputs_Seen, True);
Check_Usage (Subp_Outputs, All_Outputs_Seen, False);
Check_Function_Return;
-- The dependency list is malformed. This is a syntax error, always
-- report.
else
Error_Msg_N ("malformed dependency relation", Deps);
return;
end if;
-- The top level dependency relation is malformed. This is a syntax
-- error, always report.
else
Error_Msg_N ("malformed dependency relation", Deps);
goto Leave;
end if;
-- Ensure that a state and a corresponding constituent do not appear
-- together in pragma [Refined_]Depends.
Check_State_And_Constituent_Use
(States => States_Seen,
Constits => Constits_Seen,
Context => N);
<<Leave>>
Set_Is_Analyzed_Pragma (N);
end Analyze_Depends_In_Decl_Part;
--------------------------------------------
-- Analyze_External_Property_In_Decl_Part --
--------------------------------------------
procedure Analyze_External_Property_In_Decl_Part
(N : Node_Id;
Expr_Val : out Boolean)
is
Arg1 : constant Node_Id := First (Pragma_Argument_Associations (N));
Obj_Decl : constant Node_Id := Find_Related_Context (N);
Obj_Id : constant Entity_Id := Defining_Entity (Obj_Decl);
Expr : Node_Id;
begin
Expr_Val := False;
-- Do not analyze the pragma multiple times
if Is_Analyzed_Pragma (N) then
return;
end if;
Error_Msg_Name_1 := Pragma_Name (N);
-- An external property pragma must apply to an effectively volatile
-- object other than a formal subprogram parameter (SPARK RM 7.1.3(2)).
-- The check is performed at the end of the declarative region due to a
-- possible out-of-order arrangement of pragmas:
-- Obj : ...;
-- pragma Async_Readers (Obj);
-- pragma Volatile (Obj);
if not Is_Effectively_Volatile (Obj_Id) then
SPARK_Msg_N
("external property % must apply to a volatile object", N);
end if;
-- Ensure that the Boolean expression (if present) is static. A missing
-- argument defaults the value to True (SPARK RM 7.1.2(5)).
Expr_Val := True;
if Present (Arg1) then
Expr := Get_Pragma_Arg (Arg1);
if Is_OK_Static_Expression (Expr) then
Expr_Val := Is_True (Expr_Value (Expr));
end if;
end if;
Set_Is_Analyzed_Pragma (N);
end Analyze_External_Property_In_Decl_Part;
---------------------------------
-- Analyze_Global_In_Decl_Part --
---------------------------------
procedure Analyze_Global_In_Decl_Part (N : Node_Id) is
Subp_Decl : constant Node_Id := Find_Related_Declaration_Or_Body (N);
Spec_Id : constant Entity_Id := Unique_Defining_Entity (Subp_Decl);
Subp_Id : constant Entity_Id := Defining_Entity (Subp_Decl);
Constits_Seen : Elist_Id := No_Elist;
-- A list containing the entities of all constituents processed so far.
-- It aids in detecting illegal usage of a state and a corresponding
-- constituent in pragma [Refinde_]Global.
Seen : Elist_Id := No_Elist;
-- A list containing the entities of all the items processed so far. It
-- plays a role in detecting distinct entities.
States_Seen : Elist_Id := No_Elist;
-- A list containing the entities of all states processed so far. It
-- helps in detecting illegal usage of a state and a corresponding
-- constituent in pragma [Refined_]Global.
In_Out_Seen : Boolean := False;
Input_Seen : Boolean := False;
Output_Seen : Boolean := False;
Proof_Seen : Boolean := False;
-- Flags used to verify the consistency of modes
procedure Analyze_Global_List
(List : Node_Id;
Global_Mode : Name_Id := Name_Input);
-- Verify the legality of a single global list declaration. Global_Mode
-- denotes the current mode in effect.
-------------------------
-- Analyze_Global_List --
-------------------------
procedure Analyze_Global_List
(List : Node_Id;
Global_Mode : Name_Id := Name_Input)
is
procedure Analyze_Global_Item
(Item : Node_Id;
Global_Mode : Name_Id);
-- Verify the legality of a single global item declaration denoted by
-- Item. Global_Mode denotes the current mode in effect.
procedure Check_Duplicate_Mode
(Mode : Node_Id;
Status : in out Boolean);
-- Flag Status denotes whether a particular mode has been seen while
-- processing a global list. This routine verifies that Mode is not a
-- duplicate mode and sets the flag Status (SPARK RM 6.1.4(9)).
procedure Check_Mode_Restriction_In_Enclosing_Context
(Item : Node_Id;
Item_Id : Entity_Id);
-- Verify that an item of mode In_Out or Output does not appear as an
-- input in the Global aspect of an enclosing subprogram. If this is
-- the case, emit an error. Item and Item_Id are respectively the
-- item and its entity.
procedure Check_Mode_Restriction_In_Function (Mode : Node_Id);
-- Mode denotes either In_Out or Output. Depending on the kind of the
-- related subprogram, emit an error if those two modes apply to a
-- function (SPARK RM 6.1.4(10)).
-------------------------
-- Analyze_Global_Item --
-------------------------
procedure Analyze_Global_Item
(Item : Node_Id;
Global_Mode : Name_Id)
is
Item_Id : Entity_Id;
begin
-- Detect one of the following cases
-- with Global => (null, Name)
-- with Global => (Name_1, null, Name_2)
-- with Global => (Name, null)
if Nkind (Item) = N_Null then
SPARK_Msg_N ("cannot mix null and non-null global items", Item);
return;
end if;
Analyze (Item);
Resolve_State (Item);
-- Find the entity of the item. If this is a renaming, climb the
-- renaming chain to reach the root object. Renamings of non-
-- entire objects do not yield an entity (Empty).
Item_Id := Entity_Of (Item);
if Present (Item_Id) then
-- A global item may denote a formal parameter of an enclosing
-- subprogram (SPARK RM 6.1.4(6)). Do this check first to
-- provide a better error diagnostic.
if Is_Formal (Item_Id) then
if Scope (Item_Id) = Spec_Id then
SPARK_Msg_NE
(Fix_Msg (Spec_Id, "global item cannot reference "
& "parameter of subprogram &"), Item, Spec_Id);
return;
end if;
-- A global item may denote a concurrent type as long as it is
-- the current instance of an enclosing protected or task type
-- (SPARK RM 6.1.4).
elsif Ekind_In (Item_Id, E_Protected_Type, E_Task_Type) then
if Is_CCT_Instance (Item_Id, Spec_Id) then
-- Pragma [Refined_]Global associated with a protected
-- subprogram cannot mention the current instance of a
-- protected type because the instance behaves as a
-- formal parameter.
if Ekind (Item_Id) = E_Protected_Type then
if Scope (Spec_Id) = Item_Id then
Error_Msg_Name_1 := Chars (Item_Id);
SPARK_Msg_NE
(Fix_Msg (Spec_Id, "global item of subprogram & "
& "cannot reference current instance of "
& "protected type %"), Item, Spec_Id);
return;
end if;
-- Pragma [Refined_]Global associated with a task type
-- cannot mention the current instance of a task type
-- because the instance behaves as a formal parameter.
else pragma Assert (Ekind (Item_Id) = E_Task_Type);
if Spec_Id = Item_Id then
Error_Msg_Name_1 := Chars (Item_Id);
SPARK_Msg_NE
(Fix_Msg (Spec_Id, "global item of subprogram & "
& "cannot reference current instance of task "
& "type %"), Item, Spec_Id);
return;
end if;
end if;
-- Otherwise the global item denotes a subtype mark that is
-- not a current instance.
else
SPARK_Msg_N
("invalid use of subtype mark in global list", Item);
return;
end if;
-- A global item may denote the anonymous object created for a
-- single protected/task type as long as the current instance
-- is the same single type (SPARK RM 6.1.4).
elsif Is_Single_Concurrent_Object (Item_Id)
and then Is_CCT_Instance (Etype (Item_Id), Spec_Id)
then
-- Pragma [Refined_]Global associated with a protected
-- subprogram cannot mention the current instance of a
-- protected type because the instance behaves as a formal
-- parameter.
if Is_Single_Protected_Object (Item_Id) then
if Scope (Spec_Id) = Etype (Item_Id) then
Error_Msg_Name_1 := Chars (Item_Id);
SPARK_Msg_NE
(Fix_Msg (Spec_Id, "global item of subprogram & "
& "cannot reference current instance of protected "
& "type %"), Item, Spec_Id);
return;
end if;
-- Pragma [Refined_]Global associated with a task type
-- cannot mention the current instance of a task type
-- because the instance behaves as a formal parameter.
else pragma Assert (Is_Single_Task_Object (Item_Id));
if Spec_Id = Item_Id then
Error_Msg_Name_1 := Chars (Item_Id);
SPARK_Msg_NE
(Fix_Msg (Spec_Id, "global item of subprogram & "
& "cannot reference current instance of task "
& "type %"), Item, Spec_Id);
return;
end if;
end if;
-- A formal object may act as a global item inside a generic
elsif Is_Formal_Object (Item_Id) then
null;
-- The only legal references are those to abstract states,
-- objects and various kinds of constants (SPARK RM 6.1.4(4)).
elsif not Ekind_In (Item_Id, E_Abstract_State,
E_Constant,
E_Loop_Parameter,
E_Variable)
then
SPARK_Msg_N
("global item must denote object, state or current "
& "instance of concurrent type", Item);
return;
end if;
-- State related checks
if Ekind (Item_Id) = E_Abstract_State then
-- Package and subprogram bodies are instantiated
-- individually in a separate compiler pass. Due to this
-- mode of instantiation, the refinement of a state may
-- no longer be visible when a subprogram body contract
-- is instantiated. Since the generic template is legal,
-- do not perform this check in the instance to circumvent
-- this oddity.
if Is_Generic_Instance (Spec_Id) then
null;
-- An abstract state with visible refinement cannot appear
-- in pragma [Refined_]Global as its place must be taken by
-- some of its constituents (SPARK RM 6.1.4(7)).
elsif Has_Visible_Refinement (Item_Id) then
SPARK_Msg_NE
("cannot mention state & in global refinement",
Item, Item_Id);
SPARK_Msg_N ("\use its constituents instead", Item);
return;
-- An external state cannot appear as a global item of a
-- nonvolatile function (SPARK RM 7.1.3(8)).
elsif Is_External_State (Item_Id)
and then Ekind_In (Spec_Id, E_Function, E_Generic_Function)
and then not Is_Volatile_Function (Spec_Id)
then
SPARK_Msg_NE
("external state & cannot act as global item of "
& "nonvolatile function", Item, Item_Id);
return;
-- If the reference to the abstract state appears in an
-- enclosing package body that will eventually refine the
-- state, record the reference for future checks.
else
Record_Possible_Body_Reference
(State_Id => Item_Id,
Ref => Item);
end if;
-- Constant related checks
elsif Ekind (Item_Id) = E_Constant then
-- A constant is a read-only item, therefore it cannot act
-- as an output.
if Nam_In (Global_Mode, Name_In_Out, Name_Output) then
SPARK_Msg_NE
("constant & cannot act as output", Item, Item_Id);
return;
end if;
-- Loop parameter related checks
elsif Ekind (Item_Id) = E_Loop_Parameter then
-- A loop parameter is a read-only item, therefore it cannot
-- act as an output.
if Nam_In (Global_Mode, Name_In_Out, Name_Output) then
SPARK_Msg_NE
("loop parameter & cannot act as output",
Item, Item_Id);
return;
end if;
-- Variable related checks. These are only relevant when
-- SPARK_Mode is on as they are not standard Ada legality
-- rules.
elsif SPARK_Mode = On
and then Ekind (Item_Id) = E_Variable
and then Is_Effectively_Volatile (Item_Id)
then
-- An effectively volatile object cannot appear as a global
-- item of a nonvolatile function (SPARK RM 7.1.3(8)).
if Ekind_In (Spec_Id, E_Function, E_Generic_Function)
and then not Is_Volatile_Function (Spec_Id)
then
Error_Msg_NE
("volatile object & cannot act as global item of a "
& "function", Item, Item_Id);
return;
-- An effectively volatile object with external property
-- Effective_Reads set to True must have mode Output or
-- In_Out (SPARK RM 7.1.3(10)).
elsif Effective_Reads_Enabled (Item_Id)
and then Global_Mode = Name_Input
then
Error_Msg_NE
("volatile object & with property Effective_Reads must "
& "have mode In_Out or Output", Item, Item_Id);
return;
end if;
end if;
-- When the item renames an entire object, replace the item
-- with a reference to the object.
if Entity (Item) /= Item_Id then
Rewrite (Item, New_Occurrence_Of (Item_Id, Sloc (Item)));
Analyze (Item);
end if;
-- Some form of illegal construct masquerading as a name
-- (SPARK RM 6.1.4(4)).
else
Error_Msg_N
("global item must denote object, state or current instance "
& "of concurrent type", Item);
return;
end if;
-- Verify that an output does not appear as an input in an
-- enclosing subprogram.
if Nam_In (Global_Mode, Name_In_Out, Name_Output) then
Check_Mode_Restriction_In_Enclosing_Context (Item, Item_Id);
end if;
-- The same entity might be referenced through various way.
-- Check the entity of the item rather than the item itself
-- (SPARK RM 6.1.4(10)).
if Contains (Seen, Item_Id) then
SPARK_Msg_N ("duplicate global item", Item);
-- Add the entity of the current item to the list of processed
-- items.
else
Append_New_Elmt (Item_Id, Seen);
if Ekind (Item_Id) = E_Abstract_State then
Append_New_Elmt (Item_Id, States_Seen);
-- The variable may eventually become a constituent of a single
-- protected/task type. Record the reference now and verify its
-- legality when analyzing the contract of the variable
-- (SPARK RM 9.3).
elsif Ekind (Item_Id) = E_Variable then
Record_Possible_Part_Of_Reference
(Var_Id => Item_Id,
Ref => Item);
end if;
if Ekind_In (Item_Id, E_Abstract_State, E_Constant, E_Variable)
and then Present (Encapsulating_State (Item_Id))
then
Append_New_Elmt (Item_Id, Constits_Seen);
end if;
end if;
end Analyze_Global_Item;
--------------------------
-- Check_Duplicate_Mode --
--------------------------
procedure Check_Duplicate_Mode
(Mode : Node_Id;
Status : in out Boolean)
is
begin
if Status then
SPARK_Msg_N ("duplicate global mode", Mode);
end if;
Status := True;
end Check_Duplicate_Mode;
-------------------------------------------------
-- Check_Mode_Restriction_In_Enclosing_Context --
-------------------------------------------------
procedure Check_Mode_Restriction_In_Enclosing_Context
(Item : Node_Id;
Item_Id : Entity_Id)
is
Context : Entity_Id;
Dummy : Boolean;
Inputs : Elist_Id := No_Elist;
Outputs : Elist_Id := No_Elist;
begin
-- Traverse the scope stack looking for enclosing subprograms
-- subject to pragma [Refined_]Global.
Context := Scope (Subp_Id);
while Present (Context) and then Context /= Standard_Standard loop
if Is_Subprogram (Context)
and then
(Present (Get_Pragma (Context, Pragma_Global))
or else
Present (Get_Pragma (Context, Pragma_Refined_Global)))
then
Collect_Subprogram_Inputs_Outputs
(Subp_Id => Context,
Subp_Inputs => Inputs,
Subp_Outputs => Outputs,
Global_Seen => Dummy);
-- The item is classified as In_Out or Output but appears as
-- an Input in an enclosing subprogram (SPARK RM 6.1.4(12)).
if Appears_In (Inputs, Item_Id)
and then not Appears_In (Outputs, Item_Id)
then
SPARK_Msg_NE
("global item & cannot have mode In_Out or Output",
Item, Item_Id);
SPARK_Msg_NE
(Fix_Msg (Subp_Id, "\item already appears as input of "
& "subprogram &"), Item, Context);
-- Stop the traversal once an error has been detected
exit;
end if;
end if;
Context := Scope (Context);
end loop;
end Check_Mode_Restriction_In_Enclosing_Context;
----------------------------------------
-- Check_Mode_Restriction_In_Function --
----------------------------------------
procedure Check_Mode_Restriction_In_Function (Mode : Node_Id) is
begin
if Ekind_In (Spec_Id, E_Function, E_Generic_Function) then
SPARK_Msg_N
("global mode & is not applicable to functions", Mode);
end if;
end Check_Mode_Restriction_In_Function;
-- Local variables
Assoc : Node_Id;
Item : Node_Id;
Mode : Node_Id;
-- Start of processing for Analyze_Global_List
begin
if Nkind (List) = N_Null then
Set_Analyzed (List);
-- Single global item declaration
elsif Nkind_In (List, N_Expanded_Name,
N_Identifier,
N_Selected_Component)
then
Analyze_Global_Item (List, Global_Mode);
-- Simple global list or moded global list declaration
elsif Nkind (List) = N_Aggregate then
Set_Analyzed (List);
-- The declaration of a simple global list appear as a collection
-- of expressions.
if Present (Expressions (List)) then
if Present (Component_Associations (List)) then
SPARK_Msg_N
("cannot mix moded and non-moded global lists", List);
end if;
Item := First (Expressions (List));
while Present (Item) loop
Analyze_Global_Item (Item, Global_Mode);
Next (Item);
end loop;
-- The declaration of a moded global list appears as a collection
-- of component associations where individual choices denote
-- modes.
elsif Present (Component_Associations (List)) then
if Present (Expressions (List)) then
SPARK_Msg_N
("cannot mix moded and non-moded global lists", List);
end if;
Assoc := First (Component_Associations (List));
while Present (Assoc) loop
Mode := First (Choices (Assoc));
if Nkind (Mode) = N_Identifier then
if Chars (Mode) = Name_In_Out then
Check_Duplicate_Mode (Mode, In_Out_Seen);
Check_Mode_Restriction_In_Function (Mode);
elsif Chars (Mode) = Name_Input then
Check_Duplicate_Mode (Mode, Input_Seen);
elsif Chars (Mode) = Name_Output then
Check_Duplicate_Mode (Mode, Output_Seen);
Check_Mode_Restriction_In_Function (Mode);
elsif Chars (Mode) = Name_Proof_In then
Check_Duplicate_Mode (Mode, Proof_Seen);
else
SPARK_Msg_N ("invalid mode selector", Mode);
end if;
else
SPARK_Msg_N ("invalid mode selector", Mode);
end if;
-- Items in a moded list appear as a collection of
-- expressions. Reuse the existing machinery to analyze
-- them.
Analyze_Global_List
(List => Expression (Assoc),
Global_Mode => Chars (Mode));
Next (Assoc);
end loop;
-- Invalid tree
else
raise Program_Error;
end if;
-- Any other attempt to declare a global item is illegal. This is a
-- syntax error, always report.
else
Error_Msg_N ("malformed global list", List);
end if;
end Analyze_Global_List;
-- Local variables
Items : constant Node_Id := Expression (Get_Argument (N, Spec_Id));
Restore_Scope : Boolean := False;
-- Start of processing for Analyze_Global_In_Decl_Part
begin
-- Do not analyze the pragma multiple times
if Is_Analyzed_Pragma (N) then
return;
end if;
-- There is nothing to be done for a null global list
if Nkind (Items) = N_Null then
Set_Analyzed (Items);
-- Analyze the various forms of global lists and items. Note that some
-- of these may be malformed in which case the analysis emits error
-- messages.
else
-- When pragma [Refined_]Global appears on a single concurrent type,
-- it is relocated to the anonymous object.
if Is_Single_Concurrent_Object (Spec_Id) then
null;
-- Ensure that the formal parameters are visible when processing an
-- item. This falls out of the general rule of aspects pertaining to
-- subprogram declarations.
elsif not In_Open_Scopes (Spec_Id) then
Restore_Scope := True;
Push_Scope (Spec_Id);
if Ekind (Spec_Id) = E_Task_Type then
if Has_Discriminants (Spec_Id) then
Install_Discriminants (Spec_Id);
end if;
elsif Is_Generic_Subprogram (Spec_Id) then
Install_Generic_Formals (Spec_Id);
else
Install_Formals (Spec_Id);
end if;
end if;
Analyze_Global_List (Items);
if Restore_Scope then
End_Scope;
end if;
end if;
-- Ensure that a state and a corresponding constituent do not appear
-- together in pragma [Refined_]Global.
Check_State_And_Constituent_Use
(States => States_Seen,
Constits => Constits_Seen,
Context => N);
Set_Is_Analyzed_Pragma (N);
end Analyze_Global_In_Decl_Part;
--------------------------------------------
-- Analyze_Initial_Condition_In_Decl_Part --
--------------------------------------------
-- WARNING: This routine manages Ghost regions. Return statements must be
-- replaced by gotos which jump to the end of the routine and restore the
-- Ghost mode.
procedure Analyze_Initial_Condition_In_Decl_Part (N : Node_Id) is
Pack_Decl : constant Node_Id := Find_Related_Package_Or_Body (N);
Pack_Id : constant Entity_Id := Defining_Entity (Pack_Decl);
Expr : constant Node_Id := Expression (Get_Argument (N, Pack_Id));
Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
-- Save the Ghost mode to restore on exit
begin
-- Do not analyze the pragma multiple times
if Is_Analyzed_Pragma (N) then
return;
end if;
-- Set the Ghost mode in effect from the pragma. Due to the delayed
-- analysis of the pragma, the Ghost mode at point of declaration and
-- point of analysis may not necessarily be the same. Use the mode in
-- effect at the point of declaration.
Set_Ghost_Mode (N);
-- The expression is preanalyzed because it has not been moved to its
-- final place yet. A direct analysis may generate side effects and this
-- is not desired at this point.
Preanalyze_Assert_Expression (Expr, Standard_Boolean);
Set_Is_Analyzed_Pragma (N);
Restore_Ghost_Mode (Saved_GM);
end Analyze_Initial_Condition_In_Decl_Part;
--------------------------------------
-- Analyze_Initializes_In_Decl_Part --
--------------------------------------
procedure Analyze_Initializes_In_Decl_Part (N : Node_Id) is
Pack_Decl : constant Node_Id := Find_Related_Package_Or_Body (N);
Pack_Id : constant Entity_Id := Defining_Entity (Pack_Decl);
Constits_Seen : Elist_Id := No_Elist;
-- A list containing the entities of all constituents processed so far.
-- It aids in detecting illegal usage of a state and a corresponding
-- constituent in pragma Initializes.
Items_Seen : Elist_Id := No_Elist;
-- A list of all initialization items processed so far. This list is
-- used to detect duplicate items.
States_And_Objs : Elist_Id := No_Elist;
-- A list of all abstract states and objects declared in the visible
-- declarations of the related package. This list is used to detect the
-- legality of initialization items.
States_Seen : Elist_Id := No_Elist;
-- A list containing the entities of all states processed so far. It
-- helps in detecting illegal usage of a state and a corresponding
-- constituent in pragma Initializes.
procedure Analyze_Initialization_Item (Item : Node_Id);
-- Verify the legality of a single initialization item
procedure Analyze_Initialization_Item_With_Inputs (Item : Node_Id);
-- Verify the legality of a single initialization item followed by a
-- list of input items.
procedure Collect_States_And_Objects;
-- Inspect the visible declarations of the related package and gather
-- the entities of all abstract states and objects in States_And_Objs.
---------------------------------
-- Analyze_Initialization_Item --
---------------------------------
procedure Analyze_Initialization_Item (Item : Node_Id) is
Item_Id : Entity_Id;
begin
Analyze (Item);
Resolve_State (Item);
if Is_Entity_Name (Item) then
Item_Id := Entity_Of (Item);
if Present (Item_Id)
and then Ekind_In (Item_Id, E_Abstract_State,
E_Constant,
E_Variable)
then
-- When the initialization item is undefined, it appears as
-- Any_Id. Do not continue with the analysis of the item.
if Item_Id = Any_Id then
null;
-- The state or variable must be declared in the visible
-- declarations of the package (SPARK RM 7.1.5(7)).
elsif not Contains (States_And_Objs, Item_Id) then
Error_Msg_Name_1 := Chars (Pack_Id);
SPARK_Msg_NE
("initialization item & must appear in the visible "
& "declarations of package %", Item, Item_Id);
-- Detect a duplicate use of the same initialization item
-- (SPARK RM 7.1.5(5)).
elsif Contains (Items_Seen, Item_Id) then
SPARK_Msg_N ("duplicate initialization item", Item);
-- The item is legal, add it to the list of processed states
-- and variables.
else
Append_New_Elmt (Item_Id, Items_Seen);
if Ekind (Item_Id) = E_Abstract_State then
Append_New_Elmt (Item_Id, States_Seen);
end if;
if Present (Encapsulating_State (Item_Id)) then
Append_New_Elmt (Item_Id, Constits_Seen);
end if;
end if;
-- The item references something that is not a state or object
-- (SPARK RM 7.1.5(3)).
else
SPARK_Msg_N
("initialization item must denote object or state", Item);
end if;
-- Some form of illegal construct masquerading as a name
-- (SPARK RM 7.1.5(3)). This is a syntax error, always report.
else
Error_Msg_N
("initialization item must denote object or state", Item);
end if;
end Analyze_Initialization_Item;
---------------------------------------------
-- Analyze_Initialization_Item_With_Inputs --
---------------------------------------------
procedure Analyze_Initialization_Item_With_Inputs (Item : Node_Id) is
Inputs_Seen : Elist_Id := No_Elist;
-- A list of all inputs processed so far. This list is used to detect
-- duplicate uses of an input.
Non_Null_Seen : Boolean := False;
Null_Seen : Boolean := False;
-- Flags used to check the legality of an input list
procedure Analyze_Input_Item (Input : Node_Id);
-- Verify the legality of a single input item
------------------------
-- Analyze_Input_Item --
------------------------
procedure Analyze_Input_Item (Input : Node_Id) is
Input_Id : Entity_Id;
begin
-- Null input list
if Nkind (Input) = N_Null then
if Null_Seen then
SPARK_Msg_N
("multiple null initializations not allowed", Item);
elsif Non_Null_Seen then
SPARK_Msg_N
("cannot mix null and non-null initialization item", Item);
else
Null_Seen := True;
end if;
-- Input item
else
Non_Null_Seen := True;
if Null_Seen then
SPARK_Msg_N
("cannot mix null and non-null initialization item", Item);
end if;
Analyze (Input);
Resolve_State (Input);
if Is_Entity_Name (Input) then
Input_Id := Entity_Of (Input);
if Present (Input_Id)
and then Ekind_In (Input_Id, E_Abstract_State,
E_Constant,
E_Generic_In_Out_Parameter,
E_Generic_In_Parameter,
E_In_Parameter,
E_In_Out_Parameter,
E_Out_Parameter,
E_Protected_Type,
E_Task_Type,
E_Variable)
then
-- The input cannot denote states or objects declared
-- within the related package (SPARK RM 7.1.5(4)).
if Within_Scope (Input_Id, Current_Scope) then
-- Do not consider generic formal parameters or their
-- respective mappings to generic formals. Even though
-- the formals appear within the scope of the package,
-- it is allowed for an initialization item to depend
-- on an input item.
if Ekind_In (Input_Id, E_Generic_In_Out_Parameter,
E_Generic_In_Parameter)
then
null;
elsif Ekind_In (Input_Id, E_Constant, E_Variable)
and then Present (Corresponding_Generic_Association
(Declaration_Node (Input_Id)))
then
null;
else
Error_Msg_Name_1 := Chars (Pack_Id);
SPARK_Msg_NE
("input item & cannot denote a visible object or "
& "state of package %", Input, Input_Id);
return;
end if;
end if;
-- Detect a duplicate use of the same input item
-- (SPARK RM 7.1.5(5)).
if Contains (Inputs_Seen, Input_Id) then
SPARK_Msg_N ("duplicate input item", Input);
return;
end if;
-- At this point it is known that the input is legal. Add
-- it to the list of processed inputs.
Append_New_Elmt (Input_Id, Inputs_Seen);
if Ekind (Input_Id) = E_Abstract_State then
Append_New_Elmt (Input_Id, States_Seen);
end if;
if Ekind_In (Input_Id, E_Abstract_State,
E_Constant,
E_Variable)
and then Present (Encapsulating_State (Input_Id))
then
Append_New_Elmt (Input_Id, Constits_Seen);
end if;
-- The input references something that is not a state or an
-- object (SPARK RM 7.1.5(3)).
else
SPARK_Msg_N
("input item must denote object or state", Input);
end if;
-- Some form of illegal construct masquerading as a name
-- (SPARK RM 7.1.5(3)). This is a syntax error, always report.
else
Error_Msg_N
("input item must denote object or state", Input);
end if;
end if;
end Analyze_Input_Item;
-- Local variables
Inputs : constant Node_Id := Expression (Item);
Elmt : Node_Id;
Input : Node_Id;
Name_Seen : Boolean := False;
-- A flag used to detect multiple item names
-- Start of processing for Analyze_Initialization_Item_With_Inputs
begin
-- Inspect the name of an item with inputs
Elmt := First (Choices (Item));
while Present (Elmt) loop
if Name_Seen then
SPARK_Msg_N ("only one item allowed in initialization", Elmt);
else
Name_Seen := True;
Analyze_Initialization_Item (Elmt);
end if;
Next (Elmt);
end loop;
-- Multiple input items appear as an aggregate
if Nkind (Inputs) = N_Aggregate then
if Present (Expressions (Inputs)) then
Input := First (Expressions (Inputs));
while Present (Input) loop
Analyze_Input_Item (Input);
Next (Input);
end loop;
end if;
if Present (Component_Associations (Inputs)) then
SPARK_Msg_N
("inputs must appear in named association form", Inputs);
end if;
-- Single input item
else
Analyze_Input_Item (Inputs);
end if;
end Analyze_Initialization_Item_With_Inputs;
--------------------------------
-- Collect_States_And_Objects --
--------------------------------
procedure Collect_States_And_Objects is
Pack_Spec : constant Node_Id := Specification (Pack_Decl);
Decl : Node_Id;
begin
-- Collect the abstract states defined in the package (if any)
if Present (Abstract_States (Pack_Id)) then
States_And_Objs := New_Copy_Elist (Abstract_States (Pack_Id));
end if;
-- Collect all objects that appear in the visible declarations of the
-- related package.
if Present (Visible_Declarations (Pack_Spec)) then
Decl := First (Visible_Declarations (Pack_Spec));
while Present (Decl) loop
if Comes_From_Source (Decl)
and then Nkind_In (Decl, N_Object_Declaration,
N_Object_Renaming_Declaration)
then
Append_New_Elmt (Defining_Entity (Decl), States_And_Objs);
elsif Is_Single_Concurrent_Type_Declaration (Decl) then
Append_New_Elmt
(Anonymous_Object (Defining_Entity (Decl)),
States_And_Objs);
end if;
Next (Decl);
end loop;
end if;
end Collect_States_And_Objects;
-- Local variables
Inits : constant Node_Id := Expression (Get_Argument (N, Pack_Id));
Init : Node_Id;
-- Start of processing for Analyze_Initializes_In_Decl_Part
begin
-- Do not analyze the pragma multiple times
if Is_Analyzed_Pragma (N) then
return;
end if;
-- Nothing to do when the initialization list is empty
if Nkind (Inits) = N_Null then
return;
end if;
-- Single and multiple initialization clauses appear as an aggregate. If
-- this is not the case, then either the parser or the analysis of the
-- pragma failed to produce an aggregate.
pragma Assert (Nkind (Inits) = N_Aggregate);
-- Initialize the various lists used during analysis
Collect_States_And_Objects;
if Present (Expressions (Inits)) then
Init := First (Expressions (Inits));
while Present (Init) loop
Analyze_Initialization_Item (Init);
Next (Init);
end loop;
end if;
if Present (Component_Associations (Inits)) then
Init := First (Component_Associations (Inits));
while Present (Init) loop
Analyze_Initialization_Item_With_Inputs (Init);
Next (Init);
end loop;
end if;
-- Ensure that a state and a corresponding constituent do not appear
-- together in pragma Initializes.
Check_State_And_Constituent_Use
(States => States_Seen,
Constits => Constits_Seen,
Context => N);
Set_Is_Analyzed_Pragma (N);
end Analyze_Initializes_In_Decl_Part;
---------------------
-- Analyze_Part_Of --
---------------------
procedure Analyze_Part_Of
(Indic : Node_Id;
Item_Id : Entity_Id;
Encap : Node_Id;
Encap_Id : out Entity_Id;
Legal : out Boolean)
is
procedure Check_Part_Of_Abstract_State;
pragma Inline (Check_Part_Of_Abstract_State);
-- Verify the legality of indicator Part_Of when the encapsulator is an
-- abstract state.
procedure Check_Part_Of_Concurrent_Type;
pragma Inline (Check_Part_Of_Concurrent_Type);
-- Verify the legality of indicator Part_Of when the encapsulator is a
-- single concurrent type.
----------------------------------
-- Check_Part_Of_Abstract_State --
----------------------------------
procedure Check_Part_Of_Abstract_State is
Pack_Id : Entity_Id;
Placement : State_Space_Kind;
Parent_Unit : Entity_Id;
begin
-- Determine where the object, package instantiation or state lives
-- with respect to the enclosing packages or package bodies.
Find_Placement_In_State_Space
(Item_Id => Item_Id,
Placement => Placement,
Pack_Id => Pack_Id);
-- The item appears in a non-package construct with a declarative
-- part (subprogram, block, etc). As such, the item is not allowed
-- to be a part of an encapsulating state because the item is not
-- visible.
if Placement = Not_In_Package then
SPARK_Msg_N
("indicator Part_Of cannot appear in this context "
& "(SPARK RM 7.2.6(5))", Indic);
Error_Msg_Name_1 := Chars (Scope (Encap_Id));
SPARK_Msg_NE
("\& is not part of the hidden state of package %",
Indic, Item_Id);
return;
-- The item appears in the visible state space of some package. In
-- general this scenario does not warrant Part_Of except when the
-- package is a private child unit and the encapsulating state is
-- declared in a parent unit or a public descendant of that parent
-- unit.
elsif Placement = Visible_State_Space then
if Is_Child_Unit (Pack_Id)
and then Is_Private_Descendant (Pack_Id)
then
-- A variable or state abstraction which is part of the visible
-- state of a private child unit or its public descendants must
-- have its Part_Of indicator specified. The Part_Of indicator
-- must denote a state declared by either the parent unit of
-- the private unit or by a public descendant of that parent
-- unit.
-- Find the nearest private ancestor (which can be the current
-- unit itself).
Parent_Unit := Pack_Id;
while Present (Parent_Unit) loop
exit when
Private_Present
(Parent (Unit_Declaration_Node (Parent_Unit)));
Parent_Unit := Scope (Parent_Unit);
end loop;
Parent_Unit := Scope (Parent_Unit);
if not Is_Child_Or_Sibling (Pack_Id, Scope (Encap_Id)) then
SPARK_Msg_NE
("indicator Part_Of must denote abstract state of & or of "
& "its public descendant (SPARK RM 7.2.6(3))",
Indic, Parent_Unit);
return;
elsif Scope (Encap_Id) = Parent_Unit
or else
(Is_Ancestor_Package (Parent_Unit, Scope (Encap_Id))
and then not Is_Private_Descendant (Scope (Encap_Id)))
then
null;
else
SPARK_Msg_NE
("indicator Part_Of must denote abstract state of & or of "
& "its public descendant (SPARK RM 7.2.6(3))",
Indic, Parent_Unit);
return;
end if;
-- Indicator Part_Of is not needed when the related package is not
-- a private child unit or a public descendant thereof.
else
SPARK_Msg_N
("indicator Part_Of cannot appear in this context "
& "(SPARK RM 7.2.6(5))", Indic);
Error_Msg_Name_1 := Chars (Pack_Id);
SPARK_Msg_NE
("\& is declared in the visible part of package %",
Indic, Item_Id);
return;
end if;
-- When the item appears in the private state space of a package, the
-- encapsulating state must be declared in the same package.
elsif Placement = Private_State_Space then
if Scope (Encap_Id) /= Pack_Id then
SPARK_Msg_NE
("indicator Part_Of must denote an abstract state of "
& "package & (SPARK RM 7.2.6(2))", Indic, Pack_Id);
Error_Msg_Name_1 := Chars (Pack_Id);
SPARK_Msg_NE
("\& is declared in the private part of package %",
Indic, Item_Id);
return;
end if;
-- Items declared in the body state space of a package do not need
-- Part_Of indicators as the refinement has already been seen.
else
SPARK_Msg_N
("indicator Part_Of cannot appear in this context "
& "(SPARK RM 7.2.6(5))", Indic);
if Scope (Encap_Id) = Pack_Id then
Error_Msg_Name_1 := Chars (Pack_Id);
SPARK_Msg_NE
("\& is declared in the body of package %", Indic, Item_Id);
end if;
return;
end if;
-- At this point it is known that the Part_Of indicator is legal
Legal := True;
end Check_Part_Of_Abstract_State;
-----------------------------------
-- Check_Part_Of_Concurrent_Type --
-----------------------------------
procedure Check_Part_Of_Concurrent_Type is
function In_Proper_Order
(First : Node_Id;
Second : Node_Id) return Boolean;
pragma Inline (In_Proper_Order);
-- Determine whether node First precedes node Second
procedure Placement_Error;
pragma Inline (Placement_Error);
-- Emit an error concerning the illegal placement of the item with
-- respect to the single concurrent type.
---------------------
-- In_Proper_Order --
---------------------
function In_Proper_Order
(First : Node_Id;
Second : Node_Id) return Boolean
is
N : Node_Id;
begin
if List_Containing (First) = List_Containing (Second) then
N := First;
while Present (N) loop
if N = Second then
return True;
end if;
Next (N);
end loop;
end if;
return False;
end In_Proper_Order;
---------------------
-- Placement_Error --
---------------------
procedure Placement_Error is
begin
SPARK_Msg_N
("indicator Part_Of must denote a previously declared single "
& "protected type or single task type", Encap);
end Placement_Error;
-- Local variables
Conc_Typ : constant Entity_Id := Etype (Encap_Id);
Encap_Decl : constant Node_Id := Declaration_Node (Encap_Id);
Encap_Context : constant Node_Id := Parent (Encap_Decl);
Item_Context : Node_Id;
Item_Decl : Node_Id;
Prv_Decls : List_Id;
Vis_Decls : List_Id;
-- Start of processing for Check_Part_Of_Concurrent_Type
begin
-- Only abstract states and variables can act as constituents of an
-- encapsulating single concurrent type.
if Ekind_In (Item_Id, E_Abstract_State, E_Variable) then
null;
-- The constituent is a constant
elsif Ekind (Item_Id) = E_Constant then
Error_Msg_Name_1 := Chars (Encap_Id);
SPARK_Msg_NE
(Fix_Msg (Conc_Typ, "constant & cannot act as constituent of "
& "single protected type %"), Indic, Item_Id);
return;
-- The constituent is a package instantiation
else
Error_Msg_Name_1 := Chars (Encap_Id);
SPARK_Msg_NE
(Fix_Msg (Conc_Typ, "package instantiation & cannot act as "
& "constituent of single protected type %"), Indic, Item_Id);
return;
end if;
-- When the item denotes an abstract state of a nested package, use
-- the declaration of the package to detect proper placement.
-- package Pack is
-- task T;
-- package Nested
-- with Abstract_State => (State with Part_Of => T)
if Ekind (Item_Id) = E_Abstract_State then
Item_Decl := Unit_Declaration_Node (Scope (Item_Id));
else
Item_Decl := Declaration_Node (Item_Id);
end if;
Item_Context := Parent (Item_Decl);
-- The item and the single concurrent type must appear in the same
-- declarative region, with the item following the declaration of
-- the single concurrent type (SPARK RM 9(3)).
if Item_Context = Encap_Context then
if Nkind_In (Item_Context, N_Package_Specification,
N_Protected_Definition,
N_Task_Definition)
then
Prv_Decls := Private_Declarations (Item_Context);
Vis_Decls := Visible_Declarations (Item_Context);
-- The placement is OK when the single concurrent type appears
-- within the visible declarations and the item in the private
-- declarations.
--
-- package Pack is
-- protected PO ...
-- private
-- Constit : ... with Part_Of => PO;
-- end Pack;
if List_Containing (Encap_Decl) = Vis_Decls
and then List_Containing (Item_Decl) = Prv_Decls
then
null;
-- The placement is illegal when the item appears within the
-- visible declarations and the single concurrent type is in
-- the private declarations.
--
-- package Pack is
-- Constit : ... with Part_Of => PO;
-- private
-- protected PO ...
-- end Pack;
elsif List_Containing (Item_Decl) = Vis_Decls
and then List_Containing (Encap_Decl) = Prv_Decls
then
Placement_Error;
return;
-- Otherwise both the item and the single concurrent type are
-- in the same list. Ensure that the declaration of the single
-- concurrent type precedes that of the item.
elsif not In_Proper_Order
(First => Encap_Decl,
Second => Item_Decl)
then
Placement_Error;
return;
end if;
-- Otherwise both the item and the single concurrent type are
-- in the same list. Ensure that the declaration of the single
-- concurrent type precedes that of the item.
elsif not In_Proper_Order
(First => Encap_Decl,
Second => Item_Decl)
then
Placement_Error;
return;
end if;
-- Otherwise the item and the single concurrent type reside within
-- unrelated regions.
else
Error_Msg_Name_1 := Chars (Encap_Id);
SPARK_Msg_NE
(Fix_Msg (Conc_Typ, "constituent & must be declared "
& "immediately within the same region as single protected "
& "type %"), Indic, Item_Id);
return;
end if;
-- At this point it is known that the Part_Of indicator is legal
Legal := True;
end Check_Part_Of_Concurrent_Type;
-- Start of processing for Analyze_Part_Of
begin
-- Assume that the indicator is illegal
Encap_Id := Empty;
Legal := False;
if Nkind_In (Encap, N_Expanded_Name,
N_Identifier,
N_Selected_Component)
then
Analyze (Encap);
Resolve_State (Encap);
Encap_Id := Entity (Encap);
-- The encapsulator is an abstract state
if Ekind (Encap_Id) = E_Abstract_State then
null;
-- The encapsulator is a single concurrent type (SPARK RM 9.3)
elsif Is_Single_Concurrent_Object (Encap_Id) then
null;
-- Otherwise the encapsulator is not a legal choice
else
SPARK_Msg_N
("indicator Part_Of must denote abstract state, single "
& "protected type or single task type", Encap);
return;
end if;
-- This is a syntax error, always report
else
Error_Msg_N
("indicator Part_Of must denote abstract state, single protected "
& "type or single task type", Encap);
return;
end if;
-- Catch a case where indicator Part_Of denotes the abstract view of a
-- variable which appears as an abstract state (SPARK RM 10.1.2 2).
if From_Limited_With (Encap_Id)
and then Present (Non_Limited_View (Encap_Id))
and then Ekind (Non_Limited_View (Encap_Id)) = E_Variable
then
SPARK_Msg_N ("indicator Part_Of must denote abstract state", Encap);
SPARK_Msg_N ("\& denotes abstract view of object", Encap);
return;
end if;
-- The encapsulator is an abstract state
if Ekind (Encap_Id) = E_Abstract_State then
Check_Part_Of_Abstract_State;
-- The encapsulator is a single concurrent type
else
Check_Part_Of_Concurrent_Type;
end if;
end Analyze_Part_Of;
----------------------------------
-- Analyze_Part_Of_In_Decl_Part --
----------------------------------
procedure Analyze_Part_Of_In_Decl_Part
(N : Node_Id;
Freeze_Id : Entity_Id := Empty)
is
Encap : constant Node_Id :=
Get_Pragma_Arg (First (Pragma_Argument_Associations (N)));
Errors : constant Nat := Serious_Errors_Detected;
Var_Decl : constant Node_Id := Find_Related_Context (N);
Var_Id : constant Entity_Id := Defining_Entity (Var_Decl);
Constits : Elist_Id;
Encap_Id : Entity_Id;
Legal : Boolean;
begin
-- Detect any discrepancies between the placement of the variable with
-- respect to general state space and the encapsulating state or single
-- concurrent type.
Analyze_Part_Of
(Indic => N,
Item_Id => Var_Id,
Encap => Encap,
Encap_Id => Encap_Id,
Legal => Legal);
-- The Part_Of indicator turns the variable into a constituent of the
-- encapsulating state or single concurrent type.
if Legal then
pragma Assert (Present (Encap_Id));
Constits := Part_Of_Constituents (Encap_Id);
if No (Constits) then
Constits := New_Elmt_List;
Set_Part_Of_Constituents (Encap_Id, Constits);
end if;
Append_Elmt (Var_Id, Constits);
Set_Encapsulating_State (Var_Id, Encap_Id);
-- A Part_Of constituent partially refines an abstract state. This
-- property does not apply to protected or task units.
if Ekind (Encap_Id) = E_Abstract_State then
Set_Has_Partial_Visible_Refinement (Encap_Id);
end if;
end if;
-- Emit a clarification message when the encapsulator is undefined,
-- possibly due to contract freezing.
if Errors /= Serious_Errors_Detected
and then Present (Freeze_Id)
and then Has_Undefined_Reference (Encap)
then
Contract_Freeze_Error (Var_Id, Freeze_Id);
end if;
end Analyze_Part_Of_In_Decl_Part;
--------------------
-- Analyze_Pragma --
--------------------
procedure Analyze_Pragma (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Pname : Name_Id := Pragma_Name (N);
-- Name of the source pragma, or name of the corresponding aspect for
-- pragmas which originate in a source aspect. In the latter case, the
-- name may be different from the pragma name.
Prag_Id : constant Pragma_Id := Get_Pragma_Id (Pname);
Pragma_Exit : exception;
-- This exception is used to exit pragma processing completely. It
-- is used when an error is detected, and no further processing is
-- required. It is also used if an earlier error has left the tree in
-- a state where the pragma should not be processed.
Arg_Count : Nat;
-- Number of pragma argument associations
Arg1 : Node_Id;
Arg2 : Node_Id;
Arg3 : Node_Id;
Arg4 : Node_Id;
-- First four pragma arguments (pragma argument association nodes, or
-- Empty if the corresponding argument does not exist).
type Name_List is array (Natural range <>) of Name_Id;
type Args_List is array (Natural range <>) of Node_Id;
-- Types used for arguments to Check_Arg_Order and Gather_Associations
-----------------------
-- Local Subprograms --
-----------------------
procedure Acquire_Warning_Match_String (Arg : Node_Id);
-- Used by pragma Warnings (Off, string), and Warn_As_Error (string) to
-- get the given string argument, and place it in Name_Buffer, adding
-- leading and trailing asterisks if they are not already present. The
-- caller has already checked that Arg is a static string expression.
procedure Ada_2005_Pragma;
-- Called for pragmas defined in Ada 2005, that are not in Ada 95. In
-- Ada 95 mode, these are implementation defined pragmas, so should be
-- caught by the No_Implementation_Pragmas restriction.
procedure Ada_2012_Pragma;
-- Called for pragmas defined in Ada 2012, that are not in Ada 95 or 05.
-- In Ada 95 or 05 mode, these are implementation defined pragmas, so
-- should be caught by the No_Implementation_Pragmas restriction.
procedure Analyze_Depends_Global
(Spec_Id : out Entity_Id;
Subp_Decl : out Node_Id;
Legal : out Boolean);
-- Subsidiary to the analysis of pragmas Depends and Global. Verify the
-- legality of the placement and related context of the pragma. Spec_Id
-- is the entity of the related subprogram. Subp_Decl is the declaration
-- of the related subprogram. Sets flag Legal when the pragma is legal.
procedure Analyze_If_Present (Id : Pragma_Id);
-- Inspect the remainder of the list containing pragma N and look for
-- a pragma that matches Id. If found, analyze the pragma.
procedure Analyze_Pre_Post_Condition;
-- Subsidiary to the analysis of pragmas Precondition and Postcondition
procedure Analyze_Refined_Depends_Global_Post
(Spec_Id : out Entity_Id;
Body_Id : out Entity_Id;
Legal : out Boolean);
-- Subsidiary routine to the analysis of body pragmas Refined_Depends,
-- Refined_Global and Refined_Post. Verify the legality of the placement
-- and related context of the pragma. Spec_Id is the entity of the
-- related subprogram. Body_Id is the entity of the subprogram body.
-- Flag Legal is set when the pragma is legal.
procedure Analyze_Unmodified_Or_Unused (Is_Unused : Boolean := False);
-- Perform full analysis of pragma Unmodified and the write aspect of
-- pragma Unused. Flag Is_Unused should be set when verifying the
-- semantics of pragma Unused.
procedure Analyze_Unreferenced_Or_Unused (Is_Unused : Boolean := False);
-- Perform full analysis of pragma Unreferenced and the read aspect of
-- pragma Unused. Flag Is_Unused should be set when verifying the
-- semantics of pragma Unused.
procedure Check_Ada_83_Warning;
-- Issues a warning message for the current pragma if operating in Ada
-- 83 mode (used for language pragmas that are not a standard part of
-- Ada 83). This procedure does not raise Pragma_Exit. Also notes use
-- of 95 pragma.
procedure Check_Arg_Count (Required : Nat);
-- Check argument count for pragma is equal to given parameter. If not,
-- then issue an error message and raise Pragma_Exit.
-- Note: all routines whose name is Check_Arg_Is_xxx take an argument
-- Arg which can either be a pragma argument association, in which case
-- the check is applied to the expression of the association or an
-- expression directly.
procedure Check_Arg_Is_External_Name (Arg : Node_Id);
-- Check that an argument has the right form for an EXTERNAL_NAME
-- parameter of an extended import/export pragma. The rule is that the
-- name must be an identifier or string literal (in Ada 83 mode) or a
-- static string expression (in Ada 95 mode).
procedure Check_Arg_Is_Identifier (Arg : Node_Id);
-- Check the specified argument Arg to make sure that it is an
-- identifier. If not give error and raise Pragma_Exit.
procedure Check_Arg_Is_Integer_Literal (Arg : Node_Id);
-- Check the specified argument Arg to make sure that it is an integer
-- literal. If not give error and raise Pragma_Exit.
procedure Check_Arg_Is_Library_Level_Local_Name (Arg : Node_Id);
-- Check the specified argument Arg to make sure that it has the proper
-- syntactic form for a local name and meets the semantic requirements
-- for a local name. The local name is analyzed as part of the
-- processing for this call. In addition, the local name is required
-- to represent an entity at the library level.
procedure Check_Arg_Is_Local_Name (Arg : Node_Id);
-- Check the specified argument Arg to make sure that it has the proper
-- syntactic form for a local name and meets the semantic requirements
-- for a local name. The local name is analyzed as part of the
-- processing for this call.
procedure Check_Arg_Is_Locking_Policy (Arg : Node_Id);
-- Check the specified argument Arg to make sure that it is a valid
-- locking policy name. If not give error and raise Pragma_Exit.
procedure Check_Arg_Is_Partition_Elaboration_Policy (Arg : Node_Id);
-- Check the specified argument Arg to make sure that it is a valid
-- elaboration policy name. If not give error and raise Pragma_Exit.
procedure Check_Arg_Is_One_Of
(Arg : Node_Id;
N1, N2 : Name_Id);
procedure Check_Arg_Is_One_Of
(Arg : Node_Id;
N1, N2, N3 : Name_Id);
procedure Check_Arg_Is_One_Of
(Arg : Node_Id;
N1, N2, N3, N4 : Name_Id);
procedure Check_Arg_Is_One_Of
(Arg : Node_Id;
N1, N2, N3, N4, N5 : Name_Id);
-- Check the specified argument Arg to make sure that it is an
-- identifier whose name matches either N1 or N2 (or N3, N4, N5 if
-- present). If not then give error and raise Pragma_Exit.
procedure Check_Arg_Is_Queuing_Policy (Arg : Node_Id);
-- Check the specified argument Arg to make sure that it is a valid
-- queuing policy name. If not give error and raise Pragma_Exit.
procedure Check_Arg_Is_OK_Static_Expression
(Arg : Node_Id;
Typ : Entity_Id := Empty);
-- Check the specified argument Arg to make sure that it is a static
-- expression of the given type (i.e. it will be analyzed and resolved
-- using this type, which can be any valid argument to Resolve, e.g.
-- Any_Integer is OK). If not, given error and raise Pragma_Exit. If
-- Typ is left Empty, then any static expression is allowed. Includes
-- checking that the argument does not raise Constraint_Error.
procedure Check_Arg_Is_Task_Dispatching_Policy (Arg : Node_Id);
-- Check the specified argument Arg to make sure that it is a valid task
-- dispatching policy name. If not give error and raise Pragma_Exit.
procedure Check_Arg_Order (Names : Name_List);
-- Checks for an instance of two arguments with identifiers for the
-- current pragma which are not in the sequence indicated by Names,
-- and if so, generates a fatal message about bad order of arguments.
procedure Check_At_Least_N_Arguments (N : Nat);
-- Check there are at least N arguments present
procedure Check_At_Most_N_Arguments (N : Nat);
-- Check there are no more than N arguments present
procedure Check_Component
(Comp : Node_Id;
UU_Typ : Entity_Id;
In_Variant_Part : Boolean := False);
-- Examine an Unchecked_Union component for correct use of per-object
-- constrained subtypes, and for restrictions on finalizable components.
-- UU_Typ is the related Unchecked_Union type. Flag In_Variant_Part
-- should be set when Comp comes from a record variant.
procedure Check_Duplicate_Pragma (E : Entity_Id);
-- Check if a rep item of the same name as the current pragma is already
-- chained as a rep pragma to the given entity. If so give a message
-- about the duplicate, and then raise Pragma_Exit so does not return.
-- Note that if E is a type, then this routine avoids flagging a pragma
-- which applies to a parent type from which E is derived.
procedure Check_Duplicated_Export_Name (Nam : Node_Id);
-- Nam is an N_String_Literal node containing the external name set by
-- an Import or Export pragma (or extended Import or Export pragma).
-- This procedure checks for possible duplications if this is the export
-- case, and if found, issues an appropriate error message.
procedure Check_Expr_Is_OK_Static_Expression
(Expr : Node_Id;
Typ : Entity_Id := Empty);
-- Check the specified expression Expr to make sure that it is a static
-- expression of the given type (i.e. it will be analyzed and resolved
-- using this type, which can be any valid argument to Resolve, e.g.
-- Any_Integer is OK). If not, given error and raise Pragma_Exit. If
-- Typ is left Empty, then any static expression is allowed. Includes
-- checking that the expression does not raise Constraint_Error.
procedure Check_First_Subtype (Arg : Node_Id);
-- Checks that Arg, whose expression is an entity name, references a
-- first subtype.
procedure Check_Identifier (Arg : Node_Id; Id : Name_Id);
-- Checks that the given argument has an identifier, and if so, requires
-- it to match the given identifier name. If there is no identifier, or
-- a non-matching identifier, then an error message is given and
-- Pragma_Exit is raised.
procedure Check_Identifier_Is_One_Of (Arg : Node_Id; N1, N2 : Name_Id);
-- Checks that the given argument has an identifier, and if so, requires
-- it to match one of the given identifier names. If there is no
-- identifier, or a non-matching identifier, then an error message is
-- given and Pragma_Exit is raised.
procedure Check_In_Main_Program;
-- Common checks for pragmas that appear within a main program
-- (Priority, Main_Storage, Time_Slice, Relative_Deadline, CPU).
procedure Check_Interrupt_Or_Attach_Handler;
-- Common processing for first argument of pragma Interrupt_Handler or
-- pragma Attach_Handler.
procedure Check_Loop_Pragma_Placement;
-- Verify whether pragmas Loop_Invariant, Loop_Optimize and Loop_Variant
-- appear immediately within a construct restricted to loops, and that
-- pragmas Loop_Invariant and Loop_Variant are grouped together.
procedure Check_Is_In_Decl_Part_Or_Package_Spec;
-- Check that pragma appears in a declarative part, or in a package
-- specification, i.e. that it does not occur in a statement sequence
-- in a body.
procedure Check_No_Identifier (Arg : Node_Id);
-- Checks that the given argument does not have an identifier. If
-- an identifier is present, then an error message is issued, and
-- Pragma_Exit is raised.
procedure Check_No_Identifiers;
-- Checks that none of the arguments to the pragma has an identifier.
-- If any argument has an identifier, then an error message is issued,
-- and Pragma_Exit is raised.
procedure Check_No_Link_Name;
-- Checks that no link name is specified
procedure Check_Optional_Identifier (Arg : Node_Id; Id : Name_Id);
-- Checks if the given argument has an identifier, and if so, requires
-- it to match the given identifier name. If there is a non-matching
-- identifier, then an error message is given and Pragma_Exit is raised.
procedure Check_Optional_Identifier (Arg : Node_Id; Id : String);
-- Checks if the given argument has an identifier, and if so, requires
-- it to match the given identifier name. If there is a non-matching
-- identifier, then an error message is given and Pragma_Exit is raised.
-- In this version of the procedure, the identifier name is given as
-- a string with lower case letters.
procedure Check_Static_Boolean_Expression (Expr : Node_Id);
-- Subsidiary to the analysis of pragmas Async_Readers, Async_Writers,
-- Constant_After_Elaboration, Effective_Reads, Effective_Writes,
-- Extensions_Visible and Volatile_Function. Ensure that expression Expr
-- is an OK static boolean expression. Emit an error if this is not the
-- case.
procedure Check_Static_Constraint (Constr : Node_Id);
-- Constr is a constraint from an N_Subtype_Indication node from a
-- component constraint in an Unchecked_Union type. This routine checks
-- that the constraint is static as required by the restrictions for
-- Unchecked_Union.
procedure Check_Valid_Configuration_Pragma;
-- Legality checks for placement of a configuration pragma
procedure Check_Valid_Library_Unit_Pragma;
-- Legality checks for library unit pragmas. A special case arises for
-- pragmas in generic instances that come from copies of the original
-- library unit pragmas in the generic templates. In the case of other
-- than library level instantiations these can appear in contexts which
-- would normally be invalid (they only apply to the original template
-- and to library level instantiations), and they are simply ignored,
-- which is implemented by rewriting them as null statements.
procedure Check_Variant (Variant : Node_Id; UU_Typ : Entity_Id);
-- Check an Unchecked_Union variant for lack of nested variants and
-- presence of at least one component. UU_Typ is the related Unchecked_
-- Union type.
procedure Ensure_Aggregate_Form (Arg : Node_Id);
-- Subsidiary routine to the processing of pragmas Abstract_State,
-- Contract_Cases, Depends, Global, Initializes, Refined_Depends,
-- Refined_Global and Refined_State. Transform argument Arg into
-- an aggregate if not one already. N_Null is never transformed.
-- Arg may denote an aspect specification or a pragma argument
-- association.
procedure Error_Pragma (Msg : String);
pragma No_Return (Error_Pragma);
-- Outputs error message for current pragma. The message contains a %
-- that will be replaced with the pragma name, and the flag is placed
-- on the pragma itself. Pragma_Exit is then raised. Note: this routine
-- calls Fix_Error (see spec of that procedure for details).
procedure Error_Pragma_Arg (Msg : String; Arg : Node_Id);
pragma No_Return (Error_Pragma_Arg);
-- Outputs error message for current pragma. The message may contain
-- a % that will be replaced with the pragma name. The parameter Arg
-- may either be a pragma argument association, in which case the flag
-- is placed on the expression of this association, or an expression,
-- in which case the flag is placed directly on the expression. The
-- message is placed using Error_Msg_N, so the message may also contain
-- an & insertion character which will reference the given Arg value.
-- After placing the message, Pragma_Exit is raised. Note: this routine
-- calls Fix_Error (see spec of that procedure for details).
procedure Error_Pragma_Arg (Msg1, Msg2 : String; Arg : Node_Id);
pragma No_Return (Error_Pragma_Arg);
-- Similar to above form of Error_Pragma_Arg except that two messages
-- are provided, the second is a continuation comment starting with \.
procedure Error_Pragma_Arg_Ident (Msg : String; Arg : Node_Id);
pragma No_Return (Error_Pragma_Arg_Ident);
-- Outputs error message for current pragma. The message may contain a %
-- that will be replaced with the pragma name. The parameter Arg must be
-- a pragma argument association with a non-empty identifier (i.e. its
-- Chars field must be set), and the error message is placed on the
-- identifier. The message is placed using Error_Msg_N so the message
-- may also contain an & insertion character which will reference
-- the identifier. After placing the message, Pragma_Exit is raised.
-- Note: this routine calls Fix_Error (see spec of that procedure for
-- details).
procedure Error_Pragma_Ref (Msg : String; Ref : Entity_Id);
pragma No_Return (Error_Pragma_Ref);
-- Outputs error message for current pragma. The message may contain
-- a % that will be replaced with the pragma name. The parameter Ref
-- must be an entity whose name can be referenced by & and sloc by #.
-- After placing the message, Pragma_Exit is raised. Note: this routine
-- calls Fix_Error (see spec of that procedure for details).
function Find_Lib_Unit_Name return Entity_Id;
-- Used for a library unit pragma to find the entity to which the
-- library unit pragma applies, returns the entity found.
procedure Find_Program_Unit_Name (Id : Node_Id);
-- If the pragma is a compilation unit pragma, the id must denote the
-- compilation unit in the same compilation, and the pragma must appear
-- in the list of preceding or trailing pragmas. If it is a program
-- unit pragma that is not a compilation unit pragma, then the
-- identifier must be visible.
function Find_Unique_Parameterless_Procedure
(Name : Entity_Id;
Arg : Node_Id) return Entity_Id;
-- Used for a procedure pragma to find the unique parameterless
-- procedure identified by Name, returns it if it exists, otherwise
-- errors out and uses Arg as the pragma argument for the message.
function Fix_Error (Msg : String) return String;
-- This is called prior to issuing an error message. Msg is the normal
-- error message issued in the pragma case. This routine checks for the
-- case of a pragma coming from an aspect in the source, and returns a
-- message suitable for the aspect case as follows:
--
-- Each substring "pragma" is replaced by "aspect"
--
-- If "argument of" is at the start of the error message text, it is
-- replaced by "entity for".
--
-- If "argument" is at the start of the error message text, it is
-- replaced by "entity".
--
-- So for example, "argument of pragma X must be discrete type"
-- returns "entity for aspect X must be a discrete type".
-- Finally Error_Msg_Name_1 is set to the name of the aspect (which may
-- be different from the pragma name). If the current pragma results
-- from rewriting another pragma, then Error_Msg_Name_1 is set to the
-- original pragma name.
procedure Gather_Associations
(Names : Name_List;
Args : out Args_List);
-- This procedure is used to gather the arguments for a pragma that
-- permits arbitrary ordering of parameters using the normal rules
-- for named and positional parameters. The Names argument is a list
-- of Name_Id values that corresponds to the allowed pragma argument
-- association identifiers in order. The result returned in Args is
-- a list of corresponding expressions that are the pragma arguments.
-- Note that this is a list of expressions, not of pragma argument
-- associations (Gather_Associations has completely checked all the
-- optional identifiers when it returns). An entry in Args is Empty
-- on return if the corresponding argument is not present.
procedure GNAT_Pragma;
-- Called for all GNAT defined pragmas to check the relevant restriction
-- (No_Implementation_Pragmas).
function Is_Before_First_Decl
(Pragma_Node : Node_Id;
Decls : List_Id) return Boolean;
-- Return True if Pragma_Node is before the first declarative item in
-- Decls where Decls is the list of declarative items.
function Is_Configuration_Pragma return Boolean;
-- Determines if the placement of the current pragma is appropriate
-- for a configuration pragma.
function Is_In_Context_Clause return Boolean;
-- Returns True if pragma appears within the context clause of a unit,
-- and False for any other placement (does not generate any messages).
function Is_Static_String_Expression (Arg : Node_Id) return Boolean;
-- Analyzes the argument, and determines if it is a static string
-- expression, returns True if so, False if non-static or not String.
-- A special case is that a string literal returns True in Ada 83 mode
-- (which has no such thing as static string expressions). Note that
-- the call analyzes its argument, so this cannot be used for the case
-- where an identifier might not be declared.
procedure Pragma_Misplaced;
pragma No_Return (Pragma_Misplaced);
-- Issue fatal error message for misplaced pragma
procedure Process_Atomic_Independent_Shared_Volatile;
-- Common processing for pragmas Atomic, Independent, Shared, Volatile,
-- Volatile_Full_Access. Note that Shared is an obsolete Ada 83 pragma
-- and treated as being identical in effect to pragma Atomic.
procedure Process_Compile_Time_Warning_Or_Error;
-- Common processing for Compile_Time_Error and Compile_Time_Warning
procedure Process_Convention
(C : out Convention_Id;
Ent : out Entity_Id);
-- Common processing for Convention, Interface, Import and Export.
-- Checks first two arguments of pragma, and sets the appropriate
-- convention value in the specified entity or entities. On return
-- C is the convention, Ent is the referenced entity.
procedure Process_Disable_Enable_Atomic_Sync (Nam : Name_Id);
-- Common processing for Disable/Enable_Atomic_Synchronization. Nam is
-- Name_Suppress for Disable and Name_Unsuppress for Enable.
procedure Process_Extended_Import_Export_Object_Pragma
(Arg_Internal : Node_Id;
Arg_External : Node_Id;
Arg_Size : Node_Id);
-- Common processing for the pragmas Import/Export_Object. The three
-- arguments correspond to the three named parameters of the pragmas. An
-- argument is empty if the corresponding parameter is not present in
-- the pragma.
procedure Process_Extended_Import_Export_Internal_Arg
(Arg_Internal : Node_Id := Empty);
-- Common processing for all extended Import and Export pragmas. The
-- argument is the pragma parameter for the Internal argument. If
-- Arg_Internal is empty or inappropriate, an error message is posted.
-- Otherwise, on normal return, the Entity_Field of Arg_Internal is
-- set to identify the referenced entity.
procedure Process_Extended_Import_Export_Subprogram_Pragma
(Arg_Internal : Node_Id;
Arg_External : Node_Id;
Arg_Parameter_Types : Node_Id;
Arg_Result_Type : Node_Id := Empty;
Arg_Mechanism : Node_Id;
Arg_Result_Mechanism : Node_Id := Empty);
-- Common processing for all extended Import and Export pragmas applying
-- to subprograms. The caller omits any arguments that do not apply to
-- the pragma in question (for example, Arg_Result_Type can be non-Empty
-- only in the Import_Function and Export_Function cases). The argument
-- names correspond to the allowed pragma association identifiers.
procedure Process_Generic_List;
-- Common processing for Share_Generic and Inline_Generic
procedure Process_Import_Or_Interface;
-- Common processing for Import or Interface
procedure Process_Import_Predefined_Type;
-- Processing for completing a type with pragma Import. This is used
-- to declare types that match predefined C types, especially for cases
-- without corresponding Ada predefined type.
type Inline_Status is (Suppressed, Disabled, Enabled);
-- Inline status of a subprogram, indicated as follows:
-- Suppressed: inlining is suppressed for the subprogram
-- Disabled: no inlining is requested for the subprogram
-- Enabled: inlining is requested/required for the subprogram
procedure Process_Inline (Status : Inline_Status);
-- Common processing for No_Inline, Inline and Inline_Always. Parameter
-- indicates the inline status specified by the pragma.
procedure Process_Interface_Name
(Subprogram_Def : Entity_Id;
Ext_Arg : Node_Id;
Link_Arg : Node_Id;
Prag : Node_Id);
-- Given the last two arguments of pragma Import, pragma Export, or
-- pragma Interface_Name, performs validity checks and sets the
-- Interface_Name field of the given subprogram entity to the
-- appropriate external or link name, depending on the arguments given.
-- Ext_Arg is always present, but Link_Arg may be missing. Note that
-- Ext_Arg may represent the Link_Name if Link_Arg is missing, and
-- appropriate named notation is used for Ext_Arg. If neither Ext_Arg
-- nor Link_Arg is present, the interface name is set to the default
-- from the subprogram name. In addition, the pragma itself is passed
-- to analyze any expressions in the case the pragma came from an aspect
-- specification.
procedure Process_Interrupt_Or_Attach_Handler;
-- Common processing for Interrupt and Attach_Handler pragmas
procedure Process_Restrictions_Or_Restriction_Warnings (Warn : Boolean);
-- Common processing for Restrictions and Restriction_Warnings pragmas.
-- Warn is True for Restriction_Warnings, or for Restrictions if the
-- flag Treat_Restrictions_As_Warnings is set, and False if this flag
-- is not set in the Restrictions case.
procedure Process_Suppress_Unsuppress (Suppress_Case : Boolean);
-- Common processing for Suppress and Unsuppress. The boolean parameter
-- Suppress_Case is True for the Suppress case, and False for the
-- Unsuppress case.
procedure Record_Independence_Check (N : Node_Id; E : Entity_Id);
-- Subsidiary to the analysis of pragmas Independent[_Components].
-- Record such a pragma N applied to entity E for future checks.
procedure Set_Exported (E : Entity_Id; Arg : Node_Id);
-- This procedure sets the Is_Exported flag for the given entity,
-- checking that the entity was not previously imported. Arg is
-- the argument that specified the entity. A check is also made
-- for exporting inappropriate entities.
procedure Set_Extended_Import_Export_External_Name
(Internal_Ent : Entity_Id;
Arg_External : Node_Id);
-- Common processing for all extended import export pragmas. The first
-- argument, Internal_Ent, is the internal entity, which has already
-- been checked for validity by the caller. Arg_External is from the
-- Import or Export pragma, and may be null if no External parameter
-- was present. If Arg_External is present and is a non-null string
-- (a null string is treated as the default), then the Interface_Name
-- field of Internal_Ent is set appropriately.
procedure Set_Imported (E : Entity_Id);
-- This procedure sets the Is_Imported flag for the given entity,
-- checking that it is not previously exported or imported.
procedure Set_Mechanism_Value (Ent : Entity_Id; Mech_Name : Node_Id);
-- Mech is a parameter passing mechanism (see Import_Function syntax
-- for MECHANISM_NAME). This routine checks that the mechanism argument
-- has the right form, and if not issues an error message. If the
-- argument has the right form then the Mechanism field of Ent is
-- set appropriately.
procedure Set_Rational_Profile;
-- Activate the set of configuration pragmas and permissions that make
-- up the Rational profile.
procedure Set_Ravenscar_Profile (Profile : Profile_Name; N : Node_Id);
-- Activate the set of configuration pragmas and restrictions that make
-- up the Profile. Profile must be either GNAT_Extended_Ravenscar,
-- GNAT_Ravenscar_EDF, or Ravenscar. N is the corresponding pragma node,
-- which is used for error messages on any constructs violating the
-- profile.
----------------------------------
-- Acquire_Warning_Match_String --
----------------------------------
procedure Acquire_Warning_Match_String (Arg : Node_Id) is
begin
String_To_Name_Buffer
(Strval (Expr_Value_S (Get_Pragma_Arg (Arg))));
-- Add asterisk at start if not already there
if Name_Len > 0 and then Name_Buffer (1) /= '*' then
Name_Buffer (2 .. Name_Len + 1) :=
Name_Buffer (1 .. Name_Len);
Name_Buffer (1) := '*';
Name_Len := Name_Len + 1;
end if;
-- Add asterisk at end if not already there
if Name_Buffer (Name_Len) /= '*' then
Name_Len := Name_Len + 1;
Name_Buffer (Name_Len) := '*';
end if;
end Acquire_Warning_Match_String;
---------------------
-- Ada_2005_Pragma --
---------------------
procedure Ada_2005_Pragma is
begin
if Ada_Version <= Ada_95 then
Check_Restriction (No_Implementation_Pragmas, N);
end if;
end Ada_2005_Pragma;
---------------------
-- Ada_2012_Pragma --
---------------------
procedure Ada_2012_Pragma is
begin
if Ada_Version <= Ada_2005 then
Check_Restriction (No_Implementation_Pragmas, N);
end if;
end Ada_2012_Pragma;
----------------------------
-- Analyze_Depends_Global --
----------------------------
procedure Analyze_Depends_Global
(Spec_Id : out Entity_Id;
Subp_Decl : out Node_Id;
Legal : out Boolean)
is
begin
-- Assume that the pragma is illegal
Spec_Id := Empty;
Subp_Decl := Empty;
Legal := False;
GNAT_Pragma;
Check_Arg_Count (1);
-- Ensure the proper placement of the pragma. Depends/Global must be
-- associated with a subprogram declaration or a body that acts as a
-- spec.
Subp_Decl := Find_Related_Declaration_Or_Body (N, Do_Checks => True);
-- Entry
if Nkind (Subp_Decl) = N_Entry_Declaration then
null;
-- Generic subprogram
elsif Nkind (Subp_Decl) = N_Generic_Subprogram_Declaration then
null;
-- Object declaration of a single concurrent type
elsif Nkind (Subp_Decl) = N_Object_Declaration
and then Is_Single_Concurrent_Object
(Unique_Defining_Entity (Subp_Decl))
then
null;
-- Single task type
elsif Nkind (Subp_Decl) = N_Single_Task_Declaration then
null;
-- Subprogram body acts as spec
elsif Nkind (Subp_Decl) = N_Subprogram_Body
and then No (Corresponding_Spec (Subp_Decl))
then
null;
-- Subprogram body stub acts as spec
elsif Nkind (Subp_Decl) = N_Subprogram_Body_Stub
and then No (Corresponding_Spec_Of_Stub (Subp_Decl))
then
null;
-- Subprogram declaration
elsif Nkind (Subp_Decl) = N_Subprogram_Declaration then
null;
-- Task type
elsif Nkind (Subp_Decl) = N_Task_Type_Declaration then
null;
else
Pragma_Misplaced;
return;
end if;
-- If we get here, then the pragma is legal
Legal := True;
Spec_Id := Unique_Defining_Entity (Subp_Decl);
-- When the related context is an entry, the entry must belong to a
-- protected unit (SPARK RM 6.1.4(6)).
if Is_Entry_Declaration (Spec_Id)
and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
then
Pragma_Misplaced;
return;
-- When the related context is an anonymous object created for a
-- simple concurrent type, the type must be a task
-- (SPARK RM 6.1.4(6)).
elsif Is_Single_Concurrent_Object (Spec_Id)
and then Ekind (Etype (Spec_Id)) /= E_Task_Type
then
Pragma_Misplaced;
return;
end if;
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Spec_Id);
Ensure_Aggregate_Form (Get_Argument (N, Spec_Id));
end Analyze_Depends_Global;
------------------------
-- Analyze_If_Present --
------------------------
procedure Analyze_If_Present (Id : Pragma_Id) is
Stmt : Node_Id;
begin
pragma Assert (Is_List_Member (N));
-- Inspect the declarations or statements following pragma N looking
-- for another pragma whose Id matches the caller's request. If it is
-- available, analyze it.
Stmt := Next (N);
while Present (Stmt) loop
if Nkind (Stmt) = N_Pragma and then Get_Pragma_Id (Stmt) = Id then
Analyze_Pragma (Stmt);
exit;
-- The first source declaration or statement immediately following
-- N ends the region where a pragma may appear.
elsif Comes_From_Source (Stmt) then
exit;
end if;
Next (Stmt);
end loop;
end Analyze_If_Present;
--------------------------------
-- Analyze_Pre_Post_Condition --
--------------------------------
procedure Analyze_Pre_Post_Condition is
Prag_Iden : constant Node_Id := Pragma_Identifier (N);
Subp_Decl : Node_Id;
Subp_Id : Entity_Id;
Duplicates_OK : Boolean := False;
-- Flag set when a pre/postcondition allows multiple pragmas of the
-- same kind.
In_Body_OK : Boolean := False;
-- Flag set when a pre/postcondition is allowed to appear on a body
-- even though the subprogram may have a spec.
Is_Pre_Post : Boolean := False;
-- Flag set when the pragma is one of Pre, Pre_Class, Post or
-- Post_Class.
function Inherits_Class_Wide_Pre (E : Entity_Id) return Boolean;
-- Implement rules in AI12-0131: an overriding operation can have
-- a class-wide precondition only if one of its ancestors has an
-- explicit class-wide precondition.
-----------------------------
-- Inherits_Class_Wide_Pre --
-----------------------------
function Inherits_Class_Wide_Pre (E : Entity_Id) return Boolean is
Typ : constant Entity_Id := Find_Dispatching_Type (E);
Cont : Node_Id;
Prag : Node_Id;
Prev : Entity_Id := Overridden_Operation (E);
begin
-- Check ancestors on the overriding operation to examine the
-- preconditions that may apply to them.
while Present (Prev) loop
Cont := Contract (Prev);
if Present (Cont) then
Prag := Pre_Post_Conditions (Cont);
while Present (Prag) loop
if Class_Present (Prag) then
return True;
end if;
Prag := Next_Pragma (Prag);
end loop;
end if;
-- For a type derived from a generic formal type, the operation
-- inheriting the condition is a renaming, not an overriding of
-- the operation of the formal. Ditto for an inherited
-- operation which has no explicit contracts.
if Is_Generic_Type (Find_Dispatching_Type (Prev))
or else not Comes_From_Source (Prev)
then
Prev := Alias (Prev);
else
Prev := Overridden_Operation (Prev);
end if;
end loop;
-- If the controlling type of the subprogram has progenitors, an
-- interface operation implemented by the current operation may
-- have a class-wide precondition.
if Has_Interfaces (Typ) then
declare
Elmt : Elmt_Id;
Ints : Elist_Id;
Prim : Entity_Id;
Prim_Elmt : Elmt_Id;
Prim_List : Elist_Id;
begin
Collect_Interfaces (Typ, Ints);
Elmt := First_Elmt (Ints);
-- Iterate over the primitive operations of each interface
while Present (Elmt) loop
Prim_List := Direct_Primitive_Operations (Node (Elmt));
Prim_Elmt := First_Elmt (Prim_List);
while Present (Prim_Elmt) loop
Prim := Node (Prim_Elmt);
if Chars (Prim) = Chars (E)
and then Present (Contract (Prim))
and then Class_Present
(Pre_Post_Conditions (Contract (Prim)))
then
return True;
end if;
Next_Elmt (Prim_Elmt);
end loop;
Next_Elmt (Elmt);
end loop;
end;
end if;
return False;
end Inherits_Class_Wide_Pre;
-- Start of processing for Analyze_Pre_Post_Condition
begin
-- Change the name of pragmas Pre, Pre_Class, Post and Post_Class to
-- offer uniformity among the various kinds of pre/postconditions by
-- rewriting the pragma identifier. This allows the retrieval of the
-- original pragma name by routine Original_Aspect_Pragma_Name.
if Comes_From_Source (N) then
if Nam_In (Pname, Name_Pre, Name_Pre_Class) then
Is_Pre_Post := True;
Set_Class_Present (N, Pname = Name_Pre_Class);
Rewrite (Prag_Iden, Make_Identifier (Loc, Name_Precondition));
elsif Nam_In (Pname, Name_Post, Name_Post_Class) then
Is_Pre_Post := True;
Set_Class_Present (N, Pname = Name_Post_Class);
Rewrite (Prag_Iden, Make_Identifier (Loc, Name_Postcondition));
end if;
end if;
-- Determine the semantics with respect to duplicates and placement
-- in a body. Pragmas Precondition and Postcondition were introduced
-- before aspects and are not subject to the same aspect-like rules.
if Nam_In (Pname, Name_Precondition, Name_Postcondition) then
Duplicates_OK := True;
In_Body_OK := True;
end if;
GNAT_Pragma;
-- Pragmas Pre, Pre_Class, Post and Post_Class allow for a single
-- argument without an identifier.
if Is_Pre_Post then
Check_Arg_Count (1);
Check_No_Identifiers;
-- Pragmas Precondition and Postcondition have complex argument
-- profile.
else
Check_At_Least_N_Arguments (1);
Check_At_Most_N_Arguments (2);
Check_Optional_Identifier (Arg1, Name_Check);
if Present (Arg2) then
Check_Optional_Identifier (Arg2, Name_Message);
Preanalyze_Spec_Expression
(Get_Pragma_Arg (Arg2), Standard_String);
end if;
end if;
-- For a pragma PPC in the extended main source unit, record enabled
-- status in SCO.
-- ??? nothing checks that the pragma is in the main source unit
if Is_Checked (N) and then not Split_PPC (N) then
Set_SCO_Pragma_Enabled (Loc);
end if;
-- Ensure the proper placement of the pragma
Subp_Decl :=
Find_Related_Declaration_Or_Body
(N, Do_Checks => not Duplicates_OK);
-- When a pre/postcondition pragma applies to an abstract subprogram,
-- its original form must be an aspect with 'Class.
if Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration then
if not From_Aspect_Specification (N) then
Error_Pragma
("pragma % cannot be applied to abstract subprogram");
elsif not Class_Present (N) then
Error_Pragma
("aspect % requires ''Class for abstract subprogram");
end if;
-- Entry declaration
elsif Nkind (Subp_Decl) = N_Entry_Declaration then
null;
-- Generic subprogram declaration
elsif Nkind (Subp_Decl) = N_Generic_Subprogram_Declaration then
null;
-- Subprogram body
elsif Nkind (Subp_Decl) = N_Subprogram_Body
and then (No (Corresponding_Spec (Subp_Decl)) or In_Body_OK)
then
null;
-- Subprogram body stub
elsif Nkind (Subp_Decl) = N_Subprogram_Body_Stub
and then (No (Corresponding_Spec_Of_Stub (Subp_Decl)) or In_Body_OK)
then
null;
-- Subprogram declaration
elsif Nkind (Subp_Decl) = N_Subprogram_Declaration then
-- AI05-0230: When a pre/postcondition pragma applies to a null
-- procedure, its original form must be an aspect with 'Class.
if Nkind (Specification (Subp_Decl)) = N_Procedure_Specification
and then Null_Present (Specification (Subp_Decl))
and then From_Aspect_Specification (N)
and then not Class_Present (N)
then
Error_Pragma ("aspect % requires ''Class for null procedure");
end if;
-- Implement the legality checks mandated by AI12-0131:
-- Pre'Class shall not be specified for an overriding primitive
-- subprogram of a tagged type T unless the Pre'Class aspect is
-- specified for the corresponding primitive subprogram of some
-- ancestor of T.
declare
E : constant Entity_Id := Defining_Entity (Subp_Decl);
begin
if Class_Present (N)
and then Pragma_Name (N) = Name_Precondition
and then Present (Overridden_Operation (E))
and then not Inherits_Class_Wide_Pre (E)
then
Error_Msg_N
("illegal class-wide precondition on overriding operation",
Corresponding_Aspect (N));
end if;
end;
-- A renaming declaration may inherit a generated pragma, its
-- placement comes from expansion, not from source.
elsif Nkind (Subp_Decl) = N_Subprogram_Renaming_Declaration
and then not Comes_From_Source (N)
then
null;
-- Otherwise the placement is illegal
else
Pragma_Misplaced;
return;
end if;
Subp_Id := Defining_Entity (Subp_Decl);
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Subp_Id);
-- Chain the pragma on the contract for further processing by
-- Analyze_Pre_Post_Condition_In_Decl_Part.
Add_Contract_Item (N, Defining_Entity (Subp_Decl));
-- Fully analyze the pragma when it appears inside an entry or
-- subprogram body because it cannot benefit from forward references.
if Nkind_In (Subp_Decl, N_Entry_Body,
N_Subprogram_Body,
N_Subprogram_Body_Stub)
then
-- The legality checks of pragmas Precondition and Postcondition
-- are affected by the SPARK mode in effect and the volatility of
-- the context. Analyze all pragmas in a specific order.
Analyze_If_Present (Pragma_SPARK_Mode);
Analyze_If_Present (Pragma_Volatile_Function);
Analyze_Pre_Post_Condition_In_Decl_Part (N);
end if;
end Analyze_Pre_Post_Condition;
-----------------------------------------
-- Analyze_Refined_Depends_Global_Post --
-----------------------------------------
procedure Analyze_Refined_Depends_Global_Post
(Spec_Id : out Entity_Id;
Body_Id : out Entity_Id;
Legal : out Boolean)
is
Body_Decl : Node_Id;
Spec_Decl : Node_Id;
begin
-- Assume that the pragma is illegal
Spec_Id := Empty;
Body_Id := Empty;
Legal := False;
GNAT_Pragma;
Check_Arg_Count (1);
Check_No_Identifiers;
-- Verify the placement of the pragma and check for duplicates. The
-- pragma must apply to a subprogram body [stub].
Body_Decl := Find_Related_Declaration_Or_Body (N, Do_Checks => True);
-- Entry body
if Nkind (Body_Decl) = N_Entry_Body then
null;
-- Subprogram body
elsif Nkind (Body_Decl) = N_Subprogram_Body then
null;
-- Subprogram body stub
elsif Nkind (Body_Decl) = N_Subprogram_Body_Stub then
null;
-- Task body
elsif Nkind (Body_Decl) = N_Task_Body then
null;
else
Pragma_Misplaced;
return;
end if;
Body_Id := Defining_Entity (Body_Decl);
Spec_Id := Unique_Defining_Entity (Body_Decl);
-- The pragma must apply to the second declaration of a subprogram.
-- In other words, the body [stub] cannot acts as a spec.
if No (Spec_Id) then
Error_Pragma ("pragma % cannot apply to a stand alone body");
return;
-- Catch the case where the subprogram body is a subunit and acts as
-- the third declaration of the subprogram.
elsif Nkind (Parent (Body_Decl)) = N_Subunit then
Error_Pragma ("pragma % cannot apply to a subunit");
return;
end if;
-- A refined pragma can only apply to the body [stub] of a subprogram
-- declared in the visible part of a package. Retrieve the context of
-- the subprogram declaration.
Spec_Decl := Unit_Declaration_Node (Spec_Id);
-- When dealing with protected entries or protected subprograms, use
-- the enclosing protected type as the proper context.
if Ekind_In (Spec_Id, E_Entry,
E_Entry_Family,
E_Function,
E_Procedure)
and then Ekind (Scope (Spec_Id)) = E_Protected_Type
then
Spec_Decl := Declaration_Node (Scope (Spec_Id));
end if;
if Nkind (Parent (Spec_Decl)) /= N_Package_Specification then
Error_Pragma
(Fix_Msg (Spec_Id, "pragma % must apply to the body of "
& "subprogram declared in a package specification"));
return;
end if;
-- If we get here, then the pragma is legal
Legal := True;
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Spec_Id);
if Nam_In (Pname, Name_Refined_Depends, Name_Refined_Global) then
Ensure_Aggregate_Form (Get_Argument (N, Spec_Id));
end if;
end Analyze_Refined_Depends_Global_Post;
----------------------------------
-- Analyze_Unmodified_Or_Unused --
----------------------------------
procedure Analyze_Unmodified_Or_Unused (Is_Unused : Boolean := False) is
Arg : Node_Id;
Arg_Expr : Node_Id;
Arg_Id : Entity_Id;
Ghost_Error_Posted : Boolean := False;
-- Flag set when an error concerning the illegal mix of Ghost and
-- non-Ghost variables is emitted.
Ghost_Id : Entity_Id := Empty;
-- The entity of the first Ghost variable encountered while
-- processing the arguments of the pragma.
begin
GNAT_Pragma;
Check_At_Least_N_Arguments (1);
-- Loop through arguments
Arg := Arg1;
while Present (Arg) loop
Check_No_Identifier (Arg);
-- Note: the analyze call done by Check_Arg_Is_Local_Name will
-- in fact generate reference, so that the entity will have a
-- reference, which will inhibit any warnings about it not
-- being referenced, and also properly show up in the ali file
-- as a reference. But this reference is recorded before the
-- Has_Pragma_Unreferenced flag is set, so that no warning is
-- generated for this reference.
Check_Arg_Is_Local_Name (Arg);
Arg_Expr := Get_Pragma_Arg (Arg);
if Is_Entity_Name (Arg_Expr) then
Arg_Id := Entity (Arg_Expr);
-- Skip processing the argument if already flagged
if Is_Assignable (Arg_Id)
and then not Has_Pragma_Unmodified (Arg_Id)
and then not Has_Pragma_Unused (Arg_Id)
then
Set_Has_Pragma_Unmodified (Arg_Id);
if Is_Unused then
Set_Has_Pragma_Unused (Arg_Id);
end if;
-- A pragma that applies to a Ghost entity becomes Ghost for
-- the purposes of legality checks and removal of ignored
-- Ghost code.
Mark_Ghost_Pragma (N, Arg_Id);
-- Capture the entity of the first Ghost variable being
-- processed for error detection purposes.
if Is_Ghost_Entity (Arg_Id) then
if No (Ghost_Id) then
Ghost_Id := Arg_Id;
end if;
-- Otherwise the variable is non-Ghost. It is illegal to mix
-- references to Ghost and non-Ghost entities
-- (SPARK RM 6.9).
elsif Present (Ghost_Id)
and then not Ghost_Error_Posted
then
Ghost_Error_Posted := True;
Error_Msg_Name_1 := Pname;
Error_Msg_N
("pragma % cannot mention ghost and non-ghost "
& "variables", N);
Error_Msg_Sloc := Sloc (Ghost_Id);
Error_Msg_NE ("\& # declared as ghost", N, Ghost_Id);
Error_Msg_Sloc := Sloc (Arg_Id);
Error_Msg_NE ("\& # declared as non-ghost", N, Arg_Id);
end if;
-- Warn if already flagged as Unused or Unmodified
elsif Has_Pragma_Unmodified (Arg_Id) then
if Has_Pragma_Unused (Arg_Id) then
Error_Msg_NE
("??pragma Unused already given for &!", Arg_Expr,
Arg_Id);
else
Error_Msg_NE
("??pragma Unmodified already given for &!", Arg_Expr,
Arg_Id);
end if;
-- Otherwise the pragma referenced an illegal entity
else
Error_Pragma_Arg
("pragma% can only be applied to a variable", Arg_Expr);
end if;
end if;
Next (Arg);
end loop;
end Analyze_Unmodified_Or_Unused;
-----------------------------------
-- Analyze_Unreference_Or_Unused --
-----------------------------------
procedure Analyze_Unreferenced_Or_Unused
(Is_Unused : Boolean := False)
is
Arg : Node_Id;
Arg_Expr : Node_Id;
Arg_Id : Entity_Id;
Citem : Node_Id;
Ghost_Error_Posted : Boolean := False;
-- Flag set when an error concerning the illegal mix of Ghost and
-- non-Ghost names is emitted.
Ghost_Id : Entity_Id := Empty;
-- The entity of the first Ghost name encountered while processing
-- the arguments of the pragma.
begin
GNAT_Pragma;
Check_At_Least_N_Arguments (1);
-- Check case of appearing within context clause
if not Is_Unused and then Is_In_Context_Clause then
-- The arguments must all be units mentioned in a with clause in
-- the same context clause. Note that Par.Prag already checked
-- that the arguments are either identifiers or selected
-- components.
Arg := Arg1;
while Present (Arg) loop
Citem := First (List_Containing (N));
while Citem /= N loop
Arg_Expr := Get_Pragma_Arg (Arg);
if Nkind (Citem) = N_With_Clause
and then Same_Name (Name (Citem), Arg_Expr)
then
Set_Has_Pragma_Unreferenced
(Cunit_Entity
(Get_Source_Unit
(Library_Unit (Citem))));
Set_Elab_Unit_Name (Arg_Expr, Name (Citem));
exit;
end if;
Next (Citem);
end loop;
if Citem = N then
Error_Pragma_Arg
("argument of pragma% is not withed unit", Arg);
end if;
Next (Arg);
end loop;
-- Case of not in list of context items
else
Arg := Arg1;
while Present (Arg) loop
Check_No_Identifier (Arg);
-- Note: the analyze call done by Check_Arg_Is_Local_Name will
-- in fact generate reference, so that the entity will have a
-- reference, which will inhibit any warnings about it not
-- being referenced, and also properly show up in the ali file
-- as a reference. But this reference is recorded before the
-- Has_Pragma_Unreferenced flag is set, so that no warning is
-- generated for this reference.
Check_Arg_Is_Local_Name (Arg);
Arg_Expr := Get_Pragma_Arg (Arg);
if Is_Entity_Name (Arg_Expr) then
Arg_Id := Entity (Arg_Expr);
-- Warn if already flagged as Unused or Unreferenced and
-- skip processing the argument.
if Has_Pragma_Unreferenced (Arg_Id) then
if Has_Pragma_Unused (Arg_Id) then
Error_Msg_NE
("??pragma Unused already given for &!", Arg_Expr,
Arg_Id);
else
Error_Msg_NE
("??pragma Unreferenced already given for &!",
Arg_Expr, Arg_Id);
end if;
-- Apply Unreferenced to the entity
else
-- If the entity is overloaded, the pragma applies to the
-- most recent overloading, as documented. In this case,
-- name resolution does not generate a reference, so it
-- must be done here explicitly.
if Is_Overloaded (Arg_Expr) then
Generate_Reference (Arg_Id, N);
end if;
Set_Has_Pragma_Unreferenced (Arg_Id);
if Is_Unused then
Set_Has_Pragma_Unused (Arg_Id);
end if;
-- A pragma that applies to a Ghost entity becomes Ghost
-- for the purposes of legality checks and removal of
-- ignored Ghost code.
Mark_Ghost_Pragma (N, Arg_Id);
-- Capture the entity of the first Ghost name being
-- processed for error detection purposes.
if Is_Ghost_Entity (Arg_Id) then
if No (Ghost_Id) then
Ghost_Id := Arg_Id;
end if;
-- Otherwise the name is non-Ghost. It is illegal to mix
-- references to Ghost and non-Ghost entities
-- (SPARK RM 6.9).
elsif Present (Ghost_Id)
and then not Ghost_Error_Posted
then
Ghost_Error_Posted := True;
Error_Msg_Name_1 := Pname;
Error_Msg_N
("pragma % cannot mention ghost and non-ghost "
& "names", N);
Error_Msg_Sloc := Sloc (Ghost_Id);
Error_Msg_NE
("\& # declared as ghost", N, Ghost_Id);
Error_Msg_Sloc := Sloc (Arg_Id);
Error_Msg_NE
("\& # declared as non-ghost", N, Arg_Id);
end if;
end if;
end if;
Next (Arg);
end loop;
end if;
end Analyze_Unreferenced_Or_Unused;
--------------------------
-- Check_Ada_83_Warning --
--------------------------
procedure Check_Ada_83_Warning is
begin
if Ada_Version = Ada_83 and then Comes_From_Source (N) then
Error_Msg_N ("(Ada 83) pragma& is non-standard??", N);
end if;
end Check_Ada_83_Warning;
---------------------
-- Check_Arg_Count --
---------------------
procedure Check_Arg_Count (Required : Nat) is
begin
if Arg_Count /= Required then
Error_Pragma ("wrong number of arguments for pragma%");
end if;
end Check_Arg_Count;
--------------------------------
-- Check_Arg_Is_External_Name --
--------------------------------
procedure Check_Arg_Is_External_Name (Arg : Node_Id) is
Argx : constant Node_Id := Get_Pragma_Arg (Arg);
begin
if Nkind (Argx) = N_Identifier then
return;
else
Analyze_And_Resolve (Argx, Standard_String);
if Is_OK_Static_Expression (Argx) then
return;
elsif Etype (Argx) = Any_Type then
raise Pragma_Exit;
-- An interesting special case, if we have a string literal and
-- we are in Ada 83 mode, then we allow it even though it will
-- not be flagged as static. This allows expected Ada 83 mode
-- use of external names which are string literals, even though
-- technically these are not static in Ada 83.
elsif Ada_Version = Ada_83
and then Nkind (Argx) = N_String_Literal
then
return;
-- Here we have a real error (non-static expression)
else
Error_Msg_Name_1 := Pname;
Flag_Non_Static_Expr
(Fix_Error ("argument for pragma% must be a identifier or "
& "static string expression!"), Argx);
raise Pragma_Exit;
end if;
end if;
end Check_Arg_Is_External_Name;
-----------------------------
-- Check_Arg_Is_Identifier --
-----------------------------
procedure Check_Arg_Is_Identifier (Arg : Node_Id) is
Argx : constant Node_Id := Get_Pragma_Arg (Arg);
begin
if Nkind (Argx) /= N_Identifier then
Error_Pragma_Arg ("argument for pragma% must be identifier", Argx);
end if;
end Check_Arg_Is_Identifier;
----------------------------------
-- Check_Arg_Is_Integer_Literal --
----------------------------------
procedure Check_Arg_Is_Integer_Literal (Arg : Node_Id) is
Argx : constant Node_Id := Get_Pragma_Arg (Arg);
begin
if Nkind (Argx) /= N_Integer_Literal then
Error_Pragma_Arg
("argument for pragma% must be integer literal", Argx);
end if;
end Check_Arg_Is_Integer_Literal;
-------------------------------------------
-- Check_Arg_Is_Library_Level_Local_Name --
-------------------------------------------
-- LOCAL_NAME ::=
-- DIRECT_NAME
-- | DIRECT_NAME'ATTRIBUTE_DESIGNATOR
-- | library_unit_NAME
procedure Check_Arg_Is_Library_Level_Local_Name (Arg : Node_Id) is
begin
Check_Arg_Is_Local_Name (Arg);
-- If it came from an aspect, we want to give the error just as if it
-- came from source.
if not Is_Library_Level_Entity (Entity (Get_Pragma_Arg (Arg)))
and then (Comes_From_Source (N)
or else Present (Corresponding_Aspect (Parent (Arg))))
then
Error_Pragma_Arg
("argument for pragma% must be library level entity", Arg);
end if;
end Check_Arg_Is_Library_Level_Local_Name;
-----------------------------
-- Check_Arg_Is_Local_Name --
-----------------------------
-- LOCAL_NAME ::=
-- DIRECT_NAME
-- | DIRECT_NAME'ATTRIBUTE_DESIGNATOR
-- | library_unit_NAME
procedure Check_Arg_Is_Local_Name (Arg : Node_Id) is
Argx : constant Node_Id := Get_Pragma_Arg (Arg);
begin
-- If this pragma came from an aspect specification, we don't want to
-- check for this error, because that would cause spurious errors, in
-- case a type is frozen in a scope more nested than the type. The
-- aspect itself of course can't be anywhere but on the declaration
-- itself.
if Nkind (Arg) = N_Pragma_Argument_Association then
if From_Aspect_Specification (Parent (Arg)) then
return;
end if;
-- Arg is the Expression of an N_Pragma_Argument_Association
else
if From_Aspect_Specification (Parent (Parent (Arg))) then
return;
end if;
end if;
Analyze (Argx);
if Nkind (Argx) not in N_Direct_Name
and then (Nkind (Argx) /= N_Attribute_Reference
or else Present (Expressions (Argx))
or else Nkind (Prefix (Argx)) /= N_Identifier)
and then (not Is_Entity_Name (Argx)
or else not Is_Compilation_Unit (Entity (Argx)))
then
Error_Pragma_Arg ("argument for pragma% must be local name", Argx);
end if;
-- No further check required if not an entity name
if not Is_Entity_Name (Argx) then
null;
else
declare
OK : Boolean;
Ent : constant Entity_Id := Entity (Argx);
Scop : constant Entity_Id := Scope (Ent);
begin
-- Case of a pragma applied to a compilation unit: pragma must
-- occur immediately after the program unit in the compilation.
if Is_Compilation_Unit (Ent) then
declare
Decl : constant Node_Id := Unit_Declaration_Node (Ent);
begin
-- Case of pragma placed immediately after spec
if Parent (N) = Aux_Decls_Node (Parent (Decl)) then
OK := True;
-- Case of pragma placed immediately after body
elsif Nkind (Decl) = N_Subprogram_Declaration
and then Present (Corresponding_Body (Decl))
then
OK := Parent (N) =
Aux_Decls_Node
(Parent (Unit_Declaration_Node
(Corresponding_Body (Decl))));
-- All other cases are illegal
else
OK := False;
end if;
end;
-- Special restricted placement rule from 10.2.1(11.8/2)
elsif Is_Generic_Formal (Ent)
and then Prag_Id = Pragma_Preelaborable_Initialization
then
OK := List_Containing (N) =
Generic_Formal_Declarations
(Unit_Declaration_Node (Scop));
-- If this is an aspect applied to a subprogram body, the
-- pragma is inserted in its declarative part.
elsif From_Aspect_Specification (N)
and then Ent = Current_Scope
and then
Nkind (Unit_Declaration_Node (Ent)) = N_Subprogram_Body
then
OK := True;
-- If the aspect is a predicate (possibly others ???) and the
-- context is a record type, this is a discriminant expression
-- within a type declaration, that freezes the predicated
-- subtype.
elsif From_Aspect_Specification (N)
and then Prag_Id = Pragma_Predicate
and then Ekind (Current_Scope) = E_Record_Type
and then Scop = Scope (Current_Scope)
then
OK := True;
-- Default case, just check that the pragma occurs in the scope
-- of the entity denoted by the name.
else
OK := Current_Scope = Scop;
end if;
if not OK then
Error_Pragma_Arg
("pragma% argument must be in same declarative part", Arg);
end if;
end;
end if;
end Check_Arg_Is_Local_Name;
---------------------------------
-- Check_Arg_Is_Locking_Policy --
---------------------------------
procedure Check_Arg_Is_Locking_Policy (Arg : Node_Id) is
Argx : constant Node_Id := Get_Pragma_Arg (Arg);
begin
Check_Arg_Is_Identifier (Argx);
if not Is_Locking_Policy_Name (Chars (Argx)) then
Error_Pragma_Arg ("& is not a valid locking policy name", Argx);
end if;
end Check_Arg_Is_Locking_Policy;
-----------------------------------------------
-- Check_Arg_Is_Partition_Elaboration_Policy --
-----------------------------------------------
procedure Check_Arg_Is_Partition_Elaboration_Policy (Arg : Node_Id) is
Argx : constant Node_Id := Get_Pragma_Arg (Arg);
begin
Check_Arg_Is_Identifier (Argx);
if not Is_Partition_Elaboration_Policy_Name (Chars (Argx)) then
Error_Pragma_Arg
("& is not a valid partition elaboration policy name", Argx);
end if;
end Check_Arg_Is_Partition_Elaboration_Policy;
-------------------------
-- Check_Arg_Is_One_Of --
-------------------------
procedure Check_Arg_Is_One_Of (Arg : Node_Id; N1, N2 : Name_Id) is
Argx : constant Node_Id := Get_Pragma_Arg (Arg);
begin
Check_Arg_Is_Identifier (Argx);
if not Nam_In (Chars (Argx), N1, N2) then
Error_Msg_Name_2 := N1;
Error_Msg_Name_3 := N2;
Error_Pragma_Arg ("argument for pragma% must be% or%", Argx);
end if;
end Check_Arg_Is_One_Of;
procedure Check_Arg_Is_One_Of
(Arg : Node_Id;
N1, N2, N3 : Name_Id)
is
Argx : constant Node_Id := Get_Pragma_Arg (Arg);
begin
Check_Arg_Is_Identifier (Argx);
if not Nam_In (Chars (Argx), N1, N2, N3) then
Error_Pragma_Arg ("invalid argument for pragma%", Argx);
end if;
end Check_Arg_Is_One_Of;
procedure Check_Arg_Is_One_Of
(Arg : Node_Id;
N1, N2, N3, N4 : Name_Id)
is
Argx : constant Node_Id := Get_Pragma_Arg (Arg);
begin
Check_Arg_Is_Identifier (Argx);
if not Nam_In (Chars (Argx), N1, N2, N3, N4) then
Error_Pragma_Arg ("invalid argument for pragma%", Argx);
end if;
end Check_Arg_Is_One_Of;
procedure Check_Arg_Is_One_Of
(Arg : Node_Id;
N1, N2, N3, N4, N5 : Name_Id)
is
Argx : constant Node_Id := Get_Pragma_Arg (Arg);
begin
Check_Arg_Is_Identifier (Argx);
if not Nam_In (Chars (Argx), N1, N2, N3, N4, N5) then
Error_Pragma_Arg ("invalid argument for pragma%", Argx);
end if;
end Check_Arg_Is_One_Of;
---------------------------------
-- Check_Arg_Is_Queuing_Policy --
---------------------------------
procedure Check_Arg_Is_Queuing_Policy (Arg : Node_Id) is
Argx : constant Node_Id := Get_Pragma_Arg (Arg);
begin
Check_Arg_Is_Identifier (Argx);
if not Is_Queuing_Policy_Name (Chars (Argx)) then
Error_Pragma_Arg ("& is not a valid queuing policy name", Argx);
end if;
end Check_Arg_Is_Queuing_Policy;
---------------------------------------
-- Check_Arg_Is_OK_Static_Expression --
---------------------------------------
procedure Check_Arg_Is_OK_Static_Expression
(Arg : Node_Id;
Typ : Entity_Id := Empty)
is
begin
Check_Expr_Is_OK_Static_Expression (Get_Pragma_Arg (Arg), Typ);
end Check_Arg_Is_OK_Static_Expression;
------------------------------------------
-- Check_Arg_Is_Task_Dispatching_Policy --
------------------------------------------
procedure Check_Arg_Is_Task_Dispatching_Policy (Arg : Node_Id) is
Argx : constant Node_Id := Get_Pragma_Arg (Arg);
begin
Check_Arg_Is_Identifier (Argx);
if not Is_Task_Dispatching_Policy_Name (Chars (Argx)) then
Error_Pragma_Arg
("& is not an allowed task dispatching policy name", Argx);
end if;
end Check_Arg_Is_Task_Dispatching_Policy;
---------------------
-- Check_Arg_Order --
---------------------
procedure Check_Arg_Order (Names : Name_List) is
Arg : Node_Id;
Highest_So_Far : Natural := 0;
-- Highest index in Names seen do far
begin
Arg := Arg1;
for J in 1 .. Arg_Count loop
if Chars (Arg) /= No_Name then
for K in Names'Range loop
if Chars (Arg) = Names (K) then
if K < Highest_So_Far then
Error_Msg_Name_1 := Pname;
Error_Msg_N
("parameters out of order for pragma%", Arg);
Error_Msg_Name_1 := Names (K);
Error_Msg_Name_2 := Names (Highest_So_Far);
Error_Msg_N ("\% must appear before %", Arg);
raise Pragma_Exit;
else
Highest_So_Far := K;
end if;
end if;
end loop;
end if;
Arg := Next (Arg);
end loop;
end Check_Arg_Order;
--------------------------------
-- Check_At_Least_N_Arguments --
--------------------------------
procedure Check_At_Least_N_Arguments (N : Nat) is
begin
if Arg_Count < N then
Error_Pragma ("too few arguments for pragma%");
end if;
end Check_At_Least_N_Arguments;
-------------------------------
-- Check_At_Most_N_Arguments --
-------------------------------
procedure Check_At_Most_N_Arguments (N : Nat) is
Arg : Node_Id;
begin
if Arg_Count > N then
Arg := Arg1;
for J in 1 .. N loop
Next (Arg);
Error_Pragma_Arg ("too many arguments for pragma%", Arg);
end loop;
end if;
end Check_At_Most_N_Arguments;
---------------------
-- Check_Component --
---------------------
procedure Check_Component
(Comp : Node_Id;
UU_Typ : Entity_Id;
In_Variant_Part : Boolean := False)
is
Comp_Id : constant Entity_Id := Defining_Identifier (Comp);
Sindic : constant Node_Id :=
Subtype_Indication (Component_Definition (Comp));
Typ : constant Entity_Id := Etype (Comp_Id);
begin
-- Ada 2005 (AI-216): If a component subtype is subject to a per-
-- object constraint, then the component type shall be an Unchecked_
-- Union.
if Nkind (Sindic) = N_Subtype_Indication
and then Has_Per_Object_Constraint (Comp_Id)
and then not Is_Unchecked_Union (Etype (Subtype_Mark (Sindic)))
then
Error_Msg_N
("component subtype subject to per-object constraint "
& "must be an Unchecked_Union", Comp);
-- Ada 2012 (AI05-0026): For an unchecked union type declared within
-- the body of a generic unit, or within the body of any of its
-- descendant library units, no part of the type of a component
-- declared in a variant_part of the unchecked union type shall be of
-- a formal private type or formal private extension declared within
-- the formal part of the generic unit.
elsif Ada_Version >= Ada_2012
and then In_Generic_Body (UU_Typ)
and then In_Variant_Part
and then Is_Private_Type (Typ)
and then Is_Generic_Type (Typ)
then
Error_Msg_N
("component of unchecked union cannot be of generic type", Comp);
elsif Needs_Finalization (Typ) then
Error_Msg_N
("component of unchecked union cannot be controlled", Comp);
elsif Has_Task (Typ) then
Error_Msg_N
("component of unchecked union cannot have tasks", Comp);
end if;
end Check_Component;
----------------------------
-- Check_Duplicate_Pragma --
----------------------------
procedure Check_Duplicate_Pragma (E : Entity_Id) is
Id : Entity_Id := E;
P : Node_Id;
begin
-- Nothing to do if this pragma comes from an aspect specification,
-- since we could not be duplicating a pragma, and we dealt with the
-- case of duplicated aspects in Analyze_Aspect_Specifications.
if From_Aspect_Specification (N) then
return;
end if;
-- Otherwise current pragma may duplicate previous pragma or a
-- previously given aspect specification or attribute definition
-- clause for the same pragma.
P := Get_Rep_Item (E, Pragma_Name (N), Check_Parents => False);
if Present (P) then
-- If the entity is a type, then we have to make sure that the
-- ostensible duplicate is not for a parent type from which this
-- type is derived.
if Is_Type (E) then
if Nkind (P) = N_Pragma then
declare
Args : constant List_Id :=
Pragma_Argument_Associations (P);
begin
if Present (Args)
and then Is_Entity_Name (Expression (First (Args)))
and then Is_Type (Entity (Expression (First (Args))))
and then Entity (Expression (First (Args))) /= E
then
return;
end if;
end;
elsif Nkind (P) = N_Aspect_Specification
and then Is_Type (Entity (P))
and then Entity (P) /= E
then
return;
end if;
end if;
-- Here we have a definite duplicate
Error_Msg_Name_1 := Pragma_Name (N);
Error_Msg_Sloc := Sloc (P);
-- For a single protected or a single task object, the error is
-- issued on the original entity.
if Ekind_In (Id, E_Task_Type, E_Protected_Type) then
Id := Defining_Identifier (Original_Node (Parent (Id)));
end if;
if Nkind (P) = N_Aspect_Specification
or else From_Aspect_Specification (P)
then
Error_Msg_NE ("aspect% for & previously given#", N, Id);
else
Error_Msg_NE ("pragma% for & duplicates pragma#", N, Id);
end if;
raise Pragma_Exit;
end if;
end Check_Duplicate_Pragma;
----------------------------------
-- Check_Duplicated_Export_Name --
----------------------------------
procedure Check_Duplicated_Export_Name (Nam : Node_Id) is
String_Val : constant String_Id := Strval (Nam);
begin
-- We are only interested in the export case, and in the case of
-- generics, it is the instance, not the template, that is the
-- problem (the template will generate a warning in any case).
if not Inside_A_Generic
and then (Prag_Id = Pragma_Export
or else
Prag_Id = Pragma_Export_Procedure
or else
Prag_Id = Pragma_Export_Valued_Procedure
or else
Prag_Id = Pragma_Export_Function)
then
for J in Externals.First .. Externals.Last loop
if String_Equal (String_Val, Strval (Externals.Table (J))) then
Error_Msg_Sloc := Sloc (Externals.Table (J));
Error_Msg_N ("external name duplicates name given#", Nam);
exit;
end if;
end loop;
Externals.Append (Nam);
end if;
end Check_Duplicated_Export_Name;
----------------------------------------
-- Check_Expr_Is_OK_Static_Expression --
----------------------------------------
procedure Check_Expr_Is_OK_Static_Expression
(Expr : Node_Id;
Typ : Entity_Id := Empty)
is
begin
if Present (Typ) then
Analyze_And_Resolve (Expr, Typ);
else
Analyze_And_Resolve (Expr);
end if;
-- An expression cannot be considered static if its resolution failed
-- or if it's erroneous. Stop the analysis of the related pragma.
if Etype (Expr) = Any_Type or else Error_Posted (Expr) then
raise Pragma_Exit;
elsif Is_OK_Static_Expression (Expr) then
return;
-- An interesting special case, if we have a string literal and we
-- are in Ada 83 mode, then we allow it even though it will not be
-- flagged as static. This allows the use of Ada 95 pragmas like
-- Import in Ada 83 mode. They will of course be flagged with
-- warnings as usual, but will not cause errors.
elsif Ada_Version = Ada_83
and then Nkind (Expr) = N_String_Literal
then
return;
-- Finally, we have a real error
else
Error_Msg_Name_1 := Pname;
Flag_Non_Static_Expr
(Fix_Error ("argument for pragma% must be a static expression!"),
Expr);
raise Pragma_Exit;
end if;
end Check_Expr_Is_OK_Static_Expression;
-------------------------
-- Check_First_Subtype --
-------------------------
procedure Check_First_Subtype (Arg : Node_Id) is
Argx : constant Node_Id := Get_Pragma_Arg (Arg);
Ent : constant Entity_Id := Entity (Argx);
begin
if Is_First_Subtype (Ent) then
null;
elsif Is_Type (Ent) then
Error_Pragma_Arg
("pragma% cannot apply to subtype", Argx);
elsif Is_Object (Ent) then
Error_Pragma_Arg
("pragma% cannot apply to object, requires a type", Argx);
else
Error_Pragma_Arg
("pragma% cannot apply to&, requires a type", Argx);
end if;
end Check_First_Subtype;
----------------------
-- Check_Identifier --
----------------------
procedure Check_Identifier (Arg : Node_Id; Id : Name_Id) is
begin
if Present (Arg)
and then Nkind (Arg) = N_Pragma_Argument_Association
then
if Chars (Arg) = No_Name or else Chars (Arg) /= Id then
Error_Msg_Name_1 := Pname;
Error_Msg_Name_2 := Id;
Error_Msg_N ("pragma% argument expects identifier%", Arg);
raise Pragma_Exit;
end if;
end if;
end Check_Identifier;
--------------------------------
-- Check_Identifier_Is_One_Of --
--------------------------------
procedure Check_Identifier_Is_One_Of (Arg : Node_Id; N1, N2 : Name_Id) is
begin
if Present (Arg)
and then Nkind (Arg) = N_Pragma_Argument_Association
then
if Chars (Arg) = No_Name then
Error_Msg_Name_1 := Pname;
Error_Msg_N ("pragma% argument expects an identifier", Arg);
raise Pragma_Exit;
elsif Chars (Arg) /= N1
and then Chars (Arg) /= N2
then
Error_Msg_Name_1 := Pname;
Error_Msg_N ("invalid identifier for pragma% argument", Arg);
raise Pragma_Exit;
end if;
end if;
end Check_Identifier_Is_One_Of;
---------------------------
-- Check_In_Main_Program --
---------------------------
procedure Check_In_Main_Program is
P : constant Node_Id := Parent (N);
begin
-- Must be in subprogram body
if Nkind (P) /= N_Subprogram_Body then
Error_Pragma ("% pragma allowed only in subprogram");
-- Otherwise warn if obviously not main program
elsif Present (Parameter_Specifications (Specification (P)))
or else not Is_Compilation_Unit (Defining_Entity (P))
then
Error_Msg_Name_1 := Pname;
Error_Msg_N
("??pragma% is only effective in main program", N);
end if;
end Check_In_Main_Program;
---------------------------------------
-- Check_Interrupt_Or_Attach_Handler --
---------------------------------------
procedure Check_Interrupt_Or_Attach_Handler is
Arg1_X : constant Node_Id := Get_Pragma_Arg (Arg1);
Handler_Proc, Proc_Scope : Entity_Id;
begin
Analyze (Arg1_X);
if Prag_Id = Pragma_Interrupt_Handler then
Check_Restriction (No_Dynamic_Attachment, N);
end if;
Handler_Proc := Find_Unique_Parameterless_Procedure (Arg1_X, Arg1);
Proc_Scope := Scope (Handler_Proc);
if Ekind (Proc_Scope) /= E_Protected_Type then
Error_Pragma_Arg
("argument of pragma% must be protected procedure", Arg1);
end if;
-- For pragma case (as opposed to access case), check placement.
-- We don't need to do that for aspects, because we have the
-- check that they aspect applies an appropriate procedure.
if not From_Aspect_Specification (N)
and then Parent (N) /= Protected_Definition (Parent (Proc_Scope))
then
Error_Pragma ("pragma% must be in protected definition");
end if;
if not Is_Library_Level_Entity (Proc_Scope) then
Error_Pragma_Arg
("argument for pragma% must be library level entity", Arg1);
end if;
-- AI05-0033: A pragma cannot appear within a generic body, because
-- instance can be in a nested scope. The check that protected type
-- is itself a library-level declaration is done elsewhere.
-- Note: we omit this check in Relaxed_RM_Semantics mode to properly
-- handle code prior to AI-0033. Analysis tools typically are not
-- interested in this pragma in any case, so no need to worry too
-- much about its placement.
if Inside_A_Generic then
if Ekind (Scope (Current_Scope)) = E_Generic_Package
and then In_Package_Body (Scope (Current_Scope))
and then not Relaxed_RM_Semantics
then
Error_Pragma ("pragma% cannot be used inside a generic");
end if;
end if;
end Check_Interrupt_Or_Attach_Handler;
---------------------------------
-- Check_Loop_Pragma_Placement --
---------------------------------
procedure Check_Loop_Pragma_Placement is
procedure Check_Loop_Pragma_Grouping (Loop_Stmt : Node_Id);
-- Verify whether the current pragma is properly grouped with other
-- pragma Loop_Invariant and/or Loop_Variant. Node Loop_Stmt is the
-- related loop where the pragma appears.
function Is_Loop_Pragma (Stmt : Node_Id) return Boolean;
-- Determine whether an arbitrary statement Stmt denotes pragma
-- Loop_Invariant or Loop_Variant.
procedure Placement_Error (Constr : Node_Id);
pragma No_Return (Placement_Error);
-- Node Constr denotes the last loop restricted construct before we
-- encountered an illegal relation between enclosing constructs. Emit
-- an error depending on what Constr was.
--------------------------------
-- Check_Loop_Pragma_Grouping --
--------------------------------
procedure Check_Loop_Pragma_Grouping (Loop_Stmt : Node_Id) is
Stop_Search : exception;
-- This exception is used to terminate the recursive descent of
-- routine Check_Grouping.
procedure Check_Grouping (L : List_Id);
-- Find the first group of pragmas in list L and if successful,
-- ensure that the current pragma is part of that group. The
-- routine raises Stop_Search once such a check is performed to
-- halt the recursive descent.
procedure Grouping_Error (Prag : Node_Id);
pragma No_Return (Grouping_Error);
-- Emit an error concerning the current pragma indicating that it
-- should be placed after pragma Prag.
--------------------
-- Check_Grouping --
--------------------
procedure Check_Grouping (L : List_Id) is
HSS : Node_Id;
Stmt : Node_Id;
Prag : Node_Id := Empty; -- init to avoid warning
begin
-- Inspect the list of declarations or statements looking for
-- the first grouping of pragmas:
-- loop
-- pragma Loop_Invariant ...;
-- pragma Loop_Variant ...;
-- . . . -- (1)
-- pragma Loop_Variant ...; -- current pragma
-- If the current pragma is not in the grouping, then it must
-- either appear in a different declarative or statement list
-- or the construct at (1) is separating the pragma from the
-- grouping.
Stmt := First (L);
while Present (Stmt) loop
-- Pragmas Loop_Invariant and Loop_Variant may only appear
-- inside a loop or a block housed inside a loop. Inspect
-- the declarations and statements of the block as they may
-- contain the first grouping.
if Nkind (Stmt) = N_Block_Statement then
HSS := Handled_Statement_Sequence (Stmt);
Check_Grouping (Declarations (Stmt));
if Present (HSS) then
Check_Grouping (Statements (HSS));
end if;
-- First pragma of the first topmost grouping has been found
elsif Is_Loop_Pragma (Stmt) then
-- The group and the current pragma are not in the same
-- declarative or statement list.
if List_Containing (Stmt) /= List_Containing (N) then
Grouping_Error (Stmt);
-- Try to reach the current pragma from the first pragma
-- of the grouping while skipping other members:
-- pragma Loop_Invariant ...; -- first pragma
-- pragma Loop_Variant ...; -- member
-- . . .
-- pragma Loop_Variant ...; -- current pragma
else
while Present (Stmt) loop
-- The current pragma is either the first pragma
-- of the group or is a member of the group.
-- Stop the search as the placement is legal.
if Stmt = N then
raise Stop_Search;
-- Skip group members, but keep track of the
-- last pragma in the group.
elsif Is_Loop_Pragma (Stmt) then
Prag := Stmt;
-- Skip declarations and statements generated by
-- the compiler during expansion.
elsif not Comes_From_Source (Stmt) then
null;
-- A non-pragma is separating the group from the
-- current pragma, the placement is illegal.
else
Grouping_Error (Prag);
end if;
Next (Stmt);
end loop;
-- If the traversal did not reach the current pragma,
-- then the list must be malformed.
raise Program_Error;
end if;
end if;
Next (Stmt);
end loop;
end Check_Grouping;
--------------------
-- Grouping_Error --
--------------------
procedure Grouping_Error (Prag : Node_Id) is
begin
Error_Msg_Sloc := Sloc (Prag);
Error_Pragma ("pragma% must appear next to pragma#");
end Grouping_Error;
-- Start of processing for Check_Loop_Pragma_Grouping
begin
-- Inspect the statements of the loop or nested blocks housed
-- within to determine whether the current pragma is part of the
-- first topmost grouping of Loop_Invariant and Loop_Variant.
Check_Grouping (Statements (Loop_Stmt));
exception
when Stop_Search => null;
end Check_Loop_Pragma_Grouping;
--------------------
-- Is_Loop_Pragma --
--------------------
function Is_Loop_Pragma (Stmt : Node_Id) return Boolean is
begin
-- Inspect the original node as Loop_Invariant and Loop_Variant
-- pragmas are rewritten to null when assertions are disabled.
if Nkind (Original_Node (Stmt)) = N_Pragma then
return
Nam_In (Pragma_Name_Unmapped (Original_Node (Stmt)),
Name_Loop_Invariant,
Name_Loop_Variant);
else
return False;
end if;
end Is_Loop_Pragma;
---------------------
-- Placement_Error --
---------------------
procedure Placement_Error (Constr : Node_Id) is
LA : constant String := " with Loop_Entry";
begin
if Prag_Id = Pragma_Assert then
Error_Msg_String (1 .. LA'Length) := LA;
Error_Msg_Strlen := LA'Length;
else
Error_Msg_Strlen := 0;
end if;
if Nkind (Constr) = N_Pragma then
Error_Pragma
("pragma %~ must appear immediately within the statements "
& "of a loop");
else
Error_Pragma_Arg
("block containing pragma %~ must appear immediately within "
& "the statements of a loop", Constr);
end if;
end Placement_Error;
-- Local declarations
Prev : Node_Id;
Stmt : Node_Id;
-- Start of processing for Check_Loop_Pragma_Placement
begin
-- Check that pragma appears immediately within a loop statement,
-- ignoring intervening block statements.
Prev := N;
Stmt := Parent (N);
while Present (Stmt) loop
-- The pragma or previous block must appear immediately within the
-- current block's declarative or statement part.
if Nkind (Stmt) = N_Block_Statement then
if (No (Declarations (Stmt))
or else List_Containing (Prev) /= Declarations (Stmt))
and then
List_Containing (Prev) /=
Statements (Handled_Statement_Sequence (Stmt))
then
Placement_Error (Prev);
return;
-- Keep inspecting the parents because we are now within a
-- chain of nested blocks.
else
Prev := Stmt;
Stmt := Parent (Stmt);
end if;
-- The pragma or previous block must appear immediately within the
-- statements of the loop.
elsif Nkind (Stmt) = N_Loop_Statement then
if List_Containing (Prev) /= Statements (Stmt) then
Placement_Error (Prev);
end if;
-- Stop the traversal because we reached the innermost loop
-- regardless of whether we encountered an error or not.
exit;
-- Ignore a handled statement sequence. Note that this node may
-- be related to a subprogram body in which case we will emit an
-- error on the next iteration of the search.
elsif Nkind (Stmt) = N_Handled_Sequence_Of_Statements then
Stmt := Parent (Stmt);
-- Any other statement breaks the chain from the pragma to the
-- loop.
else
Placement_Error (Prev);
return;
end if;
end loop;
-- Check that the current pragma Loop_Invariant or Loop_Variant is
-- grouped together with other such pragmas.
if Is_Loop_Pragma (N) then
-- The previous check should have located the related loop
pragma Assert (Nkind (Stmt) = N_Loop_Statement);
Check_Loop_Pragma_Grouping (Stmt);
end if;
end Check_Loop_Pragma_Placement;
-------------------------------------------
-- Check_Is_In_Decl_Part_Or_Package_Spec --
-------------------------------------------
procedure Check_Is_In_Decl_Part_Or_Package_Spec is
P : Node_Id;
begin
P := Parent (N);
loop
if No (P) then
exit;
elsif Nkind (P) = N_Handled_Sequence_Of_Statements then
exit;
elsif Nkind_In (P, N_Package_Specification,
N_Block_Statement)
then
return;
-- Note: the following tests seem a little peculiar, because
-- they test for bodies, but if we were in the statement part
-- of the body, we would already have hit the handled statement
-- sequence, so the only way we get here is by being in the
-- declarative part of the body.
elsif Nkind_In (P, N_Subprogram_Body,
N_Package_Body,
N_Task_Body,
N_Entry_Body)
then
return;
end if;
P := Parent (P);
end loop;
Error_Pragma ("pragma% is not in declarative part or package spec");
end Check_Is_In_Decl_Part_Or_Package_Spec;
-------------------------
-- Check_No_Identifier --
-------------------------
procedure Check_No_Identifier (Arg : Node_Id) is
begin
if Nkind (Arg) = N_Pragma_Argument_Association
and then Chars (Arg) /= No_Name
then
Error_Pragma_Arg_Ident
("pragma% does not permit identifier& here", Arg);
end if;
end Check_No_Identifier;
--------------------------
-- Check_No_Identifiers --
--------------------------
procedure Check_No_Identifiers is
Arg_Node : Node_Id;
begin
Arg_Node := Arg1;
for J in 1 .. Arg_Count loop
Check_No_Identifier (Arg_Node);
Next (Arg_Node);
end loop;
end Check_No_Identifiers;
------------------------
-- Check_No_Link_Name --
------------------------
procedure Check_No_Link_Name is
begin
if Present (Arg3) and then Chars (Arg3) = Name_Link_Name then
Arg4 := Arg3;
end if;
if Present (Arg4) then
Error_Pragma_Arg
("Link_Name argument not allowed for Import Intrinsic", Arg4);
end if;
end Check_No_Link_Name;
-------------------------------
-- Check_Optional_Identifier --
-------------------------------
procedure Check_Optional_Identifier (Arg : Node_Id; Id : Name_Id) is
begin
if Present (Arg)
and then Nkind (Arg) = N_Pragma_Argument_Association
and then Chars (Arg) /= No_Name
then
if Chars (Arg) /= Id then
Error_Msg_Name_1 := Pname;
Error_Msg_Name_2 := Id;
Error_Msg_N ("pragma% argument expects identifier%", Arg);
raise Pragma_Exit;
end if;
end if;
end Check_Optional_Identifier;
procedure Check_Optional_Identifier (Arg : Node_Id; Id : String) is
begin
Check_Optional_Identifier (Arg, Name_Find (Id));
end Check_Optional_Identifier;
-------------------------------------
-- Check_Static_Boolean_Expression --
-------------------------------------
procedure Check_Static_Boolean_Expression (Expr : Node_Id) is
begin
if Present (Expr) then
Analyze_And_Resolve (Expr, Standard_Boolean);
if not Is_OK_Static_Expression (Expr) then
Error_Pragma_Arg
("expression of pragma % must be static", Expr);
end if;
end if;
end Check_Static_Boolean_Expression;
-----------------------------
-- Check_Static_Constraint --
-----------------------------
-- Note: for convenience in writing this procedure, in addition to
-- the officially (i.e. by spec) allowed argument which is always a
-- constraint, it also allows ranges and discriminant associations.
-- Above is not clear ???
procedure Check_Static_Constraint (Constr : Node_Id) is
procedure Require_Static (E : Node_Id);
-- Require given expression to be static expression
--------------------
-- Require_Static --
--------------------
procedure Require_Static (E : Node_Id) is
begin
if not Is_OK_Static_Expression (E) then
Flag_Non_Static_Expr
("non-static constraint not allowed in Unchecked_Union!", E);
raise Pragma_Exit;
end if;
end Require_Static;
-- Start of processing for Check_Static_Constraint
begin
case Nkind (Constr) is
when N_Discriminant_Association =>
Require_Static (Expression (Constr));
when N_Range =>
Require_Static (Low_Bound (Constr));
Require_Static (High_Bound (Constr));
when N_Attribute_Reference =>
Require_Static (Type_Low_Bound (Etype (Prefix (Constr))));
Require_Static (Type_High_Bound (Etype (Prefix (Constr))));
when N_Range_Constraint =>
Check_Static_Constraint (Range_Expression (Constr));
when N_Index_Or_Discriminant_Constraint =>
declare
IDC : Entity_Id;
begin
IDC := First (Constraints (Constr));
while Present (IDC) loop
Check_Static_Constraint (IDC);
Next (IDC);
end loop;
end;
when others =>
null;
end case;
end Check_Static_Constraint;
--------------------------------------
-- Check_Valid_Configuration_Pragma --
--------------------------------------
-- A configuration pragma must appear in the context clause of a
-- compilation unit, and only other pragmas may precede it. Note that
-- the test also allows use in a configuration pragma file.
procedure Check_Valid_Configuration_Pragma is
begin
if not Is_Configuration_Pragma then
Error_Pragma ("incorrect placement for configuration pragma%");
end if;
end Check_Valid_Configuration_Pragma;
-------------------------------------
-- Check_Valid_Library_Unit_Pragma --
-------------------------------------
procedure Check_Valid_Library_Unit_Pragma is
Plist : List_Id;
Parent_Node : Node_Id;
Unit_Name : Entity_Id;
Unit_Kind : Node_Kind;
Unit_Node : Node_Id;
Sindex : Source_File_Index;
begin
if not Is_List_Member (N) then
Pragma_Misplaced;
else
Plist := List_Containing (N);
Parent_Node := Parent (Plist);
if Parent_Node = Empty then
Pragma_Misplaced;
-- Case of pragma appearing after a compilation unit. In this case
-- it must have an argument with the corresponding name and must
-- be part of the following pragmas of its parent.
elsif Nkind (Parent_Node) = N_Compilation_Unit_Aux then
if Plist /= Pragmas_After (Parent_Node) then
Pragma_Misplaced;
elsif Arg_Count = 0 then
Error_Pragma
("argument required if outside compilation unit");
else
Check_No_Identifiers;
Check_Arg_Count (1);
Unit_Node := Unit (Parent (Parent_Node));
Unit_Kind := Nkind (Unit_Node);
Analyze (Get_Pragma_Arg (Arg1));
if Unit_Kind = N_Generic_Subprogram_Declaration
or else Unit_Kind = N_Subprogram_Declaration
then
Unit_Name := Defining_Entity (Unit_Node);
elsif Unit_Kind in N_Generic_Instantiation then
Unit_Name := Defining_Entity (Unit_Node);
else
Unit_Name := Cunit_Entity (Current_Sem_Unit);
end if;
if Chars (Unit_Name) /=
Chars (Entity (Get_Pragma_Arg (Arg1)))
then
Error_Pragma_Arg
("pragma% argument is not current unit name", Arg1);
end if;
if Ekind (Unit_Name) = E_Package
and then Present (Renamed_Entity (Unit_Name))
then
Error_Pragma ("pragma% not allowed for renamed package");
end if;
end if;
-- Pragma appears other than after a compilation unit
else
-- Here we check for the generic instantiation case and also
-- for the case of processing a generic formal package. We
-- detect these cases by noting that the Sloc on the node
-- does not belong to the current compilation unit.
Sindex := Source_Index (Current_Sem_Unit);
if Loc not in Source_First (Sindex) .. Source_Last (Sindex) then
Rewrite (N, Make_Null_Statement (Loc));
return;
-- If before first declaration, the pragma applies to the
-- enclosing unit, and the name if present must be this name.
elsif Is_Before_First_Decl (N, Plist) then
Unit_Node := Unit_Declaration_Node (Current_Scope);
Unit_Kind := Nkind (Unit_Node);
if Nkind (Parent (Unit_Node)) /= N_Compilation_Unit then
Pragma_Misplaced;
elsif Unit_Kind = N_Subprogram_Body
and then not Acts_As_Spec (Unit_Node)
then
Pragma_Misplaced;
elsif Nkind (Parent_Node) = N_Package_Body then
Pragma_Misplaced;
elsif Nkind (Parent_Node) = N_Package_Specification
and then Plist = Private_Declarations (Parent_Node)
then
Pragma_Misplaced;
elsif (Nkind (Parent_Node) = N_Generic_Package_Declaration
or else Nkind (Parent_Node) =
N_Generic_Subprogram_Declaration)
and then Plist = Generic_Formal_Declarations (Parent_Node)
then
Pragma_Misplaced;
elsif Arg_Count > 0 then
Analyze (Get_Pragma_Arg (Arg1));
if Entity (Get_Pragma_Arg (Arg1)) /= Current_Scope then
Error_Pragma_Arg
("name in pragma% must be enclosing unit", Arg1);
end if;
-- It is legal to have no argument in this context
else
return;
end if;
-- Error if not before first declaration. This is because a
-- library unit pragma argument must be the name of a library
-- unit (RM 10.1.5(7)), but the only names permitted in this
-- context are (RM 10.1.5(6)) names of subprogram declarations,
-- generic subprogram declarations or generic instantiations.
else
Error_Pragma
("pragma% misplaced, must be before first declaration");
end if;
end if;
end if;
end Check_Valid_Library_Unit_Pragma;
-------------------
-- Check_Variant --
-------------------
procedure Check_Variant (Variant : Node_Id; UU_Typ : Entity_Id) is
Clist : constant Node_Id := Component_List (Variant);
Comp : Node_Id;
begin
Comp := First_Non_Pragma (Component_Items (Clist));
while Present (Comp) loop
Check_Component (Comp, UU_Typ, In_Variant_Part => True);
Next_Non_Pragma (Comp);
end loop;
end Check_Variant;
---------------------------
-- Ensure_Aggregate_Form --
---------------------------
procedure Ensure_Aggregate_Form (Arg : Node_Id) is
CFSD : constant Boolean := Get_Comes_From_Source_Default;
Expr : constant Node_Id := Expression (Arg);
Loc : constant Source_Ptr := Sloc (Expr);
Comps : List_Id := No_List;
Exprs : List_Id := No_List;
Nam : Name_Id := No_Name;
Nam_Loc : Source_Ptr;
begin
-- The pragma argument is in positional form:
-- pragma Depends (Nam => ...)
-- ^
-- Chars field
-- Note that the Sloc of the Chars field is the Sloc of the pragma
-- argument association.
if Nkind (Arg) = N_Pragma_Argument_Association then
Nam := Chars (Arg);
Nam_Loc := Sloc (Arg);
-- Remove the pragma argument name as this will be captured in the
-- aggregate.
Set_Chars (Arg, No_Name);
end if;
-- The argument is already in aggregate form, but the presence of a
-- name causes this to be interpreted as named association which in
-- turn must be converted into an aggregate.
-- pragma Global (In_Out => (A, B, C))
-- ^ ^
-- name aggregate
-- pragma Global ((In_Out => (A, B, C)))
-- ^ ^
-- aggregate aggregate
if Nkind (Expr) = N_Aggregate then
if Nam = No_Name then
return;
end if;
-- Do not transform a null argument into an aggregate as N_Null has
-- special meaning in formal verification pragmas.
elsif Nkind (Expr) = N_Null then
return;
end if;
-- Everything comes from source if the original comes from source
Set_Comes_From_Source_Default (Comes_From_Source (Arg));
-- Positional argument is transformed into an aggregate with an
-- Expressions list.
if Nam = No_Name then
Exprs := New_List (Relocate_Node (Expr));
-- An associative argument is transformed into an aggregate with
-- Component_Associations.
else
Comps := New_List (
Make_Component_Association (Loc,
Choices => New_List (Make_Identifier (Nam_Loc, Nam)),
Expression => Relocate_Node (Expr)));
end if;
Set_Expression (Arg,
Make_Aggregate (Loc,
Component_Associations => Comps,
Expressions => Exprs));
-- Restore Comes_From_Source default
Set_Comes_From_Source_Default (CFSD);
end Ensure_Aggregate_Form;
------------------
-- Error_Pragma --
------------------
procedure Error_Pragma (Msg : String) is
begin
Error_Msg_Name_1 := Pname;
Error_Msg_N (Fix_Error (Msg), N);
raise Pragma_Exit;
end Error_Pragma;
----------------------
-- Error_Pragma_Arg --
----------------------
procedure Error_Pragma_Arg (Msg : String; Arg : Node_Id) is
begin
Error_Msg_Name_1 := Pname;
Error_Msg_N (Fix_Error (Msg), Get_Pragma_Arg (Arg));
raise Pragma_Exit;
end Error_Pragma_Arg;
procedure Error_Pragma_Arg (Msg1, Msg2 : String; Arg : Node_Id) is
begin
Error_Msg_Name_1 := Pname;
Error_Msg_N (Fix_Error (Msg1), Get_Pragma_Arg (Arg));
Error_Pragma_Arg (Msg2, Arg);
end Error_Pragma_Arg;
----------------------------
-- Error_Pragma_Arg_Ident --
----------------------------
procedure Error_Pragma_Arg_Ident (Msg : String; Arg : Node_Id) is
begin
Error_Msg_Name_1 := Pname;
Error_Msg_N (Fix_Error (Msg), Arg);
raise Pragma_Exit;
end Error_Pragma_Arg_Ident;
----------------------
-- Error_Pragma_Ref --
----------------------
procedure Error_Pragma_Ref (Msg : String; Ref : Entity_Id) is
begin
Error_Msg_Name_1 := Pname;
Error_Msg_Sloc := Sloc (Ref);
Error_Msg_NE (Fix_Error (Msg), N, Ref);
raise Pragma_Exit;
end Error_Pragma_Ref;
------------------------
-- Find_Lib_Unit_Name --
------------------------
function Find_Lib_Unit_Name return Entity_Id is
begin
-- Return inner compilation unit entity, for case of nested
-- categorization pragmas. This happens in generic unit.
if Nkind (Parent (N)) = N_Package_Specification
and then Defining_Entity (Parent (N)) /= Current_Scope
then
return Defining_Entity (Parent (N));
else
return Current_Scope;
end if;
end Find_Lib_Unit_Name;
----------------------------
-- Find_Program_Unit_Name --
----------------------------
procedure Find_Program_Unit_Name (Id : Node_Id) is
Unit_Name : Entity_Id;
Unit_Kind : Node_Kind;
P : constant Node_Id := Parent (N);
begin
if Nkind (P) = N_Compilation_Unit then
Unit_Kind := Nkind (Unit (P));
if Nkind_In (Unit_Kind, N_Subprogram_Declaration,
N_Package_Declaration)
or else Unit_Kind in N_Generic_Declaration
then
Unit_Name := Defining_Entity (Unit (P));
if Chars (Id) = Chars (Unit_Name) then
Set_Entity (Id, Unit_Name);
Set_Etype (Id, Etype (Unit_Name));
else
Set_Etype (Id, Any_Type);
Error_Pragma
("cannot find program unit referenced by pragma%");
end if;
else
Set_Etype (Id, Any_Type);
Error_Pragma ("pragma% inapplicable to this unit");
end if;
else
Analyze (Id);
end if;
end Find_Program_Unit_Name;
-----------------------------------------
-- Find_Unique_Parameterless_Procedure --
-----------------------------------------
function Find_Unique_Parameterless_Procedure
(Name : Entity_Id;
Arg : Node_Id) return Entity_Id
is
Proc : Entity_Id := Empty;
begin
-- The body of this procedure needs some comments ???
if not Is_Entity_Name (Name) then
Error_Pragma_Arg
("argument of pragma% must be entity name", Arg);
elsif not Is_Overloaded (Name) then
Proc := Entity (Name);
if Ekind (Proc) /= E_Procedure
or else Present (First_Formal (Proc))
then
Error_Pragma_Arg
("argument of pragma% must be parameterless procedure", Arg);
end if;
else
declare
Found : Boolean := False;
It : Interp;
Index : Interp_Index;
begin
Get_First_Interp (Name, Index, It);
while Present (It.Nam) loop
Proc := It.Nam;
if Ekind (Proc) = E_Procedure
and then No (First_Formal (Proc))
then
if not Found then
Found := True;
Set_Entity (Name, Proc);
Set_Is_Overloaded (Name, False);
else
Error_Pragma_Arg
("ambiguous handler name for pragma% ", Arg);
end if;
end if;
Get_Next_Interp (Index, It);
end loop;
if not Found then
Error_Pragma_Arg
("argument of pragma% must be parameterless procedure",
Arg);
else
Proc := Entity (Name);
end if;
end;
end if;
return Proc;
end Find_Unique_Parameterless_Procedure;
---------------
-- Fix_Error --
---------------
function Fix_Error (Msg : String) return String is
Res : String (Msg'Range) := Msg;
Res_Last : Natural := Msg'Last;
J : Natural;
begin
-- If we have a rewriting of another pragma, go to that pragma
if Is_Rewrite_Substitution (N)
and then Nkind (Original_Node (N)) = N_Pragma
then
Error_Msg_Name_1 := Pragma_Name (Original_Node (N));
end if;
-- Case where pragma comes from an aspect specification
if From_Aspect_Specification (N) then
-- Change appearence of "pragma" in message to "aspect"
J := Res'First;
while J <= Res_Last - 5 loop
if Res (J .. J + 5) = "pragma" then
Res (J .. J + 5) := "aspect";
J := J + 6;
else
J := J + 1;
end if;
end loop;
-- Change "argument of" at start of message to "entity for"
if Res'Length > 11
and then Res (Res'First .. Res'First + 10) = "argument of"
then
Res (Res'First .. Res'First + 9) := "entity for";
Res (Res'First + 10 .. Res_Last - 1) :=
Res (Res'First + 11 .. Res_Last);
Res_Last := Res_Last - 1;
end if;
-- Change "argument" at start of message to "entity"
if Res'Length > 8
and then Res (Res'First .. Res'First + 7) = "argument"
then
Res (Res'First .. Res'First + 5) := "entity";
Res (Res'First + 6 .. Res_Last - 2) :=
Res (Res'First + 8 .. Res_Last);
Res_Last := Res_Last - 2;
end if;
-- Get name from corresponding aspect
Error_Msg_Name_1 := Original_Aspect_Pragma_Name (N);
end if;
-- Return possibly modified message
return Res (Res'First .. Res_Last);
end Fix_Error;
-------------------------
-- Gather_Associations --
-------------------------
procedure Gather_Associations
(Names : Name_List;
Args : out Args_List)
is
Arg : Node_Id;
begin
-- Initialize all parameters to Empty
for J in Args'Range loop
Args (J) := Empty;
end loop;
-- That's all we have to do if there are no argument associations
if No (Pragma_Argument_Associations (N)) then
return;
end if;
-- Otherwise first deal with any positional parameters present
Arg := First (Pragma_Argument_Associations (N));
for Index in Args'Range loop
exit when No (Arg) or else Chars (Arg) /= No_Name;
Args (Index) := Get_Pragma_Arg (Arg);
Next (Arg);
end loop;
-- Positional parameters all processed, if any left, then we
-- have too many positional parameters.
if Present (Arg) and then Chars (Arg) = No_Name then
Error_Pragma_Arg
("too many positional associations for pragma%", Arg);
end if;
-- Process named parameters if any are present
while Present (Arg) loop
if Chars (Arg) = No_Name then
Error_Pragma_Arg
("positional association cannot follow named association",
Arg);
else
for Index in Names'Range loop
if Names (Index) = Chars (Arg) then
if Present (Args (Index)) then
Error_Pragma_Arg
("duplicate argument association for pragma%", Arg);
else
Args (Index) := Get_Pragma_Arg (Arg);
exit;
end if;
end if;
if Index = Names'Last then
Error_Msg_Name_1 := Pname;
Error_Msg_N ("pragma% does not allow & argument", Arg);
-- Check for possible misspelling
for Index1 in Names'Range loop
if Is_Bad_Spelling_Of
(Chars (Arg), Names (Index1))
then
Error_Msg_Name_1 := Names (Index1);
Error_Msg_N -- CODEFIX
("\possible misspelling of%", Arg);
exit;
end if;
end loop;
raise Pragma_Exit;
end if;
end loop;
end if;
Next (Arg);
end loop;
end Gather_Associations;
-----------------
-- GNAT_Pragma --
-----------------
procedure GNAT_Pragma is
begin
-- We need to check the No_Implementation_Pragmas restriction for
-- the case of a pragma from source. Note that the case of aspects
-- generating corresponding pragmas marks these pragmas as not being
-- from source, so this test also catches that case.
if Comes_From_Source (N) then
Check_Restriction (No_Implementation_Pragmas, N);
end if;
end GNAT_Pragma;
--------------------------
-- Is_Before_First_Decl --
--------------------------
function Is_Before_First_Decl
(Pragma_Node : Node_Id;
Decls : List_Id) return Boolean
is
Item : Node_Id := First (Decls);
begin
-- Only other pragmas can come before this pragma
loop
if No (Item) or else Nkind (Item) /= N_Pragma then
return False;
elsif Item = Pragma_Node then
return True;
end if;
Next (Item);
end loop;
end Is_Before_First_Decl;
-----------------------------
-- Is_Configuration_Pragma --
-----------------------------
-- A configuration pragma must appear in the context clause of a
-- compilation unit, and only other pragmas may precede it. Note that
-- the test below also permits use in a configuration pragma file.
function Is_Configuration_Pragma return Boolean is
Lis : constant List_Id := List_Containing (N);
Par : constant Node_Id := Parent (N);
Prg : Node_Id;
begin
-- If no parent, then we are in the configuration pragma file,
-- so the placement is definitely appropriate.
if No (Par) then
return True;
-- Otherwise we must be in the context clause of a compilation unit
-- and the only thing allowed before us in the context list is more
-- configuration pragmas.
elsif Nkind (Par) = N_Compilation_Unit
and then Context_Items (Par) = Lis
then
Prg := First (Lis);
loop
if Prg = N then
return True;
elsif Nkind (Prg) /= N_Pragma then
return False;
end if;
Next (Prg);
end loop;
else
return False;
end if;
end Is_Configuration_Pragma;
--------------------------
-- Is_In_Context_Clause --
--------------------------
function Is_In_Context_Clause return Boolean is
Plist : List_Id;
Parent_Node : Node_Id;
begin
if not Is_List_Member (N) then
return False;
else
Plist := List_Containing (N);
Parent_Node := Parent (Plist);
if Parent_Node = Empty
or else Nkind (Parent_Node) /= N_Compilation_Unit
or else Context_Items (Parent_Node) /= Plist
then
return False;
end if;
end if;
return True;
end Is_In_Context_Clause;
---------------------------------
-- Is_Static_String_Expression --
---------------------------------
function Is_Static_String_Expression (Arg : Node_Id) return Boolean is
Argx : constant Node_Id := Get_Pragma_Arg (Arg);
Lit : constant Boolean := Nkind (Argx) = N_String_Literal;
begin
Analyze_And_Resolve (Argx);
-- Special case Ada 83, where the expression will never be static,
-- but we will return true if we had a string literal to start with.
if Ada_Version = Ada_83 then
return Lit;
-- Normal case, true only if we end up with a string literal that
-- is marked as being the result of evaluating a static expression.
else
return Is_OK_Static_Expression (Argx)
and then Nkind (Argx) = N_String_Literal;
end if;
end Is_Static_String_Expression;
----------------------
-- Pragma_Misplaced --
----------------------
procedure Pragma_Misplaced is
begin
Error_Pragma ("incorrect placement of pragma%");
end Pragma_Misplaced;
------------------------------------------------
-- Process_Atomic_Independent_Shared_Volatile --
------------------------------------------------
procedure Process_Atomic_Independent_Shared_Volatile is
procedure Check_VFA_Conflicts (Ent : Entity_Id);
-- Apply additional checks for the GNAT pragma Volatile_Full_Access
procedure Mark_Component_Or_Object (Ent : Entity_Id);
-- Appropriately set flags on the given entity (either an array or
-- record component, or an object declaration) according to the
-- current pragma.
procedure Set_Atomic_VFA (Ent : Entity_Id);
-- Set given type as Is_Atomic or Is_Volatile_Full_Access. Also, if
-- no explicit alignment was given, set alignment to unknown, since
-- back end knows what the alignment requirements are for atomic and
-- full access arrays. Note: this is necessary for derived types.
-------------------------
-- Check_VFA_Conflicts --
-------------------------
procedure Check_VFA_Conflicts (Ent : Entity_Id) is
Comp : Entity_Id;
Typ : Entity_Id;
VFA_And_Atomic : Boolean := False;
-- Set True if atomic component present
VFA_And_Aliased : Boolean := False;
-- Set True if aliased component present
begin
-- Fetch the type in case we are dealing with an object or
-- component.
if Is_Type (Ent) then
Typ := Ent;
else
pragma Assert (Is_Object (Ent)
or else
Nkind (Declaration_Node (Ent)) = N_Component_Declaration);
Typ := Etype (Ent);
end if;
-- Check Atomic and VFA used together
if Prag_Id = Pragma_Volatile_Full_Access
or else Is_Volatile_Full_Access (Ent)
then
if Prag_Id = Pragma_Atomic
or else Prag_Id = Pragma_Shared
or else Is_Atomic (Ent)
then
VFA_And_Atomic := True;
elsif Is_Array_Type (Typ) then
VFA_And_Atomic := Has_Atomic_Components (Typ);
-- Note: Has_Atomic_Components is not used below, as this flag
-- represents the pragma of the same name, Atomic_Components,
-- which only applies to arrays.
elsif Is_Record_Type (Typ) then
-- Attributes cannot be applied to discriminants, only
-- regular record components.
Comp := First_Component (Typ);
while Present (Comp) loop
if Is_Atomic (Comp)
or else Is_Atomic (Typ)
then
VFA_And_Atomic := True;
exit;
end if;
Next_Component (Comp);
end loop;
end if;
if VFA_And_Atomic then
Error_Pragma
("cannot have Volatile_Full_Access and Atomic for same "
& "entity");
end if;
end if;
-- Check for the application of VFA to an entity that has aliased
-- components.
if Prag_Id = Pragma_Volatile_Full_Access then
if Is_Array_Type (Typ)
and then Has_Aliased_Components (Typ)
then
VFA_And_Aliased := True;
-- Note: Has_Aliased_Components, like Has_Atomic_Components,
-- and Has_Independent_Components, applies only to arrays.
-- However, this flag does not have a corresponding pragma, so
-- perhaps it should be possible to apply it to record types as
-- well. Should this be done ???
elsif Is_Record_Type (Typ) then
-- It is possible to have an aliased discriminant, so they
-- must be checked along with normal components.
Comp := First_Component_Or_Discriminant (Typ);
while Present (Comp) loop
if Is_Aliased (Comp)
or else Is_Aliased (Etype (Comp))
then
VFA_And_Aliased := True;
Check_SPARK_05_Restriction
("aliased is not allowed", Comp);
exit;
end if;
Next_Component_Or_Discriminant (Comp);
end loop;
end if;
if VFA_And_Aliased then
Error_Pragma
("cannot apply Volatile_Full_Access (aliased component "
& "present)");
end if;
end if;
end Check_VFA_Conflicts;
------------------------------
-- Mark_Component_Or_Object --
------------------------------
procedure Mark_Component_Or_Object (Ent : Entity_Id) is
begin
if Prag_Id = Pragma_Atomic
or else Prag_Id = Pragma_Shared
or else Prag_Id = Pragma_Volatile_Full_Access
then
if Prag_Id = Pragma_Volatile_Full_Access then
Set_Is_Volatile_Full_Access (Ent);
else
Set_Is_Atomic (Ent);
end if;
-- If the object declaration has an explicit initialization, a
-- temporary may have to be created to hold the expression, to
-- ensure that access to the object remains atomic.
if Nkind (Parent (Ent)) = N_Object_Declaration
and then Present (Expression (Parent (Ent)))
then
Set_Has_Delayed_Freeze (Ent);
end if;
end if;
-- Atomic/Shared/Volatile_Full_Access imply Independent
if Prag_Id /= Pragma_Volatile then
Set_Is_Independent (Ent);
if Prag_Id = Pragma_Independent then
Record_Independence_Check (N, Ent);
end if;
end if;
-- Atomic/Shared/Volatile_Full_Access imply Volatile
if Prag_Id /= Pragma_Independent then
Set_Is_Volatile (Ent);
Set_Treat_As_Volatile (Ent);
end if;
end Mark_Component_Or_Object;
--------------------
-- Set_Atomic_VFA --
--------------------
procedure Set_Atomic_VFA (Ent : Entity_Id) is
begin
if Prag_Id = Pragma_Volatile_Full_Access then
Set_Is_Volatile_Full_Access (Ent);
else
Set_Is_Atomic (Ent);
end if;
if not Has_Alignment_Clause (Ent) then
Set_Alignment (Ent, Uint_0);
end if;
end Set_Atomic_VFA;
-- Local variables
Decl : Node_Id;
E : Entity_Id;
E_Arg : Node_Id;
-- Start of processing for Process_Atomic_Independent_Shared_Volatile
begin
Check_Ada_83_Warning;
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Arg_Is_Local_Name (Arg1);
E_Arg := Get_Pragma_Arg (Arg1);
if Etype (E_Arg) = Any_Type then
return;
end if;
E := Entity (E_Arg);
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, E);
-- Check duplicate before we chain ourselves
Check_Duplicate_Pragma (E);
-- Check appropriateness of the entity
Decl := Declaration_Node (E);
-- Deal with the case where the pragma/attribute is applied to a type
if Is_Type (E) then
if Rep_Item_Too_Early (E, N)
or else Rep_Item_Too_Late (E, N)
then
return;
else
Check_First_Subtype (Arg1);
end if;
-- Attribute belongs on the base type. If the view of the type is
-- currently private, it also belongs on the underlying type.
if Prag_Id = Pragma_Atomic
or else Prag_Id = Pragma_Shared
or else Prag_Id = Pragma_Volatile_Full_Access
then
Set_Atomic_VFA (E);
Set_Atomic_VFA (Base_Type (E));
Set_Atomic_VFA (Underlying_Type (E));
end if;
-- Atomic/Shared/Volatile_Full_Access imply Independent
if Prag_Id /= Pragma_Volatile then
Set_Is_Independent (E);
Set_Is_Independent (Base_Type (E));
Set_Is_Independent (Underlying_Type (E));
if Prag_Id = Pragma_Independent then
Record_Independence_Check (N, Base_Type (E));
end if;
end if;
-- Atomic/Shared/Volatile_Full_Access imply Volatile
if Prag_Id /= Pragma_Independent then
Set_Is_Volatile (E);
Set_Is_Volatile (Base_Type (E));
Set_Is_Volatile (Underlying_Type (E));
Set_Treat_As_Volatile (E);
Set_Treat_As_Volatile (Underlying_Type (E));
end if;
-- Apply Volatile to the composite type's individual components,
-- (RM C.6(8/3)).
if Prag_Id = Pragma_Volatile
and then Is_Record_Type (Etype (E))
then
declare
Comp : Entity_Id;
begin
Comp := First_Component (E);
while Present (Comp) loop
Mark_Component_Or_Object (Comp);
Next_Component (Comp);
end loop;
end;
end if;
-- Deal with the case where the pragma/attribute applies to a
-- component or object declaration.
elsif Nkind (Decl) = N_Object_Declaration
or else (Nkind (Decl) = N_Component_Declaration
and then Original_Record_Component (E) = E)
then
if Rep_Item_Too_Late (E, N) then
return;
end if;
Mark_Component_Or_Object (E);
else
Error_Pragma_Arg ("inappropriate entity for pragma%", Arg1);
end if;
-- Perform the checks needed to assure the proper use of the GNAT
-- pragma Volatile_Full_Access.
Check_VFA_Conflicts (E);
-- The following check is only relevant when SPARK_Mode is on as
-- this is not a standard Ada legality rule. Pragma Volatile can
-- only apply to a full type declaration or an object declaration
-- (SPARK RM 7.1.3(2)). Original_Node is necessary to account for
-- untagged derived types that are rewritten as subtypes of their
-- respective root types.
if SPARK_Mode = On
and then Prag_Id = Pragma_Volatile
and then
not Nkind_In (Original_Node (Decl), N_Full_Type_Declaration,
N_Object_Declaration)
then
Error_Pragma_Arg
("argument of pragma % must denote a full type or object "
& "declaration", Arg1);
end if;
end Process_Atomic_Independent_Shared_Volatile;
-------------------------------------------
-- Process_Compile_Time_Warning_Or_Error --
-------------------------------------------
procedure Process_Compile_Time_Warning_Or_Error is
Validation_Needed : Boolean := False;
function Check_Node (N : Node_Id) return Traverse_Result;
-- Tree visitor that checks if N is an attribute reference that can
-- be statically computed by the back end. Validation_Needed is set
-- to True if found.
----------------
-- Check_Node --
----------------
function Check_Node (N : Node_Id) return Traverse_Result is
begin
if Nkind (N) = N_Attribute_Reference
and then Is_Entity_Name (Prefix (N))
then
declare
Attr_Id : constant Attribute_Id :=
Get_Attribute_Id (Attribute_Name (N));
begin
if Attr_Id = Attribute_Alignment
or else Attr_Id = Attribute_Size
then
Validation_Needed := True;
end if;
end;
end if;
return OK;
end Check_Node;
procedure Check_Expression is new Traverse_Proc (Check_Node);
-- Local variables
Arg1x : constant Node_Id := Get_Pragma_Arg (Arg1);
-- Start of processing for Process_Compile_Time_Warning_Or_Error
begin
Check_Arg_Count (2);
Check_No_Identifiers;
Check_Arg_Is_OK_Static_Expression (Arg2, Standard_String);
Analyze_And_Resolve (Arg1x, Standard_Boolean);
if Compile_Time_Known_Value (Arg1x) then
Process_Compile_Time_Warning_Or_Error (N, Sloc (Arg1));
-- Register the expression for its validation after the back end has
-- been called if it has occurrences of attributes Size or Alignment
-- (because they may be statically computed by the back end and hence
-- the whole expression needs to be reevaluated).
else
Check_Expression (Arg1x);
if Validation_Needed then
Sem_Ch13.Validate_Compile_Time_Warning_Error (N);
end if;
end if;
end Process_Compile_Time_Warning_Or_Error;
------------------------
-- Process_Convention --
------------------------
procedure Process_Convention
(C : out Convention_Id;
Ent : out Entity_Id)
is
Cname : Name_Id;
procedure Diagnose_Multiple_Pragmas (S : Entity_Id);
-- Called if we have more than one Export/Import/Convention pragma.
-- This is generally illegal, but we have a special case of allowing
-- Import and Interface to coexist if they specify the convention in
-- a consistent manner. We are allowed to do this, since Interface is
-- an implementation defined pragma, and we choose to do it since we
-- know Rational allows this combination. S is the entity id of the
-- subprogram in question. This procedure also sets the special flag
-- Import_Interface_Present in both pragmas in the case where we do
-- have matching Import and Interface pragmas.
procedure Set_Convention_From_Pragma (E : Entity_Id);
-- Set convention in entity E, and also flag that the entity has a
-- convention pragma. If entity is for a private or incomplete type,
-- also set convention and flag on underlying type. This procedure
-- also deals with the special case of C_Pass_By_Copy convention,
-- and error checks for inappropriate convention specification.
-------------------------------
-- Diagnose_Multiple_Pragmas --
-------------------------------
procedure Diagnose_Multiple_Pragmas (S : Entity_Id) is
Pdec : constant Node_Id := Declaration_Node (S);
Decl : Node_Id;
Err : Boolean;
function Same_Convention (Decl : Node_Id) return Boolean;
-- Decl is a pragma node. This function returns True if this
-- pragma has a first argument that is an identifier with a
-- Chars field corresponding to the Convention_Id C.
function Same_Name (Decl : Node_Id) return Boolean;
-- Decl is a pragma node. This function returns True if this
-- pragma has a second argument that is an identifier with a
-- Chars field that matches the Chars of the current subprogram.
---------------------
-- Same_Convention --
---------------------
function Same_Convention (Decl : Node_Id) return Boolean is
Arg1 : constant Node_Id :=
First (Pragma_Argument_Associations (Decl));
begin
if Present (Arg1) then
declare
Arg : constant Node_Id := Get_Pragma_Arg (Arg1);
begin
if Nkind (Arg) = N_Identifier
and then Is_Convention_Name (Chars (Arg))
and then Get_Convention_Id (Chars (Arg)) = C
then
return True;
end if;
end;
end if;
return False;
end Same_Convention;
---------------
-- Same_Name --
---------------
function Same_Name (Decl : Node_Id) return Boolean is
Arg1 : constant Node_Id :=
First (Pragma_Argument_Associations (Decl));
Arg2 : Node_Id;
begin
if No (Arg1) then
return False;
end if;
Arg2 := Next (Arg1);
if No (Arg2) then
return False;
end if;
declare
Arg : constant Node_Id := Get_Pragma_Arg (Arg2);
begin
if Nkind (Arg) = N_Identifier
and then Chars (Arg) = Chars (S)
then
return True;
end if;
end;
return False;
end Same_Name;
-- Start of processing for Diagnose_Multiple_Pragmas
begin
Err := True;
-- Definitely give message if we have Convention/Export here
if Prag_Id = Pragma_Convention or else Prag_Id = Pragma_Export then
null;
-- If we have an Import or Export, scan back from pragma to
-- find any previous pragma applying to the same procedure.
-- The scan will be terminated by the start of the list, or
-- hitting the subprogram declaration. This won't allow one
-- pragma to appear in the public part and one in the private
-- part, but that seems very unlikely in practice.
else
Decl := Prev (N);
while Present (Decl) and then Decl /= Pdec loop
-- Look for pragma with same name as us
if Nkind (Decl) = N_Pragma
and then Same_Name (Decl)
then
-- Give error if same as our pragma or Export/Convention
if Nam_In (Pragma_Name_Unmapped (Decl),
Name_Export,
Name_Convention,
Pragma_Name_Unmapped (N))
then
exit;
-- Case of Import/Interface or the other way round
elsif Nam_In (Pragma_Name_Unmapped (Decl),
Name_Interface, Name_Import)
then
-- Here we know that we have Import and Interface. It
-- doesn't matter which way round they are. See if
-- they specify the same convention. If so, all OK,
-- and set special flags to stop other messages
if Same_Convention (Decl) then
Set_Import_Interface_Present (N);
Set_Import_Interface_Present (Decl);
Err := False;
-- If different conventions, special message
else
Error_Msg_Sloc := Sloc (Decl);
Error_Pragma_Arg
("convention differs from that given#", Arg1);
return;
end if;
end if;
end if;
Next (Decl);
end loop;
end if;
-- Give message if needed if we fall through those tests
-- except on Relaxed_RM_Semantics where we let go: either this
-- is a case accepted/ignored by other Ada compilers (e.g.
-- a mix of Convention and Import), or another error will be
-- generated later (e.g. using both Import and Export).
if Err and not Relaxed_RM_Semantics then
Error_Pragma_Arg
("at most one Convention/Export/Import pragma is allowed",
Arg2);
end if;
end Diagnose_Multiple_Pragmas;
--------------------------------
-- Set_Convention_From_Pragma --
--------------------------------
procedure Set_Convention_From_Pragma (E : Entity_Id) is
begin
-- Ada 2005 (AI-430): Check invalid attempt to change convention
-- for an overridden dispatching operation. Technically this is
-- an amendment and should only be done in Ada 2005 mode. However,
-- this is clearly a mistake, since the problem that is addressed
-- by this AI is that there is a clear gap in the RM.
if Is_Dispatching_Operation (E)
and then Present (Overridden_Operation (E))
and then C /= Convention (Overridden_Operation (E))
then
Error_Pragma_Arg
("cannot change convention for overridden dispatching "
& "operation", Arg1);
end if;
-- Special checks for Convention_Stdcall
if C = Convention_Stdcall then
-- A dispatching call is not allowed. A dispatching subprogram
-- cannot be used to interface to the Win32 API, so in fact
-- this check does not impose any effective restriction.
if Is_Dispatching_Operation (E) then
Error_Msg_Sloc := Sloc (E);
-- Note: make this unconditional so that if there is more
-- than one call to which the pragma applies, we get a
-- message for each call. Also don't use Error_Pragma,
-- so that we get multiple messages.
Error_Msg_N
("dispatching subprogram# cannot use Stdcall convention!",
Arg1);
-- Several allowed cases
elsif Is_Subprogram_Or_Generic_Subprogram (E)
-- A variable is OK
or else Ekind (E) = E_Variable
-- A component as well. The entity does not have its Ekind
-- set until the enclosing record declaration is fully
-- analyzed.
or else Nkind (Parent (E)) = N_Component_Declaration
-- An access to subprogram is also allowed
or else
(Is_Access_Type (E)
and then Ekind (Designated_Type (E)) = E_Subprogram_Type)
-- Allow internal call to set convention of subprogram type
or else Ekind (E) = E_Subprogram_Type
then
null;
else
Error_Pragma_Arg
("second argument of pragma% must be subprogram (type)",
Arg2);
end if;
end if;
-- Set the convention
Set_Convention (E, C);
Set_Has_Convention_Pragma (E);
-- For the case of a record base type, also set the convention of
-- any anonymous access types declared in the record which do not
-- currently have a specified convention.
if Is_Record_Type (E) and then Is_Base_Type (E) then
declare
Comp : Node_Id;
begin
Comp := First_Component (E);
while Present (Comp) loop
if Present (Etype (Comp))
and then Ekind_In (Etype (Comp),
E_Anonymous_Access_Type,
E_Anonymous_Access_Subprogram_Type)
and then not Has_Convention_Pragma (Comp)
then
Set_Convention (Comp, C);
end if;
Next_Component (Comp);
end loop;
end;
end if;
-- Deal with incomplete/private type case, where underlying type
-- is available, so set convention of that underlying type.
if Is_Incomplete_Or_Private_Type (E)
and then Present (Underlying_Type (E))
then
Set_Convention (Underlying_Type (E), C);
Set_Has_Convention_Pragma (Underlying_Type (E), True);
end if;
-- A class-wide type should inherit the convention of the specific
-- root type (although this isn't specified clearly by the RM).
if Is_Type (E) and then Present (Class_Wide_Type (E)) then
Set_Convention (Class_Wide_Type (E), C);
end if;
-- If the entity is a record type, then check for special case of
-- C_Pass_By_Copy, which is treated the same as C except that the
-- special record flag is set. This convention is only permitted
-- on record types (see AI95-00131).
if Cname = Name_C_Pass_By_Copy then
if Is_Record_Type (E) then
Set_C_Pass_By_Copy (Base_Type (E));
elsif Is_Incomplete_Or_Private_Type (E)
and then Is_Record_Type (Underlying_Type (E))
then
Set_C_Pass_By_Copy (Base_Type (Underlying_Type (E)));
else
Error_Pragma_Arg
("C_Pass_By_Copy convention allowed only for record type",
Arg2);
end if;
end if;
-- If the entity is a derived boolean type, check for the special
-- case of convention C, C++, or Fortran, where we consider any
-- nonzero value to represent true.
if Is_Discrete_Type (E)
and then Root_Type (Etype (E)) = Standard_Boolean
and then
(C = Convention_C
or else
C = Convention_CPP
or else
C = Convention_Fortran)
then
Set_Nonzero_Is_True (Base_Type (E));
end if;
end Set_Convention_From_Pragma;
-- Local variables
Comp_Unit : Unit_Number_Type;
E : Entity_Id;
E1 : Entity_Id;
Id : Node_Id;
-- Start of processing for Process_Convention
begin
Check_At_Least_N_Arguments (2);
Check_Optional_Identifier (Arg1, Name_Convention);
Check_Arg_Is_Identifier (Arg1);
Cname := Chars (Get_Pragma_Arg (Arg1));
-- C_Pass_By_Copy is treated as a synonym for convention C (this is
-- tested again below to set the critical flag).
if Cname = Name_C_Pass_By_Copy then
C := Convention_C;
-- Otherwise we must have something in the standard convention list
elsif Is_Convention_Name (Cname) then
C := Get_Convention_Id (Chars (Get_Pragma_Arg (Arg1)));
-- Otherwise warn on unrecognized convention
else
if Warn_On_Export_Import then
Error_Msg_N
("??unrecognized convention name, C assumed",
Get_Pragma_Arg (Arg1));
end if;
C := Convention_C;
end if;
Check_Optional_Identifier (Arg2, Name_Entity);
Check_Arg_Is_Local_Name (Arg2);
Id := Get_Pragma_Arg (Arg2);
Analyze (Id);
if not Is_Entity_Name (Id) then
Error_Pragma_Arg ("entity name required", Arg2);
end if;
E := Entity (Id);
-- Set entity to return
Ent := E;
-- Ada_Pass_By_Copy special checking
if C = Convention_Ada_Pass_By_Copy then
if not Is_First_Subtype (E) then
Error_Pragma_Arg
("convention `Ada_Pass_By_Copy` only allowed for types",
Arg2);
end if;
if Is_By_Reference_Type (E) then
Error_Pragma_Arg
("convention `Ada_Pass_By_Copy` not allowed for by-reference "
& "type", Arg1);
end if;
-- Ada_Pass_By_Reference special checking
elsif C = Convention_Ada_Pass_By_Reference then
if not Is_First_Subtype (E) then
Error_Pragma_Arg
("convention `Ada_Pass_By_Reference` only allowed for types",
Arg2);
end if;
if Is_By_Copy_Type (E) then
Error_Pragma_Arg
("convention `Ada_Pass_By_Reference` not allowed for by-copy "
& "type", Arg1);
end if;
end if;
-- Go to renamed subprogram if present, since convention applies to
-- the actual renamed entity, not to the renaming entity. If the
-- subprogram is inherited, go to parent subprogram.
if Is_Subprogram (E)
and then Present (Alias (E))
then
if Nkind (Parent (Declaration_Node (E))) =
N_Subprogram_Renaming_Declaration
then
if Scope (E) /= Scope (Alias (E)) then
Error_Pragma_Ref
("cannot apply pragma% to non-local entity&#", E);
end if;
E := Alias (E);
elsif Nkind_In (Parent (E), N_Full_Type_Declaration,
N_Private_Extension_Declaration)
and then Scope (E) = Scope (Alias (E))
then
E := Alias (E);
-- Return the parent subprogram the entity was inherited from
Ent := E;
end if;
end if;
-- Check that we are not applying this to a specless body. Relax this
-- check if Relaxed_RM_Semantics to accommodate other Ada compilers.
if Is_Subprogram (E)
and then Nkind (Parent (Declaration_Node (E))) = N_Subprogram_Body
and then not Relaxed_RM_Semantics
then
Error_Pragma
("pragma% requires separate spec and must come before body");
end if;
-- Check that we are not applying this to a named constant
if Ekind_In (E, E_Named_Integer, E_Named_Real) then
Error_Msg_Name_1 := Pname;
Error_Msg_N
("cannot apply pragma% to named constant!",
Get_Pragma_Arg (Arg2));
Error_Pragma_Arg
("\supply appropriate type for&!", Arg2);
end if;
if Ekind (E) = E_Enumeration_Literal then
Error_Pragma ("enumeration literal not allowed for pragma%");
end if;
-- Check for rep item appearing too early or too late
if Etype (E) = Any_Type
or else Rep_Item_Too_Early (E, N)
then
raise Pragma_Exit;
elsif Present (Underlying_Type (E)) then
E := Underlying_Type (E);
end if;
if Rep_Item_Too_Late (E, N) then
raise Pragma_Exit;
end if;
if Has_Convention_Pragma (E) then
Diagnose_Multiple_Pragmas (E);
elsif Convention (E) = Convention_Protected
or else Ekind (Scope (E)) = E_Protected_Type
then
Error_Pragma_Arg
("a protected operation cannot be given a different convention",
Arg2);
end if;
-- For Intrinsic, a subprogram is required
if C = Convention_Intrinsic
and then not Is_Subprogram_Or_Generic_Subprogram (E)
then
-- Accept Intrinsic Export on types if Relaxed_RM_Semantics
if not (Is_Type (E) and then Relaxed_RM_Semantics) then
Error_Pragma_Arg
("second argument of pragma% must be a subprogram", Arg2);
end if;
end if;
-- Deal with non-subprogram cases
if not Is_Subprogram_Or_Generic_Subprogram (E) then
Set_Convention_From_Pragma (E);
if Is_Type (E) then
-- The pragma must apply to a first subtype, but it can also
-- apply to a generic type in a generic formal part, in which
-- case it will also appear in the corresponding instance.
if Is_Generic_Type (E) or else In_Instance then
null;
else
Check_First_Subtype (Arg2);
end if;
Set_Convention_From_Pragma (Base_Type (E));
-- For access subprograms, we must set the convention on the
-- internally generated directly designated type as well.
if Ekind (E) = E_Access_Subprogram_Type then
Set_Convention_From_Pragma (Directly_Designated_Type (E));
end if;
end if;
-- For the subprogram case, set proper convention for all homonyms
-- in same scope and the same declarative part, i.e. the same
-- compilation unit.
else
Comp_Unit := Get_Source_Unit (E);
Set_Convention_From_Pragma (E);
-- Treat a pragma Import as an implicit body, and pragma import
-- as implicit reference (for navigation in GPS).
if Prag_Id = Pragma_Import then
Generate_Reference (E, Id, 'b');
-- For exported entities we restrict the generation of references
-- to entities exported to foreign languages since entities
-- exported to Ada do not provide further information to GPS and
-- add undesired references to the output of the gnatxref tool.
elsif Prag_Id = Pragma_Export
and then Convention (E) /= Convention_Ada
then
Generate_Reference (E, Id, 'i');
end if;
-- If the pragma comes from an aspect, it only applies to the
-- given entity, not its homonyms.
if From_Aspect_Specification (N) then
if C = Convention_Intrinsic
and then Nkind (Ent) = N_Defining_Operator_Symbol
then
if Is_Fixed_Point_Type (Etype (Ent))
or else Is_Fixed_Point_Type (Etype (First_Entity (Ent)))
or else Is_Fixed_Point_Type (Etype (Last_Entity (Ent)))
then
Error_Msg_N
("no intrinsic operator available for this fixed-point "
& "operation", N);
Error_Msg_N
("\use expression functions with the desired "
& "conversions made explicit", N);
end if;
end if;
return;
end if;
-- Otherwise Loop through the homonyms of the pragma argument's
-- entity, an apply convention to those in the current scope.
E1 := Ent;
loop
E1 := Homonym (E1);
exit when No (E1) or else Scope (E1) /= Current_Scope;
-- Ignore entry for which convention is already set
if Has_Convention_Pragma (E1) then
goto Continue;
end if;
if Is_Subprogram (E1)
and then Nkind (Parent (Declaration_Node (E1))) =
N_Subprogram_Body
and then not Relaxed_RM_Semantics
then
Set_Has_Completion (E); -- to prevent cascaded error
Error_Pragma_Ref
("pragma% requires separate spec and must come before "
& "body#", E1);
end if;
-- Do not set the pragma on inherited operations or on formal
-- subprograms.
if Comes_From_Source (E1)
and then Comp_Unit = Get_Source_Unit (E1)
and then not Is_Formal_Subprogram (E1)
and then Nkind (Original_Node (Parent (E1))) /=
N_Full_Type_Declaration
then
if Present (Alias (E1))
and then Scope (E1) /= Scope (Alias (E1))
then
Error_Pragma_Ref
("cannot apply pragma% to non-local entity& declared#",
E1);
end if;
Set_Convention_From_Pragma (E1);
if Prag_Id = Pragma_Import then
Generate_Reference (E1, Id, 'b');
end if;
end if;
<<Continue>>
null;
end loop;
end if;
end Process_Convention;
----------------------------------------
-- Process_Disable_Enable_Atomic_Sync --
----------------------------------------
procedure Process_Disable_Enable_Atomic_Sync (Nam : Name_Id) is
begin
Check_No_Identifiers;
Check_At_Most_N_Arguments (1);
-- Modeled internally as
-- pragma Suppress/Unsuppress (Atomic_Synchronization [,Entity])
Rewrite (N,
Make_Pragma (Loc,
Chars => Nam,
Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression =>
Make_Identifier (Loc, Name_Atomic_Synchronization)))));
if Present (Arg1) then
Append_To (Pragma_Argument_Associations (N), New_Copy (Arg1));
end if;
Analyze (N);
end Process_Disable_Enable_Atomic_Sync;
-------------------------------------------------
-- Process_Extended_Import_Export_Internal_Arg --
-------------------------------------------------
procedure Process_Extended_Import_Export_Internal_Arg
(Arg_Internal : Node_Id := Empty)
is
begin
if No (Arg_Internal) then
Error_Pragma ("Internal parameter required for pragma%");
end if;
if Nkind (Arg_Internal) = N_Identifier then
null;
elsif Nkind (Arg_Internal) = N_Operator_Symbol
and then (Prag_Id = Pragma_Import_Function
or else
Prag_Id = Pragma_Export_Function)
then
null;
else
Error_Pragma_Arg
("wrong form for Internal parameter for pragma%", Arg_Internal);
end if;
Check_Arg_Is_Local_Name (Arg_Internal);
end Process_Extended_Import_Export_Internal_Arg;
--------------------------------------------------
-- Process_Extended_Import_Export_Object_Pragma --
--------------------------------------------------
procedure Process_Extended_Import_Export_Object_Pragma
(Arg_Internal : Node_Id;
Arg_External : Node_Id;
Arg_Size : Node_Id)
is
Def_Id : Entity_Id;
begin
Process_Extended_Import_Export_Internal_Arg (Arg_Internal);
Def_Id := Entity (Arg_Internal);
if not Ekind_In (Def_Id, E_Constant, E_Variable) then
Error_Pragma_Arg
("pragma% must designate an object", Arg_Internal);
end if;
if Has_Rep_Pragma (Def_Id, Name_Common_Object)
or else
Has_Rep_Pragma (Def_Id, Name_Psect_Object)
then
Error_Pragma_Arg
("previous Common/Psect_Object applies, pragma % not permitted",
Arg_Internal);
end if;
if Rep_Item_Too_Late (Def_Id, N) then
raise Pragma_Exit;
end if;
Set_Extended_Import_Export_External_Name (Def_Id, Arg_External);
if Present (Arg_Size) then
Check_Arg_Is_External_Name (Arg_Size);
end if;
-- Export_Object case
if Prag_Id = Pragma_Export_Object then
if not Is_Library_Level_Entity (Def_Id) then
Error_Pragma_Arg
("argument for pragma% must be library level entity",
Arg_Internal);
end if;
if Ekind (Current_Scope) = E_Generic_Package then
Error_Pragma ("pragma& cannot appear in a generic unit");
end if;
if not Size_Known_At_Compile_Time (Etype (Def_Id)) then
Error_Pragma_Arg
("exported object must have compile time known size",
Arg_Internal);
end if;
if Warn_On_Export_Import and then Is_Exported (Def_Id) then
Error_Msg_N ("??duplicate Export_Object pragma", N);
else
Set_Exported (Def_Id, Arg_Internal);
end if;
-- Import_Object case
else
if Is_Concurrent_Type (Etype (Def_Id)) then
Error_Pragma_Arg
("cannot use pragma% for task/protected object",
Arg_Internal);
end if;
if Ekind (Def_Id) = E_Constant then
Error_Pragma_Arg
("cannot import a constant", Arg_Internal);
end if;
if Warn_On_Export_Import
and then Has_Discriminants (Etype (Def_Id))
then
Error_Msg_N
("imported value must be initialized??", Arg_Internal);
end if;
if Warn_On_Export_Import
and then Is_Access_Type (Etype (Def_Id))
then
Error_Pragma_Arg
("cannot import object of an access type??", Arg_Internal);
end if;
if Warn_On_Export_Import
and then Is_Imported (Def_Id)
then
Error_Msg_N ("??duplicate Import_Object pragma", N);
-- Check for explicit initialization present. Note that an
-- initialization generated by the code generator, e.g. for an
-- access type, does not count here.
elsif Present (Expression (Parent (Def_Id)))
and then
Comes_From_Source
(Original_Node (Expression (Parent (Def_Id))))
then
Error_Msg_Sloc := Sloc (Def_Id);
Error_Pragma_Arg
("imported entities cannot be initialized (RM B.1(24))",
"\no initialization allowed for & declared#", Arg1);
else
Set_Imported (Def_Id);
Note_Possible_Modification (Arg_Internal, Sure => False);
end if;
end if;
end Process_Extended_Import_Export_Object_Pragma;
------------------------------------------------------
-- Process_Extended_Import_Export_Subprogram_Pragma --
------------------------------------------------------
procedure Process_Extended_Import_Export_Subprogram_Pragma
(Arg_Internal : Node_Id;
Arg_External : Node_Id;
Arg_Parameter_Types : Node_Id;
Arg_Result_Type : Node_Id := Empty;
Arg_Mechanism : Node_Id;
Arg_Result_Mechanism : Node_Id := Empty)
is
Ent : Entity_Id;
Def_Id : Entity_Id;
Hom_Id : Entity_Id;
Formal : Entity_Id;
Ambiguous : Boolean;
Match : Boolean;
function Same_Base_Type
(Ptype : Node_Id;
Formal : Entity_Id) return Boolean;
-- Determines if Ptype references the type of Formal. Note that only
-- the base types need to match according to the spec. Ptype here is
-- the argument from the pragma, which is either a type name, or an
-- access attribute.
--------------------
-- Same_Base_Type --
--------------------
function Same_Base_Type
(Ptype : Node_Id;
Formal : Entity_Id) return Boolean
is
Ftyp : constant Entity_Id := Base_Type (Etype (Formal));
Pref : Node_Id;
begin
-- Case where pragma argument is typ'Access
if Nkind (Ptype) = N_Attribute_Reference
and then Attribute_Name (Ptype) = Name_Access
then
Pref := Prefix (Ptype);
Find_Type (Pref);
if not Is_Entity_Name (Pref)
or else Entity (Pref) = Any_Type
then
raise Pragma_Exit;
end if;
-- We have a match if the corresponding argument is of an
-- anonymous access type, and its designated type matches the
-- type of the prefix of the access attribute
return Ekind (Ftyp) = E_Anonymous_Access_Type
and then Base_Type (Entity (Pref)) =
Base_Type (Etype (Designated_Type (Ftyp)));
-- Case where pragma argument is a type name
else
Find_Type (Ptype);
if not Is_Entity_Name (Ptype)
or else Entity (Ptype) = Any_Type
then
raise Pragma_Exit;
end if;
-- We have a match if the corresponding argument is of the type
-- given in the pragma (comparing base types)
return Base_Type (Entity (Ptype)) = Ftyp;
end if;
end Same_Base_Type;
-- Start of processing for
-- Process_Extended_Import_Export_Subprogram_Pragma
begin
Process_Extended_Import_Export_Internal_Arg (Arg_Internal);
Ent := Empty;
Ambiguous := False;
-- Loop through homonyms (overloadings) of the entity
Hom_Id := Entity (Arg_Internal);
while Present (Hom_Id) loop
Def_Id := Get_Base_Subprogram (Hom_Id);
-- We need a subprogram in the current scope
if not Is_Subprogram (Def_Id)
or else Scope (Def_Id) /= Current_Scope
then
null;
else
Match := True;
-- Pragma cannot apply to subprogram body
if Is_Subprogram (Def_Id)
and then Nkind (Parent (Declaration_Node (Def_Id))) =
N_Subprogram_Body
then
Error_Pragma
("pragma% requires separate spec and must come before "
& "body");
end if;
-- Test result type if given, note that the result type
-- parameter can only be present for the function cases.
if Present (Arg_Result_Type)
and then not Same_Base_Type (Arg_Result_Type, Def_Id)
then
Match := False;
elsif Etype (Def_Id) /= Standard_Void_Type
and then Nam_In (Pname, Name_Export_Procedure,
Name_Import_Procedure)
then
Match := False;
-- Test parameter types if given. Note that this parameter has
-- not been analyzed (and must not be, since it is semantic
-- nonsense), so we get it as the parser left it.
elsif Present (Arg_Parameter_Types) then
Check_Matching_Types : declare
Formal : Entity_Id;
Ptype : Node_Id;
begin
Formal := First_Formal (Def_Id);
if Nkind (Arg_Parameter_Types) = N_Null then
if Present (Formal) then
Match := False;
end if;
-- A list of one type, e.g. (List) is parsed as a
-- parenthesized expression.
elsif Nkind (Arg_Parameter_Types) /= N_Aggregate
and then Paren_Count (Arg_Parameter_Types) = 1
then
if No (Formal)
or else Present (Next_Formal (Formal))
then
Match := False;
else
Match :=
Same_Base_Type (Arg_Parameter_Types, Formal);
end if;
-- A list of more than one type is parsed as a aggregate
elsif Nkind (Arg_Parameter_Types) = N_Aggregate
and then Paren_Count (Arg_Parameter_Types) = 0
then
Ptype := First (Expressions (Arg_Parameter_Types));
while Present (Ptype) or else Present (Formal) loop
if No (Ptype)
or else No (Formal)
or else not Same_Base_Type (Ptype, Formal)
then
Match := False;
exit;
else
Next_Formal (Formal);
Next (Ptype);
end if;
end loop;
-- Anything else is of the wrong form
else
Error_Pragma_Arg
("wrong form for Parameter_Types parameter",
Arg_Parameter_Types);
end if;
end Check_Matching_Types;
end if;
-- Match is now False if the entry we found did not match
-- either a supplied Parameter_Types or Result_Types argument
if Match then
if No (Ent) then
Ent := Def_Id;
-- Ambiguous case, the flag Ambiguous shows if we already
-- detected this and output the initial messages.
else
if not Ambiguous then
Ambiguous := True;
Error_Msg_Name_1 := Pname;
Error_Msg_N
("pragma% does not uniquely identify subprogram!",
N);
Error_Msg_Sloc := Sloc (Ent);
Error_Msg_N ("matching subprogram #!", N);
Ent := Empty;
end if;
Error_Msg_Sloc := Sloc (Def_Id);
Error_Msg_N ("matching subprogram #!", N);
end if;
end if;
end if;
Hom_Id := Homonym (Hom_Id);
end loop;
-- See if we found an entry
if No (Ent) then
if not Ambiguous then
if Is_Generic_Subprogram (Entity (Arg_Internal)) then
Error_Pragma
("pragma% cannot be given for generic subprogram");
else
Error_Pragma
("pragma% does not identify local subprogram");
end if;
end if;
return;
end if;
-- Import pragmas must be for imported entities
if Prag_Id = Pragma_Import_Function
or else
Prag_Id = Pragma_Import_Procedure
or else
Prag_Id = Pragma_Import_Valued_Procedure
then
if not Is_Imported (Ent) then
Error_Pragma
("pragma Import or Interface must precede pragma%");
end if;
-- Here we have the Export case which can set the entity as exported
-- But does not do so if the specified external name is null, since
-- that is taken as a signal in DEC Ada 83 (with which we want to be
-- compatible) to request no external name.
elsif Nkind (Arg_External) = N_String_Literal
and then String_Length (Strval (Arg_External)) = 0
then
null;
-- In all other cases, set entity as exported
else
Set_Exported (Ent, Arg_Internal);
end if;
-- Special processing for Valued_Procedure cases
if Prag_Id = Pragma_Import_Valued_Procedure
or else
Prag_Id = Pragma_Export_Valued_Procedure
then
Formal := First_Formal (Ent);
if No (Formal) then
Error_Pragma ("at least one parameter required for pragma%");
elsif Ekind (Formal) /= E_Out_Parameter then
Error_Pragma ("first parameter must have mode out for pragma%");
else
Set_Is_Valued_Procedure (Ent);
end if;
end if;
Set_Extended_Import_Export_External_Name (Ent, Arg_External);
-- Process Result_Mechanism argument if present. We have already
-- checked that this is only allowed for the function case.
if Present (Arg_Result_Mechanism) then
Set_Mechanism_Value (Ent, Arg_Result_Mechanism);
end if;
-- Process Mechanism parameter if present. Note that this parameter
-- is not analyzed, and must not be analyzed since it is semantic
-- nonsense, so we get it in exactly as the parser left it.
if Present (Arg_Mechanism) then
declare
Formal : Entity_Id;
Massoc : Node_Id;
Mname : Node_Id;
Choice : Node_Id;
begin
-- A single mechanism association without a formal parameter
-- name is parsed as a parenthesized expression. All other
-- cases are parsed as aggregates, so we rewrite the single
-- parameter case as an aggregate for consistency.
if Nkind (Arg_Mechanism) /= N_Aggregate
and then Paren_Count (Arg_Mechanism) = 1
then
Rewrite (Arg_Mechanism,
Make_Aggregate (Sloc (Arg_Mechanism),
Expressions => New_List (
Relocate_Node (Arg_Mechanism))));
end if;
-- Case of only mechanism name given, applies to all formals
if Nkind (Arg_Mechanism) /= N_Aggregate then
Formal := First_Formal (Ent);
while Present (Formal) loop
Set_Mechanism_Value (Formal, Arg_Mechanism);
Next_Formal (Formal);
end loop;
-- Case of list of mechanism associations given
else
if Null_Record_Present (Arg_Mechanism) then
Error_Pragma_Arg
("inappropriate form for Mechanism parameter",
Arg_Mechanism);
end if;
-- Deal with positional ones first
Formal := First_Formal (Ent);
if Present (Expressions (Arg_Mechanism)) then
Mname := First (Expressions (Arg_Mechanism));
while Present (Mname) loop
if No (Formal) then
Error_Pragma_Arg
("too many mechanism associations", Mname);
end if;
Set_Mechanism_Value (Formal, Mname);
Next_Formal (Formal);
Next (Mname);
end loop;
end if;
-- Deal with named entries
if Present (Component_Associations (Arg_Mechanism)) then
Massoc := First (Component_Associations (Arg_Mechanism));
while Present (Massoc) loop
Choice := First (Choices (Massoc));
if Nkind (Choice) /= N_Identifier
or else Present (Next (Choice))
then
Error_Pragma_Arg
("incorrect form for mechanism association",
Massoc);
end if;
Formal := First_Formal (Ent);
loop
if No (Formal) then
Error_Pragma_Arg
("parameter name & not present", Choice);
end if;
if Chars (Choice) = Chars (Formal) then
Set_Mechanism_Value
(Formal, Expression (Massoc));
-- Set entity on identifier (needed by ASIS)
Set_Entity (Choice, Formal);
exit;
end if;
Next_Formal (Formal);
end loop;
Next (Massoc);
end loop;
end if;
end if;
end;
end if;
end Process_Extended_Import_Export_Subprogram_Pragma;
--------------------------
-- Process_Generic_List --
--------------------------
procedure Process_Generic_List is
Arg : Node_Id;
Exp : Node_Id;
begin
Check_No_Identifiers;
Check_At_Least_N_Arguments (1);
-- Check all arguments are names of generic units or instances
Arg := Arg1;
while Present (Arg) loop
Exp := Get_Pragma_Arg (Arg);
Analyze (Exp);
if not Is_Entity_Name (Exp)
or else
(not Is_Generic_Instance (Entity (Exp))
and then
not Is_Generic_Unit (Entity (Exp)))
then
Error_Pragma_Arg
("pragma% argument must be name of generic unit/instance",
Arg);
end if;
Next (Arg);
end loop;
end Process_Generic_List;
------------------------------------
-- Process_Import_Predefined_Type --
------------------------------------
procedure Process_Import_Predefined_Type is
Loc : constant Source_Ptr := Sloc (N);
Elmt : Elmt_Id;
Ftyp : Node_Id := Empty;
Decl : Node_Id;
Def : Node_Id;
Nam : Name_Id;
begin
Nam := String_To_Name (Strval (Expression (Arg3)));
Elmt := First_Elmt (Predefined_Float_Types);
while Present (Elmt) and then Chars (Node (Elmt)) /= Nam loop
Next_Elmt (Elmt);
end loop;
Ftyp := Node (Elmt);
if Present (Ftyp) then
-- Don't build a derived type declaration, because predefined C
-- types have no declaration anywhere, so cannot really be named.
-- Instead build a full type declaration, starting with an
-- appropriate type definition is built
if Is_Floating_Point_Type (Ftyp) then
Def := Make_Floating_Point_Definition (Loc,
Make_Integer_Literal (Loc, Digits_Value (Ftyp)),
Make_Real_Range_Specification (Loc,
Make_Real_Literal (Loc, Realval (Type_Low_Bound (Ftyp))),
Make_Real_Literal (Loc, Realval (Type_High_Bound (Ftyp)))));
-- Should never have a predefined type we cannot handle
else
raise Program_Error;
end if;
-- Build and insert a Full_Type_Declaration, which will be
-- analyzed as soon as this list entry has been analyzed.
Decl := Make_Full_Type_Declaration (Loc,
Make_Defining_Identifier (Loc, Chars (Expression (Arg2))),
Type_Definition => Def);
Insert_After (N, Decl);
Mark_Rewrite_Insertion (Decl);
else
Error_Pragma_Arg ("no matching type found for pragma%",
Arg2);
end if;
end Process_Import_Predefined_Type;
---------------------------------
-- Process_Import_Or_Interface --
---------------------------------
procedure Process_Import_Or_Interface is
C : Convention_Id;
Def_Id : Entity_Id;
Hom_Id : Entity_Id;
begin
-- In Relaxed_RM_Semantics, support old Ada 83 style:
-- pragma Import (Entity, "external name");
if Relaxed_RM_Semantics
and then Arg_Count = 2
and then Prag_Id = Pragma_Import
and then Nkind (Expression (Arg2)) = N_String_Literal
then
C := Convention_C;
Def_Id := Get_Pragma_Arg (Arg1);
Analyze (Def_Id);
if not Is_Entity_Name (Def_Id) then
Error_Pragma_Arg ("entity name required", Arg1);
end if;
Def_Id := Entity (Def_Id);
Kill_Size_Check_Code (Def_Id);
Note_Possible_Modification (Get_Pragma_Arg (Arg1), Sure => False);
else
Process_Convention (C, Def_Id);
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Def_Id);
Kill_Size_Check_Code (Def_Id);
Note_Possible_Modification (Get_Pragma_Arg (Arg2), Sure => False);
end if;
-- Various error checks
if Ekind_In (Def_Id, E_Variable, E_Constant) then
-- We do not permit Import to apply to a renaming declaration
if Present (Renamed_Object (Def_Id)) then
Error_Pragma_Arg
("pragma% not allowed for object renaming", Arg2);
-- User initialization is not allowed for imported object, but
-- the object declaration may contain a default initialization,
-- that will be discarded. Note that an explicit initialization
-- only counts if it comes from source, otherwise it is simply
-- the code generator making an implicit initialization explicit.
elsif Present (Expression (Parent (Def_Id)))
and then Comes_From_Source
(Original_Node (Expression (Parent (Def_Id))))
then
-- Set imported flag to prevent cascaded errors
Set_Is_Imported (Def_Id);
Error_Msg_Sloc := Sloc (Def_Id);
Error_Pragma_Arg
("no initialization allowed for declaration of& #",
"\imported entities cannot be initialized (RM B.1(24))",
Arg2);
else
-- If the pragma comes from an aspect specification the
-- Is_Imported flag has already been set.
if not From_Aspect_Specification (N) then
Set_Imported (Def_Id);
end if;
Process_Interface_Name (Def_Id, Arg3, Arg4, N);
-- Note that we do not set Is_Public here. That's because we
-- only want to set it if there is no address clause, and we
-- don't know that yet, so we delay that processing till
-- freeze time.
-- pragma Import completes deferred constants
if Ekind (Def_Id) = E_Constant then
Set_Has_Completion (Def_Id);
end if;
-- It is not possible to import a constant of an unconstrained
-- array type (e.g. string) because there is no simple way to
-- write a meaningful subtype for it.
if Is_Array_Type (Etype (Def_Id))
and then not Is_Constrained (Etype (Def_Id))
then
Error_Msg_NE
("imported constant& must have a constrained subtype",
N, Def_Id);
end if;
end if;
elsif Is_Subprogram_Or_Generic_Subprogram (Def_Id) then
-- If the name is overloaded, pragma applies to all of the denoted
-- entities in the same declarative part, unless the pragma comes
-- from an aspect specification or was generated by the compiler
-- (such as for pragma Provide_Shift_Operators).
Hom_Id := Def_Id;
while Present (Hom_Id) loop
Def_Id := Get_Base_Subprogram (Hom_Id);
-- Ignore inherited subprograms because the pragma will apply
-- to the parent operation, which is the one called.
if Is_Overloadable (Def_Id)
and then Present (Alias (Def_Id))
then
null;
-- If it is not a subprogram, it must be in an outer scope and
-- pragma does not apply.
elsif not Is_Subprogram_Or_Generic_Subprogram (Def_Id) then
null;
-- The pragma does not apply to primitives of interfaces
elsif Is_Dispatching_Operation (Def_Id)
and then Present (Find_Dispatching_Type (Def_Id))
and then Is_Interface (Find_Dispatching_Type (Def_Id))
then
null;
-- Verify that the homonym is in the same declarative part (not
-- just the same scope). If the pragma comes from an aspect
-- specification we know that it is part of the declaration.
elsif Parent (Unit_Declaration_Node (Def_Id)) /= Parent (N)
and then Nkind (Parent (N)) /= N_Compilation_Unit_Aux
and then not From_Aspect_Specification (N)
then
exit;
else
-- If the pragma comes from an aspect specification the
-- Is_Imported flag has already been set.
if not From_Aspect_Specification (N) then
Set_Imported (Def_Id);
end if;
-- Reject an Import applied to an abstract subprogram
if Is_Subprogram (Def_Id)
and then Is_Abstract_Subprogram (Def_Id)
then
Error_Msg_Sloc := Sloc (Def_Id);
Error_Msg_NE
("cannot import abstract subprogram& declared#",
Arg2, Def_Id);
end if;
-- Special processing for Convention_Intrinsic
if C = Convention_Intrinsic then
-- Link_Name argument not allowed for intrinsic
Check_No_Link_Name;
Set_Is_Intrinsic_Subprogram (Def_Id);
-- If no external name is present, then check that this
-- is a valid intrinsic subprogram. If an external name
-- is present, then this is handled by the back end.
if No (Arg3) then
Check_Intrinsic_Subprogram
(Def_Id, Get_Pragma_Arg (Arg2));
end if;
end if;
-- Verify that the subprogram does not have a completion
-- through a renaming declaration. For other completions the
-- pragma appears as a too late representation.
declare
Decl : constant Node_Id := Unit_Declaration_Node (Def_Id);
begin
if Present (Decl)
and then Nkind (Decl) = N_Subprogram_Declaration
and then Present (Corresponding_Body (Decl))
and then Nkind (Unit_Declaration_Node
(Corresponding_Body (Decl))) =
N_Subprogram_Renaming_Declaration
then
Error_Msg_Sloc := Sloc (Def_Id);
Error_Msg_NE
("cannot import&, renaming already provided for "
& "declaration #", N, Def_Id);
end if;
end;
-- If the pragma comes from an aspect specification, there
-- must be an Import aspect specified as well. In the rare
-- case where Import is set to False, the suprogram needs to
-- have a local completion.
declare
Imp_Aspect : constant Node_Id :=
Find_Aspect (Def_Id, Aspect_Import);
Expr : Node_Id;
begin
if Present (Imp_Aspect)
and then Present (Expression (Imp_Aspect))
then
Expr := Expression (Imp_Aspect);
Analyze_And_Resolve (Expr, Standard_Boolean);
if Is_Entity_Name (Expr)
and then Entity (Expr) = Standard_True
then
Set_Has_Completion (Def_Id);
end if;
-- If there is no expression, the default is True, as for
-- all boolean aspects. Same for the older pragma.
else
Set_Has_Completion (Def_Id);
end if;
end;
Process_Interface_Name (Def_Id, Arg3, Arg4, N);
end if;
if Is_Compilation_Unit (Hom_Id) then
-- Its possible homonyms are not affected by the pragma.
-- Such homonyms might be present in the context of other
-- units being compiled.
exit;
elsif From_Aspect_Specification (N) then
exit;
-- If the pragma was created by the compiler, then we don't
-- want it to apply to other homonyms. This kind of case can
-- occur when using pragma Provide_Shift_Operators, which
-- generates implicit shift and rotate operators with Import
-- pragmas that might apply to earlier explicit or implicit
-- declarations marked with Import (for example, coming from
-- an earlier pragma Provide_Shift_Operators for another type),
-- and we don't generally want other homonyms being treated
-- as imported or the pragma flagged as an illegal duplicate.
elsif not Comes_From_Source (N) then
exit;
else
Hom_Id := Homonym (Hom_Id);
end if;
end loop;
-- Import a CPP class
elsif C = Convention_CPP
and then (Is_Record_Type (Def_Id)
or else Ekind (Def_Id) = E_Incomplete_Type)
then
if Ekind (Def_Id) = E_Incomplete_Type then
if Present (Full_View (Def_Id)) then
Def_Id := Full_View (Def_Id);
else
Error_Msg_N
("cannot import 'C'P'P type before full declaration seen",
Get_Pragma_Arg (Arg2));
-- Although we have reported the error we decorate it as
-- CPP_Class to avoid reporting spurious errors
Set_Is_CPP_Class (Def_Id);
return;
end if;
end if;
-- Types treated as CPP classes must be declared limited (note:
-- this used to be a warning but there is no real benefit to it
-- since we did effectively intend to treat the type as limited
-- anyway).
if not Is_Limited_Type (Def_Id) then
Error_Msg_N
("imported 'C'P'P type must be limited",
Get_Pragma_Arg (Arg2));
end if;
if Etype (Def_Id) /= Def_Id
and then not Is_CPP_Class (Root_Type (Def_Id))
then
Error_Msg_N ("root type must be a 'C'P'P type", Arg1);
end if;
Set_Is_CPP_Class (Def_Id);
-- Imported CPP types must not have discriminants (because C++
-- classes do not have discriminants).
if Has_Discriminants (Def_Id) then
Error_Msg_N
("imported 'C'P'P type cannot have discriminants",
First (Discriminant_Specifications
(Declaration_Node (Def_Id))));
end if;
-- Check that components of imported CPP types do not have default
-- expressions. For private types this check is performed when the
-- full view is analyzed (see Process_Full_View).
if not Is_Private_Type (Def_Id) then
Check_CPP_Type_Has_No_Defaults (Def_Id);
end if;
-- Import a CPP exception
elsif C = Convention_CPP
and then Ekind (Def_Id) = E_Exception
then
if No (Arg3) then
Error_Pragma_Arg
("'External_'Name arguments is required for 'Cpp exception",
Arg3);
else
-- As only a string is allowed, Check_Arg_Is_External_Name
-- isn't called.
Check_Arg_Is_OK_Static_Expression (Arg3, Standard_String);
end if;
if Present (Arg4) then
Error_Pragma_Arg
("Link_Name argument not allowed for imported Cpp exception",
Arg4);
end if;
-- Do not call Set_Interface_Name as the name of the exception
-- shouldn't be modified (and in particular it shouldn't be
-- the External_Name). For exceptions, the External_Name is the
-- name of the RTTI structure.
-- ??? Emit an error if pragma Import/Export_Exception is present
elsif Nkind (Parent (Def_Id)) = N_Incomplete_Type_Declaration then
Check_No_Link_Name;
Check_Arg_Count (3);
Check_Arg_Is_OK_Static_Expression (Arg3, Standard_String);
Process_Import_Predefined_Type;
else
Error_Pragma_Arg
("second argument of pragma% must be object, subprogram "
& "or incomplete type",
Arg2);
end if;
-- If this pragma applies to a compilation unit, then the unit, which
-- is a subprogram, does not require (or allow) a body. We also do
-- not need to elaborate imported procedures.
if Nkind (Parent (N)) = N_Compilation_Unit_Aux then
declare
Cunit : constant Node_Id := Parent (Parent (N));
begin
Set_Body_Required (Cunit, False);
end;
end if;
end Process_Import_Or_Interface;
--------------------
-- Process_Inline --
--------------------
procedure Process_Inline (Status : Inline_Status) is
Applies : Boolean;
Assoc : Node_Id;
Decl : Node_Id;
Subp : Entity_Id;
Subp_Id : Node_Id;
Ghost_Error_Posted : Boolean := False;
-- Flag set when an error concerning the illegal mix of Ghost and
-- non-Ghost subprograms is emitted.
Ghost_Id : Entity_Id := Empty;
-- The entity of the first Ghost subprogram encountered while
-- processing the arguments of the pragma.
procedure Check_Inline_Always_Placement (Spec_Id : Entity_Id);
-- Verify the placement of pragma Inline_Always with respect to the
-- initial declaration of subprogram Spec_Id.
function Inlining_Not_Possible (Subp : Entity_Id) return Boolean;
-- Returns True if it can be determined at this stage that inlining
-- is not possible, for example if the body is available and contains
-- exception handlers, we prevent inlining, since otherwise we can
-- get undefined symbols at link time. This function also emits a
-- warning if the pragma appears too late.
--
-- ??? is business with link symbols still valid, or does it relate
-- to front end ZCX which is being phased out ???
procedure Make_Inline (Subp : Entity_Id);
-- Subp is the defining unit name of the subprogram declaration. If
-- the pragma is valid, call Set_Inline_Flags on Subp, as well as on
-- the corresponding body, if there is one present.
procedure Set_Inline_Flags (Subp : Entity_Id);
-- Set Has_Pragma_{No_Inline,Inline,Inline_Always} flag on Subp.
-- Also set or clear Is_Inlined flag on Subp depending on Status.
-----------------------------------
-- Check_Inline_Always_Placement --
-----------------------------------
procedure Check_Inline_Always_Placement (Spec_Id : Entity_Id) is
Spec_Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
function Compilation_Unit_OK return Boolean;
pragma Inline (Compilation_Unit_OK);
-- Determine whether pragma Inline_Always applies to a compatible
-- compilation unit denoted by Spec_Id.
function Declarative_List_OK return Boolean;
pragma Inline (Declarative_List_OK);
-- Determine whether the initial declaration of subprogram Spec_Id
-- and the pragma appear in compatible declarative lists.
function Subprogram_Body_OK return Boolean;
pragma Inline (Subprogram_Body_OK);
-- Determine whether pragma Inline_Always applies to a compatible
-- subprogram body denoted by Spec_Id.
-------------------------
-- Compilation_Unit_OK --
-------------------------
function Compilation_Unit_OK return Boolean is
Comp_Unit : constant Node_Id := Parent (Spec_Decl);
begin
-- The pragma appears after the initial declaration of a
-- compilation unit.
-- procedure Comp_Unit;
-- pragma Inline_Always (Comp_Unit);
-- Note that for compatibility reasons, the following case is
-- also accepted.
-- procedure Stand_Alone_Body_Comp_Unit is
-- ...
-- end Stand_Alone_Body_Comp_Unit;
-- pragma Inline_Always (Stand_Alone_Body_Comp_Unit);
return
Nkind (Comp_Unit) = N_Compilation_Unit
and then Present (Aux_Decls_Node (Comp_Unit))
and then Is_List_Member (N)
and then List_Containing (N) =
Pragmas_After (Aux_Decls_Node (Comp_Unit));
end Compilation_Unit_OK;
-------------------------
-- Declarative_List_OK --
-------------------------
function Declarative_List_OK return Boolean is
Context : constant Node_Id := Parent (Spec_Decl);
Init_Decl : Node_Id;
Init_List : List_Id;
Prag_List : List_Id;
begin
-- Determine the proper initial declaration. In general this is
-- the declaration node of the subprogram except when the input
-- denotes a generic instantiation.
-- procedure Inst is new Gen;
-- pragma Inline_Always (Inst);
-- In this case the original subprogram is moved inside an
-- anonymous package while pragma Inline_Always remains at the
-- level of the anonymous package. Use the declaration of the
-- package because it reflects the placement of the original
-- instantiation.
-- package Anon_Pack is
-- procedure Inst is ... end Inst; -- original
-- end Anon_Pack;
-- procedure Inst renames Anon_Pack.Inst;
-- pragma Inline_Always (Inst);
if Is_Generic_Instance (Spec_Id) then
Init_Decl := Parent (Parent (Spec_Decl));
pragma Assert (Nkind (Init_Decl) = N_Package_Declaration);
else
Init_Decl := Spec_Decl;
end if;
if Is_List_Member (Init_Decl) and then Is_List_Member (N) then
Init_List := List_Containing (Init_Decl);
Prag_List := List_Containing (N);
-- The pragma and then initial declaration appear within the
-- same declarative list.
if Init_List = Prag_List then
return True;
-- A special case of the above is when both the pragma and
-- the initial declaration appear in different lists of a
-- package spec, protected definition, or a task definition.
-- package Pack is
-- procedure Proc;
-- private
-- pragma Inline_Always (Proc);
-- end Pack;
elsif Nkind_In (Context, N_Package_Specification,
N_Protected_Definition,
N_Task_Definition)
and then Init_List = Visible_Declarations (Context)
and then Prag_List = Private_Declarations (Context)
then
return True;
end if;
end if;
return False;
end Declarative_List_OK;
------------------------
-- Subprogram_Body_OK --
------------------------
function Subprogram_Body_OK return Boolean is
Body_Decl : Node_Id;
begin
-- The pragma appears within the declarative list of a stand-
-- alone subprogram body.
-- procedure Stand_Alone_Body is
-- pragma Inline_Always (Stand_Alone_Body);
-- begin
-- ...
-- end Stand_Alone_Body;
-- The compiler creates a dummy spec in this case, however the
-- pragma remains within the declarative list of the body.
if Nkind (Spec_Decl) = N_Subprogram_Declaration
and then not Comes_From_Source (Spec_Decl)
and then Present (Corresponding_Body (Spec_Decl))
then
Body_Decl :=
Unit_Declaration_Node (Corresponding_Body (Spec_Decl));
if Present (Declarations (Body_Decl))
and then Is_List_Member (N)
and then List_Containing (N) = Declarations (Body_Decl)
then
return True;
end if;
end if;
return False;
end Subprogram_Body_OK;
-- Start of processing for Check_Inline_Always_Placement
begin
-- This check is relevant only for pragma Inline_Always
if Pname /= Name_Inline_Always then
return;
-- Nothing to do when the pragma is internally generated on the
-- assumption that it is properly placed.
elsif not Comes_From_Source (N) then
return;
-- Nothing to do for internally generated subprograms that act
-- as accidental homonyms of a source subprogram being inlined.
elsif not Comes_From_Source (Spec_Id) then
return;
-- Nothing to do for generic formal subprograms that act as
-- homonyms of another source subprogram being inlined.
elsif Is_Formal_Subprogram (Spec_Id) then
return;
elsif Compilation_Unit_OK
or else Declarative_List_OK
or else Subprogram_Body_OK
then
return;
end if;
-- At this point it is known that the pragma applies to or appears
-- within a completing body, a completing stub, or a subunit.
Error_Msg_Name_1 := Pname;
Error_Msg_Name_2 := Chars (Spec_Id);
Error_Msg_Sloc := Sloc (Spec_Id);
Error_Msg_N
("pragma % must appear on initial declaration of subprogram "
& "% defined #", N);
end Check_Inline_Always_Placement;
---------------------------
-- Inlining_Not_Possible --
---------------------------
function Inlining_Not_Possible (Subp : Entity_Id) return Boolean is
Decl : constant Node_Id := Unit_Declaration_Node (Subp);
Stats : Node_Id;
begin
if Nkind (Decl) = N_Subprogram_Body then
Stats := Handled_Statement_Sequence (Decl);
return Present (Exception_Handlers (Stats))
or else Present (At_End_Proc (Stats));
elsif Nkind (Decl) = N_Subprogram_Declaration
and then Present (Corresponding_Body (Decl))
then
if Analyzed (Corresponding_Body (Decl)) then
Error_Msg_N ("pragma appears too late, ignored??", N);
return True;
-- If the subprogram is a renaming as body, the body is just a
-- call to the renamed subprogram, and inlining is trivially
-- possible.
elsif
Nkind (Unit_Declaration_Node (Corresponding_Body (Decl))) =
N_Subprogram_Renaming_Declaration
then
return False;
else
Stats :=
Handled_Statement_Sequence
(Unit_Declaration_Node (Corresponding_Body (Decl)));
return
Present (Exception_Handlers (Stats))
or else Present (At_End_Proc (Stats));
end if;
else
-- If body is not available, assume the best, the check is
-- performed again when compiling enclosing package bodies.
return False;
end if;
end Inlining_Not_Possible;
-----------------
-- Make_Inline --
-----------------
procedure Make_Inline (Subp : Entity_Id) is
Kind : constant Entity_Kind := Ekind (Subp);
Inner_Subp : Entity_Id := Subp;
begin
-- Ignore if bad type, avoid cascaded error
if Etype (Subp) = Any_Type then
Applies := True;
return;
-- If inlining is not possible, for now do not treat as an error
elsif Status /= Suppressed
and then Front_End_Inlining
and then Inlining_Not_Possible (Subp)
then
Applies := True;
return;
-- Here we have a candidate for inlining, but we must exclude
-- derived operations. Otherwise we would end up trying to inline
-- a phantom declaration, and the result would be to drag in a
-- body which has no direct inlining associated with it. That
-- would not only be inefficient but would also result in the
-- backend doing cross-unit inlining in cases where it was
-- definitely inappropriate to do so.
-- However, a simple Comes_From_Source test is insufficient, since
-- we do want to allow inlining of generic instances which also do
-- not come from source. We also need to recognize specs generated
-- by the front-end for bodies that carry the pragma. Finally,
-- predefined operators do not come from source but are not
-- inlineable either.
elsif Is_Generic_Instance (Subp)
or else Nkind (Parent (Parent (Subp))) = N_Subprogram_Declaration
then
null;
elsif not Comes_From_Source (Subp)
and then Scope (Subp) /= Standard_Standard
then
Applies := True;
return;
end if;
-- The referenced entity must either be the enclosing entity, or
-- an entity declared within the current open scope.
if Present (Scope (Subp))
and then Scope (Subp) /= Current_Scope
and then Subp /= Current_Scope
then
Error_Pragma_Arg
("argument of% must be entity in current scope", Assoc);
return;
end if;
-- Processing for procedure, operator or function. If subprogram
-- is aliased (as for an instance) indicate that the renamed
-- entity (if declared in the same unit) is inlined.
-- If this is the anonymous subprogram created for a subprogram
-- instance, the inlining applies to it directly. Otherwise we
-- retrieve it as the alias of the visible subprogram instance.
if Is_Subprogram (Subp) then
-- Ensure that pragma Inline_Always is associated with the
-- initial declaration of the subprogram.
Check_Inline_Always_Placement (Subp);
if Is_Wrapper_Package (Scope (Subp)) then
Inner_Subp := Subp;
else
Inner_Subp := Ultimate_Alias (Inner_Subp);
end if;
if In_Same_Source_Unit (Subp, Inner_Subp) then
Set_Inline_Flags (Inner_Subp);
Decl := Parent (Parent (Inner_Subp));
if Nkind (Decl) = N_Subprogram_Declaration
and then Present (Corresponding_Body (Decl))
then
Set_Inline_Flags (Corresponding_Body (Decl));
elsif Is_Generic_Instance (Subp)
and then Comes_From_Source (Subp)
then
-- Indicate that the body needs to be created for
-- inlining subsequent calls. The instantiation node
-- follows the declaration of the wrapper package
-- created for it. The subprogram that requires the
-- body is the anonymous one in the wrapper package.
if Scope (Subp) /= Standard_Standard
and then
Need_Subprogram_Instance_Body
(Next (Unit_Declaration_Node
(Scope (Alias (Subp)))), Subp)
then
null;
end if;
-- Inline is a program unit pragma (RM 10.1.5) and cannot
-- appear in a formal part to apply to a formal subprogram.
-- Do not apply check within an instance or a formal package
-- the test will have been applied to the original generic.
elsif Nkind (Decl) in N_Formal_Subprogram_Declaration
and then List_Containing (Decl) = List_Containing (N)
and then not In_Instance
then
Error_Msg_N
("Inline cannot apply to a formal subprogram", N);
-- If Subp is a renaming, it is the renamed entity that
-- will appear in any call, and be inlined. However, for
-- ASIS uses it is convenient to indicate that the renaming
-- itself is an inlined subprogram, so that some gnatcheck
-- rules can be applied in the absence of expansion.
elsif Nkind (Decl) = N_Subprogram_Renaming_Declaration then
Set_Inline_Flags (Subp);
end if;
end if;
Applies := True;
-- For a generic subprogram set flag as well, for use at the point
-- of instantiation, to determine whether the body should be
-- generated.
elsif Is_Generic_Subprogram (Subp) then
Set_Inline_Flags (Subp);
Applies := True;
-- Literals are by definition inlined
elsif Kind = E_Enumeration_Literal then
null;
-- Anything else is an error
else
Error_Pragma_Arg
("expect subprogram name for pragma%", Assoc);
end if;
end Make_Inline;
----------------------
-- Set_Inline_Flags --
----------------------
procedure Set_Inline_Flags (Subp : Entity_Id) is
begin
-- First set the Has_Pragma_XXX flags and issue the appropriate
-- errors and warnings for suspicious combinations.
if Prag_Id = Pragma_No_Inline then
if Has_Pragma_Inline_Always (Subp) then
Error_Msg_N
("Inline_Always and No_Inline are mutually exclusive", N);
elsif Has_Pragma_Inline (Subp) then
Error_Msg_NE
("Inline and No_Inline both specified for& ??",
N, Entity (Subp_Id));
end if;
Set_Has_Pragma_No_Inline (Subp);
else
if Prag_Id = Pragma_Inline_Always then
if Has_Pragma_No_Inline (Subp) then
Error_Msg_N
("Inline_Always and No_Inline are mutually exclusive",
N);
end if;
Set_Has_Pragma_Inline_Always (Subp);
else
if Has_Pragma_No_Inline (Subp) then
Error_Msg_NE
("Inline and No_Inline both specified for& ??",
N, Entity (Subp_Id));
end if;
end if;
Set_Has_Pragma_Inline (Subp);
end if;
-- Then adjust the Is_Inlined flag. It can never be set if the
-- subprogram is subject to pragma No_Inline.
case Status is
when Suppressed =>
Set_Is_Inlined (Subp, False);
when Disabled =>
null;
when Enabled =>
if not Has_Pragma_No_Inline (Subp) then
Set_Is_Inlined (Subp, True);
end if;
end case;
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Subp);
-- Capture the entity of the first Ghost subprogram being
-- processed for error detection purposes.
if Is_Ghost_Entity (Subp) then
if No (Ghost_Id) then
Ghost_Id := Subp;
end if;
-- Otherwise the subprogram is non-Ghost. It is illegal to mix
-- references to Ghost and non-Ghost entities (SPARK RM 6.9).
elsif Present (Ghost_Id) and then not Ghost_Error_Posted then
Ghost_Error_Posted := True;
Error_Msg_Name_1 := Pname;
Error_Msg_N
("pragma % cannot mention ghost and non-ghost subprograms",
N);
Error_Msg_Sloc := Sloc (Ghost_Id);
Error_Msg_NE ("\& # declared as ghost", N, Ghost_Id);
Error_Msg_Sloc := Sloc (Subp);
Error_Msg_NE ("\& # declared as non-ghost", N, Subp);
end if;
end Set_Inline_Flags;
-- Start of processing for Process_Inline
begin
Check_No_Identifiers;
Check_At_Least_N_Arguments (1);
if Status = Enabled then
Inline_Processing_Required := True;
end if;
Assoc := Arg1;
while Present (Assoc) loop
Subp_Id := Get_Pragma_Arg (Assoc);
Analyze (Subp_Id);
Applies := False;
if Is_Entity_Name (Subp_Id) then
Subp := Entity (Subp_Id);
if Subp = Any_Id then
-- If previous error, avoid cascaded errors
Check_Error_Detected;
Applies := True;
else
Make_Inline (Subp);
-- For the pragma case, climb homonym chain. This is
-- what implements allowing the pragma in the renaming
-- case, with the result applying to the ancestors, and
-- also allows Inline to apply to all previous homonyms.
if not From_Aspect_Specification (N) then
while Present (Homonym (Subp))
and then Scope (Homonym (Subp)) = Current_Scope
loop
Make_Inline (Homonym (Subp));
Subp := Homonym (Subp);
end loop;
end if;
end if;
end if;
if not Applies then
Error_Pragma_Arg ("inappropriate argument for pragma%", Assoc);
end if;
Next (Assoc);
end loop;
-- If the context is a package declaration, the pragma indicates
-- that inlining will require the presence of the corresponding
-- body. (this may be further refined).
if not In_Instance
and then Nkind (Unit (Cunit (Current_Sem_Unit))) =
N_Package_Declaration
then
Set_Body_Needed_For_Inlining (Cunit_Entity (Current_Sem_Unit));
end if;
end Process_Inline;
----------------------------
-- Process_Interface_Name --
----------------------------
procedure Process_Interface_Name
(Subprogram_Def : Entity_Id;
Ext_Arg : Node_Id;
Link_Arg : Node_Id;
Prag : Node_Id)
is
Ext_Nam : Node_Id;
Link_Nam : Node_Id;
String_Val : String_Id;
procedure Check_Form_Of_Interface_Name (SN : Node_Id);
-- SN is a string literal node for an interface name. This routine
-- performs some minimal checks that the name is reasonable. In
-- particular that no spaces or other obviously incorrect characters
-- appear. This is only a warning, since any characters are allowed.
----------------------------------
-- Check_Form_Of_Interface_Name --
----------------------------------
procedure Check_Form_Of_Interface_Name (SN : Node_Id) is
S : constant String_Id := Strval (Expr_Value_S (SN));
SL : constant Nat := String_Length (S);
C : Char_Code;
begin
if SL = 0 then
Error_Msg_N ("interface name cannot be null string", SN);
end if;
for J in 1 .. SL loop
C := Get_String_Char (S, J);
-- Look for dubious character and issue unconditional warning.
-- Definitely dubious if not in character range.
if not In_Character_Range (C)
-- Commas, spaces and (back)slashes are dubious
or else Get_Character (C) = ','
or else Get_Character (C) = '\'
or else Get_Character (C) = ' '
or else Get_Character (C) = '/'
then
Error_Msg
("??interface name contains illegal character",
Sloc (SN) + Source_Ptr (J));
end if;
end loop;
end Check_Form_Of_Interface_Name;
-- Start of processing for Process_Interface_Name
begin
-- If we are looking at a pragma that comes from an aspect then it
-- needs to have its corresponding aspect argument expressions
-- analyzed in addition to the generated pragma so that aspects
-- within generic units get properly resolved.
if Present (Prag) and then From_Aspect_Specification (Prag) then
declare
Asp : constant Node_Id := Corresponding_Aspect (Prag);
Dummy_1 : Node_Id;
Dummy_2 : Node_Id;
Dummy_3 : Node_Id;
EN : Node_Id;
LN : Node_Id;
begin
-- Obtain all interfacing aspects used to construct the pragma
Get_Interfacing_Aspects
(Asp, Dummy_1, EN, Dummy_2, Dummy_3, LN);
-- Analyze the expression of aspect External_Name
if Present (EN) then
Analyze (Expression (EN));
end if;
-- Analyze the expressio of aspect Link_Name
if Present (LN) then
Analyze (Expression (LN));
end if;
end;
end if;
if No (Link_Arg) then
if No (Ext_Arg) then
return;
elsif Chars (Ext_Arg) = Name_Link_Name then
Ext_Nam := Empty;
Link_Nam := Expression (Ext_Arg);
else
Check_Optional_Identifier (Ext_Arg, Name_External_Name);
Ext_Nam := Expression (Ext_Arg);
Link_Nam := Empty;
end if;
else
Check_Optional_Identifier (Ext_Arg, Name_External_Name);
Check_Optional_Identifier (Link_Arg, Name_Link_Name);
Ext_Nam := Expression (Ext_Arg);
Link_Nam := Expression (Link_Arg);
end if;
-- Check expressions for external name and link name are static
if Present (Ext_Nam) then
Check_Arg_Is_OK_Static_Expression (Ext_Nam, Standard_String);
Check_Form_Of_Interface_Name (Ext_Nam);
-- Verify that external name is not the name of a local entity,
-- which would hide the imported one and could lead to run-time
-- surprises. The problem can only arise for entities declared in
-- a package body (otherwise the external name is fully qualified
-- and will not conflict).
declare
Nam : Name_Id;
E : Entity_Id;
Par : Node_Id;
begin
if Prag_Id = Pragma_Import then
Nam := String_To_Name (Strval (Expr_Value_S (Ext_Nam)));
E := Entity_Id (Get_Name_Table_Int (Nam));
if Nam /= Chars (Subprogram_Def)
and then Present (E)
and then not Is_Overloadable (E)
and then Is_Immediately_Visible (E)
and then not Is_Imported (E)
and then Ekind (Scope (E)) = E_Package
then
Par := Parent (E);
while Present (Par) loop
if Nkind (Par) = N_Package_Body then
Error_Msg_Sloc := Sloc (E);
Error_Msg_NE
("imported entity is hidden by & declared#",
Ext_Arg, E);
exit;
end if;
Par := Parent (Par);
end loop;
end if;
end if;
end;
end if;
if Present (Link_Nam) then
Check_Arg_Is_OK_Static_Expression (Link_Nam, Standard_String);
Check_Form_Of_Interface_Name (Link_Nam);
end if;
-- If there is no link name, just set the external name
if No (Link_Nam) then
Link_Nam := Adjust_External_Name_Case (Expr_Value_S (Ext_Nam));
-- For the Link_Name case, the given literal is preceded by an
-- asterisk, which indicates to GCC that the given name should be
-- taken literally, and in particular that no prepending of
-- underlines should occur, even in systems where this is the
-- normal default.
else
Start_String;
Store_String_Char (Get_Char_Code ('*'));
String_Val := Strval (Expr_Value_S (Link_Nam));
Store_String_Chars (String_Val);
Link_Nam :=
Make_String_Literal (Sloc (Link_Nam),
Strval => End_String);
end if;
-- Set the interface name. If the entity is a generic instance, use
-- its alias, which is the callable entity.
if Is_Generic_Instance (Subprogram_Def) then
Set_Encoded_Interface_Name
(Alias (Get_Base_Subprogram (Subprogram_Def)), Link_Nam);
else
Set_Encoded_Interface_Name
(Get_Base_Subprogram (Subprogram_Def), Link_Nam);
end if;
Check_Duplicated_Export_Name (Link_Nam);
end Process_Interface_Name;
-----------------------------------------
-- Process_Interrupt_Or_Attach_Handler --
-----------------------------------------
procedure Process_Interrupt_Or_Attach_Handler is
Handler : constant Entity_Id := Entity (Get_Pragma_Arg (Arg1));
Prot_Typ : constant Entity_Id := Scope (Handler);
begin
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Handler);
Set_Is_Interrupt_Handler (Handler);
pragma Assert (Ekind (Prot_Typ) = E_Protected_Type);
Record_Rep_Item (Prot_Typ, N);
-- Chain the pragma on the contract for completeness
Add_Contract_Item (N, Handler);
end Process_Interrupt_Or_Attach_Handler;
--------------------------------------------------
-- Process_Restrictions_Or_Restriction_Warnings --
--------------------------------------------------
-- Note: some of the simple identifier cases were handled in par-prag,
-- but it is harmless (and more straightforward) to simply handle all
-- cases here, even if it means we repeat a bit of work in some cases.
procedure Process_Restrictions_Or_Restriction_Warnings
(Warn : Boolean)
is
Arg : Node_Id;
R_Id : Restriction_Id;
Id : Name_Id;
Expr : Node_Id;
Val : Uint;
begin
-- Ignore all Restrictions pragmas in CodePeer mode
if CodePeer_Mode then
return;
end if;
Check_Ada_83_Warning;
Check_At_Least_N_Arguments (1);
Check_Valid_Configuration_Pragma;
Arg := Arg1;
while Present (Arg) loop
Id := Chars (Arg);
Expr := Get_Pragma_Arg (Arg);
-- Case of no restriction identifier present
if Id = No_Name then
if Nkind (Expr) /= N_Identifier then
Error_Pragma_Arg
("invalid form for restriction", Arg);
end if;
R_Id :=
Get_Restriction_Id
(Process_Restriction_Synonyms (Expr));
if R_Id not in All_Boolean_Restrictions then
Error_Msg_Name_1 := Pname;
Error_Msg_N
("invalid restriction identifier&", Get_Pragma_Arg (Arg));
-- Check for possible misspelling
for J in Restriction_Id loop
declare
Rnm : constant String := Restriction_Id'Image (J);
begin
Name_Buffer (1 .. Rnm'Length) := Rnm;
Name_Len := Rnm'Length;
Set_Casing (All_Lower_Case);
if Is_Bad_Spelling_Of (Chars (Expr), Name_Enter) then
Set_Casing
(Identifier_Casing
(Source_Index (Current_Sem_Unit)));
Error_Msg_String (1 .. Rnm'Length) :=
Name_Buffer (1 .. Name_Len);
Error_Msg_Strlen := Rnm'Length;
Error_Msg_N -- CODEFIX
("\possible misspelling of ""~""",
Get_Pragma_Arg (Arg));
exit;
end if;
end;
end loop;
raise Pragma_Exit;
end if;
if Implementation_Restriction (R_Id) then
Check_Restriction (No_Implementation_Restrictions, Arg);
end if;
-- Special processing for No_Elaboration_Code restriction
if R_Id = No_Elaboration_Code then
-- Restriction is only recognized within a configuration
-- pragma file, or within a unit of the main extended
-- program. Note: the test for Main_Unit is needed to
-- properly include the case of configuration pragma files.
if not (Current_Sem_Unit = Main_Unit
or else In_Extended_Main_Source_Unit (N))
then
return;
-- Don't allow in a subunit unless already specified in
-- body or spec.
elsif Nkind (Parent (N)) = N_Compilation_Unit
and then Nkind (Unit (Parent (N))) = N_Subunit
and then not Restriction_Active (No_Elaboration_Code)
then
Error_Msg_N
("invalid specification of ""No_Elaboration_Code""",
N);
Error_Msg_N
("\restriction cannot be specified in a subunit", N);
Error_Msg_N
("\unless also specified in body or spec", N);
return;
-- If we accept a No_Elaboration_Code restriction, then it
-- needs to be added to the configuration restriction set so
-- that we get proper application to other units in the main
-- extended source as required.
else
Add_To_Config_Boolean_Restrictions (No_Elaboration_Code);
end if;
end if;
-- If this is a warning, then set the warning unless we already
-- have a real restriction active (we never want a warning to
-- override a real restriction).
if Warn then
if not Restriction_Active (R_Id) then
Set_Restriction (R_Id, N);
Restriction_Warnings (R_Id) := True;
end if;
-- If real restriction case, then set it and make sure that the
-- restriction warning flag is off, since a real restriction
-- always overrides a warning.
else
Set_Restriction (R_Id, N);
Restriction_Warnings (R_Id) := False;
end if;
-- Check for obsolescent restrictions in Ada 2005 mode
if not Warn
and then Ada_Version >= Ada_2005
and then (R_Id = No_Asynchronous_Control
or else
R_Id = No_Unchecked_Deallocation
or else
R_Id = No_Unchecked_Conversion)
then
Check_Restriction (No_Obsolescent_Features, N);
end if;
-- A very special case that must be processed here: pragma
-- Restrictions (No_Exceptions) turns off all run-time
-- checking. This is a bit dubious in terms of the formal
-- language definition, but it is what is intended by RM
-- H.4(12). Restriction_Warnings never affects generated code
-- so this is done only in the real restriction case.
-- Atomic_Synchronization is not a real check, so it is not
-- affected by this processing).
-- Ignore the effect of pragma Restrictions (No_Exceptions) on
-- run-time checks in CodePeer and GNATprove modes: we want to
-- generate checks for analysis purposes, as set respectively
-- by -gnatC and -gnatd.F
if not Warn
and then not (CodePeer_Mode or GNATprove_Mode)
and then R_Id = No_Exceptions
then
for J in Scope_Suppress.Suppress'Range loop
if J /= Atomic_Synchronization then
Scope_Suppress.Suppress (J) := True;
end if;
end loop;
end if;
-- Case of No_Dependence => unit-name. Note that the parser
-- already made the necessary entry in the No_Dependence table.
elsif Id = Name_No_Dependence then
if not OK_No_Dependence_Unit_Name (Expr) then
raise Pragma_Exit;
end if;
-- Case of No_Specification_Of_Aspect => aspect-identifier
elsif Id = Name_No_Specification_Of_Aspect then
declare
A_Id : Aspect_Id;
begin
if Nkind (Expr) /= N_Identifier then
A_Id := No_Aspect;
else
A_Id := Get_Aspect_Id (Chars (Expr));
end if;
if A_Id = No_Aspect then
Error_Pragma_Arg ("invalid restriction name", Arg);
else
Set_Restriction_No_Specification_Of_Aspect (Expr, Warn);
end if;
end;
-- Case of No_Use_Of_Attribute => attribute-identifier
elsif Id = Name_No_Use_Of_Attribute then
if Nkind (Expr) /= N_Identifier
or else not Is_Attribute_Name (Chars (Expr))
then
Error_Msg_N ("unknown attribute name??", Expr);
else
Set_Restriction_No_Use_Of_Attribute (Expr, Warn);
end if;
-- Case of No_Use_Of_Entity => fully-qualified-name
elsif Id = Name_No_Use_Of_Entity then
-- Restriction is only recognized within a configuration
-- pragma file, or within a unit of the main extended
-- program. Note: the test for Main_Unit is needed to
-- properly include the case of configuration pragma files.
if Current_Sem_Unit = Main_Unit
or else In_Extended_Main_Source_Unit (N)
then
if not OK_No_Dependence_Unit_Name (Expr) then
Error_Msg_N ("wrong form for entity name", Expr);
else
Set_Restriction_No_Use_Of_Entity
(Expr, Warn, No_Profile);
end if;
end if;
-- Case of No_Use_Of_Pragma => pragma-identifier
elsif Id = Name_No_Use_Of_Pragma then
if Nkind (Expr) /= N_Identifier
or else not Is_Pragma_Name (Chars (Expr))
then
Error_Msg_N ("unknown pragma name??", Expr);
else
Set_Restriction_No_Use_Of_Pragma (Expr, Warn);
end if;
-- All other cases of restriction identifier present
else
R_Id := Get_Restriction_Id (Process_Restriction_Synonyms (Arg));
Analyze_And_Resolve (Expr, Any_Integer);
if R_Id not in All_Parameter_Restrictions then
Error_Pragma_Arg
("invalid restriction parameter identifier", Arg);
elsif not Is_OK_Static_Expression (Expr) then
Flag_Non_Static_Expr
("value must be static expression!", Expr);
raise Pragma_Exit;
elsif not Is_Integer_Type (Etype (Expr))
or else Expr_Value (Expr) < 0
then
Error_Pragma_Arg
("value must be non-negative integer", Arg);
end if;
-- Restriction pragma is active
Val := Expr_Value (Expr);
if not UI_Is_In_Int_Range (Val) then
Error_Pragma_Arg
("pragma ignored, value too large??", Arg);
end if;
-- Warning case. If the real restriction is active, then we
-- ignore the request, since warning never overrides a real
-- restriction. Otherwise we set the proper warning. Note that
-- this circuit sets the warning again if it is already set,
-- which is what we want, since the constant may have changed.
if Warn then
if not Restriction_Active (R_Id) then
Set_Restriction
(R_Id, N, Integer (UI_To_Int (Val)));
Restriction_Warnings (R_Id) := True;
end if;
-- Real restriction case, set restriction and make sure warning
-- flag is off since real restriction always overrides warning.
else
Set_Restriction (R_Id, N, Integer (UI_To_Int (Val)));
Restriction_Warnings (R_Id) := False;
end if;
end if;
Next (Arg);
end loop;
end Process_Restrictions_Or_Restriction_Warnings;
---------------------------------
-- Process_Suppress_Unsuppress --
---------------------------------
-- Note: this procedure makes entries in the check suppress data
-- structures managed by Sem. See spec of package Sem for full
-- details on how we handle recording of check suppression.
procedure Process_Suppress_Unsuppress (Suppress_Case : Boolean) is
C : Check_Id;
E : Entity_Id;
E_Id : Node_Id;
In_Package_Spec : constant Boolean :=
Is_Package_Or_Generic_Package (Current_Scope)
and then not In_Package_Body (Current_Scope);
procedure Suppress_Unsuppress_Echeck (E : Entity_Id; C : Check_Id);
-- Used to suppress a single check on the given entity
--------------------------------
-- Suppress_Unsuppress_Echeck --
--------------------------------
procedure Suppress_Unsuppress_Echeck (E : Entity_Id; C : Check_Id) is
begin
-- Check for error of trying to set atomic synchronization for
-- a non-atomic variable.
if C = Atomic_Synchronization
and then not (Is_Atomic (E) or else Has_Atomic_Components (E))
then
Error_Msg_N
("pragma & requires atomic type or variable",
Pragma_Identifier (Original_Node (N)));
end if;
Set_Checks_May_Be_Suppressed (E);
if In_Package_Spec then
Push_Global_Suppress_Stack_Entry
(Entity => E,
Check => C,
Suppress => Suppress_Case);
else
Push_Local_Suppress_Stack_Entry
(Entity => E,
Check => C,
Suppress => Suppress_Case);
end if;
-- If this is a first subtype, and the base type is distinct,
-- then also set the suppress flags on the base type.
if Is_First_Subtype (E) and then Etype (E) /= E then
Suppress_Unsuppress_Echeck (Etype (E), C);
end if;
end Suppress_Unsuppress_Echeck;
-- Start of processing for Process_Suppress_Unsuppress
begin
-- Ignore pragma Suppress/Unsuppress in CodePeer and GNATprove modes
-- on user code: we want to generate checks for analysis purposes, as
-- set respectively by -gnatC and -gnatd.F
if Comes_From_Source (N)
and then (CodePeer_Mode or GNATprove_Mode)
then
return;
end if;
-- Suppress/Unsuppress can appear as a configuration pragma, or in a
-- declarative part or a package spec (RM 11.5(5)).
if not Is_Configuration_Pragma then
Check_Is_In_Decl_Part_Or_Package_Spec;
end if;
Check_At_Least_N_Arguments (1);
Check_At_Most_N_Arguments (2);
Check_No_Identifier (Arg1);
Check_Arg_Is_Identifier (Arg1);
C := Get_Check_Id (Chars (Get_Pragma_Arg (Arg1)));
if C = No_Check_Id then
Error_Pragma_Arg
("argument of pragma% is not valid check name", Arg1);
end if;
-- Warn that suppress of Elaboration_Check has no effect in SPARK
if C = Elaboration_Check and then SPARK_Mode = On then
Error_Pragma_Arg
("Suppress of Elaboration_Check ignored in SPARK??",
"\elaboration checking rules are statically enforced "
& "(SPARK RM 7.7)", Arg1);
end if;
-- One-argument case
if Arg_Count = 1 then
-- Make an entry in the local scope suppress table. This is the
-- table that directly shows the current value of the scope
-- suppress check for any check id value.
if C = All_Checks then
-- For All_Checks, we set all specific predefined checks with
-- the exception of Elaboration_Check, which is handled
-- specially because of not wanting All_Checks to have the
-- effect of deactivating static elaboration order processing.
-- Atomic_Synchronization is also not affected, since this is
-- not a real check.
for J in Scope_Suppress.Suppress'Range loop
if J /= Elaboration_Check
and then
J /= Atomic_Synchronization
then
Scope_Suppress.Suppress (J) := Suppress_Case;
end if;
end loop;
-- If not All_Checks, and predefined check, then set appropriate
-- scope entry. Note that we will set Elaboration_Check if this
-- is explicitly specified. Atomic_Synchronization is allowed
-- only if internally generated and entity is atomic.
elsif C in Predefined_Check_Id
and then (not Comes_From_Source (N)
or else C /= Atomic_Synchronization)
then
Scope_Suppress.Suppress (C) := Suppress_Case;
end if;
-- Also make an entry in the Local_Entity_Suppress table
Push_Local_Suppress_Stack_Entry
(Entity => Empty,
Check => C,
Suppress => Suppress_Case);
-- Case of two arguments present, where the check is suppressed for
-- a specified entity (given as the second argument of the pragma)
else
-- This is obsolescent in Ada 2005 mode
if Ada_Version >= Ada_2005 then
Check_Restriction (No_Obsolescent_Features, Arg2);
end if;
Check_Optional_Identifier (Arg2, Name_On);
E_Id := Get_Pragma_Arg (Arg2);
Analyze (E_Id);
if not Is_Entity_Name (E_Id) then
Error_Pragma_Arg
("second argument of pragma% must be entity name", Arg2);
end if;
E := Entity (E_Id);
if E = Any_Id then
return;
end if;
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, E);
-- Enforce RM 11.5(7) which requires that for a pragma that
-- appears within a package spec, the named entity must be
-- within the package spec. We allow the package name itself
-- to be mentioned since that makes sense, although it is not
-- strictly allowed by 11.5(7).
if In_Package_Spec
and then E /= Current_Scope
and then Scope (E) /= Current_Scope
then
Error_Pragma_Arg
("entity in pragma% is not in package spec (RM 11.5(7))",
Arg2);
end if;
-- Loop through homonyms. As noted below, in the case of a package
-- spec, only homonyms within the package spec are considered.
loop
Suppress_Unsuppress_Echeck (E, C);
if Is_Generic_Instance (E)
and then Is_Subprogram (E)
and then Present (Alias (E))
then
Suppress_Unsuppress_Echeck (Alias (E), C);
end if;
-- Move to next homonym if not aspect spec case
exit when From_Aspect_Specification (N);
E := Homonym (E);
exit when No (E);
-- If we are within a package specification, the pragma only
-- applies to homonyms in the same scope.
exit when In_Package_Spec
and then Scope (E) /= Current_Scope;
end loop;
end if;
end Process_Suppress_Unsuppress;
-------------------------------
-- Record_Independence_Check --
-------------------------------
procedure Record_Independence_Check (N : Node_Id; E : Entity_Id) is
pragma Unreferenced (N, E);
begin
-- For GCC back ends the validation is done a priori
-- ??? This code is dead, might be useful in the future
-- if not AAMP_On_Target then
-- return;
-- end if;
-- Independence_Checks.Append ((N, E));
return;
end Record_Independence_Check;
------------------
-- Set_Exported --
------------------
procedure Set_Exported (E : Entity_Id; Arg : Node_Id) is
begin
if Is_Imported (E) then
Error_Pragma_Arg
("cannot export entity& that was previously imported", Arg);
elsif Present (Address_Clause (E))
and then not Relaxed_RM_Semantics
then
Error_Pragma_Arg
("cannot export entity& that has an address clause", Arg);
end if;
Set_Is_Exported (E);
-- Generate a reference for entity explicitly, because the
-- identifier may be overloaded and name resolution will not
-- generate one.
Generate_Reference (E, Arg);
-- Deal with exporting non-library level entity
if not Is_Library_Level_Entity (E) then
-- Not allowed at all for subprograms
if Is_Subprogram (E) then
Error_Pragma_Arg ("local subprogram& cannot be exported", Arg);
-- Otherwise set public and statically allocated
else
Set_Is_Public (E);
Set_Is_Statically_Allocated (E);
-- Warn if the corresponding W flag is set
if Warn_On_Export_Import
-- Only do this for something that was in the source. Not
-- clear if this can be False now (there used for sure to be
-- cases on some systems where it was False), but anyway the
-- test is harmless if not needed, so it is retained.
and then Comes_From_Source (Arg)
then
Error_Msg_NE
("?x?& has been made static as a result of Export",
Arg, E);
Error_Msg_N
("\?x?this usage is non-standard and non-portable",
Arg);
end if;
end if;
end if;
if Warn_On_Export_Import and then Is_Type (E) then
Error_Msg_NE ("exporting a type has no effect?x?", Arg, E);
end if;
if Warn_On_Export_Import and Inside_A_Generic then
Error_Msg_NE
("all instances of& will have the same external name?x?",
Arg, E);
end if;
end Set_Exported;
----------------------------------------------
-- Set_Extended_Import_Export_External_Name --
----------------------------------------------
procedure Set_Extended_Import_Export_External_Name
(Internal_Ent : Entity_Id;
Arg_External : Node_Id)
is
Old_Name : constant Node_Id := Interface_Name (Internal_Ent);
New_Name : Node_Id;
begin
if No (Arg_External) then
return;
end if;
Check_Arg_Is_External_Name (Arg_External);
if Nkind (Arg_External) = N_String_Literal then
if String_Length (Strval (Arg_External)) = 0 then
return;
else
New_Name := Adjust_External_Name_Case (Arg_External);
end if;
elsif Nkind (Arg_External) = N_Identifier then
New_Name := Get_Default_External_Name (Arg_External);
-- Check_Arg_Is_External_Name should let through only identifiers and
-- string literals or static string expressions (which are folded to
-- string literals).
else
raise Program_Error;
end if;
-- If we already have an external name set (by a prior normal Import
-- or Export pragma), then the external names must match
if Present (Interface_Name (Internal_Ent)) then
-- Ignore mismatching names in CodePeer mode, to support some
-- old compilers which would export the same procedure under
-- different names, e.g:
-- procedure P;
-- pragma Export_Procedure (P, "a");
-- pragma Export_Procedure (P, "b");
if CodePeer_Mode then
return;
end if;
Check_Matching_Internal_Names : declare
S1 : constant String_Id := Strval (Old_Name);
S2 : constant String_Id := Strval (New_Name);
procedure Mismatch;
pragma No_Return (Mismatch);
-- Called if names do not match
--------------
-- Mismatch --
--------------
procedure Mismatch is
begin
Error_Msg_Sloc := Sloc (Old_Name);
Error_Pragma_Arg
("external name does not match that given #",
Arg_External);
end Mismatch;
-- Start of processing for Check_Matching_Internal_Names
begin
if String_Length (S1) /= String_Length (S2) then
Mismatch;
else
for J in 1 .. String_Length (S1) loop
if Get_String_Char (S1, J) /= Get_String_Char (S2, J) then
Mismatch;
end if;
end loop;
end if;
end Check_Matching_Internal_Names;
-- Otherwise set the given name
else
Set_Encoded_Interface_Name (Internal_Ent, New_Name);
Check_Duplicated_Export_Name (New_Name);
end if;
end Set_Extended_Import_Export_External_Name;
------------------
-- Set_Imported --
------------------
procedure Set_Imported (E : Entity_Id) is
begin
-- Error message if already imported or exported
if Is_Exported (E) or else Is_Imported (E) then
-- Error if being set Exported twice
if Is_Exported (E) then
Error_Msg_NE ("entity& was previously exported", N, E);
-- Ignore error in CodePeer mode where we treat all imported
-- subprograms as unknown.
elsif CodePeer_Mode then
goto OK;
-- OK if Import/Interface case
elsif Import_Interface_Present (N) then
goto OK;
-- Error if being set Imported twice
else
Error_Msg_NE ("entity& was previously imported", N, E);
end if;
Error_Msg_Name_1 := Pname;
Error_Msg_N
("\(pragma% applies to all previous entities)", N);
Error_Msg_Sloc := Sloc (E);
Error_Msg_NE ("\import not allowed for& declared#", N, E);
-- Here if not previously imported or exported, OK to import
else
Set_Is_Imported (E);
-- For subprogram, set Import_Pragma field
if Is_Subprogram (E) then
Set_Import_Pragma (E, N);
end if;
-- If the entity is an object that is not at the library level,
-- then it is statically allocated. We do not worry about objects
-- with address clauses in this context since they are not really
-- imported in the linker sense.
if Is_Object (E)
and then not Is_Library_Level_Entity (E)
and then No (Address_Clause (E))
then
Set_Is_Statically_Allocated (E);
end if;
end if;
<<OK>> null;
end Set_Imported;
-------------------------
-- Set_Mechanism_Value --
-------------------------
-- Note: the mechanism name has not been analyzed (and cannot indeed be
-- analyzed, since it is semantic nonsense), so we get it in the exact
-- form created by the parser.
procedure Set_Mechanism_Value (Ent : Entity_Id; Mech_Name : Node_Id) is
procedure Bad_Mechanism;
pragma No_Return (Bad_Mechanism);
-- Signal bad mechanism name
-------------------------
-- Bad_Mechanism_Value --
-------------------------
procedure Bad_Mechanism is
begin
Error_Pragma_Arg ("unrecognized mechanism name", Mech_Name);
end Bad_Mechanism;
-- Start of processing for Set_Mechanism_Value
begin
if Mechanism (Ent) /= Default_Mechanism then
Error_Msg_NE
("mechanism for & has already been set", Mech_Name, Ent);
end if;
-- MECHANISM_NAME ::= value | reference
if Nkind (Mech_Name) = N_Identifier then
if Chars (Mech_Name) = Name_Value then
Set_Mechanism (Ent, By_Copy);
return;
elsif Chars (Mech_Name) = Name_Reference then
Set_Mechanism (Ent, By_Reference);
return;
elsif Chars (Mech_Name) = Name_Copy then
Error_Pragma_Arg
("bad mechanism name, Value assumed", Mech_Name);
else
Bad_Mechanism;
end if;
else
Bad_Mechanism;
end if;
end Set_Mechanism_Value;
--------------------------
-- Set_Rational_Profile --
--------------------------
-- The Rational profile includes Implicit_Packing, Use_Vads_Size, and
-- extension to the semantics of renaming declarations.
procedure Set_Rational_Profile is
begin
Implicit_Packing := True;
Overriding_Renamings := True;
Use_VADS_Size := True;
end Set_Rational_Profile;
---------------------------
-- Set_Ravenscar_Profile --
---------------------------
-- The tasks to be done here are
-- Set required policies
-- pragma Task_Dispatching_Policy (FIFO_Within_Priorities)
-- (For Ravenscar and GNAT_Extended_Ravenscar profiles)
-- pragma Task_Dispatching_Policy (EDF_Across_Priorities)
-- (For GNAT_Ravenscar_EDF profile)
-- pragma Locking_Policy (Ceiling_Locking)
-- Set Detect_Blocking mode
-- Set required restrictions (see System.Rident for detailed list)
-- Set the No_Dependence rules
-- No_Dependence => Ada.Asynchronous_Task_Control
-- No_Dependence => Ada.Calendar
-- No_Dependence => Ada.Execution_Time.Group_Budget
-- No_Dependence => Ada.Execution_Time.Timers
-- No_Dependence => Ada.Task_Attributes
-- No_Dependence => System.Multiprocessors.Dispatching_Domains
procedure Set_Ravenscar_Profile (Profile : Profile_Name; N : Node_Id) is
procedure Set_Error_Msg_To_Profile_Name;
-- Set Error_Msg_String and Error_Msg_Strlen to the name of the
-- profile.
-----------------------------------
-- Set_Error_Msg_To_Profile_Name --
-----------------------------------
procedure Set_Error_Msg_To_Profile_Name is
Prof_Nam : constant Node_Id :=
Get_Pragma_Arg
(First (Pragma_Argument_Associations (N)));
begin
Get_Name_String (Chars (Prof_Nam));
Adjust_Name_Case (Global_Name_Buffer, Sloc (Prof_Nam));
Error_Msg_Strlen := Name_Len;
Error_Msg_String (1 .. Name_Len) := Name_Buffer (1 .. Name_Len);
end Set_Error_Msg_To_Profile_Name;
-- Local variables
Nod : Node_Id;
Pref : Node_Id;
Pref_Id : Node_Id;
Sel_Id : Node_Id;
Profile_Dispatching_Policy : Character;
-- Start of processing for Set_Ravenscar_Profile
begin
-- pragma Task_Dispatching_Policy (EDF_Across_Priorities)
if Profile = GNAT_Ravenscar_EDF then
Profile_Dispatching_Policy := 'E';
-- pragma Task_Dispatching_Policy (FIFO_Within_Priorities)
else
Profile_Dispatching_Policy := 'F';
end if;
if Task_Dispatching_Policy /= ' '
and then Task_Dispatching_Policy /= Profile_Dispatching_Policy
then
Error_Msg_Sloc := Task_Dispatching_Policy_Sloc;
Set_Error_Msg_To_Profile_Name;
Error_Pragma ("Profile (~) incompatible with policy#");
-- Set the FIFO_Within_Priorities policy, but always preserve
-- System_Location since we like the error message with the run time
-- name.
else
Task_Dispatching_Policy := Profile_Dispatching_Policy;
if Task_Dispatching_Policy_Sloc /= System_Location then
Task_Dispatching_Policy_Sloc := Loc;
end if;
end if;
-- pragma Locking_Policy (Ceiling_Locking)
if Locking_Policy /= ' '
and then Locking_Policy /= 'C'
then
Error_Msg_Sloc := Locking_Policy_Sloc;
Set_Error_Msg_To_Profile_Name;
Error_Pragma ("Profile (~) incompatible with policy#");
-- Set the Ceiling_Locking policy, but preserve System_Location since
-- we like the error message with the run time name.
else
Locking_Policy := 'C';
if Locking_Policy_Sloc /= System_Location then
Locking_Policy_Sloc := Loc;
end if;
end if;
-- pragma Detect_Blocking
Detect_Blocking := True;
-- Set the corresponding restrictions
Set_Profile_Restrictions
(Profile, N, Warn => Treat_Restrictions_As_Warnings);
-- Set the No_Dependence restrictions
-- The following No_Dependence restrictions:
-- No_Dependence => Ada.Asynchronous_Task_Control
-- No_Dependence => Ada.Calendar
-- No_Dependence => Ada.Task_Attributes
-- are already set by previous call to Set_Profile_Restrictions.
-- Set the following restrictions which were added to Ada 2005:
-- No_Dependence => Ada.Execution_Time.Group_Budget
-- No_Dependence => Ada.Execution_Time.Timers
if Ada_Version >= Ada_2005 then
Pref_Id := Make_Identifier (Loc, Name_Find ("ada"));
Sel_Id := Make_Identifier (Loc, Name_Find ("execution_time"));
Pref :=
Make_Selected_Component
(Sloc => Loc,
Prefix => Pref_Id,
Selector_Name => Sel_Id);
Sel_Id := Make_Identifier (Loc, Name_Find ("group_budgets"));
Nod :=
Make_Selected_Component
(Sloc => Loc,
Prefix => Pref,
Selector_Name => Sel_Id);
Set_Restriction_No_Dependence
(Unit => Nod,
Warn => Treat_Restrictions_As_Warnings,
Profile => Ravenscar);
Sel_Id := Make_Identifier (Loc, Name_Find ("timers"));
Nod :=
Make_Selected_Component
(Sloc => Loc,
Prefix => Pref,
Selector_Name => Sel_Id);
Set_Restriction_No_Dependence
(Unit => Nod,
Warn => Treat_Restrictions_As_Warnings,
Profile => Ravenscar);
end if;
-- Set the following restriction which was added to Ada 2012 (see
-- AI-0171):
-- No_Dependence => System.Multiprocessors.Dispatching_Domains
if Ada_Version >= Ada_2012 then
Pref_Id := Make_Identifier (Loc, Name_Find ("system"));
Sel_Id := Make_Identifier (Loc, Name_Find ("multiprocessors"));
Pref :=
Make_Selected_Component
(Sloc => Loc,
Prefix => Pref_Id,
Selector_Name => Sel_Id);
Sel_Id := Make_Identifier (Loc, Name_Find ("dispatching_domains"));
Nod :=
Make_Selected_Component
(Sloc => Loc,
Prefix => Pref,
Selector_Name => Sel_Id);
Set_Restriction_No_Dependence
(Unit => Nod,
Warn => Treat_Restrictions_As_Warnings,
Profile => Ravenscar);
end if;
end Set_Ravenscar_Profile;
-- Start of processing for Analyze_Pragma
begin
-- The following code is a defense against recursion. Not clear that
-- this can happen legitimately, but perhaps some error situations can
-- cause it, and we did see this recursion during testing.
if Analyzed (N) then
return;
else
Set_Analyzed (N);
end if;
Check_Restriction_No_Use_Of_Pragma (N);
-- Ignore pragma if Ignore_Pragma applies. Also ignore pragma
-- Default_Scalar_Storage_Order if the -gnatI switch was given.
if Should_Ignore_Pragma_Sem (N)
or else (Prag_Id = Pragma_Default_Scalar_Storage_Order
and then Ignore_Rep_Clauses)
then
return;
end if;
-- Deal with unrecognized pragma
if not Is_Pragma_Name (Pname) then
if Warn_On_Unrecognized_Pragma then
Error_Msg_Name_1 := Pname;
Error_Msg_N ("?g?unrecognized pragma%!", Pragma_Identifier (N));
for PN in First_Pragma_Name .. Last_Pragma_Name loop
if Is_Bad_Spelling_Of (Pname, PN) then
Error_Msg_Name_1 := PN;
Error_Msg_N -- CODEFIX
("\?g?possible misspelling of %!", Pragma_Identifier (N));
exit;
end if;
end loop;
end if;
return;
end if;
-- Here to start processing for recognized pragma
Pname := Original_Aspect_Pragma_Name (N);
-- Capture setting of Opt.Uneval_Old
case Opt.Uneval_Old is
when 'A' =>
Set_Uneval_Old_Accept (N);
when 'E' =>
null;
when 'W' =>
Set_Uneval_Old_Warn (N);
when others =>
raise Program_Error;
end case;
-- Check applicable policy. We skip this if Is_Checked or Is_Ignored
-- is already set, indicating that we have already checked the policy
-- at the right point. This happens for example in the case of a pragma
-- that is derived from an Aspect.
if Is_Ignored (N) or else Is_Checked (N) then
null;
-- For a pragma that is a rewriting of another pragma, copy the
-- Is_Checked/Is_Ignored status from the rewritten pragma.
elsif Is_Rewrite_Substitution (N)
and then Nkind (Original_Node (N)) = N_Pragma
and then Original_Node (N) /= N
then
Set_Is_Ignored (N, Is_Ignored (Original_Node (N)));
Set_Is_Checked (N, Is_Checked (Original_Node (N)));
-- Otherwise query the applicable policy at this point
else
Check_Applicable_Policy (N);
-- If pragma is disabled, rewrite as NULL and skip analysis
if Is_Disabled (N) then
Rewrite (N, Make_Null_Statement (Loc));
Analyze (N);
raise Pragma_Exit;
end if;
end if;
-- Preset arguments
Arg_Count := 0;
Arg1 := Empty;
Arg2 := Empty;
Arg3 := Empty;
Arg4 := Empty;
if Present (Pragma_Argument_Associations (N)) then
Arg_Count := List_Length (Pragma_Argument_Associations (N));
Arg1 := First (Pragma_Argument_Associations (N));
if Present (Arg1) then
Arg2 := Next (Arg1);
if Present (Arg2) then
Arg3 := Next (Arg2);
if Present (Arg3) then
Arg4 := Next (Arg3);
end if;
end if;
end if;
end if;
-- An enumeration type defines the pragmas that are supported by the
-- implementation. Get_Pragma_Id (in package Prag) transforms a name
-- into the corresponding enumeration value for the following case.
case Prag_Id is
-----------------
-- Abort_Defer --
-----------------
-- pragma Abort_Defer;
when Pragma_Abort_Defer =>
GNAT_Pragma;
Check_Arg_Count (0);
-- The only required semantic processing is to check the
-- placement. This pragma must appear at the start of the
-- statement sequence of a handled sequence of statements.
if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
or else N /= First (Statements (Parent (N)))
then
Pragma_Misplaced;
end if;
--------------------
-- Abstract_State --
--------------------
-- pragma Abstract_State (ABSTRACT_STATE_LIST);
-- ABSTRACT_STATE_LIST ::=
-- null
-- | STATE_NAME_WITH_OPTIONS
-- | (STATE_NAME_WITH_OPTIONS {, STATE_NAME_WITH_OPTIONS})
-- STATE_NAME_WITH_OPTIONS ::=
-- STATE_NAME
-- | (STATE_NAME with OPTION_LIST)
-- OPTION_LIST ::= OPTION {, OPTION}
-- OPTION ::=
-- SIMPLE_OPTION
-- | NAME_VALUE_OPTION
-- SIMPLE_OPTION ::= Ghost | Synchronous
-- NAME_VALUE_OPTION ::=
-- Part_Of => ABSTRACT_STATE
-- | External [=> EXTERNAL_PROPERTY_LIST]
-- EXTERNAL_PROPERTY_LIST ::=
-- EXTERNAL_PROPERTY
-- | (EXTERNAL_PROPERTY {, EXTERNAL_PROPERTY})
-- EXTERNAL_PROPERTY ::=
-- Async_Readers [=> boolean_EXPRESSION]
-- | Async_Writers [=> boolean_EXPRESSION]
-- | Effective_Reads [=> boolean_EXPRESSION]
-- | Effective_Writes [=> boolean_EXPRESSION]
-- others => boolean_EXPRESSION
-- STATE_NAME ::= defining_identifier
-- ABSTRACT_STATE ::= name
-- Characteristics:
-- * Analysis - The annotation is fully analyzed immediately upon
-- elaboration as it cannot forward reference entities.
-- * Expansion - None.
-- * Template - The annotation utilizes the generic template of the
-- related package declaration.
-- * Globals - The annotation cannot reference global entities.
-- * Instance - The annotation is instantiated automatically when
-- the related generic package is instantiated.
when Pragma_Abstract_State => Abstract_State : declare
Missing_Parentheses : Boolean := False;
-- Flag set when a state declaration with options is not properly
-- parenthesized.
-- Flags used to verify the consistency of states
Non_Null_Seen : Boolean := False;
Null_Seen : Boolean := False;
procedure Analyze_Abstract_State
(State : Node_Id;
Pack_Id : Entity_Id);
-- Verify the legality of a single state declaration. Create and
-- decorate a state abstraction entity and introduce it into the
-- visibility chain. Pack_Id denotes the entity or the related
-- package where pragma Abstract_State appears.
procedure Malformed_State_Error (State : Node_Id);
-- Emit an error concerning the illegal declaration of abstract
-- state State. This routine diagnoses syntax errors that lead to
-- a different parse tree. The error is issued regardless of the
-- SPARK mode in effect.
----------------------------
-- Analyze_Abstract_State --
----------------------------
procedure Analyze_Abstract_State
(State : Node_Id;
Pack_Id : Entity_Id)
is
-- Flags used to verify the consistency of options
AR_Seen : Boolean := False;
AW_Seen : Boolean := False;
ER_Seen : Boolean := False;
EW_Seen : Boolean := False;
External_Seen : Boolean := False;
Ghost_Seen : Boolean := False;
Others_Seen : Boolean := False;
Part_Of_Seen : Boolean := False;
Synchronous_Seen : Boolean := False;
-- Flags used to store the static value of all external states'
-- expressions.
AR_Val : Boolean := False;
AW_Val : Boolean := False;
ER_Val : Boolean := False;
EW_Val : Boolean := False;
State_Id : Entity_Id := Empty;
-- The entity to be generated for the current state declaration
procedure Analyze_External_Option (Opt : Node_Id);
-- Verify the legality of option External
procedure Analyze_External_Property
(Prop : Node_Id;
Expr : Node_Id := Empty);
-- Verify the legailty of a single external property. Prop
-- denotes the external property. Expr is the expression used
-- to set the property.
procedure Analyze_Part_Of_Option (Opt : Node_Id);
-- Verify the legality of option Part_Of
procedure Check_Duplicate_Option
(Opt : Node_Id;
Status : in out Boolean);
-- Flag Status denotes whether a particular option has been
-- seen while processing a state. This routine verifies that
-- Opt is not a duplicate option and sets the flag Status
-- (SPARK RM 7.1.4(1)).
procedure Check_Duplicate_Property
(Prop : Node_Id;
Status : in out Boolean);
-- Flag Status denotes whether a particular property has been
-- seen while processing option External. This routine verifies
-- that Prop is not a duplicate property and sets flag Status.
-- Opt is not a duplicate property and sets the flag Status.
-- (SPARK RM 7.1.4(2))
procedure Check_Ghost_Synchronous;
-- Ensure that the abstract state is not subject to both Ghost
-- and Synchronous simple options. Emit an error if this is the
-- case.
procedure Create_Abstract_State
(Nam : Name_Id;
Decl : Node_Id;
Loc : Source_Ptr;
Is_Null : Boolean);
-- Generate an abstract state entity with name Nam and enter it
-- into visibility. Decl is the "declaration" of the state as
-- it appears in pragma Abstract_State. Loc is the location of
-- the related state "declaration". Flag Is_Null should be set
-- when the associated Abstract_State pragma defines a null
-- state.
-----------------------------
-- Analyze_External_Option --
-----------------------------
procedure Analyze_External_Option (Opt : Node_Id) is
Errors : constant Nat := Serious_Errors_Detected;
Prop : Node_Id;
Props : Node_Id := Empty;
begin
if Nkind (Opt) = N_Component_Association then
Props := Expression (Opt);
end if;
-- External state with properties
if Present (Props) then
-- Multiple properties appear as an aggregate
if Nkind (Props) = N_Aggregate then
-- Simple property form
Prop := First (Expressions (Props));
while Present (Prop) loop
Analyze_External_Property (Prop);
Next (Prop);
end loop;
-- Property with expression form
Prop := First (Component_Associations (Props));
while Present (Prop) loop
Analyze_External_Property
(Prop => First (Choices (Prop)),
Expr => Expression (Prop));
Next (Prop);
end loop;
-- Single property
else
Analyze_External_Property (Props);
end if;
-- An external state defined without any properties defaults
-- all properties to True.
else
AR_Val := True;
AW_Val := True;
ER_Val := True;
EW_Val := True;
end if;
-- Once all external properties have been processed, verify
-- their mutual interaction. Do not perform the check when
-- at least one of the properties is illegal as this will
-- produce a bogus error.
if Errors = Serious_Errors_Detected then
Check_External_Properties
(State, AR_Val, AW_Val, ER_Val, EW_Val);
end if;
end Analyze_External_Option;
-------------------------------
-- Analyze_External_Property --
-------------------------------
procedure Analyze_External_Property
(Prop : Node_Id;
Expr : Node_Id := Empty)
is
Expr_Val : Boolean;
begin
-- Check the placement of "others" (if available)
if Nkind (Prop) = N_Others_Choice then
if Others_Seen then
SPARK_Msg_N
("only one others choice allowed in option External",
Prop);
else
Others_Seen := True;
end if;
elsif Others_Seen then
SPARK_Msg_N
("others must be the last property in option External",
Prop);
-- The only remaining legal options are the four predefined
-- external properties.
elsif Nkind (Prop) = N_Identifier
and then Nam_In (Chars (Prop), Name_Async_Readers,
Name_Async_Writers,
Name_Effective_Reads,
Name_Effective_Writes)
then
null;
-- Otherwise the construct is not a valid property
else
SPARK_Msg_N ("invalid external state property", Prop);
return;
end if;
-- Ensure that the expression of the external state property
-- is static Boolean (if applicable) (SPARK RM 7.1.2(5)).
if Present (Expr) then
Analyze_And_Resolve (Expr, Standard_Boolean);
if Is_OK_Static_Expression (Expr) then
Expr_Val := Is_True (Expr_Value (Expr));
else
SPARK_Msg_N
("expression of external state property must be "
& "static", Expr);
return;
end if;
-- The lack of expression defaults the property to True
else
Expr_Val := True;
end if;
-- Named properties
if Nkind (Prop) = N_Identifier then
if Chars (Prop) = Name_Async_Readers then
Check_Duplicate_Property (Prop, AR_Seen);
AR_Val := Expr_Val;
elsif Chars (Prop) = Name_Async_Writers then
Check_Duplicate_Property (Prop, AW_Seen);
AW_Val := Expr_Val;
elsif Chars (Prop) = Name_Effective_Reads then
Check_Duplicate_Property (Prop, ER_Seen);
ER_Val := Expr_Val;
else
Check_Duplicate_Property (Prop, EW_Seen);
EW_Val := Expr_Val;
end if;
-- The handling of property "others" must take into account
-- all other named properties that have been encountered so
-- far. Only those that have not been seen are affected by
-- "others".
else
if not AR_Seen then
AR_Val := Expr_Val;
end if;
if not AW_Seen then
AW_Val := Expr_Val;
end if;
if not ER_Seen then
ER_Val := Expr_Val;
end if;
if not EW_Seen then
EW_Val := Expr_Val;
end if;
end if;
end Analyze_External_Property;
----------------------------
-- Analyze_Part_Of_Option --
----------------------------
procedure Analyze_Part_Of_Option (Opt : Node_Id) is
Encap : constant Node_Id := Expression (Opt);
Constits : Elist_Id;
Encap_Id : Entity_Id;
Legal : Boolean;
begin
Check_Duplicate_Option (Opt, Part_Of_Seen);
Analyze_Part_Of
(Indic => First (Choices (Opt)),
Item_Id => State_Id,
Encap => Encap,
Encap_Id => Encap_Id,
Legal => Legal);
-- The Part_Of indicator transforms the abstract state into
-- a constituent of the encapsulating state or single
-- concurrent type.
if Legal then
pragma Assert (Present (Encap_Id));
Constits := Part_Of_Constituents (Encap_Id);
if No (Constits) then
Constits := New_Elmt_List;
Set_Part_Of_Constituents (Encap_Id, Constits);
end if;
Append_Elmt (State_Id, Constits);
Set_Encapsulating_State (State_Id, Encap_Id);
end if;
end Analyze_Part_Of_Option;
----------------------------
-- Check_Duplicate_Option --
----------------------------
procedure Check_Duplicate_Option
(Opt : Node_Id;
Status : in out Boolean)
is
begin
if Status then
SPARK_Msg_N ("duplicate state option", Opt);
end if;
Status := True;
end Check_Duplicate_Option;
------------------------------
-- Check_Duplicate_Property --
------------------------------
procedure Check_Duplicate_Property
(Prop : Node_Id;
Status : in out Boolean)
is
begin
if Status then
SPARK_Msg_N ("duplicate external property", Prop);
end if;
Status := True;
end Check_Duplicate_Property;
-----------------------------
-- Check_Ghost_Synchronous --
-----------------------------
procedure Check_Ghost_Synchronous is
begin
-- A synchronized abstract state cannot be Ghost and vice
-- versa (SPARK RM 6.9(19)).
if Ghost_Seen and Synchronous_Seen then
SPARK_Msg_N ("synchronized state cannot be ghost", State);
end if;
end Check_Ghost_Synchronous;
---------------------------
-- Create_Abstract_State --
---------------------------
procedure Create_Abstract_State
(Nam : Name_Id;
Decl : Node_Id;
Loc : Source_Ptr;
Is_Null : Boolean)
is
begin
-- The abstract state may be semi-declared when the related
-- package was withed through a limited with clause. In that
-- case reuse the entity to fully declare the state.
if Present (Decl) and then Present (Entity (Decl)) then
State_Id := Entity (Decl);
-- Otherwise the elaboration of pragma Abstract_State
-- declares the state.
else
State_Id := Make_Defining_Identifier (Loc, Nam);
if Present (Decl) then
Set_Entity (Decl, State_Id);
end if;
end if;
-- Null states never come from source
Set_Comes_From_Source (State_Id, not Is_Null);
Set_Parent (State_Id, State);
Set_Ekind (State_Id, E_Abstract_State);
Set_Etype (State_Id, Standard_Void_Type);
Set_Encapsulating_State (State_Id, Empty);
-- Set the SPARK mode from the current context
Set_SPARK_Pragma (State_Id, SPARK_Mode_Pragma);
Set_SPARK_Pragma_Inherited (State_Id);
-- An abstract state declared within a Ghost region becomes
-- Ghost (SPARK RM 6.9(2)).
if Ghost_Mode > None or else Is_Ghost_Entity (Pack_Id) then
Set_Is_Ghost_Entity (State_Id);
end if;
-- Establish a link between the state declaration and the
-- abstract state entity. Note that a null state remains as
-- N_Null and does not carry any linkages.
if not Is_Null then
if Present (Decl) then
Set_Entity (Decl, State_Id);
Set_Etype (Decl, Standard_Void_Type);
end if;
-- Every non-null state must be defined, nameable and
-- resolvable.
Push_Scope (Pack_Id);
Generate_Definition (State_Id);
Enter_Name (State_Id);
Pop_Scope;
end if;
end Create_Abstract_State;
-- Local variables
Opt : Node_Id;
Opt_Nam : Node_Id;
-- Start of processing for Analyze_Abstract_State
begin
-- A package with a null abstract state is not allowed to
-- declare additional states.
if Null_Seen then
SPARK_Msg_NE
("package & has null abstract state", State, Pack_Id);
-- Null states appear as internally generated entities
elsif Nkind (State) = N_Null then
Create_Abstract_State
(Nam => New_Internal_Name ('S'),
Decl => Empty,
Loc => Sloc (State),
Is_Null => True);
Null_Seen := True;
-- Catch a case where a null state appears in a list of
-- non-null states.
if Non_Null_Seen then
SPARK_Msg_NE
("package & has non-null abstract state",
State, Pack_Id);
end if;
-- Simple state declaration
elsif Nkind (State) = N_Identifier then
Create_Abstract_State
(Nam => Chars (State),
Decl => State,
Loc => Sloc (State),
Is_Null => False);
Non_Null_Seen := True;
-- State declaration with various options. This construct
-- appears as an extension aggregate in the tree.
elsif Nkind (State) = N_Extension_Aggregate then
if Nkind (Ancestor_Part (State)) = N_Identifier then
Create_Abstract_State
(Nam => Chars (Ancestor_Part (State)),
Decl => Ancestor_Part (State),
Loc => Sloc (Ancestor_Part (State)),
Is_Null => False);
Non_Null_Seen := True;
else
SPARK_Msg_N
("state name must be an identifier",
Ancestor_Part (State));
end if;
-- Options External, Ghost and Synchronous appear as
-- expressions.
Opt := First (Expressions (State));
while Present (Opt) loop
if Nkind (Opt) = N_Identifier then
-- External
if Chars (Opt) = Name_External then
Check_Duplicate_Option (Opt, External_Seen);
Analyze_External_Option (Opt);
-- Ghost
elsif Chars (Opt) = Name_Ghost then
Check_Duplicate_Option (Opt, Ghost_Seen);
Check_Ghost_Synchronous;
if Present (State_Id) then
Set_Is_Ghost_Entity (State_Id);
end if;
-- Synchronous
elsif Chars (Opt) = Name_Synchronous then
Check_Duplicate_Option (Opt, Synchronous_Seen);
Check_Ghost_Synchronous;
-- Option Part_Of without an encapsulating state is
-- illegal (SPARK RM 7.1.4(9)).
elsif Chars (Opt) = Name_Part_Of then
SPARK_Msg_N
("indicator Part_Of must denote abstract state, "
& "single protected type or single task type",
Opt);
-- Do not emit an error message when a previous state
-- declaration with options was not parenthesized as
-- the option is actually another state declaration.
--
-- with Abstract_State
-- (State_1 with ..., -- missing parentheses
-- (State_2 with ...),
-- State_3) -- ok state declaration
elsif Missing_Parentheses then
null;
-- Otherwise the option is not allowed. Note that it
-- is not possible to distinguish between an option
-- and a state declaration when a previous state with
-- options not properly parentheses.
--
-- with Abstract_State
-- (State_1 with ..., -- missing parentheses
-- State_2); -- could be an option
else
SPARK_Msg_N
("simple option not allowed in state declaration",
Opt);
end if;
-- Catch a case where missing parentheses around a state
-- declaration with options cause a subsequent state
-- declaration with options to be treated as an option.
--
-- with Abstract_State
-- (State_1 with ..., -- missing parentheses
-- (State_2 with ...))
elsif Nkind (Opt) = N_Extension_Aggregate then
Missing_Parentheses := True;
SPARK_Msg_N
("state declaration must be parenthesized",
Ancestor_Part (State));
-- Otherwise the option is malformed
else
SPARK_Msg_N ("malformed option", Opt);
end if;
Next (Opt);
end loop;
-- Options External and Part_Of appear as component
-- associations.
Opt := First (Component_Associations (State));
while Present (Opt) loop
Opt_Nam := First (Choices (Opt));
if Nkind (Opt_Nam) = N_Identifier then
if Chars (Opt_Nam) = Name_External then
Analyze_External_Option (Opt);
elsif Chars (Opt_Nam) = Name_Part_Of then
Analyze_Part_Of_Option (Opt);
else
SPARK_Msg_N ("invalid state option", Opt);
end if;
else
SPARK_Msg_N ("invalid state option", Opt);
end if;
Next (Opt);
end loop;
-- Any other attempt to declare a state is illegal
else
Malformed_State_Error (State);
return;
end if;
-- Guard against a junk state. In such cases no entity is
-- generated and the subsequent checks cannot be applied.
if Present (State_Id) then
-- Verify whether the state does not introduce an illegal
-- hidden state within a package subject to a null abstract
-- state.
Check_No_Hidden_State (State_Id);
-- Check whether the lack of option Part_Of agrees with the
-- placement of the abstract state with respect to the state
-- space.
if not Part_Of_Seen then
Check_Missing_Part_Of (State_Id);
end if;
-- Associate the state with its related package
if No (Abstract_States (Pack_Id)) then
Set_Abstract_States (Pack_Id, New_Elmt_List);
end if;
Append_Elmt (State_Id, Abstract_States (Pack_Id));
end if;
end Analyze_Abstract_State;
---------------------------
-- Malformed_State_Error --
---------------------------
procedure Malformed_State_Error (State : Node_Id) is
begin
Error_Msg_N ("malformed abstract state declaration", State);
-- An abstract state with a simple option is being declared
-- with "=>" rather than the legal "with". The state appears
-- as a component association.
if Nkind (State) = N_Component_Association then
Error_Msg_N ("\use WITH to specify simple option", State);
end if;
end Malformed_State_Error;
-- Local variables
Pack_Decl : Node_Id;
Pack_Id : Entity_Id;
State : Node_Id;
States : Node_Id;
-- Start of processing for Abstract_State
begin
GNAT_Pragma;
Check_No_Identifiers;
Check_Arg_Count (1);
Pack_Decl := Find_Related_Package_Or_Body (N, Do_Checks => True);
-- Ensure the proper placement of the pragma. Abstract states must
-- be associated with a package declaration.
if Nkind_In (Pack_Decl, N_Generic_Package_Declaration,
N_Package_Declaration)
then
null;
-- Otherwise the pragma is associated with an illegal construct
else
Pragma_Misplaced;
return;
end if;
Pack_Id := Defining_Entity (Pack_Decl);
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Pack_Id);
Ensure_Aggregate_Form (Get_Argument (N, Pack_Id));
-- Chain the pragma on the contract for completeness
Add_Contract_Item (N, Pack_Id);
-- The legality checks of pragmas Abstract_State, Initializes, and
-- Initial_Condition are affected by the SPARK mode in effect. In
-- addition, these three pragmas are subject to an inherent order:
-- 1) Abstract_State
-- 2) Initializes
-- 3) Initial_Condition
-- Analyze all these pragmas in the order outlined above
Analyze_If_Present (Pragma_SPARK_Mode);
States := Expression (Get_Argument (N, Pack_Id));
-- Multiple non-null abstract states appear as an aggregate
if Nkind (States) = N_Aggregate then
State := First (Expressions (States));
while Present (State) loop
Analyze_Abstract_State (State, Pack_Id);
Next (State);
end loop;
-- An abstract state with a simple option is being illegaly
-- declared with "=>" rather than "with". In this case the
-- state declaration appears as a component association.
if Present (Component_Associations (States)) then
State := First (Component_Associations (States));
while Present (State) loop
Malformed_State_Error (State);
Next (State);
end loop;
end if;
-- Various forms of a single abstract state. Note that these may
-- include malformed state declarations.
else
Analyze_Abstract_State (States, Pack_Id);
end if;
Analyze_If_Present (Pragma_Initializes);
Analyze_If_Present (Pragma_Initial_Condition);
end Abstract_State;
------------
-- Ada_83 --
------------
-- pragma Ada_83;
-- Note: this pragma also has some specific processing in Par.Prag
-- because we want to set the Ada version mode during parsing.
when Pragma_Ada_83 =>
GNAT_Pragma;
Check_Arg_Count (0);
-- We really should check unconditionally for proper configuration
-- pragma placement, since we really don't want mixed Ada modes
-- within a single unit, and the GNAT reference manual has always
-- said this was a configuration pragma, but we did not check and
-- are hesitant to add the check now.
-- However, we really cannot tolerate mixing Ada 2005 or Ada 2012
-- with Ada 83 or Ada 95, so we must check if we are in Ada 2005
-- or Ada 2012 mode.
if Ada_Version >= Ada_2005 then
Check_Valid_Configuration_Pragma;
end if;
-- Now set Ada 83 mode
if Latest_Ada_Only then
Error_Pragma ("??pragma% ignored");
else
Ada_Version := Ada_83;
Ada_Version_Explicit := Ada_83;
Ada_Version_Pragma := N;
end if;
------------
-- Ada_95 --
------------
-- pragma Ada_95;
-- Note: this pragma also has some specific processing in Par.Prag
-- because we want to set the Ada 83 version mode during parsing.
when Pragma_Ada_95 =>
GNAT_Pragma;
Check_Arg_Count (0);
-- We really should check unconditionally for proper configuration
-- pragma placement, since we really don't want mixed Ada modes
-- within a single unit, and the GNAT reference manual has always
-- said this was a configuration pragma, but we did not check and
-- are hesitant to add the check now.
-- However, we really cannot tolerate mixing Ada 2005 with Ada 83
-- or Ada 95, so we must check if we are in Ada 2005 mode.
if Ada_Version >= Ada_2005 then
Check_Valid_Configuration_Pragma;
end if;
-- Now set Ada 95 mode
if Latest_Ada_Only then
Error_Pragma ("??pragma% ignored");
else
Ada_Version := Ada_95;
Ada_Version_Explicit := Ada_95;
Ada_Version_Pragma := N;
end if;
---------------------
-- Ada_05/Ada_2005 --
---------------------
-- pragma Ada_05;
-- pragma Ada_05 (LOCAL_NAME);
-- pragma Ada_2005;
-- pragma Ada_2005 (LOCAL_NAME):
-- Note: these pragmas also have some specific processing in Par.Prag
-- because we want to set the Ada 2005 version mode during parsing.
-- The one argument form is used for managing the transition from
-- Ada 95 to Ada 2005 in the run-time library. If an entity is marked
-- as Ada_2005 only, then referencing the entity in Ada_83 or Ada_95
-- mode will generate a warning. In addition, in Ada_83 or Ada_95
-- mode, a preference rule is established which does not choose
-- such an entity unless it is unambiguously specified. This avoids
-- extra subprograms marked this way from generating ambiguities in
-- otherwise legal pre-Ada_2005 programs. The one argument form is
-- intended for exclusive use in the GNAT run-time library.
when Pragma_Ada_05
| Pragma_Ada_2005
=>
declare
E_Id : Node_Id;
begin
GNAT_Pragma;
if Arg_Count = 1 then
Check_Arg_Is_Local_Name (Arg1);
E_Id := Get_Pragma_Arg (Arg1);
if Etype (E_Id) = Any_Type then
return;
end if;
Set_Is_Ada_2005_Only (Entity (E_Id));
Record_Rep_Item (Entity (E_Id), N);
else
Check_Arg_Count (0);
-- For Ada_2005 we unconditionally enforce the documented
-- configuration pragma placement, since we do not want to
-- tolerate mixed modes in a unit involving Ada 2005. That
-- would cause real difficulties for those cases where there
-- are incompatibilities between Ada 95 and Ada 2005.
Check_Valid_Configuration_Pragma;
-- Now set appropriate Ada mode
if Latest_Ada_Only then
Error_Pragma ("??pragma% ignored");
else
Ada_Version := Ada_2005;
Ada_Version_Explicit := Ada_2005;
Ada_Version_Pragma := N;
end if;
end if;
end;
---------------------
-- Ada_12/Ada_2012 --
---------------------
-- pragma Ada_12;
-- pragma Ada_12 (LOCAL_NAME);
-- pragma Ada_2012;
-- pragma Ada_2012 (LOCAL_NAME):
-- Note: these pragmas also have some specific processing in Par.Prag
-- because we want to set the Ada 2012 version mode during parsing.
-- The one argument form is used for managing the transition from Ada
-- 2005 to Ada 2012 in the run-time library. If an entity is marked
-- as Ada_2012 only, then referencing the entity in any pre-Ada_2012
-- mode will generate a warning. In addition, in any pre-Ada_2012
-- mode, a preference rule is established which does not choose
-- such an entity unless it is unambiguously specified. This avoids
-- extra subprograms marked this way from generating ambiguities in
-- otherwise legal pre-Ada_2012 programs. The one argument form is
-- intended for exclusive use in the GNAT run-time library.
when Pragma_Ada_12
| Pragma_Ada_2012
=>
declare
E_Id : Node_Id;
begin
GNAT_Pragma;
if Arg_Count = 1 then
Check_Arg_Is_Local_Name (Arg1);
E_Id := Get_Pragma_Arg (Arg1);
if Etype (E_Id) = Any_Type then
return;
end if;
Set_Is_Ada_2012_Only (Entity (E_Id));
Record_Rep_Item (Entity (E_Id), N);
else
Check_Arg_Count (0);
-- For Ada_2012 we unconditionally enforce the documented
-- configuration pragma placement, since we do not want to
-- tolerate mixed modes in a unit involving Ada 2012. That
-- would cause real difficulties for those cases where there
-- are incompatibilities between Ada 95 and Ada 2012. We could
-- allow mixing of Ada 2005 and Ada 2012 but it's not worth it.
Check_Valid_Configuration_Pragma;
-- Now set appropriate Ada mode
Ada_Version := Ada_2012;
Ada_Version_Explicit := Ada_2012;
Ada_Version_Pragma := N;
end if;
end;
--------------
-- Ada_2020 --
--------------
-- pragma Ada_2020;
-- Note: this pragma also has some specific processing in Par.Prag
-- because we want to set the Ada 2020 version mode during parsing.
when Pragma_Ada_2020 =>
GNAT_Pragma;
Check_Arg_Count (0);
Check_Valid_Configuration_Pragma;
-- Now set appropriate Ada mode
Ada_Version := Ada_2020;
Ada_Version_Explicit := Ada_2020;
Ada_Version_Pragma := N;
----------------------
-- All_Calls_Remote --
----------------------
-- pragma All_Calls_Remote [(library_package_NAME)];
when Pragma_All_Calls_Remote => All_Calls_Remote : declare
Lib_Entity : Entity_Id;
begin
Check_Ada_83_Warning;
Check_Valid_Library_Unit_Pragma;
if Nkind (N) = N_Null_Statement then
return;
end if;
Lib_Entity := Find_Lib_Unit_Name;
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Lib_Entity);
-- This pragma should only apply to a RCI unit (RM E.2.3(23))
if Present (Lib_Entity) and then not Debug_Flag_U then
if not Is_Remote_Call_Interface (Lib_Entity) then
Error_Pragma ("pragma% only apply to rci unit");
-- Set flag for entity of the library unit
else
Set_Has_All_Calls_Remote (Lib_Entity);
end if;
end if;
end All_Calls_Remote;
---------------------------
-- Allow_Integer_Address --
---------------------------
-- pragma Allow_Integer_Address;
when Pragma_Allow_Integer_Address =>
GNAT_Pragma;
Check_Valid_Configuration_Pragma;
Check_Arg_Count (0);
-- If Address is a private type, then set the flag to allow
-- integer address values. If Address is not private, then this
-- pragma has no purpose, so it is simply ignored. Not clear if
-- there are any such targets now.
if Opt.Address_Is_Private then
Opt.Allow_Integer_Address := True;
end if;
--------------
-- Annotate --
--------------
-- pragma Annotate
-- (IDENTIFIER [, IDENTIFIER {, ARG}] [,Entity => local_NAME]);
-- ARG ::= NAME | EXPRESSION
-- The first two arguments are by convention intended to refer to an
-- external tool and a tool-specific function. These arguments are
-- not analyzed.
when Pragma_Annotate => Annotate : declare
Arg : Node_Id;
Expr : Node_Id;
Nam_Arg : Node_Id;
begin
GNAT_Pragma;
Check_At_Least_N_Arguments (1);
Nam_Arg := Last (Pragma_Argument_Associations (N));
-- Determine whether the last argument is "Entity => local_NAME"
-- and if it is, perform the required semantic checks. Remove the
-- argument from further processing.
if Nkind (Nam_Arg) = N_Pragma_Argument_Association
and then Chars (Nam_Arg) = Name_Entity
then
Check_Arg_Is_Local_Name (Nam_Arg);
Arg_Count := Arg_Count - 1;
-- A pragma that applies to a Ghost entity becomes Ghost for
-- the purposes of legality checks and removal of ignored Ghost
-- code.
if Is_Entity_Name (Get_Pragma_Arg (Nam_Arg))
and then Present (Entity (Get_Pragma_Arg (Nam_Arg)))
then
Mark_Ghost_Pragma (N, Entity (Get_Pragma_Arg (Nam_Arg)));
end if;
-- Not allowed in compiler units (bootstrap issues)
Check_Compiler_Unit ("Entity for pragma Annotate", N);
end if;
-- Continue the processing with last argument removed for now
Check_Arg_Is_Identifier (Arg1);
Check_No_Identifiers;
Store_Note (N);
-- The second parameter is optional, it is never analyzed
if No (Arg2) then
null;
-- Otherwise there is a second parameter
else
-- The second parameter must be an identifier
Check_Arg_Is_Identifier (Arg2);
-- Process the remaining parameters (if any)
Arg := Next (Arg2);
while Present (Arg) loop
Expr := Get_Pragma_Arg (Arg);
Analyze (Expr);
if Is_Entity_Name (Expr) then
null;
-- For string literals, we assume Standard_String as the
-- type, unless the string contains wide or wide_wide
-- characters.
elsif Nkind (Expr) = N_String_Literal then
if Has_Wide_Wide_Character (Expr) then
Resolve (Expr, Standard_Wide_Wide_String);
elsif Has_Wide_Character (Expr) then
Resolve (Expr, Standard_Wide_String);
else
Resolve (Expr, Standard_String);
end if;
elsif Is_Overloaded (Expr) then
Error_Pragma_Arg ("ambiguous argument for pragma%", Expr);
else
Resolve (Expr);
end if;
Next (Arg);
end loop;
end if;
end Annotate;
-------------------------------------------------
-- Assert/Assert_And_Cut/Assume/Loop_Invariant --
-------------------------------------------------
-- pragma Assert
-- ( [Check => ] Boolean_EXPRESSION
-- [, [Message =>] Static_String_EXPRESSION]);
-- pragma Assert_And_Cut
-- ( [Check => ] Boolean_EXPRESSION
-- [, [Message =>] Static_String_EXPRESSION]);
-- pragma Assume
-- ( [Check => ] Boolean_EXPRESSION
-- [, [Message =>] Static_String_EXPRESSION]);
-- pragma Loop_Invariant
-- ( [Check => ] Boolean_EXPRESSION
-- [, [Message =>] Static_String_EXPRESSION]);
when Pragma_Assert
| Pragma_Assert_And_Cut
| Pragma_Assume
| Pragma_Loop_Invariant
=>
Assert : declare
function Contains_Loop_Entry (Expr : Node_Id) return Boolean;
-- Determine whether expression Expr contains a Loop_Entry
-- attribute reference.
-------------------------
-- Contains_Loop_Entry --
-------------------------
function Contains_Loop_Entry (Expr : Node_Id) return Boolean is
Has_Loop_Entry : Boolean := False;
function Process (N : Node_Id) return Traverse_Result;
-- Process function for traversal to look for Loop_Entry
-------------
-- Process --
-------------
function Process (N : Node_Id) return Traverse_Result is
begin
if Nkind (N) = N_Attribute_Reference
and then Attribute_Name (N) = Name_Loop_Entry
then
Has_Loop_Entry := True;
return Abandon;
else
return OK;
end if;
end Process;
procedure Traverse is new Traverse_Proc (Process);
-- Start of processing for Contains_Loop_Entry
begin
Traverse (Expr);
return Has_Loop_Entry;
end Contains_Loop_Entry;
-- Local variables
Expr : Node_Id;
New_Args : List_Id;
-- Start of processing for Assert
begin
-- Assert is an Ada 2005 RM-defined pragma
if Prag_Id = Pragma_Assert then
Ada_2005_Pragma;
-- The remaining ones are GNAT pragmas
else
GNAT_Pragma;
end if;
Check_At_Least_N_Arguments (1);
Check_At_Most_N_Arguments (2);
Check_Arg_Order ((Name_Check, Name_Message));
Check_Optional_Identifier (Arg1, Name_Check);
Expr := Get_Pragma_Arg (Arg1);
-- Special processing for Loop_Invariant, Loop_Variant or for
-- other cases where a Loop_Entry attribute is present. If the
-- assertion pragma contains attribute Loop_Entry, ensure that
-- the related pragma is within a loop.
if Prag_Id = Pragma_Loop_Invariant
or else Prag_Id = Pragma_Loop_Variant
or else Contains_Loop_Entry (Expr)
then
Check_Loop_Pragma_Placement;
-- Perform preanalysis to deal with embedded Loop_Entry
-- attributes.
Preanalyze_Assert_Expression (Expr, Any_Boolean);
end if;
-- Implement Assert[_And_Cut]/Assume/Loop_Invariant by generating
-- a corresponding Check pragma:
-- pragma Check (name, condition [, msg]);
-- Where name is the identifier matching the pragma name. So
-- rewrite pragma in this manner, transfer the message argument
-- if present, and analyze the result
-- Note: When dealing with a semantically analyzed tree, the
-- information that a Check node N corresponds to a source Assert,
-- Assume, or Assert_And_Cut pragma can be retrieved from the
-- pragma kind of Original_Node(N).
New_Args := New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Make_Identifier (Loc, Pname)),
Make_Pragma_Argument_Association (Sloc (Expr),
Expression => Expr));
if Arg_Count > 1 then
Check_Optional_Identifier (Arg2, Name_Message);
-- Provide semantic annnotations for optional argument, for
-- ASIS use, before rewriting.
Preanalyze_And_Resolve (Expression (Arg2), Standard_String);
Append_To (New_Args, New_Copy_Tree (Arg2));
end if;
-- Rewrite as Check pragma
Rewrite (N,
Make_Pragma (Loc,
Chars => Name_Check,
Pragma_Argument_Associations => New_Args));
Analyze (N);
end Assert;
----------------------
-- Assertion_Policy --
----------------------
-- pragma Assertion_Policy (POLICY_IDENTIFIER);
-- The following form is Ada 2012 only, but we allow it in all modes
-- Pragma Assertion_Policy (
-- ASSERTION_KIND => POLICY_IDENTIFIER
-- {, ASSERTION_KIND => POLICY_IDENTIFIER});
-- ASSERTION_KIND ::= RM_ASSERTION_KIND | ID_ASSERTION_KIND
-- RM_ASSERTION_KIND ::= Assert |
-- Static_Predicate |
-- Dynamic_Predicate |
-- Pre |
-- Pre'Class |
-- Post |
-- Post'Class |
-- Type_Invariant |
-- Type_Invariant'Class
-- ID_ASSERTION_KIND ::= Assert_And_Cut |
-- Assume |
-- Contract_Cases |
-- Debug |
-- Default_Initial_Condition |
-- Ghost |
-- Initial_Condition |
-- Loop_Invariant |
-- Loop_Variant |
-- Postcondition |
-- Precondition |
-- Predicate |
-- Refined_Post |
-- Statement_Assertions
-- Note: The RM_ASSERTION_KIND list is language-defined, and the
-- ID_ASSERTION_KIND list contains implementation-defined additions
-- recognized by GNAT. The effect is to control the behavior of
-- identically named aspects and pragmas, depending on the specified
-- policy identifier:
-- POLICY_IDENTIFIER ::= Check | Disable | Ignore | Suppressible
-- Note: Check and Ignore are language-defined. Disable is a GNAT
-- implementation-defined addition that results in totally ignoring
-- the corresponding assertion. If Disable is specified, then the
-- argument of the assertion is not even analyzed. This is useful
-- when the aspect/pragma argument references entities in a with'ed
-- package that is replaced by a dummy package in the final build.
-- Note: the attribute forms Pre'Class, Post'Class, Invariant'Class,
-- and Type_Invariant'Class were recognized by the parser and
-- transformed into references to the special internal identifiers
-- _Pre, _Post, _Invariant, and _Type_Invariant, so no special
-- processing is required here.
when Pragma_Assertion_Policy => Assertion_Policy : declare
procedure Resolve_Suppressible (Policy : Node_Id);
-- Converts the assertion policy 'Suppressible' to either Check or
-- Ignore based on whether checks are suppressed via -gnatp.
--------------------------
-- Resolve_Suppressible --
--------------------------
procedure Resolve_Suppressible (Policy : Node_Id) is
Arg : constant Node_Id := Get_Pragma_Arg (Policy);
Nam : Name_Id;
begin
-- Transform policy argument Suppressible into either Ignore or
-- Check depending on whether checks are enabled or suppressed.
if Chars (Arg) = Name_Suppressible then
if Suppress_Checks then
Nam := Name_Ignore;
else
Nam := Name_Check;
end if;
Rewrite (Arg, Make_Identifier (Sloc (Arg), Nam));
end if;
end Resolve_Suppressible;
-- Local variables
Arg : Node_Id;
Kind : Name_Id;
LocP : Source_Ptr;
Policy : Node_Id;
begin
Ada_2005_Pragma;
-- This can always appear as a configuration pragma
if Is_Configuration_Pragma then
null;
-- It can also appear in a declarative part or package spec in Ada
-- 2012 mode. We allow this in other modes, but in that case we
-- consider that we have an Ada 2012 pragma on our hands.
else
Check_Is_In_Decl_Part_Or_Package_Spec;
Ada_2012_Pragma;
end if;
-- One argument case with no identifier (first form above)
if Arg_Count = 1
and then (Nkind (Arg1) /= N_Pragma_Argument_Association
or else Chars (Arg1) = No_Name)
then
Check_Arg_Is_One_Of (Arg1,
Name_Check, Name_Disable, Name_Ignore, Name_Suppressible);
Resolve_Suppressible (Arg1);
-- Treat one argument Assertion_Policy as equivalent to:
-- pragma Check_Policy (Assertion, policy)
-- So rewrite pragma in that manner and link on to the chain
-- of Check_Policy pragmas, marking the pragma as analyzed.
Policy := Get_Pragma_Arg (Arg1);
Rewrite (N,
Make_Pragma (Loc,
Chars => Name_Check_Policy,
Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Make_Identifier (Loc, Name_Assertion)),
Make_Pragma_Argument_Association (Loc,
Expression =>
Make_Identifier (Sloc (Policy), Chars (Policy))))));
Analyze (N);
-- Here if we have two or more arguments
else
Check_At_Least_N_Arguments (1);
Ada_2012_Pragma;
-- Loop through arguments
Arg := Arg1;
while Present (Arg) loop
LocP := Sloc (Arg);
-- Kind must be specified
if Nkind (Arg) /= N_Pragma_Argument_Association
or else Chars (Arg) = No_Name
then
Error_Pragma_Arg
("missing assertion kind for pragma%", Arg);
end if;
-- Check Kind and Policy have allowed forms
Kind := Chars (Arg);
Policy := Get_Pragma_Arg (Arg);
if not Is_Valid_Assertion_Kind (Kind) then
Error_Pragma_Arg
("invalid assertion kind for pragma%", Arg);
end if;
Check_Arg_Is_One_Of (Arg,
Name_Check, Name_Disable, Name_Ignore, Name_Suppressible);
Resolve_Suppressible (Arg);
if Kind = Name_Ghost then
-- The Ghost policy must be either Check or Ignore
-- (SPARK RM 6.9(6)).
if not Nam_In (Chars (Policy), Name_Check,
Name_Ignore)
then
Error_Pragma_Arg
("argument of pragma % Ghost must be Check or "
& "Ignore", Policy);
end if;
-- Pragma Assertion_Policy specifying a Ghost policy
-- cannot occur within a Ghost subprogram or package
-- (SPARK RM 6.9(14)).
if Ghost_Mode > None then
Error_Pragma
("pragma % cannot appear within ghost subprogram or "
& "package");
end if;
end if;
-- Rewrite the Assertion_Policy pragma as a series of
-- Check_Policy pragmas of the form:
-- Check_Policy (Kind, Policy);
-- Note: the insertion of the pragmas cannot be done with
-- Insert_Action because in the configuration case, there
-- are no scopes on the scope stack and the mechanism will
-- fail.
Insert_Before_And_Analyze (N,
Make_Pragma (LocP,
Chars => Name_Check_Policy,
Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (LocP,
Expression => Make_Identifier (LocP, Kind)),
Make_Pragma_Argument_Association (LocP,
Expression => Policy))));
Arg := Next (Arg);
end loop;
-- Rewrite the Assertion_Policy pragma as null since we have
-- now inserted all the equivalent Check pragmas.
Rewrite (N, Make_Null_Statement (Loc));
Analyze (N);
end if;
end Assertion_Policy;
------------------------------
-- Assume_No_Invalid_Values --
------------------------------
-- pragma Assume_No_Invalid_Values (On | Off);
when Pragma_Assume_No_Invalid_Values =>
GNAT_Pragma;
Check_Valid_Configuration_Pragma;
Check_Arg_Count (1);
Check_No_Identifiers;
Check_Arg_Is_One_Of (Arg1, Name_On, Name_Off);
if Chars (Get_Pragma_Arg (Arg1)) = Name_On then
Assume_No_Invalid_Values := True;
else
Assume_No_Invalid_Values := False;
end if;
--------------------------
-- Attribute_Definition --
--------------------------
-- pragma Attribute_Definition
-- ([Attribute =>] ATTRIBUTE_DESIGNATOR,
-- [Entity =>] LOCAL_NAME,
-- [Expression =>] EXPRESSION | NAME);
when Pragma_Attribute_Definition => Attribute_Definition : declare
Attribute_Designator : constant Node_Id := Get_Pragma_Arg (Arg1);
Aname : Name_Id;
begin
GNAT_Pragma;
Check_Arg_Count (3);
Check_Optional_Identifier (Arg1, "attribute");
Check_Optional_Identifier (Arg2, "entity");
Check_Optional_Identifier (Arg3, "expression");
if Nkind (Attribute_Designator) /= N_Identifier then
Error_Msg_N ("attribute name expected", Attribute_Designator);
return;
end if;
Check_Arg_Is_Local_Name (Arg2);
-- If the attribute is not recognized, then issue a warning (not
-- an error), and ignore the pragma.
Aname := Chars (Attribute_Designator);
if not Is_Attribute_Name (Aname) then
Bad_Attribute (Attribute_Designator, Aname, Warn => True);
return;
end if;
-- Otherwise, rewrite the pragma as an attribute definition clause
Rewrite (N,
Make_Attribute_Definition_Clause (Loc,
Name => Get_Pragma_Arg (Arg2),
Chars => Aname,
Expression => Get_Pragma_Arg (Arg3)));
Analyze (N);
end Attribute_Definition;
------------------------------------------------------------------
-- Async_Readers/Async_Writers/Effective_Reads/Effective_Writes --
------------------------------------------------------------------
-- pragma Asynch_Readers [ (boolean_EXPRESSION) ];
-- pragma Asynch_Writers [ (boolean_EXPRESSION) ];
-- pragma Effective_Reads [ (boolean_EXPRESSION) ];
-- pragma Effective_Writes [ (boolean_EXPRESSION) ];
when Pragma_Async_Readers
| Pragma_Async_Writers
| Pragma_Effective_Reads
| Pragma_Effective_Writes
=>
Async_Effective : declare
Obj_Decl : Node_Id;
Obj_Id : Entity_Id;
begin
GNAT_Pragma;
Check_No_Identifiers;
Check_At_Most_N_Arguments (1);
Obj_Decl := Find_Related_Context (N, Do_Checks => True);
-- Object declaration
if Nkind (Obj_Decl) = N_Object_Declaration then
null;
-- Otherwise the pragma is associated with an illegal construact
else
Pragma_Misplaced;
return;
end if;
Obj_Id := Defining_Entity (Obj_Decl);
-- Perform minimal verification to ensure that the argument is at
-- least a variable. Subsequent finer grained checks will be done
-- at the end of the declarative region the contains the pragma.
if Ekind (Obj_Id) = E_Variable then
-- A pragma that applies to a Ghost entity becomes Ghost for
-- the purposes of legality checks and removal of ignored Ghost
-- code.
Mark_Ghost_Pragma (N, Obj_Id);
-- Chain the pragma on the contract for further processing by
-- Analyze_External_Property_In_Decl_Part.
Add_Contract_Item (N, Obj_Id);
-- Analyze the Boolean expression (if any)
if Present (Arg1) then
Check_Static_Boolean_Expression (Get_Pragma_Arg (Arg1));
end if;
-- Otherwise the external property applies to a constant
else
Error_Pragma ("pragma % must apply to a volatile object");
end if;
end Async_Effective;
------------------
-- Asynchronous --
------------------
-- pragma Asynchronous (LOCAL_NAME);
when Pragma_Asynchronous => Asynchronous : declare
C_Ent : Entity_Id;
Decl : Node_Id;
Formal : Entity_Id;
L : List_Id;
Nm : Entity_Id;
S : Node_Id;
procedure Process_Async_Pragma;
-- Common processing for procedure and access-to-procedure case
--------------------------
-- Process_Async_Pragma --
--------------------------
procedure Process_Async_Pragma is
begin
if No (L) then
Set_Is_Asynchronous (Nm);
return;
end if;
-- The formals should be of mode IN (RM E.4.1(6))
S := First (L);
while Present (S) loop
Formal := Defining_Identifier (S);
if Nkind (Formal) = N_Defining_Identifier
and then Ekind (Formal) /= E_In_Parameter
then
Error_Pragma_Arg
("pragma% procedure can only have IN parameter",
Arg1);
end if;
Next (S);
end loop;
Set_Is_Asynchronous (Nm);
end Process_Async_Pragma;
-- Start of processing for pragma Asynchronous
begin
Check_Ada_83_Warning;
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Arg_Is_Local_Name (Arg1);
if Debug_Flag_U then
return;
end if;
C_Ent := Cunit_Entity (Current_Sem_Unit);
Analyze (Get_Pragma_Arg (Arg1));
Nm := Entity (Get_Pragma_Arg (Arg1));
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Nm);
if not Is_Remote_Call_Interface (C_Ent)
and then not Is_Remote_Types (C_Ent)
then
-- This pragma should only appear in an RCI or Remote Types
-- unit (RM E.4.1(4)).
Error_Pragma
("pragma% not in Remote_Call_Interface or Remote_Types unit");
end if;
if Ekind (Nm) = E_Procedure
and then Nkind (Parent (Nm)) = N_Procedure_Specification
then
if not Is_Remote_Call_Interface (Nm) then
Error_Pragma_Arg
("pragma% cannot be applied on non-remote procedure",
Arg1);
end if;
L := Parameter_Specifications (Parent (Nm));
Process_Async_Pragma;
return;
elsif Ekind (Nm) = E_Function then
Error_Pragma_Arg
("pragma% cannot be applied to function", Arg1);
elsif Is_Remote_Access_To_Subprogram_Type (Nm) then
if Is_Record_Type (Nm) then
-- A record type that is the Equivalent_Type for a remote
-- access-to-subprogram type.
Decl := Declaration_Node (Corresponding_Remote_Type (Nm));
else
-- A non-expanded RAS type (distribution is not enabled)
Decl := Declaration_Node (Nm);
end if;
if Nkind (Decl) = N_Full_Type_Declaration
and then Nkind (Type_Definition (Decl)) =
N_Access_Procedure_Definition
then
L := Parameter_Specifications (Type_Definition (Decl));
Process_Async_Pragma;
if Is_Asynchronous (Nm)
and then Expander_Active
and then Get_PCS_Name /= Name_No_DSA
then
RACW_Type_Is_Asynchronous (Underlying_RACW_Type (Nm));
end if;
else
Error_Pragma_Arg
("pragma% cannot reference access-to-function type",
Arg1);
end if;
-- Only other possibility is Access-to-class-wide type
elsif Is_Access_Type (Nm)
and then Is_Class_Wide_Type (Designated_Type (Nm))
then
Check_First_Subtype (Arg1);
Set_Is_Asynchronous (Nm);
if Expander_Active then
RACW_Type_Is_Asynchronous (Nm);
end if;
else
Error_Pragma_Arg ("inappropriate argument for pragma%", Arg1);
end if;
end Asynchronous;
------------
-- Atomic --
------------
-- pragma Atomic (LOCAL_NAME);
when Pragma_Atomic =>
Process_Atomic_Independent_Shared_Volatile;
-----------------------
-- Atomic_Components --
-----------------------
-- pragma Atomic_Components (array_LOCAL_NAME);
-- This processing is shared by Volatile_Components
when Pragma_Atomic_Components
| Pragma_Volatile_Components
=>
Atomic_Components : declare
D : Node_Id;
E : Entity_Id;
E_Id : Node_Id;
K : Node_Kind;
begin
Check_Ada_83_Warning;
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Arg_Is_Local_Name (Arg1);
E_Id := Get_Pragma_Arg (Arg1);
if Etype (E_Id) = Any_Type then
return;
end if;
E := Entity (E_Id);
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, E);
Check_Duplicate_Pragma (E);
if Rep_Item_Too_Early (E, N)
or else
Rep_Item_Too_Late (E, N)
then
return;
end if;
D := Declaration_Node (E);
K := Nkind (D);
if (K = N_Full_Type_Declaration and then Is_Array_Type (E))
or else
((Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
and then Nkind (D) = N_Object_Declaration
and then Nkind (Object_Definition (D)) =
N_Constrained_Array_Definition)
then
-- The flag is set on the object, or on the base type
if Nkind (D) /= N_Object_Declaration then
E := Base_Type (E);
end if;
-- Atomic implies both Independent and Volatile
if Prag_Id = Pragma_Atomic_Components then
Set_Has_Atomic_Components (E);
Set_Has_Independent_Components (E);
end if;
Set_Has_Volatile_Components (E);
else
Error_Pragma_Arg ("inappropriate entity for pragma%", Arg1);
end if;
end Atomic_Components;
--------------------
-- Attach_Handler --
--------------------
-- pragma Attach_Handler (handler_NAME, EXPRESSION);
when Pragma_Attach_Handler =>
Check_Ada_83_Warning;
Check_No_Identifiers;
Check_Arg_Count (2);
if No_Run_Time_Mode then
Error_Msg_CRT ("Attach_Handler pragma", N);
else
Check_Interrupt_Or_Attach_Handler;
-- The expression that designates the attribute may depend on a
-- discriminant, and is therefore a per-object expression, to
-- be expanded in the init proc. If expansion is enabled, then
-- perform semantic checks on a copy only.
declare
Temp : Node_Id;
Typ : Node_Id;
Parg2 : constant Node_Id := Get_Pragma_Arg (Arg2);
begin
-- In Relaxed_RM_Semantics mode, we allow any static
-- integer value, for compatibility with other compilers.
if Relaxed_RM_Semantics
and then Nkind (Parg2) = N_Integer_Literal
then
Typ := Standard_Integer;
else
Typ := RTE (RE_Interrupt_ID);
end if;
if Expander_Active then
Temp := New_Copy_Tree (Parg2);
Set_Parent (Temp, N);
Preanalyze_And_Resolve (Temp, Typ);
else
Analyze (Parg2);
Resolve (Parg2, Typ);
end if;
end;
Process_Interrupt_Or_Attach_Handler;
end if;
--------------------
-- C_Pass_By_Copy --
--------------------
-- pragma C_Pass_By_Copy ([Max_Size =>] static_integer_EXPRESSION);
when Pragma_C_Pass_By_Copy => C_Pass_By_Copy : declare
Arg : Node_Id;
Val : Uint;
begin
GNAT_Pragma;
Check_Valid_Configuration_Pragma;
Check_Arg_Count (1);
Check_Optional_Identifier (Arg1, "max_size");
Arg := Get_Pragma_Arg (Arg1);
Check_Arg_Is_OK_Static_Expression (Arg, Any_Integer);
Val := Expr_Value (Arg);
if Val <= 0 then
Error_Pragma_Arg
("maximum size for pragma% must be positive", Arg1);
elsif UI_Is_In_Int_Range (Val) then
Default_C_Record_Mechanism := UI_To_Int (Val);
-- If a giant value is given, Int'Last will do well enough.
-- If sometime someone complains that a record larger than
-- two gigabytes is not copied, we will worry about it then.
else
Default_C_Record_Mechanism := Mechanism_Type'Last;
end if;
end C_Pass_By_Copy;
-----------
-- Check --
-----------
-- pragma Check ([Name =>] CHECK_KIND,
-- [Check =>] Boolean_EXPRESSION
-- [,[Message =>] String_EXPRESSION]);
-- CHECK_KIND ::= IDENTIFIER |
-- Pre'Class |
-- Post'Class |
-- Invariant'Class |
-- Type_Invariant'Class
-- The identifiers Assertions and Statement_Assertions are not
-- allowed, since they have special meaning for Check_Policy.
-- WARNING: The code below manages Ghost regions. Return statements
-- must be replaced by gotos which jump to the end of the code and
-- restore the Ghost mode.
when Pragma_Check => Check : declare
Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
-- Save the Ghost mode to restore on exit
Cname : Name_Id;
Eloc : Source_Ptr;
Expr : Node_Id;
Str : Node_Id;
pragma Warnings (Off, Str);
begin
-- Pragma Check is Ghost when it applies to a Ghost entity. Set
-- the mode now to ensure that any nodes generated during analysis
-- and expansion are marked as Ghost.
Set_Ghost_Mode (N);
GNAT_Pragma;
Check_At_Least_N_Arguments (2);
Check_At_Most_N_Arguments (3);
Check_Optional_Identifier (Arg1, Name_Name);
Check_Optional_Identifier (Arg2, Name_Check);
if Arg_Count = 3 then
Check_Optional_Identifier (Arg3, Name_Message);
Str := Get_Pragma_Arg (Arg3);
end if;
Rewrite_Assertion_Kind (Get_Pragma_Arg (Arg1));
Check_Arg_Is_Identifier (Arg1);
Cname := Chars (Get_Pragma_Arg (Arg1));
-- Check forbidden name Assertions or Statement_Assertions
case Cname is
when Name_Assertions =>
Error_Pragma_Arg
("""Assertions"" is not allowed as a check kind for "
& "pragma%", Arg1);
when Name_Statement_Assertions =>
Error_Pragma_Arg
("""Statement_Assertions"" is not allowed as a check kind "
& "for pragma%", Arg1);
when others =>
null;
end case;
-- Check applicable policy. We skip this if Checked/Ignored status
-- is already set (e.g. in the case of a pragma from an aspect).
if Is_Checked (N) or else Is_Ignored (N) then
null;
-- For a non-source pragma that is a rewriting of another pragma,
-- copy the Is_Checked/Ignored status from the rewritten pragma.
elsif Is_Rewrite_Substitution (N)
and then Nkind (Original_Node (N)) = N_Pragma
and then Original_Node (N) /= N
then
Set_Is_Ignored (N, Is_Ignored (Original_Node (N)));
Set_Is_Checked (N, Is_Checked (Original_Node (N)));
-- Otherwise query the applicable policy at this point
else
case Check_Kind (Cname) is
when Name_Ignore =>
Set_Is_Ignored (N, True);
Set_Is_Checked (N, False);
when Name_Check =>
Set_Is_Ignored (N, False);
Set_Is_Checked (N, True);
-- For disable, rewrite pragma as null statement and skip
-- rest of the analysis of the pragma.
when Name_Disable =>
Rewrite (N, Make_Null_Statement (Loc));
Analyze (N);
raise Pragma_Exit;
-- No other possibilities
when others =>
raise Program_Error;
end case;
end if;
-- If check kind was not Disable, then continue pragma analysis
Expr := Get_Pragma_Arg (Arg2);
-- Deal with SCO generation
if Is_Checked (N) and then not Split_PPC (N) then
Set_SCO_Pragma_Enabled (Loc);
end if;
-- Deal with analyzing the string argument. If checks are not
-- on we don't want any expansion (since such expansion would
-- not get properly deleted) but we do want to analyze (to get
-- proper references). The Preanalyze_And_Resolve routine does
-- just what we want. Ditto if pragma is active, because it will
-- be rewritten as an if-statement whose analysis will complete
-- analysis and expansion of the string message. This makes a
-- difference in the unusual case where the expression for the
-- string may have a side effect, such as raising an exception.
-- This is mandated by RM 11.4.2, which specifies that the string
-- expression is only evaluated if the check fails and
-- Assertion_Error is to be raised.
if Arg_Count = 3 then
Preanalyze_And_Resolve (Str, Standard_String);
end if;
-- Now you might think we could just do the same with the Boolean
-- expression if checks are off (and expansion is on) and then
-- rewrite the check as a null statement. This would work but we
-- would lose the useful warnings about an assertion being bound
-- to fail even if assertions are turned off.
-- So instead we wrap the boolean expression in an if statement
-- that looks like:
-- if False and then condition then
-- null;
-- end if;
-- The reason we do this rewriting during semantic analysis rather
-- than as part of normal expansion is that we cannot analyze and
-- expand the code for the boolean expression directly, or it may
-- cause insertion of actions that would escape the attempt to
-- suppress the check code.
-- Note that the Sloc for the if statement corresponds to the
-- argument condition, not the pragma itself. The reason for
-- this is that we may generate a warning if the condition is
-- False at compile time, and we do not want to delete this
-- warning when we delete the if statement.
if Expander_Active and Is_Ignored (N) then
Eloc := Sloc (Expr);
Rewrite (N,
Make_If_Statement (Eloc,
Condition =>
Make_And_Then (Eloc,
Left_Opnd => Make_Identifier (Eloc, Name_False),
Right_Opnd => Expr),
Then_Statements => New_List (
Make_Null_Statement (Eloc))));
-- Now go ahead and analyze the if statement
In_Assertion_Expr := In_Assertion_Expr + 1;
-- One rather special treatment. If we are now in Eliminated
-- overflow mode, then suppress overflow checking since we do
-- not want to drag in the bignum stuff if we are in Ignore
-- mode anyway. This is particularly important if we are using
-- a configurable run time that does not support bignum ops.
if Scope_Suppress.Overflow_Mode_Assertions = Eliminated then
declare
Svo : constant Boolean :=
Scope_Suppress.Suppress (Overflow_Check);
begin
Scope_Suppress.Overflow_Mode_Assertions := Strict;
Scope_Suppress.Suppress (Overflow_Check) := True;
Analyze (N);
Scope_Suppress.Suppress (Overflow_Check) := Svo;
Scope_Suppress.Overflow_Mode_Assertions := Eliminated;
end;
-- Not that special case
else
Analyze (N);
end if;
-- All done with this check
In_Assertion_Expr := In_Assertion_Expr - 1;
-- Check is active or expansion not active. In these cases we can
-- just go ahead and analyze the boolean with no worries.
else
In_Assertion_Expr := In_Assertion_Expr + 1;
Analyze_And_Resolve (Expr, Any_Boolean);
In_Assertion_Expr := In_Assertion_Expr - 1;
end if;
Restore_Ghost_Mode (Saved_GM);
end Check;
--------------------------
-- Check_Float_Overflow --
--------------------------
-- pragma Check_Float_Overflow;
when Pragma_Check_Float_Overflow =>
GNAT_Pragma;
Check_Valid_Configuration_Pragma;
Check_Arg_Count (0);
Check_Float_Overflow := not Machine_Overflows_On_Target;
----------------
-- Check_Name --
----------------
-- pragma Check_Name (check_IDENTIFIER);
when Pragma_Check_Name =>
GNAT_Pragma;
Check_No_Identifiers;
Check_Valid_Configuration_Pragma;
Check_Arg_Count (1);
Check_Arg_Is_Identifier (Arg1);
declare
Nam : constant Name_Id := Chars (Get_Pragma_Arg (Arg1));
begin
for J in Check_Names.First .. Check_Names.Last loop
if Check_Names.Table (J) = Nam then
return;
end if;
end loop;
Check_Names.Append (Nam);
end;
------------------
-- Check_Policy --
------------------
-- This is the old style syntax, which is still allowed in all modes:
-- pragma Check_Policy ([Name =>] CHECK_KIND
-- [Policy =>] POLICY_IDENTIFIER);
-- POLICY_IDENTIFIER ::= On | Off | Check | Disable | Ignore
-- CHECK_KIND ::= IDENTIFIER |
-- Pre'Class |
-- Post'Class |
-- Type_Invariant'Class |
-- Invariant'Class
-- This is the new style syntax, compatible with Assertion_Policy
-- and also allowed in all modes.
-- Pragma Check_Policy (
-- CHECK_KIND => POLICY_IDENTIFIER
-- {, CHECK_KIND => POLICY_IDENTIFIER});
-- Note: the identifiers Name and Policy are not allowed as
-- Check_Kind values. This avoids ambiguities between the old and
-- new form syntax.
when Pragma_Check_Policy => Check_Policy : declare
Kind : Node_Id;
begin
GNAT_Pragma;
Check_At_Least_N_Arguments (1);
-- A Check_Policy pragma can appear either as a configuration
-- pragma, or in a declarative part or a package spec (see RM
-- 11.5(5) for rules for Suppress/Unsuppress which are also
-- followed for Check_Policy).
if not Is_Configuration_Pragma then
Check_Is_In_Decl_Part_Or_Package_Spec;
end if;
-- Figure out if we have the old or new syntax. We have the
-- old syntax if the first argument has no identifier, or the
-- identifier is Name.
if Nkind (Arg1) /= N_Pragma_Argument_Association
or else Nam_In (Chars (Arg1), No_Name, Name_Name)
then
-- Old syntax
Check_Arg_Count (2);
Check_Optional_Identifier (Arg1, Name_Name);
Kind := Get_Pragma_Arg (Arg1);
Rewrite_Assertion_Kind (Kind,
From_Policy => Comes_From_Source (N));
Check_Arg_Is_Identifier (Arg1);
-- Check forbidden check kind
if Nam_In (Chars (Kind), Name_Name, Name_Policy) then
Error_Msg_Name_2 := Chars (Kind);
Error_Pragma_Arg
("pragma% does not allow% as check name", Arg1);
end if;
-- Check policy
Check_Optional_Identifier (Arg2, Name_Policy);
Check_Arg_Is_One_Of
(Arg2,
Name_On, Name_Off, Name_Check, Name_Disable, Name_Ignore);
-- And chain pragma on the Check_Policy_List for search
Set_Next_Pragma (N, Opt.Check_Policy_List);
Opt.Check_Policy_List := N;
-- For the new syntax, what we do is to convert each argument to
-- an old syntax equivalent. We do that because we want to chain
-- old style Check_Policy pragmas for the search (we don't want
-- to have to deal with multiple arguments in the search).
else
declare
Arg : Node_Id;
Argx : Node_Id;
LocP : Source_Ptr;
New_P : Node_Id;
begin
Arg := Arg1;
while Present (Arg) loop
LocP := Sloc (Arg);
Argx := Get_Pragma_Arg (Arg);
-- Kind must be specified
if Nkind (Arg) /= N_Pragma_Argument_Association
or else Chars (Arg) = No_Name
then
Error_Pragma_Arg
("missing assertion kind for pragma%", Arg);
end if;
-- Construct equivalent old form syntax Check_Policy
-- pragma and insert it to get remaining checks.
New_P :=
Make_Pragma (LocP,
Chars => Name_Check_Policy,
Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (LocP,
Expression =>
Make_Identifier (LocP, Chars (Arg))),
Make_Pragma_Argument_Association (Sloc (Argx),
Expression => Argx)));
Arg := Next (Arg);
-- For a configuration pragma, insert old form in
-- the corresponding file.
if Is_Configuration_Pragma then
Insert_After (N, New_P);
Analyze (New_P);
else
Insert_Action (N, New_P);
end if;
end loop;
-- Rewrite original Check_Policy pragma to null, since we
-- have converted it into a series of old syntax pragmas.
Rewrite (N, Make_Null_Statement (Loc));
Analyze (N);
end;
end if;
end Check_Policy;
-------------
-- Comment --
-------------
-- pragma Comment (static_string_EXPRESSION)
-- Processing for pragma Comment shares the circuitry for pragma
-- Ident. The only differences are that Ident enforces a limit of 31
-- characters on its argument, and also enforces limitations on
-- placement for DEC compatibility. Pragma Comment shares neither of
-- these restrictions.
-------------------
-- Common_Object --
-------------------
-- pragma Common_Object (
-- [Internal =>] LOCAL_NAME
-- [, [External =>] EXTERNAL_SYMBOL]
-- [, [Size =>] EXTERNAL_SYMBOL]);
-- Processing for this pragma is shared with Psect_Object
------------------------
-- Compile_Time_Error --
------------------------
-- pragma Compile_Time_Error
-- (boolean_EXPRESSION, static_string_EXPRESSION);
when Pragma_Compile_Time_Error =>
GNAT_Pragma;
Process_Compile_Time_Warning_Or_Error;
--------------------------
-- Compile_Time_Warning --
--------------------------
-- pragma Compile_Time_Warning
-- (boolean_EXPRESSION, static_string_EXPRESSION);
when Pragma_Compile_Time_Warning =>
GNAT_Pragma;
Process_Compile_Time_Warning_Or_Error;
---------------------------
-- Compiler_Unit_Warning --
---------------------------
-- pragma Compiler_Unit_Warning;
-- Historical note
-- Originally, we had only pragma Compiler_Unit, and it resulted in
-- errors not warnings. This means that we had introduced a big extra
-- inertia to compiler changes, since even if we implemented a new
-- feature, and even if all versions to be used for bootstrapping
-- implemented this new feature, we could not use it, since old
-- compilers would give errors for using this feature in units
-- having Compiler_Unit pragmas.
-- By changing Compiler_Unit to Compiler_Unit_Warning, we solve the
-- problem. We no longer have any units mentioning Compiler_Unit,
-- so old compilers see Compiler_Unit_Warning which is unrecognized,
-- and thus generates a warning which can be ignored. So that deals
-- with the problem of old compilers not implementing the newer form
-- of the pragma.
-- Newer compilers recognize the new pragma, but generate warning
-- messages instead of errors, which again can be ignored in the
-- case of an old compiler which implements a wanted new feature
-- but at the time felt like warning about it for older compilers.
-- We retain Compiler_Unit so that new compilers can be used to build
-- older run-times that use this pragma. That's an unusual case, but
-- it's easy enough to handle, so why not?
when Pragma_Compiler_Unit
| Pragma_Compiler_Unit_Warning
=>
GNAT_Pragma;
Check_Arg_Count (0);
-- Only recognized in main unit
if Current_Sem_Unit = Main_Unit then
Compiler_Unit := True;
end if;
-----------------------------
-- Complete_Representation --
-----------------------------
-- pragma Complete_Representation;
when Pragma_Complete_Representation =>
GNAT_Pragma;
Check_Arg_Count (0);
if Nkind (Parent (N)) /= N_Record_Representation_Clause then
Error_Pragma
("pragma & must appear within record representation clause");
end if;
----------------------------
-- Complex_Representation --
----------------------------
-- pragma Complex_Representation ([Entity =>] LOCAL_NAME);
when Pragma_Complex_Representation => Complex_Representation : declare
E_Id : Entity_Id;
E : Entity_Id;
Ent : Entity_Id;
begin
GNAT_Pragma;
Check_Arg_Count (1);
Check_Optional_Identifier (Arg1, Name_Entity);
Check_Arg_Is_Local_Name (Arg1);
E_Id := Get_Pragma_Arg (Arg1);
if Etype (E_Id) = Any_Type then
return;
end if;
E := Entity (E_Id);
if not Is_Record_Type (E) then
Error_Pragma_Arg
("argument for pragma% must be record type", Arg1);
end if;
Ent := First_Entity (E);
if No (Ent)
or else No (Next_Entity (Ent))
or else Present (Next_Entity (Next_Entity (Ent)))
or else not Is_Floating_Point_Type (Etype (Ent))
or else Etype (Ent) /= Etype (Next_Entity (Ent))
then
Error_Pragma_Arg
("record for pragma% must have two fields of the same "
& "floating-point type", Arg1);
else
Set_Has_Complex_Representation (Base_Type (E));
-- We need to treat the type has having a non-standard
-- representation, for back-end purposes, even though in
-- general a complex will have the default representation
-- of a record with two real components.
Set_Has_Non_Standard_Rep (Base_Type (E));
end if;
end Complex_Representation;
-------------------------
-- Component_Alignment --
-------------------------
-- pragma Component_Alignment (
-- [Form =>] ALIGNMENT_CHOICE
-- [, [Name =>] type_LOCAL_NAME]);
--
-- ALIGNMENT_CHOICE ::=
-- Component_Size
-- | Component_Size_4
-- | Storage_Unit
-- | Default
when Pragma_Component_Alignment => Component_AlignmentP : declare
Args : Args_List (1 .. 2);
Names : constant Name_List (1 .. 2) := (
Name_Form,
Name_Name);
Form : Node_Id renames Args (1);
Name : Node_Id renames Args (2);
Atype : Component_Alignment_Kind;
Typ : Entity_Id;
begin
GNAT_Pragma;
Gather_Associations (Names, Args);
if No (Form) then
Error_Pragma ("missing Form argument for pragma%");
end if;
Check_Arg_Is_Identifier (Form);
-- Get proper alignment, note that Default = Component_Size on all
-- machines we have so far, and we want to set this value rather
-- than the default value to indicate that it has been explicitly
-- set (and thus will not get overridden by the default component
-- alignment for the current scope)
if Chars (Form) = Name_Component_Size then
Atype := Calign_Component_Size;
elsif Chars (Form) = Name_Component_Size_4 then
Atype := Calign_Component_Size_4;
elsif Chars (Form) = Name_Default then
Atype := Calign_Component_Size;
elsif Chars (Form) = Name_Storage_Unit then
Atype := Calign_Storage_Unit;
else
Error_Pragma_Arg
("invalid Form parameter for pragma%", Form);
end if;
-- The pragma appears in a configuration file
if No (Parent (N)) then
Check_Valid_Configuration_Pragma;
-- Capture the component alignment in a global variable when
-- the pragma appears in a configuration file. Note that the
-- scope stack is empty at this point and cannot be used to
-- store the alignment value.
Configuration_Component_Alignment := Atype;
-- Case with no name, supplied, affects scope table entry
elsif No (Name) then
Scope_Stack.Table
(Scope_Stack.Last).Component_Alignment_Default := Atype;
-- Case of name supplied
else
Check_Arg_Is_Local_Name (Name);
Find_Type (Name);
Typ := Entity (Name);
if Typ = Any_Type
or else Rep_Item_Too_Early (Typ, N)
then
return;
else
Typ := Underlying_Type (Typ);
end if;
if not Is_Record_Type (Typ)
and then not Is_Array_Type (Typ)
then
Error_Pragma_Arg
("Name parameter of pragma% must identify record or "
& "array type", Name);
end if;
-- An explicit Component_Alignment pragma overrides an
-- implicit pragma Pack, but not an explicit one.
if not Has_Pragma_Pack (Base_Type (Typ)) then
Set_Is_Packed (Base_Type (Typ), False);
Set_Component_Alignment (Base_Type (Typ), Atype);
end if;
end if;
end Component_AlignmentP;
--------------------------------
-- Constant_After_Elaboration --
--------------------------------
-- pragma Constant_After_Elaboration [ (boolean_EXPRESSION) ];
when Pragma_Constant_After_Elaboration => Constant_After_Elaboration :
declare
Obj_Decl : Node_Id;
Obj_Id : Entity_Id;
begin
GNAT_Pragma;
Check_No_Identifiers;
Check_At_Most_N_Arguments (1);
Obj_Decl := Find_Related_Context (N, Do_Checks => True);
-- Object declaration
if Nkind (Obj_Decl) = N_Object_Declaration then
null;
-- Otherwise the pragma is associated with an illegal construct
else
Pragma_Misplaced;
return;
end if;
Obj_Id := Defining_Entity (Obj_Decl);
-- The object declaration must be a library-level variable which
-- is either explicitly initialized or obtains a value during the
-- elaboration of a package body (SPARK RM 3.3.1).
if Ekind (Obj_Id) = E_Variable then
if not Is_Library_Level_Entity (Obj_Id) then
Error_Pragma
("pragma % must apply to a library level variable");
return;
end if;
-- Otherwise the pragma applies to a constant, which is illegal
else
Error_Pragma ("pragma % must apply to a variable declaration");
return;
end if;
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Obj_Id);
-- Chain the pragma on the contract for completeness
Add_Contract_Item (N, Obj_Id);
-- Analyze the Boolean expression (if any)
if Present (Arg1) then
Check_Static_Boolean_Expression (Get_Pragma_Arg (Arg1));
end if;
end Constant_After_Elaboration;
--------------------
-- Contract_Cases --
--------------------
-- pragma Contract_Cases ((CONTRACT_CASE {, CONTRACT_CASE));
-- CONTRACT_CASE ::= CASE_GUARD => CONSEQUENCE
-- CASE_GUARD ::= boolean_EXPRESSION | others
-- CONSEQUENCE ::= boolean_EXPRESSION
-- Characteristics:
-- * Analysis - The annotation undergoes initial checks to verify
-- the legal placement and context. Secondary checks preanalyze the
-- expressions in:
-- Analyze_Contract_Cases_In_Decl_Part
-- * Expansion - The annotation is expanded during the expansion of
-- the related subprogram [body] contract as performed in:
-- Expand_Subprogram_Contract
-- * Template - The annotation utilizes the generic template of the
-- related subprogram [body] when it is:
-- aspect on subprogram declaration
-- aspect on stand-alone subprogram body
-- pragma on stand-alone subprogram body
-- The annotation must prepare its own template when it is:
-- pragma on subprogram declaration
-- * Globals - Capture of global references must occur after full
-- analysis.
-- * Instance - The annotation is instantiated automatically when
-- the related generic subprogram [body] is instantiated except for
-- the "pragma on subprogram declaration" case. In that scenario
-- the annotation must instantiate itself.
when Pragma_Contract_Cases => Contract_Cases : declare
Spec_Id : Entity_Id;
Subp_Decl : Node_Id;
Subp_Spec : Node_Id;
begin
GNAT_Pragma;
Check_No_Identifiers;
Check_Arg_Count (1);
-- Ensure the proper placement of the pragma. Contract_Cases must
-- be associated with a subprogram declaration or a body that acts
-- as a spec.
Subp_Decl :=
Find_Related_Declaration_Or_Body (N, Do_Checks => True);
-- Entry
if Nkind (Subp_Decl) = N_Entry_Declaration then
null;
-- Generic subprogram
elsif Nkind (Subp_Decl) = N_Generic_Subprogram_Declaration then
null;
-- Body acts as spec
elsif Nkind (Subp_Decl) = N_Subprogram_Body
and then No (Corresponding_Spec (Subp_Decl))
then
null;
-- Body stub acts as spec
elsif Nkind (Subp_Decl) = N_Subprogram_Body_Stub
and then No (Corresponding_Spec_Of_Stub (Subp_Decl))
then
null;
-- Subprogram
elsif Nkind (Subp_Decl) = N_Subprogram_Declaration then
Subp_Spec := Specification (Subp_Decl);
-- Pragma Contract_Cases is forbidden on null procedures, as
-- this may lead to potential ambiguities in behavior when
-- interface null procedures are involved.
if Nkind (Subp_Spec) = N_Procedure_Specification
and then Null_Present (Subp_Spec)
then
Error_Msg_N (Fix_Error
("pragma % cannot apply to null procedure"), N);
return;
end if;
else
Pragma_Misplaced;
return;
end if;
Spec_Id := Unique_Defining_Entity (Subp_Decl);
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Spec_Id);
Ensure_Aggregate_Form (Get_Argument (N, Spec_Id));
-- Chain the pragma on the contract for further processing by
-- Analyze_Contract_Cases_In_Decl_Part.
Add_Contract_Item (N, Defining_Entity (Subp_Decl));
-- Fully analyze the pragma when it appears inside an entry
-- or subprogram body because it cannot benefit from forward
-- references.
if Nkind_In (Subp_Decl, N_Entry_Body,
N_Subprogram_Body,
N_Subprogram_Body_Stub)
then
-- The legality checks of pragma Contract_Cases are affected by
-- the SPARK mode in effect and the volatility of the context.
-- Analyze all pragmas in a specific order.
Analyze_If_Present (Pragma_SPARK_Mode);
Analyze_If_Present (Pragma_Volatile_Function);
Analyze_Contract_Cases_In_Decl_Part (N);
end if;
end Contract_Cases;
----------------
-- Controlled --
----------------
-- pragma Controlled (first_subtype_LOCAL_NAME);
when Pragma_Controlled => Controlled : declare
Arg : Node_Id;
begin
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Arg_Is_Local_Name (Arg1);
Arg := Get_Pragma_Arg (Arg1);
if not Is_Entity_Name (Arg)
or else not Is_Access_Type (Entity (Arg))
then
Error_Pragma_Arg ("pragma% requires access type", Arg1);
else
Set_Has_Pragma_Controlled (Base_Type (Entity (Arg)));
end if;
end Controlled;
----------------
-- Convention --
----------------
-- pragma Convention ([Convention =>] convention_IDENTIFIER,
-- [Entity =>] LOCAL_NAME);
when Pragma_Convention => Convention : declare
C : Convention_Id;
E : Entity_Id;
pragma Warnings (Off, C);
pragma Warnings (Off, E);
begin
Check_Arg_Order ((Name_Convention, Name_Entity));
Check_Ada_83_Warning;
Check_Arg_Count (2);
Process_Convention (C, E);
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, E);
end Convention;
---------------------------
-- Convention_Identifier --
---------------------------
-- pragma Convention_Identifier ([Name =>] IDENTIFIER,
-- [Convention =>] convention_IDENTIFIER);
when Pragma_Convention_Identifier => Convention_Identifier : declare
Idnam : Name_Id;
Cname : Name_Id;
begin
GNAT_Pragma;
Check_Arg_Order ((Name_Name, Name_Convention));
Check_Arg_Count (2);
Check_Optional_Identifier (Arg1, Name_Name);
Check_Optional_Identifier (Arg2, Name_Convention);
Check_Arg_Is_Identifier (Arg1);
Check_Arg_Is_Identifier (Arg2);
Idnam := Chars (Get_Pragma_Arg (Arg1));
Cname := Chars (Get_Pragma_Arg (Arg2));
if Is_Convention_Name (Cname) then
Record_Convention_Identifier
(Idnam, Get_Convention_Id (Cname));
else
Error_Pragma_Arg
("second arg for % pragma must be convention", Arg2);
end if;
end Convention_Identifier;
---------------
-- CPP_Class --
---------------
-- pragma CPP_Class ([Entity =>] LOCAL_NAME)
when Pragma_CPP_Class =>
GNAT_Pragma;
if Warn_On_Obsolescent_Feature then
Error_Msg_N
("'G'N'A'T pragma cpp'_class is now obsolete and has no "
& "effect; replace it by pragma import?j?", N);
end if;
Check_Arg_Count (1);
Rewrite (N,
Make_Pragma (Loc,
Chars => Name_Import,
Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Make_Identifier (Loc, Name_CPP)),
New_Copy (First (Pragma_Argument_Associations (N))))));
Analyze (N);
---------------------
-- CPP_Constructor --
---------------------
-- pragma CPP_Constructor ([Entity =>] LOCAL_NAME
-- [, [External_Name =>] static_string_EXPRESSION ]
-- [, [Link_Name =>] static_string_EXPRESSION ]);
when Pragma_CPP_Constructor => CPP_Constructor : declare
Elmt : Elmt_Id;
Id : Entity_Id;
Def_Id : Entity_Id;
Tag_Typ : Entity_Id;
begin
GNAT_Pragma;
Check_At_Least_N_Arguments (1);
Check_At_Most_N_Arguments (3);
Check_Optional_Identifier (Arg1, Name_Entity);
Check_Arg_Is_Local_Name (Arg1);
Id := Get_Pragma_Arg (Arg1);
Find_Program_Unit_Name (Id);
-- If we did not find the name, we are done
if Etype (Id) = Any_Type then
return;
end if;
Def_Id := Entity (Id);
-- Check if already defined as constructor
if Is_Constructor (Def_Id) then
Error_Msg_N
("??duplicate argument for pragma 'C'P'P_Constructor", Arg1);
return;
end if;
if Ekind (Def_Id) = E_Function
and then (Is_CPP_Class (Etype (Def_Id))
or else (Is_Class_Wide_Type (Etype (Def_Id))
and then
Is_CPP_Class (Root_Type (Etype (Def_Id)))))
then
if Scope (Def_Id) /= Scope (Etype (Def_Id)) then
Error_Msg_N
("'C'P'P constructor must be defined in the scope of "
& "its returned type", Arg1);
end if;
if Arg_Count >= 2 then
Set_Imported (Def_Id);
Set_Is_Public (Def_Id);
Process_Interface_Name (Def_Id, Arg2, Arg3, N);
end if;
Set_Has_Completion (Def_Id);
Set_Is_Constructor (Def_Id);
Set_Convention (Def_Id, Convention_CPP);
-- Imported C++ constructors are not dispatching primitives
-- because in C++ they don't have a dispatch table slot.
-- However, in Ada the constructor has the profile of a
-- function that returns a tagged type and therefore it has
-- been treated as a primitive operation during semantic
-- analysis. We now remove it from the list of primitive
-- operations of the type.
if Is_Tagged_Type (Etype (Def_Id))
and then not Is_Class_Wide_Type (Etype (Def_Id))
and then Is_Dispatching_Operation (Def_Id)
then
Tag_Typ := Etype (Def_Id);
Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
while Present (Elmt) and then Node (Elmt) /= Def_Id loop
Next_Elmt (Elmt);
end loop;
Remove_Elmt (Primitive_Operations (Tag_Typ), Elmt);
Set_Is_Dispatching_Operation (Def_Id, False);
end if;
-- For backward compatibility, if the constructor returns a
-- class wide type, and we internally change the return type to
-- the corresponding root type.
if Is_Class_Wide_Type (Etype (Def_Id)) then
Set_Etype (Def_Id, Root_Type (Etype (Def_Id)));
end if;
else
Error_Pragma_Arg
("pragma% requires function returning a 'C'P'P_Class type",
Arg1);
end if;
end CPP_Constructor;
-----------------
-- CPP_Virtual --
-----------------
when Pragma_CPP_Virtual =>
GNAT_Pragma;
if Warn_On_Obsolescent_Feature then
Error_Msg_N
("'G'N'A'T pragma Cpp'_Virtual is now obsolete and has no "
& "effect?j?", N);
end if;
----------------
-- CPP_Vtable --
----------------
when Pragma_CPP_Vtable =>
GNAT_Pragma;
if Warn_On_Obsolescent_Feature then
Error_Msg_N
("'G'N'A'T pragma Cpp'_Vtable is now obsolete and has no "
& "effect?j?", N);
end if;
---------
-- CPU --
---------
-- pragma CPU (EXPRESSION);
when Pragma_CPU => CPU : declare
P : constant Node_Id := Parent (N);
Arg : Node_Id;
Ent : Entity_Id;
begin
Ada_2012_Pragma;
Check_No_Identifiers;
Check_Arg_Count (1);
-- Subprogram case
if Nkind (P) = N_Subprogram_Body then
Check_In_Main_Program;
Arg := Get_Pragma_Arg (Arg1);
Analyze_And_Resolve (Arg, Any_Integer);
Ent := Defining_Unit_Name (Specification (P));
if Nkind (Ent) = N_Defining_Program_Unit_Name then
Ent := Defining_Identifier (Ent);
end if;
-- Must be static
if not Is_OK_Static_Expression (Arg) then
Flag_Non_Static_Expr
("main subprogram affinity is not static!", Arg);
raise Pragma_Exit;
-- If constraint error, then we already signalled an error
elsif Raises_Constraint_Error (Arg) then
null;
-- Otherwise check in range
else
declare
CPU_Id : constant Entity_Id := RTE (RE_CPU_Range);
-- This is the entity System.Multiprocessors.CPU_Range;
Val : constant Uint := Expr_Value (Arg);
begin
if Val < Expr_Value (Type_Low_Bound (CPU_Id))
or else
Val > Expr_Value (Type_High_Bound (CPU_Id))
then
Error_Pragma_Arg
("main subprogram CPU is out of range", Arg1);
end if;
end;
end if;
Set_Main_CPU
(Current_Sem_Unit, UI_To_Int (Expr_Value (Arg)));
-- Task case
elsif Nkind (P) = N_Task_Definition then
Arg := Get_Pragma_Arg (Arg1);
Ent := Defining_Identifier (Parent (P));
-- The expression must be analyzed in the special manner
-- described in "Handling of Default and Per-Object
-- Expressions" in sem.ads.
Preanalyze_Spec_Expression (Arg, RTE (RE_CPU_Range));
-- Anything else is incorrect
else
Pragma_Misplaced;
end if;
-- Check duplicate pragma before we chain the pragma in the Rep
-- Item chain of Ent.
Check_Duplicate_Pragma (Ent);
Record_Rep_Item (Ent, N);
end CPU;
--------------------
-- Deadline_Floor --
--------------------
-- pragma Deadline_Floor (time_span_EXPRESSION);
when Pragma_Deadline_Floor => Deadline_Floor : declare
P : constant Node_Id := Parent (N);
Arg : Node_Id;
Ent : Entity_Id;
begin
GNAT_Pragma;
Check_No_Identifiers;
Check_Arg_Count (1);
Arg := Get_Pragma_Arg (Arg1);
-- The expression must be analyzed in the special manner described
-- in "Handling of Default and Per-Object Expressions" in sem.ads.
Preanalyze_Spec_Expression (Arg, RTE (RE_Time_Span));
-- Only protected types allowed
if Nkind (P) /= N_Protected_Definition then
Pragma_Misplaced;
else
Ent := Defining_Identifier (Parent (P));
-- Check duplicate pragma before we chain the pragma in the Rep
-- Item chain of Ent.
Check_Duplicate_Pragma (Ent);
Record_Rep_Item (Ent, N);
end if;
end Deadline_Floor;
-----------
-- Debug --
-----------
-- pragma Debug ([boolean_EXPRESSION,] PROCEDURE_CALL_STATEMENT);
when Pragma_Debug => Debug : declare
Cond : Node_Id;
Call : Node_Id;
begin
GNAT_Pragma;
-- The condition for executing the call is that the expander
-- is active and that we are not ignoring this debug pragma.
Cond :=
New_Occurrence_Of
(Boolean_Literals
(Expander_Active and then not Is_Ignored (N)),
Loc);
if not Is_Ignored (N) then
Set_SCO_Pragma_Enabled (Loc);
end if;
if Arg_Count = 2 then
Cond :=
Make_And_Then (Loc,
Left_Opnd => Relocate_Node (Cond),
Right_Opnd => Get_Pragma_Arg (Arg1));
Call := Get_Pragma_Arg (Arg2);
else
Call := Get_Pragma_Arg (Arg1);
end if;
if Nkind_In (Call, N_Expanded_Name,
N_Function_Call,
N_Identifier,
N_Indexed_Component,
N_Selected_Component)
then
-- If this pragma Debug comes from source, its argument was
-- parsed as a name form (which is syntactically identical).
-- In a generic context a parameterless call will be left as
-- an expanded name (if global) or selected_component if local.
-- Change it to a procedure call statement now.
Change_Name_To_Procedure_Call_Statement (Call);
elsif Nkind (Call) = N_Procedure_Call_Statement then
-- Already in the form of a procedure call statement: nothing
-- to do (could happen in case of an internally generated
-- pragma Debug).
null;
else
-- All other cases: diagnose error
Error_Msg
("argument of pragma ""Debug"" is not procedure call",
Sloc (Call));
return;
end if;
-- Rewrite into a conditional with an appropriate condition. We
-- wrap the procedure call in a block so that overhead from e.g.
-- use of the secondary stack does not generate execution overhead
-- for suppressed conditions.
-- Normally the analysis that follows will freeze the subprogram
-- being called. However, if the call is to a null procedure,
-- we want to freeze it before creating the block, because the
-- analysis that follows may be done with expansion disabled, in
-- which case the body will not be generated, leading to spurious
-- errors.
if Nkind (Call) = N_Procedure_Call_Statement
and then Is_Entity_Name (Name (Call))
then
Analyze (Name (Call));
Freeze_Before (N, Entity (Name (Call)));
end if;
Rewrite (N,
Make_Implicit_If_Statement (N,
Condition => Cond,
Then_Statements => New_List (
Make_Block_Statement (Loc,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Relocate_Node (Call)))))));
Analyze (N);
-- Ignore pragma Debug in GNATprove mode. Do this rewriting
-- after analysis of the normally rewritten node, to capture all
-- references to entities, which avoids issuing wrong warnings
-- about unused entities.
if GNATprove_Mode then
Rewrite (N, Make_Null_Statement (Loc));
end if;
end Debug;
------------------
-- Debug_Policy --
------------------
-- pragma Debug_Policy (On | Off | Check | Disable | Ignore)
when Pragma_Debug_Policy =>
GNAT_Pragma;
Check_Arg_Count (1);
Check_No_Identifiers;
Check_Arg_Is_Identifier (Arg1);
-- Exactly equivalent to pragma Check_Policy (Debug, arg), so
-- rewrite it that way, and let the rest of the checking come
-- from analyzing the rewritten pragma.
Rewrite (N,
Make_Pragma (Loc,
Chars => Name_Check_Policy,
Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Make_Identifier (Loc, Name_Debug)),
Make_Pragma_Argument_Association (Loc,
Expression => Get_Pragma_Arg (Arg1)))));
Analyze (N);
-------------------------------
-- Default_Initial_Condition --
-------------------------------
-- pragma Default_Initial_Condition [ (null | boolean_EXPRESSION) ];
when Pragma_Default_Initial_Condition => DIC : declare
Discard : Boolean;
Stmt : Node_Id;
Typ : Entity_Id;
begin
GNAT_Pragma;
Check_No_Identifiers;
Check_At_Most_N_Arguments (1);
Typ := Empty;
Stmt := Prev (N);
while Present (Stmt) loop
-- Skip prior pragmas, but check for duplicates
if Nkind (Stmt) = N_Pragma then
if Pragma_Name (Stmt) = Pname then
Duplication_Error
(Prag => N,
Prev => Stmt);
raise Pragma_Exit;
end if;
-- Skip internally generated code. Note that derived type
-- declarations of untagged types with discriminants are
-- rewritten as private type declarations.
elsif not Comes_From_Source (Stmt)
and then Nkind (Stmt) /= N_Private_Type_Declaration
then
null;
-- The associated private type [extension] has been found, stop
-- the search.
elsif Nkind_In (Stmt, N_Private_Extension_Declaration,
N_Private_Type_Declaration)
then
Typ := Defining_Entity (Stmt);
exit;
-- The pragma does not apply to a legal construct, issue an
-- error and stop the analysis.
else
Pragma_Misplaced;
return;
end if;
Stmt := Prev (Stmt);
end loop;
-- The pragma does not apply to a legal construct, issue an error
-- and stop the analysis.
if No (Typ) then
Pragma_Misplaced;
return;
end if;
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Typ);
-- The pragma signals that the type defines its own DIC assertion
-- expression.
Set_Has_Own_DIC (Typ);
-- Chain the pragma on the rep item chain for further processing
Discard := Rep_Item_Too_Late (Typ, N, FOnly => True);
-- Create the declaration of the procedure which verifies the
-- assertion expression of pragma DIC at runtime.
Build_DIC_Procedure_Declaration (Typ);
end DIC;
----------------------------------
-- Default_Scalar_Storage_Order --
----------------------------------
-- pragma Default_Scalar_Storage_Order
-- (High_Order_First | Low_Order_First);
when Pragma_Default_Scalar_Storage_Order => DSSO : declare
Default : Character;
begin
GNAT_Pragma;
Check_Arg_Count (1);
-- Default_Scalar_Storage_Order can appear as a configuration
-- pragma, or in a declarative part of a package spec.
if not Is_Configuration_Pragma then
Check_Is_In_Decl_Part_Or_Package_Spec;
end if;
Check_No_Identifiers;
Check_Arg_Is_One_Of
(Arg1, Name_High_Order_First, Name_Low_Order_First);
Get_Name_String (Chars (Get_Pragma_Arg (Arg1)));
Default := Fold_Upper (Name_Buffer (1));
if not Support_Nondefault_SSO_On_Target
and then (Ttypes.Bytes_Big_Endian /= (Default = 'H'))
then
if Warn_On_Unrecognized_Pragma then
Error_Msg_N
("non-default Scalar_Storage_Order not supported "
& "on target?g?", N);
Error_Msg_N
("\pragma Default_Scalar_Storage_Order ignored?g?", N);
end if;
-- Here set the specified default
else
Opt.Default_SSO := Default;
end if;
end DSSO;
--------------------------
-- Default_Storage_Pool --
--------------------------
-- pragma Default_Storage_Pool (storage_pool_NAME | null);
when Pragma_Default_Storage_Pool => Default_Storage_Pool : declare
Pool : Node_Id;
begin
Ada_2012_Pragma;
Check_Arg_Count (1);
-- Default_Storage_Pool can appear as a configuration pragma, or
-- in a declarative part of a package spec.
if not Is_Configuration_Pragma then
Check_Is_In_Decl_Part_Or_Package_Spec;
end if;
if From_Aspect_Specification (N) then
declare
E : constant Entity_Id := Entity (Corresponding_Aspect (N));
begin
if not In_Open_Scopes (E) then
Error_Msg_N
("aspect must apply to package or subprogram", N);
end if;
end;
end if;
if Present (Arg1) then
Pool := Get_Pragma_Arg (Arg1);
-- Case of Default_Storage_Pool (null);
if Nkind (Pool) = N_Null then
Analyze (Pool);
-- This is an odd case, this is not really an expression,
-- so we don't have a type for it. So just set the type to
-- Empty.
Set_Etype (Pool, Empty);
-- Case of Default_Storage_Pool (storage_pool_NAME);
else
-- If it's a configuration pragma, then the only allowed
-- argument is "null".
if Is_Configuration_Pragma then
Error_Pragma_Arg ("NULL expected", Arg1);
end if;
-- The expected type for a non-"null" argument is
-- Root_Storage_Pool'Class, and the pool must be a variable.
Analyze_And_Resolve
(Pool, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
if Is_Variable (Pool) then
-- A pragma that applies to a Ghost entity becomes Ghost
-- for the purposes of legality checks and removal of
-- ignored Ghost code.
Mark_Ghost_Pragma (N, Entity (Pool));
else
Error_Pragma_Arg
("default storage pool must be a variable", Arg1);
end if;
end if;
-- Record the pool name (or null). Freeze.Freeze_Entity for an
-- access type will use this information to set the appropriate
-- attributes of the access type. If the pragma appears in a
-- generic unit it is ignored, given that it may refer to a
-- local entity.
if not Inside_A_Generic then
Default_Pool := Pool;
end if;
end if;
end Default_Storage_Pool;
-------------
-- Depends --
-------------
-- pragma Depends (DEPENDENCY_RELATION);
-- DEPENDENCY_RELATION ::=
-- null
-- | (DEPENDENCY_CLAUSE {, DEPENDENCY_CLAUSE})
-- DEPENDENCY_CLAUSE ::=
-- OUTPUT_LIST =>[+] INPUT_LIST
-- | NULL_DEPENDENCY_CLAUSE
-- NULL_DEPENDENCY_CLAUSE ::= null => INPUT_LIST
-- OUTPUT_LIST ::= OUTPUT | (OUTPUT {, OUTPUT})
-- INPUT_LIST ::= null | INPUT | (INPUT {, INPUT})
-- OUTPUT ::= NAME | FUNCTION_RESULT
-- INPUT ::= NAME
-- where FUNCTION_RESULT is a function Result attribute_reference
-- Characteristics:
-- * Analysis - The annotation undergoes initial checks to verify
-- the legal placement and context. Secondary checks fully analyze
-- the dependency clauses in:
-- Analyze_Depends_In_Decl_Part
-- * Expansion - None.
-- * Template - The annotation utilizes the generic template of the
-- related subprogram [body] when it is:
-- aspect on subprogram declaration
-- aspect on stand-alone subprogram body
-- pragma on stand-alone subprogram body
-- The annotation must prepare its own template when it is:
-- pragma on subprogram declaration
-- * Globals - Capture of global references must occur after full
-- analysis.
-- * Instance - The annotation is instantiated automatically when
-- the related generic subprogram [body] is instantiated except for
-- the "pragma on subprogram declaration" case. In that scenario
-- the annotation must instantiate itself.
when Pragma_Depends => Depends : declare
Legal : Boolean;
Spec_Id : Entity_Id;
Subp_Decl : Node_Id;
begin
Analyze_Depends_Global (Spec_Id, Subp_Decl, Legal);
if Legal then
-- Chain the pragma on the contract for further processing by
-- Analyze_Depends_In_Decl_Part.
Add_Contract_Item (N, Spec_Id);
-- Fully analyze the pragma when it appears inside an entry
-- or subprogram body because it cannot benefit from forward
-- references.
if Nkind_In (Subp_Decl, N_Entry_Body,
N_Subprogram_Body,
N_Subprogram_Body_Stub)
then
-- The legality checks of pragmas Depends and Global are
-- affected by the SPARK mode in effect and the volatility
-- of the context. In addition these two pragmas are subject
-- to an inherent order:
-- 1) Global
-- 2) Depends
-- Analyze all these pragmas in the order outlined above
Analyze_If_Present (Pragma_SPARK_Mode);
Analyze_If_Present (Pragma_Volatile_Function);
Analyze_If_Present (Pragma_Global);
Analyze_Depends_In_Decl_Part (N);
end if;
end if;
end Depends;
---------------------
-- Detect_Blocking --
---------------------
-- pragma Detect_Blocking;
when Pragma_Detect_Blocking =>
Ada_2005_Pragma;
Check_Arg_Count (0);
Check_Valid_Configuration_Pragma;
Detect_Blocking := True;
------------------------------------
-- Disable_Atomic_Synchronization --
------------------------------------
-- pragma Disable_Atomic_Synchronization [(Entity)];
when Pragma_Disable_Atomic_Synchronization =>
GNAT_Pragma;
Process_Disable_Enable_Atomic_Sync (Name_Suppress);
-------------------
-- Discard_Names --
-------------------
-- pragma Discard_Names [([On =>] LOCAL_NAME)];
when Pragma_Discard_Names => Discard_Names : declare
E : Entity_Id;
E_Id : Node_Id;
begin
Check_Ada_83_Warning;
-- Deal with configuration pragma case
if Arg_Count = 0 and then Is_Configuration_Pragma then
Global_Discard_Names := True;
return;
-- Otherwise, check correct appropriate context
else
Check_Is_In_Decl_Part_Or_Package_Spec;
if Arg_Count = 0 then
-- If there is no parameter, then from now on this pragma
-- applies to any enumeration, exception or tagged type
-- defined in the current declarative part, and recursively
-- to any nested scope.
Set_Discard_Names (Current_Scope);
return;
else
Check_Arg_Count (1);
Check_Optional_Identifier (Arg1, Name_On);
Check_Arg_Is_Local_Name (Arg1);
E_Id := Get_Pragma_Arg (Arg1);
if Etype (E_Id) = Any_Type then
return;
end if;
E := Entity (E_Id);
-- A pragma that applies to a Ghost entity becomes Ghost for
-- the purposes of legality checks and removal of ignored
-- Ghost code.
Mark_Ghost_Pragma (N, E);
if (Is_First_Subtype (E)
and then
(Is_Enumeration_Type (E) or else Is_Tagged_Type (E)))
or else Ekind (E) = E_Exception
then
Set_Discard_Names (E);
Record_Rep_Item (E, N);
else
Error_Pragma_Arg
("inappropriate entity for pragma%", Arg1);
end if;
end if;
end if;
end Discard_Names;
------------------------
-- Dispatching_Domain --
------------------------
-- pragma Dispatching_Domain (EXPRESSION);
when Pragma_Dispatching_Domain => Dispatching_Domain : declare
P : constant Node_Id := Parent (N);
Arg : Node_Id;
Ent : Entity_Id;
begin
Ada_2012_Pragma;
Check_No_Identifiers;
Check_Arg_Count (1);
-- This pragma is born obsolete, but not the aspect
if not From_Aspect_Specification (N) then
Check_Restriction
(No_Obsolescent_Features, Pragma_Identifier (N));
end if;
if Nkind (P) = N_Task_Definition then
Arg := Get_Pragma_Arg (Arg1);
Ent := Defining_Identifier (Parent (P));
-- A pragma that applies to a Ghost entity becomes Ghost for
-- the purposes of legality checks and removal of ignored Ghost
-- code.
Mark_Ghost_Pragma (N, Ent);
-- The expression must be analyzed in the special manner
-- described in "Handling of Default and Per-Object
-- Expressions" in sem.ads.
Preanalyze_Spec_Expression (Arg, RTE (RE_Dispatching_Domain));
-- Check duplicate pragma before we chain the pragma in the Rep
-- Item chain of Ent.
Check_Duplicate_Pragma (Ent);
Record_Rep_Item (Ent, N);
-- Anything else is incorrect
else
Pragma_Misplaced;
end if;
end Dispatching_Domain;
---------------
-- Elaborate --
---------------
-- pragma Elaborate (library_unit_NAME {, library_unit_NAME});
when Pragma_Elaborate => Elaborate : declare
Arg : Node_Id;
Citem : Node_Id;
begin
-- Pragma must be in context items list of a compilation unit
if not Is_In_Context_Clause then
Pragma_Misplaced;
end if;
-- Must be at least one argument
if Arg_Count = 0 then
Error_Pragma ("pragma% requires at least one argument");
end if;
-- In Ada 83 mode, there can be no items following it in the
-- context list except other pragmas and implicit with clauses
-- (e.g. those added by use of Rtsfind). In Ada 95 mode, this
-- placement rule does not apply.
if Ada_Version = Ada_83 and then Comes_From_Source (N) then
Citem := Next (N);
while Present (Citem) loop
if Nkind (Citem) = N_Pragma
or else (Nkind (Citem) = N_With_Clause
and then Implicit_With (Citem))
then
null;
else
Error_Pragma
("(Ada 83) pragma% must be at end of context clause");
end if;
Next (Citem);
end loop;
end if;
-- Finally, the arguments must all be units mentioned in a with
-- clause in the same context clause. Note we already checked (in
-- Par.Prag) that the arguments are all identifiers or selected
-- components.
Arg := Arg1;
Outer : while Present (Arg) loop
Citem := First (List_Containing (N));
Inner : while Citem /= N loop
if Nkind (Citem) = N_With_Clause
and then Same_Name (Name (Citem), Get_Pragma_Arg (Arg))
then
Set_Elaborate_Present (Citem, True);
Set_Elab_Unit_Name (Get_Pragma_Arg (Arg), Name (Citem));
-- With the pragma present, elaboration calls on
-- subprograms from the named unit need no further
-- checks, as long as the pragma appears in the current
-- compilation unit. If the pragma appears in some unit
-- in the context, there might still be a need for an
-- Elaborate_All_Desirable from the current compilation
-- to the named unit, so we keep the check enabled. This
-- does not apply in SPARK mode, where we allow pragma
-- Elaborate, but we don't trust it to be right so we
-- will still insist on the Elaborate_All.
if Legacy_Elaboration_Checks
and then In_Extended_Main_Source_Unit (N)
and then SPARK_Mode /= On
then
Set_Suppress_Elaboration_Warnings
(Entity (Name (Citem)));
end if;
exit Inner;
end if;
Next (Citem);
end loop Inner;
if Citem = N then
Error_Pragma_Arg
("argument of pragma% is not withed unit", Arg);
end if;
Next (Arg);
end loop Outer;
end Elaborate;
-------------------
-- Elaborate_All --
-------------------
-- pragma Elaborate_All (library_unit_NAME {, library_unit_NAME});
when Pragma_Elaborate_All => Elaborate_All : declare
Arg : Node_Id;
Citem : Node_Id;
begin
Check_Ada_83_Warning;
-- Pragma must be in context items list of a compilation unit
if not Is_In_Context_Clause then
Pragma_Misplaced;
end if;
-- Must be at least one argument
if Arg_Count = 0 then
Error_Pragma ("pragma% requires at least one argument");
end if;
-- Note: unlike pragma Elaborate, pragma Elaborate_All does not
-- have to appear at the end of the context clause, but may
-- appear mixed in with other items, even in Ada 83 mode.
-- Final check: the arguments must all be units mentioned in
-- a with clause in the same context clause. Note that we
-- already checked (in Par.Prag) that all the arguments are
-- either identifiers or selected components.
Arg := Arg1;
Outr : while Present (Arg) loop
Citem := First (List_Containing (N));
Innr : while Citem /= N loop
if Nkind (Citem) = N_With_Clause
and then Same_Name (Name (Citem), Get_Pragma_Arg (Arg))
then
Set_Elaborate_All_Present (Citem, True);
Set_Elab_Unit_Name (Get_Pragma_Arg (Arg), Name (Citem));
-- Suppress warnings and elaboration checks on the named
-- unit if the pragma is in the current compilation, as
-- for pragma Elaborate.
if Legacy_Elaboration_Checks
and then In_Extended_Main_Source_Unit (N)
then
Set_Suppress_Elaboration_Warnings
(Entity (Name (Citem)));
end if;
exit Innr;
end if;
Next (Citem);
end loop Innr;
if Citem = N then
Set_Error_Posted (N);
Error_Pragma_Arg
("argument of pragma% is not withed unit", Arg);
end if;
Next (Arg);
end loop Outr;
end Elaborate_All;
--------------------
-- Elaborate_Body --
--------------------
-- pragma Elaborate_Body [( library_unit_NAME )];
when Pragma_Elaborate_Body => Elaborate_Body : declare
Cunit_Node : Node_Id;
Cunit_Ent : Entity_Id;
begin
Check_Ada_83_Warning;
Check_Valid_Library_Unit_Pragma;
if Nkind (N) = N_Null_Statement then
return;
end if;
Cunit_Node := Cunit (Current_Sem_Unit);
Cunit_Ent := Cunit_Entity (Current_Sem_Unit);
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Cunit_Ent);
if Nkind_In (Unit (Cunit_Node), N_Package_Body,
N_Subprogram_Body)
then
Error_Pragma ("pragma% must refer to a spec, not a body");
else
Set_Body_Required (Cunit_Node);
Set_Has_Pragma_Elaborate_Body (Cunit_Ent);
-- If we are in dynamic elaboration mode, then we suppress
-- elaboration warnings for the unit, since it is definitely
-- fine NOT to do dynamic checks at the first level (and such
-- checks will be suppressed because no elaboration boolean
-- is created for Elaborate_Body packages).
--
-- But in the static model of elaboration, Elaborate_Body is
-- definitely NOT good enough to ensure elaboration safety on
-- its own, since the body may WITH other units that are not
-- safe from an elaboration point of view, so a client must
-- still do an Elaborate_All on such units.
--
-- Debug flag -gnatdD restores the old behavior of 3.13, where
-- Elaborate_Body always suppressed elab warnings.
if Legacy_Elaboration_Checks
and then (Dynamic_Elaboration_Checks or Debug_Flag_DD)
then
Set_Suppress_Elaboration_Warnings (Cunit_Ent);
end if;
end if;
end Elaborate_Body;
------------------------
-- Elaboration_Checks --
------------------------
-- pragma Elaboration_Checks (Static | Dynamic);
when Pragma_Elaboration_Checks =>
GNAT_Pragma;
Check_Arg_Count (1);
Check_Arg_Is_One_Of (Arg1, Name_Static, Name_Dynamic);
-- Set flag accordingly (ignore attempt at dynamic elaboration
-- checks in SPARK mode).
Dynamic_Elaboration_Checks :=
Chars (Get_Pragma_Arg (Arg1)) = Name_Dynamic;
---------------
-- Eliminate --
---------------
-- pragma Eliminate (
-- [Unit_Name =>] IDENTIFIER | SELECTED_COMPONENT,
-- [Entity =>] IDENTIFIER |
-- SELECTED_COMPONENT |
-- STRING_LITERAL]
-- [, Source_Location => SOURCE_TRACE]);
-- SOURCE_LOCATION ::= Source_Location => SOURCE_TRACE
-- SOURCE_TRACE ::= STRING_LITERAL
when Pragma_Eliminate => Eliminate : declare
Args : Args_List (1 .. 5);
Names : constant Name_List (1 .. 5) := (
Name_Unit_Name,
Name_Entity,
Name_Parameter_Types,
Name_Result_Type,
Name_Source_Location);
-- Note : Parameter_Types and Result_Type are leftovers from
-- prior implementations of the pragma. They are not generated
-- by the gnatelim tool, and play no role in selecting which
-- of a set of overloaded names is chosen for elimination.
Unit_Name : Node_Id renames Args (1);
Entity : Node_Id renames Args (2);
Parameter_Types : Node_Id renames Args (3);
Result_Type : Node_Id renames Args (4);
Source_Location : Node_Id renames Args (5);
begin
GNAT_Pragma;
Check_Valid_Configuration_Pragma;
Gather_Associations (Names, Args);
if No (Unit_Name) then
Error_Pragma ("missing Unit_Name argument for pragma%");
end if;
if No (Entity)
and then (Present (Parameter_Types)
or else
Present (Result_Type)
or else
Present (Source_Location))
then
Error_Pragma ("missing Entity argument for pragma%");
end if;
if (Present (Parameter_Types)
or else
Present (Result_Type))
and then
Present (Source_Location)
then
Error_Pragma
("parameter profile and source location cannot be used "
& "together in pragma%");
end if;
Process_Eliminate_Pragma
(N,
Unit_Name,
Entity,
Parameter_Types,
Result_Type,
Source_Location);
end Eliminate;
-----------------------------------
-- Enable_Atomic_Synchronization --
-----------------------------------
-- pragma Enable_Atomic_Synchronization [(Entity)];
when Pragma_Enable_Atomic_Synchronization =>
GNAT_Pragma;
Process_Disable_Enable_Atomic_Sync (Name_Unsuppress);
------------
-- Export --
------------
-- pragma Export (
-- [ Convention =>] convention_IDENTIFIER,
-- [ Entity =>] LOCAL_NAME
-- [, [External_Name =>] static_string_EXPRESSION ]
-- [, [Link_Name =>] static_string_EXPRESSION ]);
when Pragma_Export => Export : declare
C : Convention_Id;
Def_Id : Entity_Id;
pragma Warnings (Off, C);
begin
Check_Ada_83_Warning;
Check_Arg_Order
((Name_Convention,
Name_Entity,
Name_External_Name,
Name_Link_Name));
Check_At_Least_N_Arguments (2);
Check_At_Most_N_Arguments (4);
-- In Relaxed_RM_Semantics, support old Ada 83 style:
-- pragma Export (Entity, "external name");
if Relaxed_RM_Semantics
and then Arg_Count = 2
and then Nkind (Expression (Arg2)) = N_String_Literal
then
C := Convention_C;
Def_Id := Get_Pragma_Arg (Arg1);
Analyze (Def_Id);
if not Is_Entity_Name (Def_Id) then
Error_Pragma_Arg ("entity name required", Arg1);
end if;
Def_Id := Entity (Def_Id);
Set_Exported (Def_Id, Arg1);
else
Process_Convention (C, Def_Id);
-- A pragma that applies to a Ghost entity becomes Ghost for
-- the purposes of legality checks and removal of ignored Ghost
-- code.
Mark_Ghost_Pragma (N, Def_Id);
if Ekind (Def_Id) /= E_Constant then
Note_Possible_Modification
(Get_Pragma_Arg (Arg2), Sure => False);
end if;
Process_Interface_Name (Def_Id, Arg3, Arg4, N);
Set_Exported (Def_Id, Arg2);
end if;
-- If the entity is a deferred constant, propagate the information
-- to the full view, because gigi elaborates the full view only.
if Ekind (Def_Id) = E_Constant
and then Present (Full_View (Def_Id))
then
declare
Id2 : constant Entity_Id := Full_View (Def_Id);
begin
Set_Is_Exported (Id2, Is_Exported (Def_Id));
Set_First_Rep_Item (Id2, First_Rep_Item (Def_Id));
Set_Interface_Name (Id2, Einfo.Interface_Name (Def_Id));
end;
end if;
end Export;
---------------------
-- Export_Function --
---------------------
-- pragma Export_Function (
-- [Internal =>] LOCAL_NAME
-- [, [External =>] EXTERNAL_SYMBOL]
-- [, [Parameter_Types =>] (PARAMETER_TYPES)]
-- [, [Result_Type =>] TYPE_DESIGNATOR]
-- [, [Mechanism =>] MECHANISM]
-- [, [Result_Mechanism =>] MECHANISM_NAME]);
-- EXTERNAL_SYMBOL ::=
-- IDENTIFIER
-- | static_string_EXPRESSION
-- PARAMETER_TYPES ::=
-- null
-- | TYPE_DESIGNATOR @{, TYPE_DESIGNATOR@}
-- TYPE_DESIGNATOR ::=
-- subtype_NAME
-- | subtype_Name ' Access
-- MECHANISM ::=
-- MECHANISM_NAME
-- | (MECHANISM_ASSOCIATION @{, MECHANISM_ASSOCIATION@})
-- MECHANISM_ASSOCIATION ::=
-- [formal_parameter_NAME =>] MECHANISM_NAME
-- MECHANISM_NAME ::=
-- Value
-- | Reference
when Pragma_Export_Function => Export_Function : declare
Args : Args_List (1 .. 6);
Names : constant Name_List (1 .. 6) := (
Name_Internal,
Name_External,
Name_Parameter_Types,
Name_Result_Type,
Name_Mechanism,
Name_Result_Mechanism);
Internal : Node_Id renames Args (1);
External : Node_Id renames Args (2);
Parameter_Types : Node_Id renames Args (3);
Result_Type : Node_Id renames Args (4);
Mechanism : Node_Id renames Args (5);
Result_Mechanism : Node_Id renames Args (6);
begin
GNAT_Pragma;
Gather_Associations (Names, Args);
Process_Extended_Import_Export_Subprogram_Pragma (
Arg_Internal => Internal,
Arg_External => External,
Arg_Parameter_Types => Parameter_Types,
Arg_Result_Type => Result_Type,
Arg_Mechanism => Mechanism,
Arg_Result_Mechanism => Result_Mechanism);
end Export_Function;
-------------------
-- Export_Object --
-------------------
-- pragma Export_Object (
-- [Internal =>] LOCAL_NAME
-- [, [External =>] EXTERNAL_SYMBOL]
-- [, [Size =>] EXTERNAL_SYMBOL]);
-- EXTERNAL_SYMBOL ::=
-- IDENTIFIER
-- | static_string_EXPRESSION
-- PARAMETER_TYPES ::=
-- null
-- | TYPE_DESIGNATOR @{, TYPE_DESIGNATOR@}
-- TYPE_DESIGNATOR ::=
-- subtype_NAME
-- | subtype_Name ' Access
-- MECHANISM ::=
-- MECHANISM_NAME
-- | (MECHANISM_ASSOCIATION @{, MECHANISM_ASSOCIATION@})
-- MECHANISM_ASSOCIATION ::=
-- [formal_parameter_NAME =>] MECHANISM_NAME
-- MECHANISM_NAME ::=
-- Value
-- | Reference
when Pragma_Export_Object => Export_Object : declare
Args : Args_List (1 .. 3);
Names : constant Name_List (1 .. 3) := (
Name_Internal,
Name_External,
Name_Size);
Internal : Node_Id renames Args (1);
External : Node_Id renames Args (2);
Size : Node_Id renames Args (3);
begin
GNAT_Pragma;
Gather_Associations (Names, Args);
Process_Extended_Import_Export_Object_Pragma (
Arg_Internal => Internal,
Arg_External => External,
Arg_Size => Size);
end Export_Object;
----------------------
-- Export_Procedure --
----------------------
-- pragma Export_Procedure (
-- [Internal =>] LOCAL_NAME
-- [, [External =>] EXTERNAL_SYMBOL]
-- [, [Parameter_Types =>] (PARAMETER_TYPES)]
-- [, [Mechanism =>] MECHANISM]);
-- EXTERNAL_SYMBOL ::=
-- IDENTIFIER
-- | static_string_EXPRESSION
-- PARAMETER_TYPES ::=
-- null
-- | TYPE_DESIGNATOR @{, TYPE_DESIGNATOR@}
-- TYPE_DESIGNATOR ::=
-- subtype_NAME
-- | subtype_Name ' Access
-- MECHANISM ::=
-- MECHANISM_NAME
-- | (MECHANISM_ASSOCIATION @{, MECHANISM_ASSOCIATION@})
-- MECHANISM_ASSOCIATION ::=
-- [formal_parameter_NAME =>] MECHANISM_NAME
-- MECHANISM_NAME ::=
-- Value
-- | Reference
when Pragma_Export_Procedure => Export_Procedure : declare
Args : Args_List (1 .. 4);
Names : constant Name_List (1 .. 4) := (
Name_Internal,
Name_External,
Name_Parameter_Types,
Name_Mechanism);
Internal : Node_Id renames Args (1);
External : Node_Id renames Args (2);
Parameter_Types : Node_Id renames Args (3);
Mechanism : Node_Id renames Args (4);
begin
GNAT_Pragma;
Gather_Associations (Names, Args);
Process_Extended_Import_Export_Subprogram_Pragma (
Arg_Internal => Internal,
Arg_External => External,
Arg_Parameter_Types => Parameter_Types,
Arg_Mechanism => Mechanism);
end Export_Procedure;
------------------
-- Export_Value --
------------------
-- pragma Export_Value (
-- [Value =>] static_integer_EXPRESSION,
-- [Link_Name =>] static_string_EXPRESSION);
when Pragma_Export_Value =>
GNAT_Pragma;
Check_Arg_Order ((Name_Value, Name_Link_Name));
Check_Arg_Count (2);
Check_Optional_Identifier (Arg1, Name_Value);
Check_Arg_Is_OK_Static_Expression (Arg1, Any_Integer);
Check_Optional_Identifier (Arg2, Name_Link_Name);
Check_Arg_Is_OK_Static_Expression (Arg2, Standard_String);
-----------------------------
-- Export_Valued_Procedure --
-----------------------------
-- pragma Export_Valued_Procedure (
-- [Internal =>] LOCAL_NAME
-- [, [External =>] EXTERNAL_SYMBOL,]
-- [, [Parameter_Types =>] (PARAMETER_TYPES)]
-- [, [Mechanism =>] MECHANISM]);
-- EXTERNAL_SYMBOL ::=
-- IDENTIFIER
-- | static_string_EXPRESSION
-- PARAMETER_TYPES ::=
-- null
-- | TYPE_DESIGNATOR @{, TYPE_DESIGNATOR@}
-- TYPE_DESIGNATOR ::=
-- subtype_NAME
-- | subtype_Name ' Access
-- MECHANISM ::=
-- MECHANISM_NAME
-- | (MECHANISM_ASSOCIATION @{, MECHANISM_ASSOCIATION@})
-- MECHANISM_ASSOCIATION ::=
-- [formal_parameter_NAME =>] MECHANISM_NAME
-- MECHANISM_NAME ::=
-- Value
-- | Reference
when Pragma_Export_Valued_Procedure =>
Export_Valued_Procedure : declare
Args : Args_List (1 .. 4);
Names : constant Name_List (1 .. 4) := (
Name_Internal,
Name_External,
Name_Parameter_Types,
Name_Mechanism);
Internal : Node_Id renames Args (1);
External : Node_Id renames Args (2);
Parameter_Types : Node_Id renames Args (3);
Mechanism : Node_Id renames Args (4);
begin
GNAT_Pragma;
Gather_Associations (Names, Args);
Process_Extended_Import_Export_Subprogram_Pragma (
Arg_Internal => Internal,
Arg_External => External,
Arg_Parameter_Types => Parameter_Types,
Arg_Mechanism => Mechanism);
end Export_Valued_Procedure;
-------------------
-- Extend_System --
-------------------
-- pragma Extend_System ([Name =>] Identifier);
when Pragma_Extend_System =>
GNAT_Pragma;
Check_Valid_Configuration_Pragma;
Check_Arg_Count (1);
Check_Optional_Identifier (Arg1, Name_Name);
Check_Arg_Is_Identifier (Arg1);
Get_Name_String (Chars (Get_Pragma_Arg (Arg1)));
if Name_Len > 4
and then Name_Buffer (1 .. 4) = "aux_"
then
if Present (System_Extend_Pragma_Arg) then
if Chars (Get_Pragma_Arg (Arg1)) =
Chars (Expression (System_Extend_Pragma_Arg))
then
null;
else
Error_Msg_Sloc := Sloc (System_Extend_Pragma_Arg);
Error_Pragma ("pragma% conflicts with that #");
end if;
else
System_Extend_Pragma_Arg := Arg1;
if not GNAT_Mode then
System_Extend_Unit := Arg1;
end if;
end if;
else
Error_Pragma ("incorrect name for pragma%, must be Aux_xxx");
end if;
------------------------
-- Extensions_Allowed --
------------------------
-- pragma Extensions_Allowed (ON | OFF);
when Pragma_Extensions_Allowed =>
GNAT_Pragma;
Check_Arg_Count (1);
Check_No_Identifiers;
Check_Arg_Is_One_Of (Arg1, Name_On, Name_Off);
if Chars (Get_Pragma_Arg (Arg1)) = Name_On then
Extensions_Allowed := True;
Ada_Version := Ada_Version_Type'Last;
else
Extensions_Allowed := False;
Ada_Version := Ada_Version_Explicit;
Ada_Version_Pragma := Empty;
end if;
------------------------
-- Extensions_Visible --
------------------------
-- pragma Extensions_Visible [ (boolean_EXPRESSION) ];
-- Characteristics:
-- * Analysis - The annotation is fully analyzed immediately upon
-- elaboration as its expression must be static.
-- * Expansion - None.
-- * Template - The annotation utilizes the generic template of the
-- related subprogram [body] when it is:
-- aspect on subprogram declaration
-- aspect on stand-alone subprogram body
-- pragma on stand-alone subprogram body
-- The annotation must prepare its own template when it is:
-- pragma on subprogram declaration
-- * Globals - Capture of global references must occur after full
-- analysis.
-- * Instance - The annotation is instantiated automatically when
-- the related generic subprogram [body] is instantiated except for
-- the "pragma on subprogram declaration" case. In that scenario
-- the annotation must instantiate itself.
when Pragma_Extensions_Visible => Extensions_Visible : declare
Formal : Entity_Id;
Has_OK_Formal : Boolean := False;
Spec_Id : Entity_Id;
Subp_Decl : Node_Id;
begin
GNAT_Pragma;
Check_No_Identifiers;
Check_At_Most_N_Arguments (1);
Subp_Decl :=
Find_Related_Declaration_Or_Body (N, Do_Checks => True);
-- Abstract subprogram declaration
if Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration then
null;
-- Generic subprogram declaration
elsif Nkind (Subp_Decl) = N_Generic_Subprogram_Declaration then
null;
-- Body acts as spec
elsif Nkind (Subp_Decl) = N_Subprogram_Body
and then No (Corresponding_Spec (Subp_Decl))
then
null;
-- Body stub acts as spec
elsif Nkind (Subp_Decl) = N_Subprogram_Body_Stub
and then No (Corresponding_Spec_Of_Stub (Subp_Decl))
then
null;
-- Subprogram declaration
elsif Nkind (Subp_Decl) = N_Subprogram_Declaration then
null;
-- Otherwise the pragma is associated with an illegal construct
else
Error_Pragma ("pragma % must apply to a subprogram");
return;
end if;
-- Mark the pragma as Ghost if the related subprogram is also
-- Ghost. This also ensures that any expansion performed further
-- below will produce Ghost nodes.
Spec_Id := Unique_Defining_Entity (Subp_Decl);
Mark_Ghost_Pragma (N, Spec_Id);
-- Chain the pragma on the contract for completeness
Add_Contract_Item (N, Defining_Entity (Subp_Decl));
-- The legality checks of pragma Extension_Visible are affected
-- by the SPARK mode in effect. Analyze all pragmas in specific
-- order.
Analyze_If_Present (Pragma_SPARK_Mode);
-- Examine the formals of the related subprogram
Formal := First_Formal (Spec_Id);
while Present (Formal) loop
-- At least one of the formals is of a specific tagged type,
-- the pragma is legal.
if Is_Specific_Tagged_Type (Etype (Formal)) then
Has_OK_Formal := True;
exit;
-- A generic subprogram with at least one formal of a private
-- type ensures the legality of the pragma because the actual
-- may be specifically tagged. Note that this is verified by
-- the check above at instantiation time.
elsif Is_Private_Type (Etype (Formal))
and then Is_Generic_Type (Etype (Formal))
then
Has_OK_Formal := True;
exit;
end if;
Next_Formal (Formal);
end loop;
if not Has_OK_Formal then
Error_Msg_Name_1 := Pname;
Error_Msg_N (Fix_Error ("incorrect placement of pragma %"), N);
Error_Msg_NE
("\subprogram & lacks parameter of specific tagged or "
& "generic private type", N, Spec_Id);
return;
end if;
-- Analyze the Boolean expression (if any)
if Present (Arg1) then
Check_Static_Boolean_Expression
(Expression (Get_Argument (N, Spec_Id)));
end if;
end Extensions_Visible;
--------------
-- External --
--------------
-- pragma External (
-- [ Convention =>] convention_IDENTIFIER,
-- [ Entity =>] LOCAL_NAME
-- [, [External_Name =>] static_string_EXPRESSION ]
-- [, [Link_Name =>] static_string_EXPRESSION ]);
when Pragma_External => External : declare
C : Convention_Id;
E : Entity_Id;
pragma Warnings (Off, C);
begin
GNAT_Pragma;
Check_Arg_Order
((Name_Convention,
Name_Entity,
Name_External_Name,
Name_Link_Name));
Check_At_Least_N_Arguments (2);
Check_At_Most_N_Arguments (4);
Process_Convention (C, E);
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, E);
Note_Possible_Modification
(Get_Pragma_Arg (Arg2), Sure => False);
Process_Interface_Name (E, Arg3, Arg4, N);
Set_Exported (E, Arg2);
end External;
--------------------------
-- External_Name_Casing --
--------------------------
-- pragma External_Name_Casing (
-- UPPERCASE | LOWERCASE
-- [, AS_IS | UPPERCASE | LOWERCASE]);
when Pragma_External_Name_Casing =>
GNAT_Pragma;
Check_No_Identifiers;
if Arg_Count = 2 then
Check_Arg_Is_One_Of
(Arg2, Name_As_Is, Name_Uppercase, Name_Lowercase);
case Chars (Get_Pragma_Arg (Arg2)) is
when Name_As_Is =>
Opt.External_Name_Exp_Casing := As_Is;
when Name_Uppercase =>
Opt.External_Name_Exp_Casing := Uppercase;
when Name_Lowercase =>
Opt.External_Name_Exp_Casing := Lowercase;
when others =>
null;
end case;
else
Check_Arg_Count (1);
end if;
Check_Arg_Is_One_Of (Arg1, Name_Uppercase, Name_Lowercase);
case Chars (Get_Pragma_Arg (Arg1)) is
when Name_Uppercase =>
Opt.External_Name_Imp_Casing := Uppercase;
when Name_Lowercase =>
Opt.External_Name_Imp_Casing := Lowercase;
when others =>
null;
end case;
---------------
-- Fast_Math --
---------------
-- pragma Fast_Math;
when Pragma_Fast_Math =>
GNAT_Pragma;
Check_No_Identifiers;
Check_Valid_Configuration_Pragma;
Fast_Math := True;
--------------------------
-- Favor_Top_Level --
--------------------------
-- pragma Favor_Top_Level (type_NAME);
when Pragma_Favor_Top_Level => Favor_Top_Level : declare
Typ : Entity_Id;
begin
GNAT_Pragma;
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Arg_Is_Local_Name (Arg1);
Typ := Entity (Get_Pragma_Arg (Arg1));
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Typ);
-- If it's an access-to-subprogram type (in particular, not a
-- subtype), set the flag on that type.
if Is_Access_Subprogram_Type (Typ) then
Set_Can_Use_Internal_Rep (Typ, False);
-- Otherwise it's an error (name denotes the wrong sort of entity)
else
Error_Pragma_Arg
("access-to-subprogram type expected",
Get_Pragma_Arg (Arg1));
end if;
end Favor_Top_Level;
---------------------------
-- Finalize_Storage_Only --
---------------------------
-- pragma Finalize_Storage_Only (first_subtype_LOCAL_NAME);
when Pragma_Finalize_Storage_Only => Finalize_Storage : declare
Assoc : constant Node_Id := Arg1;
Type_Id : constant Node_Id := Get_Pragma_Arg (Assoc);
Typ : Entity_Id;
begin
GNAT_Pragma;
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Arg_Is_Local_Name (Arg1);
Find_Type (Type_Id);
Typ := Entity (Type_Id);
if Typ = Any_Type
or else Rep_Item_Too_Early (Typ, N)
then
return;
else
Typ := Underlying_Type (Typ);
end if;
if not Is_Controlled (Typ) then
Error_Pragma ("pragma% must specify controlled type");
end if;
Check_First_Subtype (Arg1);
if Finalize_Storage_Only (Typ) then
Error_Pragma ("duplicate pragma%, only one allowed");
elsif not Rep_Item_Too_Late (Typ, N) then
Set_Finalize_Storage_Only (Base_Type (Typ), True);
end if;
end Finalize_Storage;
-----------
-- Ghost --
-----------
-- pragma Ghost [ (boolean_EXPRESSION) ];
when Pragma_Ghost => Ghost : declare
Context : Node_Id;
Expr : Node_Id;
Id : Entity_Id;
Orig_Stmt : Node_Id;
Prev_Id : Entity_Id;
Stmt : Node_Id;
begin
GNAT_Pragma;
Check_No_Identifiers;
Check_At_Most_N_Arguments (1);
Id := Empty;
Stmt := Prev (N);
while Present (Stmt) loop
-- Skip prior pragmas, but check for duplicates
if Nkind (Stmt) = N_Pragma then
if Pragma_Name (Stmt) = Pname then
Duplication_Error
(Prag => N,
Prev => Stmt);
raise Pragma_Exit;
end if;
-- Task unit declared without a definition cannot be subject to
-- pragma Ghost (SPARK RM 6.9(19)).
elsif Nkind_In (Stmt, N_Single_Task_Declaration,
N_Task_Type_Declaration)
then
Error_Pragma ("pragma % cannot apply to a task type");
return;
-- Skip internally generated code
elsif not Comes_From_Source (Stmt) then
Orig_Stmt := Original_Node (Stmt);
-- When pragma Ghost applies to an untagged derivation, the
-- derivation is transformed into a [sub]type declaration.
if Nkind_In (Stmt, N_Full_Type_Declaration,
N_Subtype_Declaration)
and then Comes_From_Source (Orig_Stmt)
and then Nkind (Orig_Stmt) = N_Full_Type_Declaration
and then Nkind (Type_Definition (Orig_Stmt)) =
N_Derived_Type_Definition
then
Id := Defining_Entity (Stmt);
exit;
-- When pragma Ghost applies to an object declaration which
-- is initialized by means of a function call that returns
-- on the secondary stack, the object declaration becomes a
-- renaming.
elsif Nkind (Stmt) = N_Object_Renaming_Declaration
and then Comes_From_Source (Orig_Stmt)
and then Nkind (Orig_Stmt) = N_Object_Declaration
then
Id := Defining_Entity (Stmt);
exit;
-- When pragma Ghost applies to an expression function, the
-- expression function is transformed into a subprogram.
elsif Nkind (Stmt) = N_Subprogram_Declaration
and then Comes_From_Source (Orig_Stmt)
and then Nkind (Orig_Stmt) = N_Expression_Function
then
Id := Defining_Entity (Stmt);
exit;
end if;
-- The pragma applies to a legal construct, stop the traversal
elsif Nkind_In (Stmt, N_Abstract_Subprogram_Declaration,
N_Full_Type_Declaration,
N_Generic_Subprogram_Declaration,
N_Object_Declaration,
N_Private_Extension_Declaration,
N_Private_Type_Declaration,
N_Subprogram_Declaration,
N_Subtype_Declaration)
then
Id := Defining_Entity (Stmt);
exit;
-- The pragma does not apply to a legal construct, issue an
-- error and stop the analysis.
else
Error_Pragma
("pragma % must apply to an object, package, subprogram "
& "or type");
return;
end if;
Stmt := Prev (Stmt);
end loop;
Context := Parent (N);
-- Handle compilation units
if Nkind (Context) = N_Compilation_Unit_Aux then
Context := Unit (Parent (Context));
end if;
-- Protected and task types cannot be subject to pragma Ghost
-- (SPARK RM 6.9(19)).
if Nkind_In (Context, N_Protected_Body, N_Protected_Definition)
then
Error_Pragma ("pragma % cannot apply to a protected type");
return;
elsif Nkind_In (Context, N_Task_Body, N_Task_Definition) then
Error_Pragma ("pragma % cannot apply to a task type");
return;
end if;
if No (Id) then
-- When pragma Ghost is associated with a [generic] package, it
-- appears in the visible declarations.
if Nkind (Context) = N_Package_Specification
and then Present (Visible_Declarations (Context))
and then List_Containing (N) = Visible_Declarations (Context)
then
Id := Defining_Entity (Context);
-- Pragma Ghost applies to a stand-alone subprogram body
elsif Nkind (Context) = N_Subprogram_Body
and then No (Corresponding_Spec (Context))
then
Id := Defining_Entity (Context);
-- Pragma Ghost applies to a subprogram declaration that acts
-- as a compilation unit.
elsif Nkind (Context) = N_Subprogram_Declaration then
Id := Defining_Entity (Context);
-- Pragma Ghost applies to a generic subprogram
elsif Nkind (Context) = N_Generic_Subprogram_Declaration then
Id := Defining_Entity (Specification (Context));
end if;
end if;
if No (Id) then
Error_Pragma
("pragma % must apply to an object, package, subprogram or "
& "type");
return;
end if;
-- Handle completions of types and constants that are subject to
-- pragma Ghost.
if Is_Record_Type (Id) or else Ekind (Id) = E_Constant then
Prev_Id := Incomplete_Or_Partial_View (Id);
if Present (Prev_Id) and then not Is_Ghost_Entity (Prev_Id) then
Error_Msg_Name_1 := Pname;
-- The full declaration of a deferred constant cannot be
-- subject to pragma Ghost unless the deferred declaration
-- is also Ghost (SPARK RM 6.9(9)).
if Ekind (Prev_Id) = E_Constant then
Error_Msg_Name_1 := Pname;
Error_Msg_NE (Fix_Error
("pragma % must apply to declaration of deferred "
& "constant &"), N, Id);
return;
-- Pragma Ghost may appear on the full view of an incomplete
-- type because the incomplete declaration lacks aspects and
-- cannot be subject to pragma Ghost.
elsif Ekind (Prev_Id) = E_Incomplete_Type then
null;
-- The full declaration of a type cannot be subject to
-- pragma Ghost unless the partial view is also Ghost
-- (SPARK RM 6.9(9)).
else
Error_Msg_NE (Fix_Error
("pragma % must apply to partial view of type &"),
N, Id);
return;
end if;
end if;
-- A synchronized object cannot be subject to pragma Ghost
-- (SPARK RM 6.9(19)).
elsif Ekind (Id) = E_Variable then
if Is_Protected_Type (Etype (Id)) then
Error_Pragma ("pragma % cannot apply to a protected object");
return;
elsif Is_Task_Type (Etype (Id)) then
Error_Pragma ("pragma % cannot apply to a task object");
return;
end if;
end if;
-- Analyze the Boolean expression (if any)
if Present (Arg1) then
Expr := Get_Pragma_Arg (Arg1);
Analyze_And_Resolve (Expr, Standard_Boolean);
if Is_OK_Static_Expression (Expr) then
-- "Ghostness" cannot be turned off once enabled within a
-- region (SPARK RM 6.9(6)).
if Is_False (Expr_Value (Expr))
and then Ghost_Mode > None
then
Error_Pragma
("pragma % with value False cannot appear in enabled "
& "ghost region");
return;
end if;
-- Otherwie the expression is not static
else
Error_Pragma_Arg
("expression of pragma % must be static", Expr);
return;
end if;
end if;
Set_Is_Ghost_Entity (Id);
end Ghost;
------------
-- Global --
------------
-- pragma Global (GLOBAL_SPECIFICATION);
-- GLOBAL_SPECIFICATION ::=
-- null
-- | (GLOBAL_LIST)
-- | (MODED_GLOBAL_LIST {, MODED_GLOBAL_LIST})
-- MODED_GLOBAL_LIST ::= MODE_SELECTOR => GLOBAL_LIST
-- MODE_SELECTOR ::= In_Out | Input | Output | Proof_In
-- GLOBAL_LIST ::= GLOBAL_ITEM | (GLOBAL_ITEM {, GLOBAL_ITEM})
-- GLOBAL_ITEM ::= NAME
-- Characteristics:
-- * Analysis - The annotation undergoes initial checks to verify
-- the legal placement and context. Secondary checks fully analyze
-- the dependency clauses in:
-- Analyze_Global_In_Decl_Part
-- * Expansion - None.
-- * Template - The annotation utilizes the generic template of the
-- related subprogram [body] when it is:
-- aspect on subprogram declaration
-- aspect on stand-alone subprogram body
-- pragma on stand-alone subprogram body
-- The annotation must prepare its own template when it is:
-- pragma on subprogram declaration
-- * Globals - Capture of global references must occur after full
-- analysis.
-- * Instance - The annotation is instantiated automatically when
-- the related generic subprogram [body] is instantiated except for
-- the "pragma on subprogram declaration" case. In that scenario
-- the annotation must instantiate itself.
when Pragma_Global => Global : declare
Legal : Boolean;
Spec_Id : Entity_Id;
Subp_Decl : Node_Id;
begin
Analyze_Depends_Global (Spec_Id, Subp_Decl, Legal);
if Legal then
-- Chain the pragma on the contract for further processing by
-- Analyze_Global_In_Decl_Part.
Add_Contract_Item (N, Spec_Id);
-- Fully analyze the pragma when it appears inside an entry
-- or subprogram body because it cannot benefit from forward
-- references.
if Nkind_In (Subp_Decl, N_Entry_Body,
N_Subprogram_Body,
N_Subprogram_Body_Stub)
then
-- The legality checks of pragmas Depends and Global are
-- affected by the SPARK mode in effect and the volatility
-- of the context. In addition these two pragmas are subject
-- to an inherent order:
-- 1) Global
-- 2) Depends
-- Analyze all these pragmas in the order outlined above
Analyze_If_Present (Pragma_SPARK_Mode);
Analyze_If_Present (Pragma_Volatile_Function);
Analyze_Global_In_Decl_Part (N);
Analyze_If_Present (Pragma_Depends);
end if;
end if;
end Global;
-----------
-- Ident --
-----------
-- pragma Ident (static_string_EXPRESSION)
-- Note: pragma Comment shares this processing. Pragma Ident is
-- identical in effect to pragma Commment.
when Pragma_Comment
| Pragma_Ident
=>
Ident : declare
Str : Node_Id;
begin
GNAT_Pragma;
Check_Arg_Count (1);
Check_No_Identifiers;
Check_Arg_Is_OK_Static_Expression (Arg1, Standard_String);
Store_Note (N);
Str := Expr_Value_S (Get_Pragma_Arg (Arg1));
declare
CS : Node_Id;
GP : Node_Id;
begin
GP := Parent (Parent (N));
if Nkind_In (GP, N_Package_Declaration,
N_Generic_Package_Declaration)
then
GP := Parent (GP);
end if;
-- If we have a compilation unit, then record the ident value,
-- checking for improper duplication.
if Nkind (GP) = N_Compilation_Unit then
CS := Ident_String (Current_Sem_Unit);
if Present (CS) then
-- If we have multiple instances, concatenate them, but
-- not in ASIS, where we want the original tree.
if not ASIS_Mode then
Start_String (Strval (CS));
Store_String_Char (' ');
Store_String_Chars (Strval (Str));
Set_Strval (CS, End_String);
end if;
else
Set_Ident_String (Current_Sem_Unit, Str);
end if;
-- For subunits, we just ignore the Ident, since in GNAT these
-- are not separate object files, and hence not separate units
-- in the unit table.
elsif Nkind (GP) = N_Subunit then
null;
end if;
end;
end Ident;
-------------------
-- Ignore_Pragma --
-------------------
-- pragma Ignore_Pragma (pragma_IDENTIFIER);
-- Entirely handled in the parser, nothing to do here
when Pragma_Ignore_Pragma =>
null;
----------------------------
-- Implementation_Defined --
----------------------------
-- pragma Implementation_Defined (LOCAL_NAME);
-- Marks previously declared entity as implementation defined. For
-- an overloaded entity, applies to the most recent homonym.
-- pragma Implementation_Defined;
-- The form with no arguments appears anywhere within a scope, most
-- typically a package spec, and indicates that all entities that are
-- defined within the package spec are Implementation_Defined.
when Pragma_Implementation_Defined => Implementation_Defined : declare
Ent : Entity_Id;
begin
GNAT_Pragma;
Check_No_Identifiers;
-- Form with no arguments
if Arg_Count = 0 then
Set_Is_Implementation_Defined (Current_Scope);
-- Form with one argument
else
Check_Arg_Count (1);
Check_Arg_Is_Local_Name (Arg1);
Ent := Entity (Get_Pragma_Arg (Arg1));
Set_Is_Implementation_Defined (Ent);
end if;
end Implementation_Defined;
-----------------
-- Implemented --
-----------------
-- pragma Implemented (procedure_LOCAL_NAME, IMPLEMENTATION_KIND);
-- IMPLEMENTATION_KIND ::=
-- By_Entry | By_Protected_Procedure | By_Any | Optional
-- "By_Any" and "Optional" are treated as synonyms in order to
-- support Ada 2012 aspect Synchronization.
when Pragma_Implemented => Implemented : declare
Proc_Id : Entity_Id;
Typ : Entity_Id;
begin
Ada_2012_Pragma;
Check_Arg_Count (2);
Check_No_Identifiers;
Check_Arg_Is_Identifier (Arg1);
Check_Arg_Is_Local_Name (Arg1);
Check_Arg_Is_One_Of (Arg2,
Name_By_Any,
Name_By_Entry,
Name_By_Protected_Procedure,
Name_Optional);
-- Extract the name of the local procedure
Proc_Id := Entity (Get_Pragma_Arg (Arg1));
-- Ada 2012 (AI05-0030): The procedure_LOCAL_NAME must denote a
-- primitive procedure of a synchronized tagged type.
if Ekind (Proc_Id) = E_Procedure
and then Is_Primitive (Proc_Id)
and then Present (First_Formal (Proc_Id))
then
Typ := Etype (First_Formal (Proc_Id));
if Is_Tagged_Type (Typ)
and then
-- Check for a protected, a synchronized or a task interface
((Is_Interface (Typ)
and then Is_Synchronized_Interface (Typ))
-- Check for a protected type or a task type that implements
-- an interface.
or else
(Is_Concurrent_Record_Type (Typ)
and then Present (Interfaces (Typ)))
-- In analysis-only mode, examine original protected type
or else
(Nkind (Parent (Typ)) = N_Protected_Type_Declaration
and then Present (Interface_List (Parent (Typ))))
-- Check for a private record extension with keyword
-- "synchronized".
or else
(Ekind_In (Typ, E_Record_Type_With_Private,
E_Record_Subtype_With_Private)
and then Synchronized_Present (Parent (Typ))))
then
null;
else
Error_Pragma_Arg
("controlling formal must be of synchronized tagged type",
Arg1);
return;
end if;
-- Ada 2012 (AI05-0030): Cannot apply the implementation_kind
-- By_Protected_Procedure to the primitive procedure of a task
-- interface.
if Chars (Arg2) = Name_By_Protected_Procedure
and then Is_Interface (Typ)
and then Is_Task_Interface (Typ)
then
Error_Pragma_Arg
("implementation kind By_Protected_Procedure cannot be "
& "applied to a task interface primitive", Arg2);
return;
end if;
-- Procedures declared inside a protected type must be accepted
elsif Ekind (Proc_Id) = E_Procedure
and then Is_Protected_Type (Scope (Proc_Id))
then
null;
-- The first argument is not a primitive procedure
else
Error_Pragma_Arg
("pragma % must be applied to a primitive procedure", Arg1);
return;
end if;
Record_Rep_Item (Proc_Id, N);
end Implemented;
----------------------
-- Implicit_Packing --
----------------------
-- pragma Implicit_Packing;
when Pragma_Implicit_Packing =>
GNAT_Pragma;
Check_Arg_Count (0);
Implicit_Packing := True;
------------
-- Import --
------------
-- pragma Import (
-- [Convention =>] convention_IDENTIFIER,
-- [Entity =>] LOCAL_NAME
-- [, [External_Name =>] static_string_EXPRESSION ]
-- [, [Link_Name =>] static_string_EXPRESSION ]);
when Pragma_Import =>
Check_Ada_83_Warning;
Check_Arg_Order
((Name_Convention,
Name_Entity,
Name_External_Name,
Name_Link_Name));
Check_At_Least_N_Arguments (2);
Check_At_Most_N_Arguments (4);
Process_Import_Or_Interface;
---------------------
-- Import_Function --
---------------------
-- pragma Import_Function (
-- [Internal =>] LOCAL_NAME,
-- [, [External =>] EXTERNAL_SYMBOL]
-- [, [Parameter_Types =>] (PARAMETER_TYPES)]
-- [, [Result_Type =>] SUBTYPE_MARK]
-- [, [Mechanism =>] MECHANISM]
-- [, [Result_Mechanism =>] MECHANISM_NAME]);
-- EXTERNAL_SYMBOL ::=
-- IDENTIFIER
-- | static_string_EXPRESSION
-- PARAMETER_TYPES ::=
-- null
-- | TYPE_DESIGNATOR @{, TYPE_DESIGNATOR@}
-- TYPE_DESIGNATOR ::=
-- subtype_NAME
-- | subtype_Name ' Access
-- MECHANISM ::=
-- MECHANISM_NAME
-- | (MECHANISM_ASSOCIATION @{, MECHANISM_ASSOCIATION@})
-- MECHANISM_ASSOCIATION ::=
-- [formal_parameter_NAME =>] MECHANISM_NAME
-- MECHANISM_NAME ::=
-- Value
-- | Reference
when Pragma_Import_Function => Import_Function : declare
Args : Args_List (1 .. 6);
Names : constant Name_List (1 .. 6) := (
Name_Internal,
Name_External,
Name_Parameter_Types,
Name_Result_Type,
Name_Mechanism,
Name_Result_Mechanism);
Internal : Node_Id renames Args (1);
External : Node_Id renames Args (2);
Parameter_Types : Node_Id renames Args (3);
Result_Type : Node_Id renames Args (4);
Mechanism : Node_Id renames Args (5);
Result_Mechanism : Node_Id renames Args (6);
begin
GNAT_Pragma;
Gather_Associations (Names, Args);
Process_Extended_Import_Export_Subprogram_Pragma (
Arg_Internal => Internal,
Arg_External => External,
Arg_Parameter_Types => Parameter_Types,
Arg_Result_Type => Result_Type,
Arg_Mechanism => Mechanism,
Arg_Result_Mechanism => Result_Mechanism);
end Import_Function;
-------------------
-- Import_Object --
-------------------
-- pragma Import_Object (
-- [Internal =>] LOCAL_NAME
-- [, [External =>] EXTERNAL_SYMBOL]
-- [, [Size =>] EXTERNAL_SYMBOL]);
-- EXTERNAL_SYMBOL ::=
-- IDENTIFIER
-- | static_string_EXPRESSION
when Pragma_Import_Object => Import_Object : declare
Args : Args_List (1 .. 3);
Names : constant Name_List (1 .. 3) := (
Name_Internal,
Name_External,
Name_Size);
Internal : Node_Id renames Args (1);
External : Node_Id renames Args (2);
Size : Node_Id renames Args (3);
begin
GNAT_Pragma;
Gather_Associations (Names, Args);
Process_Extended_Import_Export_Object_Pragma (
Arg_Internal => Internal,
Arg_External => External,
Arg_Size => Size);
end Import_Object;
----------------------
-- Import_Procedure --
----------------------
-- pragma Import_Procedure (
-- [Internal =>] LOCAL_NAME
-- [, [External =>] EXTERNAL_SYMBOL]
-- [, [Parameter_Types =>] (PARAMETER_TYPES)]
-- [, [Mechanism =>] MECHANISM]);
-- EXTERNAL_SYMBOL ::=
-- IDENTIFIER
-- | static_string_EXPRESSION
-- PARAMETER_TYPES ::=
-- null
-- | TYPE_DESIGNATOR @{, TYPE_DESIGNATOR@}
-- TYPE_DESIGNATOR ::=
-- subtype_NAME
-- | subtype_Name ' Access
-- MECHANISM ::=
-- MECHANISM_NAME
-- | (MECHANISM_ASSOCIATION @{, MECHANISM_ASSOCIATION@})
-- MECHANISM_ASSOCIATION ::=
-- [formal_parameter_NAME =>] MECHANISM_NAME
-- MECHANISM_NAME ::=
-- Value
-- | Reference
when Pragma_Import_Procedure => Import_Procedure : declare
Args : Args_List (1 .. 4);
Names : constant Name_List (1 .. 4) := (
Name_Internal,
Name_External,
Name_Parameter_Types,
Name_Mechanism);
Internal : Node_Id renames Args (1);
External : Node_Id renames Args (2);
Parameter_Types : Node_Id renames Args (3);
Mechanism : Node_Id renames Args (4);
begin
GNAT_Pragma;
Gather_Associations (Names, Args);
Process_Extended_Import_Export_Subprogram_Pragma (
Arg_Internal => Internal,
Arg_External => External,
Arg_Parameter_Types => Parameter_Types,
Arg_Mechanism => Mechanism);
end Import_Procedure;
-----------------------------
-- Import_Valued_Procedure --
-----------------------------
-- pragma Import_Valued_Procedure (
-- [Internal =>] LOCAL_NAME
-- [, [External =>] EXTERNAL_SYMBOL]
-- [, [Parameter_Types =>] (PARAMETER_TYPES)]
-- [, [Mechanism =>] MECHANISM]);
-- EXTERNAL_SYMBOL ::=
-- IDENTIFIER
-- | static_string_EXPRESSION
-- PARAMETER_TYPES ::=
-- null
-- | TYPE_DESIGNATOR @{, TYPE_DESIGNATOR@}
-- TYPE_DESIGNATOR ::=
-- subtype_NAME
-- | subtype_Name ' Access
-- MECHANISM ::=
-- MECHANISM_NAME
-- | (MECHANISM_ASSOCIATION @{, MECHANISM_ASSOCIATION@})
-- MECHANISM_ASSOCIATION ::=
-- [formal_parameter_NAME =>] MECHANISM_NAME
-- MECHANISM_NAME ::=
-- Value
-- | Reference
when Pragma_Import_Valued_Procedure =>
Import_Valued_Procedure : declare
Args : Args_List (1 .. 4);
Names : constant Name_List (1 .. 4) := (
Name_Internal,
Name_External,
Name_Parameter_Types,
Name_Mechanism);
Internal : Node_Id renames Args (1);
External : Node_Id renames Args (2);
Parameter_Types : Node_Id renames Args (3);
Mechanism : Node_Id renames Args (4);
begin
GNAT_Pragma;
Gather_Associations (Names, Args);
Process_Extended_Import_Export_Subprogram_Pragma (
Arg_Internal => Internal,
Arg_External => External,
Arg_Parameter_Types => Parameter_Types,
Arg_Mechanism => Mechanism);
end Import_Valued_Procedure;
-----------------
-- Independent --
-----------------
-- pragma Independent (LOCAL_NAME);
when Pragma_Independent =>
Process_Atomic_Independent_Shared_Volatile;
----------------------------
-- Independent_Components --
----------------------------
-- pragma Independent_Components (array_or_record_LOCAL_NAME);
when Pragma_Independent_Components => Independent_Components : declare
C : Node_Id;
D : Node_Id;
E_Id : Node_Id;
E : Entity_Id;
K : Node_Kind;
begin
Check_Ada_83_Warning;
Ada_2012_Pragma;
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Arg_Is_Local_Name (Arg1);
E_Id := Get_Pragma_Arg (Arg1);
if Etype (E_Id) = Any_Type then
return;
end if;
E := Entity (E_Id);
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, E);
-- Check duplicate before we chain ourselves
Check_Duplicate_Pragma (E);
-- Check appropriate entity
if Rep_Item_Too_Early (E, N)
or else
Rep_Item_Too_Late (E, N)
then
return;
end if;
D := Declaration_Node (E);
K := Nkind (D);
-- The flag is set on the base type, or on the object
if K = N_Full_Type_Declaration
and then (Is_Array_Type (E) or else Is_Record_Type (E))
then
Set_Has_Independent_Components (Base_Type (E));
Record_Independence_Check (N, Base_Type (E));
-- For record type, set all components independent
if Is_Record_Type (E) then
C := First_Component (E);
while Present (C) loop
Set_Is_Independent (C);
Next_Component (C);
end loop;
end if;
elsif (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
and then Nkind (D) = N_Object_Declaration
and then Nkind (Object_Definition (D)) =
N_Constrained_Array_Definition
then
Set_Has_Independent_Components (E);
Record_Independence_Check (N, E);
else
Error_Pragma_Arg ("inappropriate entity for pragma%", Arg1);
end if;
end Independent_Components;
-----------------------
-- Initial_Condition --
-----------------------
-- pragma Initial_Condition (boolean_EXPRESSION);
-- Characteristics:
-- * Analysis - The annotation undergoes initial checks to verify
-- the legal placement and context. Secondary checks preanalyze the
-- expression in:
-- Analyze_Initial_Condition_In_Decl_Part
-- * Expansion - The annotation is expanded during the expansion of
-- the package body whose declaration is subject to the annotation
-- as done in:
-- Expand_Pragma_Initial_Condition
-- * Template - The annotation utilizes the generic template of the
-- related package declaration.
-- * Globals - Capture of global references must occur after full
-- analysis.
-- * Instance - The annotation is instantiated automatically when
-- the related generic package is instantiated.
when Pragma_Initial_Condition => Initial_Condition : declare
Pack_Decl : Node_Id;
Pack_Id : Entity_Id;
begin
GNAT_Pragma;
Check_No_Identifiers;
Check_Arg_Count (1);
Pack_Decl := Find_Related_Package_Or_Body (N, Do_Checks => True);
-- Ensure the proper placement of the pragma. Initial_Condition
-- must be associated with a package declaration.
if Nkind_In (Pack_Decl, N_Generic_Package_Declaration,
N_Package_Declaration)
then
null;
-- Otherwise the pragma is associated with an illegal context
else
Pragma_Misplaced;
return;
end if;
Pack_Id := Defining_Entity (Pack_Decl);
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Pack_Id);
-- Chain the pragma on the contract for further processing by
-- Analyze_Initial_Condition_In_Decl_Part.
Add_Contract_Item (N, Pack_Id);
-- The legality checks of pragmas Abstract_State, Initializes, and
-- Initial_Condition are affected by the SPARK mode in effect. In
-- addition, these three pragmas are subject to an inherent order:
-- 1) Abstract_State
-- 2) Initializes
-- 3) Initial_Condition
-- Analyze all these pragmas in the order outlined above
Analyze_If_Present (Pragma_SPARK_Mode);
Analyze_If_Present (Pragma_Abstract_State);
Analyze_If_Present (Pragma_Initializes);
end Initial_Condition;
------------------------
-- Initialize_Scalars --
------------------------
-- pragma Initialize_Scalars;
when Pragma_Initialize_Scalars =>
GNAT_Pragma;
Check_Arg_Count (0);
Check_Valid_Configuration_Pragma;
Check_Restriction (No_Initialize_Scalars, N);
-- Initialize_Scalars creates false positives in CodePeer, and
-- incorrect negative results in GNATprove mode, so ignore this
-- pragma in these modes.
if not Restriction_Active (No_Initialize_Scalars)
and then not (CodePeer_Mode or GNATprove_Mode)
then
Init_Or_Norm_Scalars := True;
Initialize_Scalars := True;
end if;
-----------------
-- Initializes --
-----------------
-- pragma Initializes (INITIALIZATION_LIST);
-- INITIALIZATION_LIST ::=
-- null
-- | (INITIALIZATION_ITEM {, INITIALIZATION_ITEM})
-- INITIALIZATION_ITEM ::= name [=> INPUT_LIST]
-- INPUT_LIST ::=
-- null
-- | INPUT
-- | (INPUT {, INPUT})
-- INPUT ::= name
-- Characteristics:
-- * Analysis - The annotation undergoes initial checks to verify
-- the legal placement and context. Secondary checks preanalyze the
-- expression in:
-- Analyze_Initializes_In_Decl_Part
-- * Expansion - None.
-- * Template - The annotation utilizes the generic template of the
-- related package declaration.
-- * Globals - Capture of global references must occur after full
-- analysis.
-- * Instance - The annotation is instantiated automatically when
-- the related generic package is instantiated.
when Pragma_Initializes => Initializes : declare
Pack_Decl : Node_Id;
Pack_Id : Entity_Id;
begin
GNAT_Pragma;
Check_No_Identifiers;
Check_Arg_Count (1);
Pack_Decl := Find_Related_Package_Or_Body (N, Do_Checks => True);
-- Ensure the proper placement of the pragma. Initializes must be
-- associated with a package declaration.
if Nkind_In (Pack_Decl, N_Generic_Package_Declaration,
N_Package_Declaration)
then
null;
-- Otherwise the pragma is associated with an illegal construc
else
Pragma_Misplaced;
return;
end if;
Pack_Id := Defining_Entity (Pack_Decl);
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Pack_Id);
Ensure_Aggregate_Form (Get_Argument (N, Pack_Id));
-- Chain the pragma on the contract for further processing by
-- Analyze_Initializes_In_Decl_Part.
Add_Contract_Item (N, Pack_Id);
-- The legality checks of pragmas Abstract_State, Initializes, and
-- Initial_Condition are affected by the SPARK mode in effect. In
-- addition, these three pragmas are subject to an inherent order:
-- 1) Abstract_State
-- 2) Initializes
-- 3) Initial_Condition
-- Analyze all these pragmas in the order outlined above
Analyze_If_Present (Pragma_SPARK_Mode);
Analyze_If_Present (Pragma_Abstract_State);
Analyze_If_Present (Pragma_Initial_Condition);
end Initializes;
------------
-- Inline --
------------
-- pragma Inline ( NAME {, NAME} );
when Pragma_Inline =>
-- Pragma always active unless in GNATprove mode. It is disabled
-- in GNATprove mode because frontend inlining is applied
-- independently of pragmas Inline and Inline_Always for
-- formal verification, see Can_Be_Inlined_In_GNATprove_Mode
-- in inline.ads.
if not GNATprove_Mode then
-- Inline status is Enabled if option -gnatn is specified.
-- However this status determines only the value of the
-- Is_Inlined flag on the subprogram and does not prevent
-- the pragma itself from being recorded for later use,
-- in particular for a later modification of Is_Inlined
-- independently of the -gnatn option.
-- In other words, if -gnatn is specified for a unit, then
-- all Inline pragmas processed for the compilation of this
-- unit, including those in the spec of other units, are
-- activated, so subprograms will be inlined across units.
-- If -gnatn is not specified, no Inline pragma is activated
-- here, which means that subprograms will not be inlined
-- across units. The Is_Inlined flag will nevertheless be
-- set later when bodies are analyzed, so subprograms will
-- be inlined within the unit.
if Inline_Active then
Process_Inline (Enabled);
else
Process_Inline (Disabled);
end if;
end if;
-------------------
-- Inline_Always --
-------------------
-- pragma Inline_Always ( NAME {, NAME} );
when Pragma_Inline_Always =>
GNAT_Pragma;
-- Pragma always active unless in CodePeer mode or GNATprove
-- mode. It is disabled in CodePeer mode because inlining is
-- not helpful, and enabling it caused walk order issues. It
-- is disabled in GNATprove mode because frontend inlining is
-- applied independently of pragmas Inline and Inline_Always for
-- formal verification, see Can_Be_Inlined_In_GNATprove_Mode in
-- inline.ads.
if not CodePeer_Mode and not GNATprove_Mode then
Process_Inline (Enabled);
end if;
--------------------
-- Inline_Generic --
--------------------
-- pragma Inline_Generic (NAME {, NAME});
when Pragma_Inline_Generic =>
GNAT_Pragma;
Process_Generic_List;
----------------------
-- Inspection_Point --
----------------------
-- pragma Inspection_Point [(object_NAME {, object_NAME})];
when Pragma_Inspection_Point => Inspection_Point : declare
Arg : Node_Id;
Exp : Node_Id;
begin
ip;
if Arg_Count > 0 then
Arg := Arg1;
loop
Exp := Get_Pragma_Arg (Arg);
Analyze (Exp);
if not Is_Entity_Name (Exp)
or else not Is_Object (Entity (Exp))
then
Error_Pragma_Arg ("object name required", Arg);
end if;
Next (Arg);
exit when No (Arg);
end loop;
end if;
end Inspection_Point;
---------------
-- Interface --
---------------
-- pragma Interface (
-- [ Convention =>] convention_IDENTIFIER,
-- [ Entity =>] LOCAL_NAME
-- [, [External_Name =>] static_string_EXPRESSION ]
-- [, [Link_Name =>] static_string_EXPRESSION ]);
when Pragma_Interface =>
GNAT_Pragma;
Check_Arg_Order
((Name_Convention,
Name_Entity,
Name_External_Name,
Name_Link_Name));
Check_At_Least_N_Arguments (2);
Check_At_Most_N_Arguments (4);
Process_Import_Or_Interface;
-- In Ada 2005, the permission to use Interface (a reserved word)
-- as a pragma name is considered an obsolescent feature, and this
-- pragma was already obsolescent in Ada 95.
if Ada_Version >= Ada_95 then
Check_Restriction
(No_Obsolescent_Features, Pragma_Identifier (N));
if Warn_On_Obsolescent_Feature then
Error_Msg_N
("pragma Interface is an obsolescent feature?j?", N);
Error_Msg_N
("|use pragma Import instead?j?", N);
end if;
end if;
--------------------
-- Interface_Name --
--------------------
-- pragma Interface_Name (
-- [ Entity =>] LOCAL_NAME
-- [,[External_Name =>] static_string_EXPRESSION ]
-- [,[Link_Name =>] static_string_EXPRESSION ]);
when Pragma_Interface_Name => Interface_Name : declare
Id : Node_Id;
Def_Id : Entity_Id;
Hom_Id : Entity_Id;
Found : Boolean;
begin
GNAT_Pragma;
Check_Arg_Order
((Name_Entity, Name_External_Name, Name_Link_Name));
Check_At_Least_N_Arguments (2);
Check_At_Most_N_Arguments (3);
Id := Get_Pragma_Arg (Arg1);
Analyze (Id);
-- This is obsolete from Ada 95 on, but it is an implementation
-- defined pragma, so we do not consider that it violates the
-- restriction (No_Obsolescent_Features).
if Ada_Version >= Ada_95 then
if Warn_On_Obsolescent_Feature then
Error_Msg_N
("pragma Interface_Name is an obsolescent feature?j?", N);
Error_Msg_N
("|use pragma Import instead?j?", N);
end if;
end if;
if not Is_Entity_Name (Id) then
Error_Pragma_Arg
("first argument for pragma% must be entity name", Arg1);
elsif Etype (Id) = Any_Type then
return;
else
Def_Id := Entity (Id);
end if;
-- Special DEC-compatible processing for the object case, forces
-- object to be imported.
if Ekind (Def_Id) = E_Variable then
Kill_Size_Check_Code (Def_Id);
Note_Possible_Modification (Id, Sure => False);
-- Initialization is not allowed for imported variable
if Present (Expression (Parent (Def_Id)))
and then Comes_From_Source (Expression (Parent (Def_Id)))
then
Error_Msg_Sloc := Sloc (Def_Id);
Error_Pragma_Arg
("no initialization allowed for declaration of& #",
Arg2);
else
-- For compatibility, support VADS usage of providing both
-- pragmas Interface and Interface_Name to obtain the effect
-- of a single Import pragma.
if Is_Imported (Def_Id)
and then Present (First_Rep_Item (Def_Id))
and then Nkind (First_Rep_Item (Def_Id)) = N_Pragma
and then Pragma_Name (First_Rep_Item (Def_Id)) =
Name_Interface
then
null;
else
Set_Imported (Def_Id);
end if;
Set_Is_Public (Def_Id);
Process_Interface_Name (Def_Id, Arg2, Arg3, N);
end if;
-- Otherwise must be subprogram
elsif not Is_Subprogram (Def_Id) then
Error_Pragma_Arg
("argument of pragma% is not subprogram", Arg1);
else
Check_At_Most_N_Arguments (3);
Hom_Id := Def_Id;
Found := False;
-- Loop through homonyms
loop
Def_Id := Get_Base_Subprogram (Hom_Id);
if Is_Imported (Def_Id) then
Process_Interface_Name (Def_Id, Arg2, Arg3, N);
Found := True;
end if;
exit when From_Aspect_Specification (N);
Hom_Id := Homonym (Hom_Id);
exit when No (Hom_Id)
or else Scope (Hom_Id) /= Current_Scope;
end loop;
if not Found then
Error_Pragma_Arg
("argument of pragma% is not imported subprogram",
Arg1);
end if;
end if;
end Interface_Name;
-----------------------
-- Interrupt_Handler --
-----------------------
-- pragma Interrupt_Handler (handler_NAME);
when Pragma_Interrupt_Handler =>
Check_Ada_83_Warning;
Check_Arg_Count (1);
Check_No_Identifiers;
if No_Run_Time_Mode then
Error_Msg_CRT ("Interrupt_Handler pragma", N);
else
Check_Interrupt_Or_Attach_Handler;
Process_Interrupt_Or_Attach_Handler;
end if;
------------------------
-- Interrupt_Priority --
------------------------
-- pragma Interrupt_Priority [(EXPRESSION)];
when Pragma_Interrupt_Priority => Interrupt_Priority : declare
P : constant Node_Id := Parent (N);
Arg : Node_Id;
Ent : Entity_Id;
begin
Check_Ada_83_Warning;
if Arg_Count /= 0 then
Arg := Get_Pragma_Arg (Arg1);
Check_Arg_Count (1);
Check_No_Identifiers;
-- The expression must be analyzed in the special manner
-- described in "Handling of Default and Per-Object
-- Expressions" in sem.ads.
Preanalyze_Spec_Expression (Arg, RTE (RE_Interrupt_Priority));
end if;
if not Nkind_In (P, N_Task_Definition, N_Protected_Definition) then
Pragma_Misplaced;
return;
else
Ent := Defining_Identifier (Parent (P));
-- Check duplicate pragma before we chain the pragma in the Rep
-- Item chain of Ent.
Check_Duplicate_Pragma (Ent);
Record_Rep_Item (Ent, N);
-- Check the No_Task_At_Interrupt_Priority restriction
if Nkind (P) = N_Task_Definition then
Check_Restriction (No_Task_At_Interrupt_Priority, N);
end if;
end if;
end Interrupt_Priority;
---------------------
-- Interrupt_State --
---------------------
-- pragma Interrupt_State (
-- [Name =>] INTERRUPT_ID,
-- [State =>] INTERRUPT_STATE);
-- INTERRUPT_ID => IDENTIFIER | static_integer_EXPRESSION
-- INTERRUPT_STATE => System | Runtime | User
-- Note: if the interrupt id is given as an identifier, then it must
-- be one of the identifiers in Ada.Interrupts.Names. Otherwise it is
-- given as a static integer expression which must be in the range of
-- Ada.Interrupts.Interrupt_ID.
when Pragma_Interrupt_State => Interrupt_State : declare
Int_Id : constant Entity_Id := RTE (RE_Interrupt_ID);
-- This is the entity Ada.Interrupts.Interrupt_ID;
State_Type : Character;
-- Set to 's'/'r'/'u' for System/Runtime/User
IST_Num : Pos;
-- Index to entry in Interrupt_States table
Int_Val : Uint;
-- Value of interrupt
Arg1X : constant Node_Id := Get_Pragma_Arg (Arg1);
-- The first argument to the pragma
Int_Ent : Entity_Id;
-- Interrupt entity in Ada.Interrupts.Names
begin
GNAT_Pragma;
Check_Arg_Order ((Name_Name, Name_State));
Check_Arg_Count (2);
Check_Optional_Identifier (Arg1, Name_Name);
Check_Optional_Identifier (Arg2, Name_State);
Check_Arg_Is_Identifier (Arg2);
-- First argument is identifier
if Nkind (Arg1X) = N_Identifier then
-- Search list of names in Ada.Interrupts.Names
Int_Ent := First_Entity (RTE (RE_Names));
loop
if No (Int_Ent) then
Error_Pragma_Arg ("invalid interrupt name", Arg1);
elsif Chars (Int_Ent) = Chars (Arg1X) then
Int_Val := Expr_Value (Constant_Value (Int_Ent));
exit;
end if;
Next_Entity (Int_Ent);
end loop;
-- First argument is not an identifier, so it must be a static
-- expression of type Ada.Interrupts.Interrupt_ID.
else
Check_Arg_Is_OK_Static_Expression (Arg1, Any_Integer);
Int_Val := Expr_Value (Arg1X);
if Int_Val < Expr_Value (Type_Low_Bound (Int_Id))
or else
Int_Val > Expr_Value (Type_High_Bound (Int_Id))
then
Error_Pragma_Arg
("value not in range of type "
& """Ada.Interrupts.Interrupt_'I'D""", Arg1);
end if;
end if;
-- Check OK state
case Chars (Get_Pragma_Arg (Arg2)) is
when Name_Runtime => State_Type := 'r';
when Name_System => State_Type := 's';
when Name_User => State_Type := 'u';
when others =>
Error_Pragma_Arg ("invalid interrupt state", Arg2);
end case;
-- Check if entry is already stored
IST_Num := Interrupt_States.First;
loop
-- If entry not found, add it
if IST_Num > Interrupt_States.Last then
Interrupt_States.Append
((Interrupt_Number => UI_To_Int (Int_Val),
Interrupt_State => State_Type,
Pragma_Loc => Loc));
exit;
-- Case of entry for the same entry
elsif Int_Val = Interrupt_States.Table (IST_Num).
Interrupt_Number
then
-- If state matches, done, no need to make redundant entry
exit when
State_Type = Interrupt_States.Table (IST_Num).
Interrupt_State;
-- Otherwise if state does not match, error
Error_Msg_Sloc :=
Interrupt_States.Table (IST_Num).Pragma_Loc;
Error_Pragma_Arg
("state conflicts with that given #", Arg2);
exit;
end if;
IST_Num := IST_Num + 1;
end loop;
end Interrupt_State;
---------------
-- Invariant --
---------------
-- pragma Invariant
-- ([Entity =>] type_LOCAL_NAME,
-- [Check =>] EXPRESSION
-- [,[Message =>] String_Expression]);
when Pragma_Invariant => Invariant : declare
Discard : Boolean;
Typ : Entity_Id;
Typ_Arg : Node_Id;
begin
GNAT_Pragma;
Check_At_Least_N_Arguments (2);
Check_At_Most_N_Arguments (3);
Check_Optional_Identifier (Arg1, Name_Entity);
Check_Optional_Identifier (Arg2, Name_Check);
if Arg_Count = 3 then
Check_Optional_Identifier (Arg3, Name_Message);
Check_Arg_Is_OK_Static_Expression (Arg3, Standard_String);
end if;
Check_Arg_Is_Local_Name (Arg1);
Typ_Arg := Get_Pragma_Arg (Arg1);
Find_Type (Typ_Arg);
Typ := Entity (Typ_Arg);
-- Nothing to do of the related type is erroneous in some way
if Typ = Any_Type then
return;
-- AI12-0041: Invariants are allowed in interface types
elsif Is_Interface (Typ) then
null;
-- An invariant must apply to a private type, or appear in the
-- private part of a package spec and apply to a completion.
-- a class-wide invariant can only appear on a private declaration
-- or private extension, not a completion.
-- A [class-wide] invariant may be associated a [limited] private
-- type or a private extension.
elsif Ekind_In (Typ, E_Limited_Private_Type,
E_Private_Type,
E_Record_Type_With_Private)
then
null;
-- A non-class-wide invariant may be associated with the full view
-- of a [limited] private type or a private extension.
elsif Has_Private_Declaration (Typ)
and then not Class_Present (N)
then
null;
-- A class-wide invariant may appear on the partial view only
elsif Class_Present (N) then
Error_Pragma_Arg
("pragma % only allowed for private type", Arg1);
return;
-- A regular invariant may appear on both views
else
Error_Pragma_Arg
("pragma % only allowed for private type or corresponding "
& "full view", Arg1);
return;
end if;
-- An invariant associated with an abstract type (this includes
-- interfaces) must be class-wide.
if Is_Abstract_Type (Typ) and then not Class_Present (N) then
Error_Pragma_Arg
("pragma % not allowed for abstract type", Arg1);
return;
end if;
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Typ);
-- The pragma defines a type-specific invariant, the type is said
-- to have invariants of its "own".
Set_Has_Own_Invariants (Typ);
-- If the invariant is class-wide, then it can be inherited by
-- derived or interface implementing types. The type is said to
-- have "inheritable" invariants.
if Class_Present (N) then
Set_Has_Inheritable_Invariants (Typ);
end if;
-- Chain the pragma on to the rep item chain, for processing when
-- the type is frozen.
Discard := Rep_Item_Too_Late (Typ, N, FOnly => True);
-- Create the declaration of the invariant procedure that will
-- verify the invariant at run time. Interfaces are treated as the
-- partial view of a private type in order to achieve uniformity
-- with the general case. As a result, an interface receives only
-- a "partial" invariant procedure, which is never called.
Build_Invariant_Procedure_Declaration
(Typ => Typ,
Partial_Invariant => Is_Interface (Typ));
end Invariant;
----------------
-- Keep_Names --
----------------
-- pragma Keep_Names ([On => ] LOCAL_NAME);
when Pragma_Keep_Names => Keep_Names : declare
Arg : Node_Id;
begin
GNAT_Pragma;
Check_Arg_Count (1);
Check_Optional_Identifier (Arg1, Name_On);
Check_Arg_Is_Local_Name (Arg1);
Arg := Get_Pragma_Arg (Arg1);
Analyze (Arg);
if Etype (Arg) = Any_Type then
return;
end if;
if not Is_Entity_Name (Arg)
or else Ekind (Entity (Arg)) /= E_Enumeration_Type
then
Error_Pragma_Arg
("pragma% requires a local enumeration type", Arg1);
end if;
Set_Discard_Names (Entity (Arg), False);
end Keep_Names;
-------------
-- License --
-------------
-- pragma License (RESTRICTED | UNRESTRICTED | GPL | MODIFIED_GPL);
when Pragma_License =>
GNAT_Pragma;
-- Do not analyze pragma any further in CodePeer mode, to avoid
-- extraneous errors in this implementation-dependent pragma,
-- which has a different profile on other compilers.
if CodePeer_Mode then
return;
end if;
Check_Arg_Count (1);
Check_No_Identifiers;
Check_Valid_Configuration_Pragma;
Check_Arg_Is_Identifier (Arg1);
declare
Sind : constant Source_File_Index :=
Source_Index (Current_Sem_Unit);
begin
case Chars (Get_Pragma_Arg (Arg1)) is
when Name_GPL =>
Set_License (Sind, GPL);
when Name_Modified_GPL =>
Set_License (Sind, Modified_GPL);
when Name_Restricted =>
Set_License (Sind, Restricted);
when Name_Unrestricted =>
Set_License (Sind, Unrestricted);
when others =>
Error_Pragma_Arg ("invalid license name", Arg1);
end case;
end;
---------------
-- Link_With --
---------------
-- pragma Link_With (string_EXPRESSION {, string_EXPRESSION});
when Pragma_Link_With => Link_With : declare
Arg : Node_Id;
begin
GNAT_Pragma;
if Operating_Mode = Generate_Code
and then In_Extended_Main_Source_Unit (N)
then
Check_At_Least_N_Arguments (1);
Check_No_Identifiers;
Check_Is_In_Decl_Part_Or_Package_Spec;
Check_Arg_Is_OK_Static_Expression (Arg1, Standard_String);
Start_String;
Arg := Arg1;
while Present (Arg) loop
Check_Arg_Is_OK_Static_Expression (Arg, Standard_String);
-- Store argument, converting sequences of spaces to a
-- single null character (this is one of the differences
-- in processing between Link_With and Linker_Options).
Arg_Store : declare
C : constant Char_Code := Get_Char_Code (' ');
S : constant String_Id :=
Strval (Expr_Value_S (Get_Pragma_Arg (Arg)));
L : constant Nat := String_Length (S);
F : Nat := 1;
procedure Skip_Spaces;
-- Advance F past any spaces
-----------------
-- Skip_Spaces --
-----------------
procedure Skip_Spaces is
begin
while F <= L and then Get_String_Char (S, F) = C loop
F := F + 1;
end loop;
end Skip_Spaces;
-- Start of processing for Arg_Store
begin
Skip_Spaces; -- skip leading spaces
-- Loop through characters, changing any embedded
-- sequence of spaces to a single null character (this
-- is how Link_With/Linker_Options differ)
while F <= L loop
if Get_String_Char (S, F) = C then
Skip_Spaces;
exit when F > L;
Store_String_Char (ASCII.NUL);
else
Store_String_Char (Get_String_Char (S, F));
F := F + 1;
end if;
end loop;
end Arg_Store;
Arg := Next (Arg);
if Present (Arg) then
Store_String_Char (ASCII.NUL);
end if;
end loop;
Store_Linker_Option_String (End_String);
end if;
end Link_With;
------------------
-- Linker_Alias --
------------------
-- pragma Linker_Alias (
-- [Entity =>] LOCAL_NAME
-- [Target =>] static_string_EXPRESSION);
when Pragma_Linker_Alias =>
GNAT_Pragma;
Check_Arg_Order ((Name_Entity, Name_Target));
Check_Arg_Count (2);
Check_Optional_Identifier (Arg1, Name_Entity);
Check_Optional_Identifier (Arg2, Name_Target);
Check_Arg_Is_Library_Level_Local_Name (Arg1);
Check_Arg_Is_OK_Static_Expression (Arg2, Standard_String);
-- The only processing required is to link this item on to the
-- list of rep items for the given entity. This is accomplished
-- by the call to Rep_Item_Too_Late (when no error is detected
-- and False is returned).
if Rep_Item_Too_Late (Entity (Get_Pragma_Arg (Arg1)), N) then
return;
else
Set_Has_Gigi_Rep_Item (Entity (Get_Pragma_Arg (Arg1)));
end if;
------------------------
-- Linker_Constructor --
------------------------
-- pragma Linker_Constructor (procedure_LOCAL_NAME);
-- Code is shared with Linker_Destructor
-----------------------
-- Linker_Destructor --
-----------------------
-- pragma Linker_Destructor (procedure_LOCAL_NAME);
when Pragma_Linker_Constructor
| Pragma_Linker_Destructor
=>
Linker_Constructor : declare
Arg1_X : Node_Id;
Proc : Entity_Id;
begin
GNAT_Pragma;
Check_Arg_Count (1);
Check_No_Identifiers;
Check_Arg_Is_Local_Name (Arg1);
Arg1_X := Get_Pragma_Arg (Arg1);
Analyze (Arg1_X);
Proc := Find_Unique_Parameterless_Procedure (Arg1_X, Arg1);
if not Is_Library_Level_Entity (Proc) then
Error_Pragma_Arg
("argument for pragma% must be library level entity", Arg1);
end if;
-- The only processing required is to link this item on to the
-- list of rep items for the given entity. This is accomplished
-- by the call to Rep_Item_Too_Late (when no error is detected
-- and False is returned).
if Rep_Item_Too_Late (Proc, N) then
return;
else
Set_Has_Gigi_Rep_Item (Proc);
end if;
end Linker_Constructor;
--------------------
-- Linker_Options --
--------------------
-- pragma Linker_Options (string_EXPRESSION {, string_EXPRESSION});
when Pragma_Linker_Options => Linker_Options : declare
Arg : Node_Id;
begin
Check_Ada_83_Warning;
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Is_In_Decl_Part_Or_Package_Spec;
Check_Arg_Is_OK_Static_Expression (Arg1, Standard_String);
Start_String (Strval (Expr_Value_S (Get_Pragma_Arg (Arg1))));
Arg := Arg2;
while Present (Arg) loop
Check_Arg_Is_OK_Static_Expression (Arg, Standard_String);
Store_String_Char (ASCII.NUL);
Store_String_Chars
(Strval (Expr_Value_S (Get_Pragma_Arg (Arg))));
Arg := Next (Arg);
end loop;
if Operating_Mode = Generate_Code
and then In_Extended_Main_Source_Unit (N)
then
Store_Linker_Option_String (End_String);
end if;
end Linker_Options;
--------------------
-- Linker_Section --
--------------------
-- pragma Linker_Section (
-- [Entity =>] LOCAL_NAME
-- [Section =>] static_string_EXPRESSION);
when Pragma_Linker_Section => Linker_Section : declare
Arg : Node_Id;
Ent : Entity_Id;
LPE : Node_Id;
Ghost_Error_Posted : Boolean := False;
-- Flag set when an error concerning the illegal mix of Ghost and
-- non-Ghost subprograms is emitted.
Ghost_Id : Entity_Id := Empty;
-- The entity of the first Ghost subprogram encountered while
-- processing the arguments of the pragma.
begin
GNAT_Pragma;
Check_Arg_Order ((Name_Entity, Name_Section));
Check_Arg_Count (2);
Check_Optional_Identifier (Arg1, Name_Entity);
Check_Optional_Identifier (Arg2, Name_Section);
Check_Arg_Is_Library_Level_Local_Name (Arg1);
Check_Arg_Is_OK_Static_Expression (Arg2, Standard_String);
-- Check kind of entity
Arg := Get_Pragma_Arg (Arg1);
Ent := Entity (Arg);
case Ekind (Ent) is
-- Objects (constants and variables) and types. For these cases
-- all we need to do is to set the Linker_Section_pragma field,
-- checking that we do not have a duplicate.
when Type_Kind
| E_Constant
| E_Variable
=>
LPE := Linker_Section_Pragma (Ent);
if Present (LPE) then
Error_Msg_Sloc := Sloc (LPE);
Error_Msg_NE
("Linker_Section already specified for &#", Arg1, Ent);
end if;
Set_Linker_Section_Pragma (Ent, N);
-- A pragma that applies to a Ghost entity becomes Ghost for
-- the purposes of legality checks and removal of ignored
-- Ghost code.
Mark_Ghost_Pragma (N, Ent);
-- Subprograms
when Subprogram_Kind =>
-- Aspect case, entity already set
if From_Aspect_Specification (N) then
Set_Linker_Section_Pragma
(Entity (Corresponding_Aspect (N)), N);
-- Pragma case, we must climb the homonym chain, but skip
-- any for which the linker section is already set.
else
loop
if No (Linker_Section_Pragma (Ent)) then
Set_Linker_Section_Pragma (Ent, N);
-- A pragma that applies to a Ghost entity becomes
-- Ghost for the purposes of legality checks and
-- removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Ent);
-- Capture the entity of the first Ghost subprogram
-- being processed for error detection purposes.
if Is_Ghost_Entity (Ent) then
if No (Ghost_Id) then
Ghost_Id := Ent;
end if;
-- Otherwise the subprogram is non-Ghost. It is
-- illegal to mix references to Ghost and non-Ghost
-- entities (SPARK RM 6.9).
elsif Present (Ghost_Id)
and then not Ghost_Error_Posted
then
Ghost_Error_Posted := True;
Error_Msg_Name_1 := Pname;
Error_Msg_N
("pragma % cannot mention ghost and "
& "non-ghost subprograms", N);
Error_Msg_Sloc := Sloc (Ghost_Id);
Error_Msg_NE
("\& # declared as ghost", N, Ghost_Id);
Error_Msg_Sloc := Sloc (Ent);
Error_Msg_NE
("\& # declared as non-ghost", N, Ent);
end if;
end if;
Ent := Homonym (Ent);
exit when No (Ent)
or else Scope (Ent) /= Current_Scope;
end loop;
end if;
-- All other cases are illegal
when others =>
Error_Pragma_Arg
("pragma% applies only to objects, subprograms, and types",
Arg1);
end case;
end Linker_Section;
----------
-- List --
----------
-- pragma List (On | Off)
-- There is nothing to do here, since we did all the processing for
-- this pragma in Par.Prag (so that it works properly even in syntax
-- only mode).
when Pragma_List =>
null;
---------------
-- Lock_Free --
---------------
-- pragma Lock_Free [(Boolean_EXPRESSION)];
when Pragma_Lock_Free => Lock_Free : declare
P : constant Node_Id := Parent (N);
Arg : Node_Id;
Ent : Entity_Id;
Val : Boolean;
begin
Check_No_Identifiers;
Check_At_Most_N_Arguments (1);
-- Protected definition case
if Nkind (P) = N_Protected_Definition then
Ent := Defining_Identifier (Parent (P));
-- One argument
if Arg_Count = 1 then
Arg := Get_Pragma_Arg (Arg1);
Val := Is_True (Static_Boolean (Arg));
-- No arguments (expression is considered to be True)
else
Val := True;
end if;
-- Check duplicate pragma before we chain the pragma in the Rep
-- Item chain of Ent.
Check_Duplicate_Pragma (Ent);
Record_Rep_Item (Ent, N);
Set_Uses_Lock_Free (Ent, Val);
-- Anything else is incorrect placement
else
Pragma_Misplaced;
end if;
end Lock_Free;
--------------------
-- Locking_Policy --
--------------------
-- pragma Locking_Policy (policy_IDENTIFIER);
when Pragma_Locking_Policy => declare
subtype LP_Range is Name_Id
range First_Locking_Policy_Name .. Last_Locking_Policy_Name;
LP_Val : LP_Range;
LP : Character;
begin
Check_Ada_83_Warning;
Check_Arg_Count (1);
Check_No_Identifiers;
Check_Arg_Is_Locking_Policy (Arg1);
Check_Valid_Configuration_Pragma;
LP_Val := Chars (Get_Pragma_Arg (Arg1));
case LP_Val is
when Name_Ceiling_Locking => LP := 'C';
when Name_Concurrent_Readers_Locking => LP := 'R';
when Name_Inheritance_Locking => LP := 'I';
end case;
if Locking_Policy /= ' '
and then Locking_Policy /= LP
then
Error_Msg_Sloc := Locking_Policy_Sloc;
Error_Pragma ("locking policy incompatible with policy#");
-- Set new policy, but always preserve System_Location since we
-- like the error message with the run time name.
else
Locking_Policy := LP;
if Locking_Policy_Sloc /= System_Location then
Locking_Policy_Sloc := Loc;
end if;
end if;
end;
-------------------
-- Loop_Optimize --
-------------------
-- pragma Loop_Optimize ( OPTIMIZATION_HINT {, OPTIMIZATION_HINT } );
-- OPTIMIZATION_HINT ::=
-- Ivdep | No_Unroll | Unroll | No_Vector | Vector
when Pragma_Loop_Optimize => Loop_Optimize : declare
Hint : Node_Id;
begin
GNAT_Pragma;
Check_At_Least_N_Arguments (1);
Check_No_Identifiers;
Hint := First (Pragma_Argument_Associations (N));
while Present (Hint) loop
Check_Arg_Is_One_Of (Hint, Name_Ivdep,
Name_No_Unroll,
Name_Unroll,
Name_No_Vector,
Name_Vector);
Next (Hint);
end loop;
Check_Loop_Pragma_Placement;
end Loop_Optimize;
------------------
-- Loop_Variant --
------------------
-- pragma Loop_Variant
-- ( LOOP_VARIANT_ITEM {, LOOP_VARIANT_ITEM } );
-- LOOP_VARIANT_ITEM ::= CHANGE_DIRECTION => discrete_EXPRESSION
-- CHANGE_DIRECTION ::= Increases | Decreases
when Pragma_Loop_Variant => Loop_Variant : declare
Variant : Node_Id;
begin
GNAT_Pragma;
Check_At_Least_N_Arguments (1);
Check_Loop_Pragma_Placement;
-- Process all increasing / decreasing expressions
Variant := First (Pragma_Argument_Associations (N));
while Present (Variant) loop
if Chars (Variant) = No_Name then
Error_Pragma_Arg_Ident ("expect name `Increases`", Variant);
elsif not Nam_In (Chars (Variant), Name_Decreases,
Name_Increases)
then
declare
Name : String := Get_Name_String (Chars (Variant));
begin
-- It is a common mistake to write "Increasing" for
-- "Increases" or "Decreasing" for "Decreases". Recognize
-- specially names starting with "incr" or "decr" to
-- suggest the corresponding name.
System.Case_Util.To_Lower (Name);
if Name'Length >= 4
and then Name (1 .. 4) = "incr"
then
Error_Pragma_Arg_Ident
("expect name `Increases`", Variant);
elsif Name'Length >= 4
and then Name (1 .. 4) = "decr"
then
Error_Pragma_Arg_Ident
("expect name `Decreases`", Variant);
else
Error_Pragma_Arg_Ident
("expect name `Increases` or `Decreases`", Variant);
end if;
end;
end if;
Preanalyze_Assert_Expression
(Expression (Variant), Any_Discrete);
Next (Variant);
end loop;
end Loop_Variant;
-----------------------
-- Machine_Attribute --
-----------------------
-- pragma Machine_Attribute (
-- [Entity =>] LOCAL_NAME,
-- [Attribute_Name =>] static_string_EXPRESSION
-- [, [Info =>] static_EXPRESSION] );
when Pragma_Machine_Attribute => Machine_Attribute : declare
Def_Id : Entity_Id;
begin
GNAT_Pragma;
Check_Arg_Order ((Name_Entity, Name_Attribute_Name, Name_Info));
if Arg_Count = 3 then
Check_Optional_Identifier (Arg3, Name_Info);
Check_Arg_Is_OK_Static_Expression (Arg3);
else
Check_Arg_Count (2);
end if;
Check_Optional_Identifier (Arg1, Name_Entity);
Check_Optional_Identifier (Arg2, Name_Attribute_Name);
Check_Arg_Is_Local_Name (Arg1);
Check_Arg_Is_OK_Static_Expression (Arg2, Standard_String);
Def_Id := Entity (Get_Pragma_Arg (Arg1));
if Is_Access_Type (Def_Id) then
Def_Id := Designated_Type (Def_Id);
end if;
if Rep_Item_Too_Early (Def_Id, N) then
return;
end if;
Def_Id := Underlying_Type (Def_Id);
-- The only processing required is to link this item on to the
-- list of rep items for the given entity. This is accomplished
-- by the call to Rep_Item_Too_Late (when no error is detected
-- and False is returned).
if Rep_Item_Too_Late (Def_Id, N) then
return;
else
Set_Has_Gigi_Rep_Item (Entity (Get_Pragma_Arg (Arg1)));
end if;
end Machine_Attribute;
----------
-- Main --
----------
-- pragma Main
-- (MAIN_OPTION [, MAIN_OPTION]);
-- MAIN_OPTION ::=
-- [STACK_SIZE =>] static_integer_EXPRESSION
-- | [TASK_STACK_SIZE_DEFAULT =>] static_integer_EXPRESSION
-- | [TIME_SLICING_ENABLED =>] static_boolean_EXPRESSION
when Pragma_Main => Main : declare
Args : Args_List (1 .. 3);
Names : constant Name_List (1 .. 3) := (
Name_Stack_Size,
Name_Task_Stack_Size_Default,
Name_Time_Slicing_Enabled);
Nod : Node_Id;
begin
GNAT_Pragma;
Gather_Associations (Names, Args);
for J in 1 .. 2 loop
if Present (Args (J)) then
Check_Arg_Is_OK_Static_Expression (Args (J), Any_Integer);
end if;
end loop;
if Present (Args (3)) then
Check_Arg_Is_OK_Static_Expression (Args (3), Standard_Boolean);
end if;
Nod := Next (N);
while Present (Nod) loop
if Nkind (Nod) = N_Pragma
and then Pragma_Name (Nod) = Name_Main
then
Error_Msg_Name_1 := Pname;
Error_Msg_N ("duplicate pragma% not permitted", Nod);
end if;
Next (Nod);
end loop;
end Main;
------------------
-- Main_Storage --
------------------
-- pragma Main_Storage
-- (MAIN_STORAGE_OPTION [, MAIN_STORAGE_OPTION]);
-- MAIN_STORAGE_OPTION ::=
-- [WORKING_STORAGE =>] static_SIMPLE_EXPRESSION
-- | [TOP_GUARD =>] static_SIMPLE_EXPRESSION
when Pragma_Main_Storage => Main_Storage : declare
Args : Args_List (1 .. 2);
Names : constant Name_List (1 .. 2) := (
Name_Working_Storage,
Name_Top_Guard);
Nod : Node_Id;
begin
GNAT_Pragma;
Gather_Associations (Names, Args);
for J in 1 .. 2 loop
if Present (Args (J)) then
Check_Arg_Is_OK_Static_Expression (Args (J), Any_Integer);
end if;
end loop;
Check_In_Main_Program;
Nod := Next (N);
while Present (Nod) loop
if Nkind (Nod) = N_Pragma
and then Pragma_Name (Nod) = Name_Main_Storage
then
Error_Msg_Name_1 := Pname;
Error_Msg_N ("duplicate pragma% not permitted", Nod);
end if;
Next (Nod);
end loop;
end Main_Storage;
----------------------
-- Max_Queue_Length --
----------------------
-- pragma Max_Queue_Length (static_integer_EXPRESSION);
when Pragma_Max_Queue_Length => Max_Queue_Length : declare
Arg : Node_Id;
Entry_Decl : Node_Id;
Entry_Id : Entity_Id;
Val : Uint;
begin
GNAT_Pragma;
Check_Arg_Count (1);
Entry_Decl :=
Find_Related_Declaration_Or_Body (N, Do_Checks => True);
-- Entry declaration
if Nkind (Entry_Decl) = N_Entry_Declaration then
-- Entry illegally within a task
if Nkind (Parent (N)) = N_Task_Definition then
Error_Pragma ("pragma % cannot apply to task entries");
return;
end if;
Entry_Id := Unique_Defining_Entity (Entry_Decl);
-- Otherwise the pragma is associated with an illegal construct
else
Error_Pragma ("pragma % must apply to a protected entry");
return;
end if;
-- Mark the pragma as Ghost if the related subprogram is also
-- Ghost. This also ensures that any expansion performed further
-- below will produce Ghost nodes.
Mark_Ghost_Pragma (N, Entry_Id);
-- Analyze the Integer expression
Arg := Get_Pragma_Arg (Arg1);
Check_Arg_Is_OK_Static_Expression (Arg, Any_Integer);
Val := Expr_Value (Arg);
if Val <= 0 then
Error_Pragma_Arg
("argument for pragma% must be positive", Arg1);
elsif not UI_Is_In_Int_Range (Val) then
Error_Pragma_Arg
("argument for pragma% out of range of Integer", Arg1);
end if;
-- Manually substitute the expression value of the pragma argument
-- if it's not an integer literal because this is not taken care
-- of automatically elsewhere.
if Nkind (Arg) /= N_Integer_Literal then
Rewrite (Arg, Make_Integer_Literal (Sloc (Arg), Val));
end if;
Record_Rep_Item (Entry_Id, N);
end Max_Queue_Length;
-----------------
-- Memory_Size --
-----------------
-- pragma Memory_Size (NUMERIC_LITERAL)
when Pragma_Memory_Size =>
GNAT_Pragma;
-- Memory size is simply ignored
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Arg_Is_Integer_Literal (Arg1);
-------------
-- No_Body --
-------------
-- pragma No_Body;
-- The only correct use of this pragma is on its own in a file, in
-- which case it is specially processed (see Gnat1drv.Check_Bad_Body
-- and Frontend, which use Sinput.L.Source_File_Is_Pragma_No_Body to
-- check for a file containing nothing but a No_Body pragma). If we
-- attempt to process it during normal semantics processing, it means
-- it was misplaced.
when Pragma_No_Body =>
GNAT_Pragma;
Pragma_Misplaced;
-----------------------------
-- No_Elaboration_Code_All --
-----------------------------
-- pragma No_Elaboration_Code_All;
when Pragma_No_Elaboration_Code_All =>
GNAT_Pragma;
Check_Valid_Library_Unit_Pragma;
if Nkind (N) = N_Null_Statement then
return;
end if;
-- Must appear for a spec or generic spec
if not Nkind_In (Unit (Cunit (Current_Sem_Unit)),
N_Generic_Package_Declaration,
N_Generic_Subprogram_Declaration,
N_Package_Declaration,
N_Subprogram_Declaration)
then
Error_Pragma
(Fix_Error
("pragma% can only occur for package "
& "or subprogram spec"));
end if;
-- Set flag in unit table
Set_No_Elab_Code_All (Current_Sem_Unit);
-- Set restriction No_Elaboration_Code if this is the main unit
if Current_Sem_Unit = Main_Unit then
Set_Restriction (No_Elaboration_Code, N);
end if;
-- If we are in the main unit or in an extended main source unit,
-- then we also add it to the configuration restrictions so that
-- it will apply to all units in the extended main source.
if Current_Sem_Unit = Main_Unit
or else In_Extended_Main_Source_Unit (N)
then
Add_To_Config_Boolean_Restrictions (No_Elaboration_Code);
end if;
-- If in main extended unit, activate transitive with test
if In_Extended_Main_Source_Unit (N) then
Opt.No_Elab_Code_All_Pragma := N;
end if;
-----------------------------
-- No_Component_Reordering --
-----------------------------
-- pragma No_Component_Reordering [([Entity =>] type_LOCAL_NAME)];
when Pragma_No_Component_Reordering => No_Comp_Reordering : declare
E : Entity_Id;
E_Id : Node_Id;
begin
GNAT_Pragma;
Check_At_Most_N_Arguments (1);
if Arg_Count = 0 then
Check_Valid_Configuration_Pragma;
Opt.No_Component_Reordering := True;
else
Check_Optional_Identifier (Arg2, Name_Entity);
Check_Arg_Is_Local_Name (Arg1);
E_Id := Get_Pragma_Arg (Arg1);
if Etype (E_Id) = Any_Type then
return;
end if;
E := Entity (E_Id);
if not Is_Record_Type (E) then
Error_Pragma_Arg ("pragma% requires record type", Arg1);
end if;
Set_No_Reordering (Base_Type (E));
end if;
end No_Comp_Reordering;
--------------------------
-- No_Heap_Finalization --
--------------------------
-- pragma No_Heap_Finalization [ (first_subtype_LOCAL_NAME) ];
when Pragma_No_Heap_Finalization => No_Heap_Finalization : declare
Context : constant Node_Id := Parent (N);
Typ_Arg : constant Node_Id := Get_Pragma_Arg (Arg1);
Prev : Node_Id;
Typ : Entity_Id;
begin
GNAT_Pragma;
Check_No_Identifiers;
-- The pragma appears in a configuration file
if No (Context) then
Check_Arg_Count (0);
Check_Valid_Configuration_Pragma;
-- Detect a duplicate pragma
if Present (No_Heap_Finalization_Pragma) then
Duplication_Error
(Prag => N,
Prev => No_Heap_Finalization_Pragma);
raise Pragma_Exit;
end if;
No_Heap_Finalization_Pragma := N;
-- Otherwise the pragma should be associated with a library-level
-- named access-to-object type.
else
Check_Arg_Count (1);
Check_Arg_Is_Local_Name (Arg1);
Find_Type (Typ_Arg);
Typ := Entity (Typ_Arg);
-- The type being subjected to the pragma is erroneous
if Typ = Any_Type then
Error_Pragma ("cannot find type referenced by pragma %");
-- The pragma is applied to an incomplete or generic formal
-- type way too early.
elsif Rep_Item_Too_Early (Typ, N) then
return;
else
Typ := Underlying_Type (Typ);
end if;
-- The pragma must apply to an access-to-object type
if Ekind_In (Typ, E_Access_Type, E_General_Access_Type) then
null;
-- Give a detailed error message on all other access type kinds
elsif Ekind (Typ) = E_Access_Protected_Subprogram_Type then
Error_Pragma
("pragma % cannot apply to access protected subprogram "
& "type");
elsif Ekind (Typ) = E_Access_Subprogram_Type then
Error_Pragma
("pragma % cannot apply to access subprogram type");
elsif Is_Anonymous_Access_Type (Typ) then
Error_Pragma
("pragma % cannot apply to anonymous access type");
-- Give a general error message in case the pragma applies to a
-- non-access type.
else
Error_Pragma
("pragma % must apply to library level access type");
end if;
-- At this point the argument denotes an access-to-object type.
-- Ensure that the type is declared at the library level.
if Is_Library_Level_Entity (Typ) then
null;
-- Quietly ignore an access-to-object type originally declared
-- at the library level within a generic, but instantiated at
-- a non-library level. As a result the access-to-object type
-- "loses" its No_Heap_Finalization property.
elsif In_Instance then
raise Pragma_Exit;
else
Error_Pragma
("pragma % must apply to library level access type");
end if;
-- Detect a duplicate pragma
if Present (No_Heap_Finalization_Pragma) then
Duplication_Error
(Prag => N,
Prev => No_Heap_Finalization_Pragma);
raise Pragma_Exit;
else
Prev := Get_Pragma (Typ, Pragma_No_Heap_Finalization);
if Present (Prev) then
Duplication_Error
(Prag => N,
Prev => Prev);
raise Pragma_Exit;
end if;
end if;
Record_Rep_Item (Typ, N);
end if;
end No_Heap_Finalization;
---------------
-- No_Inline --
---------------
-- pragma No_Inline ( NAME {, NAME} );
when Pragma_No_Inline =>
GNAT_Pragma;
Process_Inline (Suppressed);
---------------
-- No_Return --
---------------
-- pragma No_Return (procedure_LOCAL_NAME {, procedure_Local_Name});
when Pragma_No_Return => No_Return : declare
Arg : Node_Id;
E : Entity_Id;
Found : Boolean;
Id : Node_Id;
Ghost_Error_Posted : Boolean := False;
-- Flag set when an error concerning the illegal mix of Ghost and
-- non-Ghost subprograms is emitted.
Ghost_Id : Entity_Id := Empty;
-- The entity of the first Ghost procedure encountered while
-- processing the arguments of the pragma.
begin
Ada_2005_Pragma;
Check_At_Least_N_Arguments (1);
-- Loop through arguments of pragma
Arg := Arg1;
while Present (Arg) loop
Check_Arg_Is_Local_Name (Arg);
Id := Get_Pragma_Arg (Arg);
Analyze (Id);
if not Is_Entity_Name (Id) then
Error_Pragma_Arg ("entity name required", Arg);
end if;
if Etype (Id) = Any_Type then
raise Pragma_Exit;
end if;
-- Loop to find matching procedures
E := Entity (Id);
Found := False;
while Present (E)
and then Scope (E) = Current_Scope
loop
if Ekind_In (E, E_Generic_Procedure, E_Procedure) then
-- Check that the pragma is not applied to a body.
-- First check the specless body case, to give a
-- different error message. These checks do not apply
-- if Relaxed_RM_Semantics, to accommodate other Ada
-- compilers. Disable these checks under -gnatd.J.
if not Debug_Flag_Dot_JJ then
if Nkind (Parent (Declaration_Node (E))) =
N_Subprogram_Body
and then not Relaxed_RM_Semantics
then
Error_Pragma
("pragma% requires separate spec and must come "
& "before body");
end if;
-- Now the "specful" body case
if Rep_Item_Too_Late (E, N) then
raise Pragma_Exit;
end if;
end if;
Set_No_Return (E);
-- A pragma that applies to a Ghost entity becomes Ghost
-- for the purposes of legality checks and removal of
-- ignored Ghost code.
Mark_Ghost_Pragma (N, E);
-- Capture the entity of the first Ghost procedure being
-- processed for error detection purposes.
if Is_Ghost_Entity (E) then
if No (Ghost_Id) then
Ghost_Id := E;
end if;
-- Otherwise the subprogram is non-Ghost. It is illegal
-- to mix references to Ghost and non-Ghost entities
-- (SPARK RM 6.9).
elsif Present (Ghost_Id)
and then not Ghost_Error_Posted
then
Ghost_Error_Posted := True;
Error_Msg_Name_1 := Pname;
Error_Msg_N
("pragma % cannot mention ghost and non-ghost "
& "procedures", N);
Error_Msg_Sloc := Sloc (Ghost_Id);
Error_Msg_NE ("\& # declared as ghost", N, Ghost_Id);
Error_Msg_Sloc := Sloc (E);
Error_Msg_NE ("\& # declared as non-ghost", N, E);
end if;
-- Set flag on any alias as well
if Is_Overloadable (E) and then Present (Alias (E)) then
Set_No_Return (Alias (E));
end if;
Found := True;
end if;
exit when From_Aspect_Specification (N);
E := Homonym (E);
end loop;
-- If entity in not in current scope it may be the enclosing
-- suprogram body to which the aspect applies.
if not Found then
if Entity (Id) = Current_Scope
and then From_Aspect_Specification (N)
then
Set_No_Return (Entity (Id));
else
Error_Pragma_Arg ("no procedure& found for pragma%", Arg);
end if;
end if;
Next (Arg);
end loop;
end No_Return;
-----------------
-- No_Run_Time --
-----------------
-- pragma No_Run_Time;
-- Note: this pragma is retained for backwards compatibility. See
-- body of Rtsfind for full details on its handling.
when Pragma_No_Run_Time =>
GNAT_Pragma;
Check_Valid_Configuration_Pragma;
Check_Arg_Count (0);
-- Remove backward compatibility if Build_Type is FSF or GPL and
-- generate a warning.
declare
Ignore : constant Boolean := Build_Type in FSF .. GPL;
begin
if Ignore then
Error_Pragma ("pragma% is ignored, has no effect??");
else
No_Run_Time_Mode := True;
Configurable_Run_Time_Mode := True;
-- Set Duration to 32 bits if word size is 32
if Ttypes.System_Word_Size = 32 then
Duration_32_Bits_On_Target := True;
end if;
-- Set appropriate restrictions
Set_Restriction (No_Finalization, N);
Set_Restriction (No_Exception_Handlers, N);
Set_Restriction (Max_Tasks, N, 0);
Set_Restriction (No_Tasking, N);
end if;
end;
-----------------------
-- No_Tagged_Streams --
-----------------------
-- pragma No_Tagged_Streams [([Entity => ]tagged_type_local_NAME)];
when Pragma_No_Tagged_Streams => No_Tagged_Strms : declare
E : Entity_Id;
E_Id : Node_Id;
begin
GNAT_Pragma;
Check_At_Most_N_Arguments (1);
-- One argument case
if Arg_Count = 1 then
Check_Optional_Identifier (Arg1, Name_Entity);
Check_Arg_Is_Local_Name (Arg1);
E_Id := Get_Pragma_Arg (Arg1);
if Etype (E_Id) = Any_Type then
return;
end if;
E := Entity (E_Id);
Check_Duplicate_Pragma (E);
if not Is_Tagged_Type (E) or else Is_Derived_Type (E) then
Error_Pragma_Arg
("argument for pragma% must be root tagged type", Arg1);
end if;
if Rep_Item_Too_Early (E, N)
or else
Rep_Item_Too_Late (E, N)
then
return;
else
Set_No_Tagged_Streams_Pragma (E, N);
end if;
-- Zero argument case
else
Check_Is_In_Decl_Part_Or_Package_Spec;
No_Tagged_Streams := N;
end if;
end No_Tagged_Strms;
------------------------
-- No_Strict_Aliasing --
------------------------
-- pragma No_Strict_Aliasing [([Entity =>] type_LOCAL_NAME)];
when Pragma_No_Strict_Aliasing => No_Strict_Aliasing : declare
E : Entity_Id;
E_Id : Node_Id;
begin
GNAT_Pragma;
Check_At_Most_N_Arguments (1);
if Arg_Count = 0 then
Check_Valid_Configuration_Pragma;
Opt.No_Strict_Aliasing := True;
else
Check_Optional_Identifier (Arg2, Name_Entity);
Check_Arg_Is_Local_Name (Arg1);
E_Id := Get_Pragma_Arg (Arg1);
if Etype (E_Id) = Any_Type then
return;
end if;
E := Entity (E_Id);
if not Is_Access_Type (E) then
Error_Pragma_Arg ("pragma% requires access type", Arg1);
end if;
Set_No_Strict_Aliasing (Base_Type (E));
end if;
end No_Strict_Aliasing;
-----------------------
-- Normalize_Scalars --
-----------------------
-- pragma Normalize_Scalars;
when Pragma_Normalize_Scalars =>
Check_Ada_83_Warning;
Check_Arg_Count (0);
Check_Valid_Configuration_Pragma;
-- Normalize_Scalars creates false positives in CodePeer, and
-- incorrect negative results in GNATprove mode, so ignore this
-- pragma in these modes.
if not (CodePeer_Mode or GNATprove_Mode) then
Normalize_Scalars := True;
Init_Or_Norm_Scalars := True;
end if;
-----------------
-- Obsolescent --
-----------------
-- pragma Obsolescent;
-- pragma Obsolescent (
-- [Message =>] static_string_EXPRESSION
-- [,[Version =>] Ada_05]]);
-- pragma Obsolescent (
-- [Entity =>] NAME
-- [,[Message =>] static_string_EXPRESSION
-- [,[Version =>] Ada_05]] );
when Pragma_Obsolescent => Obsolescent : declare
Decl : Node_Id;
Ename : Node_Id;
procedure Set_Obsolescent (E : Entity_Id);
-- Given an entity Ent, mark it as obsolescent if appropriate
---------------------
-- Set_Obsolescent --
---------------------
procedure Set_Obsolescent (E : Entity_Id) is
Active : Boolean;
Ent : Entity_Id;
S : String_Id;
begin
Active := True;
Ent := E;
-- A pragma that applies to a Ghost entity becomes Ghost for
-- the purposes of legality checks and removal of ignored Ghost
-- code.
Mark_Ghost_Pragma (N, E);
-- Entity name was given
if Present (Ename) then
-- If entity name matches, we are fine. Save entity in
-- pragma argument, for ASIS use.
if Chars (Ename) = Chars (Ent) then
Set_Entity (Ename, Ent);
Generate_Reference (Ent, Ename);
-- If entity name does not match, only possibility is an
-- enumeration literal from an enumeration type declaration.
elsif Ekind (Ent) /= E_Enumeration_Type then
Error_Pragma
("pragma % entity name does not match declaration");
else
Ent := First_Literal (E);
loop
if No (Ent) then
Error_Pragma
("pragma % entity name does not match any "
& "enumeration literal");
elsif Chars (Ent) = Chars (Ename) then
Set_Entity (Ename, Ent);
Generate_Reference (Ent, Ename);
exit;
else
Ent := Next_Literal (Ent);
end if;
end loop;
end if;
end if;
-- Ent points to entity to be marked
if Arg_Count >= 1 then
-- Deal with static string argument
Check_Arg_Is_OK_Static_Expression (Arg1, Standard_String);
S := Strval (Get_Pragma_Arg (Arg1));
for J in 1 .. String_Length (S) loop
if not In_Character_Range (Get_String_Char (S, J)) then
Error_Pragma_Arg
("pragma% argument does not allow wide characters",
Arg1);
end if;
end loop;
Obsolescent_Warnings.Append
((Ent => Ent, Msg => Strval (Get_Pragma_Arg (Arg1))));
-- Check for Ada_05 parameter
if Arg_Count /= 1 then
Check_Arg_Count (2);
declare
Argx : constant Node_Id := Get_Pragma_Arg (Arg2);
begin
Check_Arg_Is_Identifier (Argx);
if Chars (Argx) /= Name_Ada_05 then
Error_Msg_Name_2 := Name_Ada_05;
Error_Pragma_Arg
("only allowed argument for pragma% is %", Argx);
end if;
if Ada_Version_Explicit < Ada_2005
or else not Warn_On_Ada_2005_Compatibility
then
Active := False;
end if;
end;
end if;
end if;
-- Set flag if pragma active
if Active then
Set_Is_Obsolescent (Ent);
end if;
return;
end Set_Obsolescent;
-- Start of processing for pragma Obsolescent
begin
GNAT_Pragma;
Check_At_Most_N_Arguments (3);
-- See if first argument specifies an entity name
if Arg_Count >= 1
and then
(Chars (Arg1) = Name_Entity
or else
Nkind_In (Get_Pragma_Arg (Arg1), N_Character_Literal,
N_Identifier,
N_Operator_Symbol))
then
Ename := Get_Pragma_Arg (Arg1);
-- Eliminate first argument, so we can share processing
Arg1 := Arg2;
Arg2 := Arg3;
Arg_Count := Arg_Count - 1;
-- No Entity name argument given
else
Ename := Empty;
end if;
if Arg_Count >= 1 then
Check_Optional_Identifier (Arg1, Name_Message);
if Arg_Count = 2 then
Check_Optional_Identifier (Arg2, Name_Version);
end if;
end if;
-- Get immediately preceding declaration
Decl := Prev (N);
while Present (Decl) and then Nkind (Decl) = N_Pragma loop
Prev (Decl);
end loop;
-- Cases where we do not follow anything other than another pragma
if No (Decl) then
-- First case: library level compilation unit declaration with
-- the pragma immediately following the declaration.
if Nkind (Parent (N)) = N_Compilation_Unit_Aux then
Set_Obsolescent
(Defining_Entity (Unit (Parent (Parent (N)))));
return;
-- Case 2: library unit placement for package
else
declare
Ent : constant Entity_Id := Find_Lib_Unit_Name;
begin
if Is_Package_Or_Generic_Package (Ent) then
Set_Obsolescent (Ent);
return;
end if;
end;
end if;
-- Cases where we must follow a declaration, including an
-- abstract subprogram declaration, which is not in the
-- other node subtypes.
else
if Nkind (Decl) not in N_Declaration
and then Nkind (Decl) not in N_Later_Decl_Item
and then Nkind (Decl) not in N_Generic_Declaration
and then Nkind (Decl) not in N_Renaming_Declaration
and then Nkind (Decl) /= N_Abstract_Subprogram_Declaration
then
Error_Pragma
("pragma% misplaced, "
& "must immediately follow a declaration");
else
Set_Obsolescent (Defining_Entity (Decl));
return;
end if;
end if;
end Obsolescent;
--------------
-- Optimize --
--------------
-- pragma Optimize (Time | Space | Off);
-- The actual check for optimize is done in Gigi. Note that this
-- pragma does not actually change the optimization setting, it
-- simply checks that it is consistent with the pragma.
when Pragma_Optimize =>
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Arg_Is_One_Of (Arg1, Name_Time, Name_Space, Name_Off);
------------------------
-- Optimize_Alignment --
------------------------
-- pragma Optimize_Alignment (Time | Space | Off);
when Pragma_Optimize_Alignment => Optimize_Alignment : begin
GNAT_Pragma;
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Valid_Configuration_Pragma;
declare
Nam : constant Name_Id := Chars (Get_Pragma_Arg (Arg1));
begin
case Nam is
when Name_Off => Opt.Optimize_Alignment := 'O';
when Name_Space => Opt.Optimize_Alignment := 'S';
when Name_Time => Opt.Optimize_Alignment := 'T';
when others =>
Error_Pragma_Arg ("invalid argument for pragma%", Arg1);
end case;
end;
-- Set indication that mode is set locally. If we are in fact in a
-- configuration pragma file, this setting is harmless since the
-- switch will get reset anyway at the start of each unit.
Optimize_Alignment_Local := True;
end Optimize_Alignment;
-------------
-- Ordered --
-------------
-- pragma Ordered (first_enumeration_subtype_LOCAL_NAME);
when Pragma_Ordered => Ordered : declare
Assoc : constant Node_Id := Arg1;
Type_Id : Node_Id;
Typ : Entity_Id;
begin
GNAT_Pragma;
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Arg_Is_Local_Name (Arg1);
Type_Id := Get_Pragma_Arg (Assoc);
Find_Type (Type_Id);
Typ := Entity (Type_Id);
if Typ = Any_Type then
return;
else
Typ := Underlying_Type (Typ);
end if;
if not Is_Enumeration_Type (Typ) then
Error_Pragma ("pragma% must specify enumeration type");
end if;
Check_First_Subtype (Arg1);
Set_Has_Pragma_Ordered (Base_Type (Typ));
end Ordered;
-------------------
-- Overflow_Mode --
-------------------
-- pragma Overflow_Mode
-- ([General => ] MODE [, [Assertions => ] MODE]);
-- MODE := STRICT | MINIMIZED | ELIMINATED
-- Note: ELIMINATED is allowed only if Long_Long_Integer'Size is 64
-- since System.Bignums makes this assumption. This is true of nearly
-- all (all?) targets.
when Pragma_Overflow_Mode => Overflow_Mode : declare
function Get_Overflow_Mode
(Name : Name_Id;
Arg : Node_Id) return Overflow_Mode_Type;
-- Function to process one pragma argument, Arg. If an identifier
-- is present, it must be Name. Mode type is returned if a valid
-- argument exists, otherwise an error is signalled.
-----------------------
-- Get_Overflow_Mode --
-----------------------
function Get_Overflow_Mode
(Name : Name_Id;
Arg : Node_Id) return Overflow_Mode_Type
is
Argx : constant Node_Id := Get_Pragma_Arg (Arg);
begin
Check_Optional_Identifier (Arg, Name);
Check_Arg_Is_Identifier (Argx);
if Chars (Argx) = Name_Strict then
return Strict;
elsif Chars (Argx) = Name_Minimized then
return Minimized;
elsif Chars (Argx) = Name_Eliminated then
if Ttypes.Standard_Long_Long_Integer_Size /= 64 then
Error_Pragma_Arg
("Eliminated not implemented on this target", Argx);
else
return Eliminated;
end if;
else
Error_Pragma_Arg ("invalid argument for pragma%", Argx);
end if;
end Get_Overflow_Mode;
-- Start of processing for Overflow_Mode
begin
GNAT_Pragma;
Check_At_Least_N_Arguments (1);
Check_At_Most_N_Arguments (2);
-- Process first argument
Scope_Suppress.Overflow_Mode_General :=
Get_Overflow_Mode (Name_General, Arg1);
-- Case of only one argument
if Arg_Count = 1 then
Scope_Suppress.Overflow_Mode_Assertions :=
Scope_Suppress.Overflow_Mode_General;
-- Case of two arguments present
else
Scope_Suppress.Overflow_Mode_Assertions :=
Get_Overflow_Mode (Name_Assertions, Arg2);
end if;
end Overflow_Mode;
--------------------------
-- Overriding Renamings --
--------------------------
-- pragma Overriding_Renamings;
when Pragma_Overriding_Renamings =>
GNAT_Pragma;
Check_Arg_Count (0);
Check_Valid_Configuration_Pragma;
Overriding_Renamings := True;
----------
-- Pack --
----------
-- pragma Pack (first_subtype_LOCAL_NAME);
when Pragma_Pack => Pack : declare
Assoc : constant Node_Id := Arg1;
Ctyp : Entity_Id;
Ignore : Boolean := False;
Typ : Entity_Id;
Type_Id : Node_Id;
begin
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Arg_Is_Local_Name (Arg1);
Type_Id := Get_Pragma_Arg (Assoc);
if not Is_Entity_Name (Type_Id)
or else not Is_Type (Entity (Type_Id))
then
Error_Pragma_Arg
("argument for pragma% must be type or subtype", Arg1);
end if;
Find_Type (Type_Id);
Typ := Entity (Type_Id);
if Typ = Any_Type
or else Rep_Item_Too_Early (Typ, N)
then
return;
else
Typ := Underlying_Type (Typ);
end if;
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Typ);
if not Is_Array_Type (Typ) and then not Is_Record_Type (Typ) then
Error_Pragma ("pragma% must specify array or record type");
end if;
Check_First_Subtype (Arg1);
Check_Duplicate_Pragma (Typ);
-- Array type
if Is_Array_Type (Typ) then
Ctyp := Component_Type (Typ);
-- Ignore pack that does nothing
if Known_Static_Esize (Ctyp)
and then Known_Static_RM_Size (Ctyp)
and then Esize (Ctyp) = RM_Size (Ctyp)
and then Addressable (Esize (Ctyp))
then
Ignore := True;
end if;
-- Process OK pragma Pack. Note that if there is a separate
-- component clause present, the Pack will be cancelled. This
-- processing is in Freeze.
if not Rep_Item_Too_Late (Typ, N) then
-- In CodePeer mode, we do not need complex front-end
-- expansions related to pragma Pack, so disable handling
-- of pragma Pack.
if CodePeer_Mode then
null;
-- Normal case where we do the pack action
else
if not Ignore then
Set_Is_Packed (Base_Type (Typ));
Set_Has_Non_Standard_Rep (Base_Type (Typ));
end if;
Set_Has_Pragma_Pack (Base_Type (Typ));
end if;
end if;
-- For record types, the pack is always effective
else pragma Assert (Is_Record_Type (Typ));
if not Rep_Item_Too_Late (Typ, N) then
Set_Is_Packed (Base_Type (Typ));
Set_Has_Pragma_Pack (Base_Type (Typ));
Set_Has_Non_Standard_Rep (Base_Type (Typ));
end if;
end if;
end Pack;
----------
-- Page --
----------
-- pragma Page;
-- There is nothing to do here, since we did all the processing for
-- this pragma in Par.Prag (so that it works properly even in syntax
-- only mode).
when Pragma_Page =>
null;
-------------
-- Part_Of --
-------------
-- pragma Part_Of (ABSTRACT_STATE);
-- ABSTRACT_STATE ::= NAME
when Pragma_Part_Of => Part_Of : declare
procedure Propagate_Part_Of
(Pack_Id : Entity_Id;
State_Id : Entity_Id;
Instance : Node_Id);
-- Propagate the Part_Of indicator to all abstract states and
-- objects declared in the visible state space of a package
-- denoted by Pack_Id. State_Id is the encapsulating state.
-- Instance is the package instantiation node.
-----------------------
-- Propagate_Part_Of --
-----------------------
procedure Propagate_Part_Of
(Pack_Id : Entity_Id;
State_Id : Entity_Id;
Instance : Node_Id)
is
Has_Item : Boolean := False;
-- Flag set when the visible state space contains at least one
-- abstract state or variable.
procedure Propagate_Part_Of (Pack_Id : Entity_Id);
-- Propagate the Part_Of indicator to all abstract states and
-- objects declared in the visible state space of a package
-- denoted by Pack_Id.
-----------------------
-- Propagate_Part_Of --
-----------------------
procedure Propagate_Part_Of (Pack_Id : Entity_Id) is
Constits : Elist_Id;
Item_Id : Entity_Id;
begin
-- Traverse the entity chain of the package and set relevant
-- attributes of abstract states and objects declared in the
-- visible state space of the package.
Item_Id := First_Entity (Pack_Id);
while Present (Item_Id)
and then not In_Private_Part (Item_Id)
loop
-- Do not consider internally generated items
if not Comes_From_Source (Item_Id) then
null;
-- The Part_Of indicator turns an abstract state or an
-- object into a constituent of the encapsulating state.
elsif Ekind_In (Item_Id, E_Abstract_State,
E_Constant,
E_Variable)
then
Has_Item := True;
Constits := Part_Of_Constituents (State_Id);
if No (Constits) then
Constits := New_Elmt_List;
Set_Part_Of_Constituents (State_Id, Constits);
end if;
Append_Elmt (Item_Id, Constits);
Set_Encapsulating_State (Item_Id, State_Id);
-- Recursively handle nested packages and instantiations
elsif Ekind (Item_Id) = E_Package then
Propagate_Part_Of (Item_Id);
end if;
Next_Entity (Item_Id);
end loop;
end Propagate_Part_Of;
-- Start of processing for Propagate_Part_Of
begin
Propagate_Part_Of (Pack_Id);
-- Detect a package instantiation that is subject to a Part_Of
-- indicator, but has no visible state.
if not Has_Item then
SPARK_Msg_NE
("package instantiation & has Part_Of indicator but "
& "lacks visible state", Instance, Pack_Id);
end if;
end Propagate_Part_Of;
-- Local variables
Constits : Elist_Id;
Encap : Node_Id;
Encap_Id : Entity_Id;
Item_Id : Entity_Id;
Legal : Boolean;
Stmt : Node_Id;
-- Start of processing for Part_Of
begin
GNAT_Pragma;
Check_No_Identifiers;
Check_Arg_Count (1);
Stmt := Find_Related_Context (N, Do_Checks => True);
-- Object declaration
if Nkind (Stmt) = N_Object_Declaration then
null;
-- Package instantiation
elsif Nkind (Stmt) = N_Package_Instantiation then
null;
-- Single concurrent type declaration
elsif Is_Single_Concurrent_Type_Declaration (Stmt) then
null;
-- Otherwise the pragma is associated with an illegal construct
else
Pragma_Misplaced;
return;
end if;
-- Extract the entity of the related object declaration or package
-- instantiation. In the case of the instantiation, use the entity
-- of the instance spec.
if Nkind (Stmt) = N_Package_Instantiation then
Stmt := Instance_Spec (Stmt);
end if;
Item_Id := Defining_Entity (Stmt);
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Item_Id);
-- Chain the pragma on the contract for further processing by
-- Analyze_Part_Of_In_Decl_Part or for completeness.
Add_Contract_Item (N, Item_Id);
-- A variable may act as constituent of a single concurrent type
-- which in turn could be declared after the variable. Due to this
-- discrepancy, the full analysis of indicator Part_Of is delayed
-- until the end of the enclosing declarative region (see routine
-- Analyze_Part_Of_In_Decl_Part).
if Ekind (Item_Id) = E_Variable then
null;
-- Otherwise indicator Part_Of applies to a constant or a package
-- instantiation.
else
Encap := Get_Pragma_Arg (Arg1);
-- Detect any discrepancies between the placement of the
-- constant or package instantiation with respect to state
-- space and the encapsulating state.
Analyze_Part_Of
(Indic => N,
Item_Id => Item_Id,
Encap => Encap,
Encap_Id => Encap_Id,
Legal => Legal);
if Legal then
pragma Assert (Present (Encap_Id));
if Ekind (Item_Id) = E_Constant then
Constits := Part_Of_Constituents (Encap_Id);
if No (Constits) then
Constits := New_Elmt_List;
Set_Part_Of_Constituents (Encap_Id, Constits);
end if;
Append_Elmt (Item_Id, Constits);
Set_Encapsulating_State (Item_Id, Encap_Id);
-- Propagate the Part_Of indicator to the visible state
-- space of the package instantiation.
else
Propagate_Part_Of
(Pack_Id => Item_Id,
State_Id => Encap_Id,
Instance => Stmt);
end if;
end if;
end if;
end Part_Of;
----------------------------------
-- Partition_Elaboration_Policy --
----------------------------------
-- pragma Partition_Elaboration_Policy (policy_IDENTIFIER);
when Pragma_Partition_Elaboration_Policy => PEP : declare
subtype PEP_Range is Name_Id
range First_Partition_Elaboration_Policy_Name
.. Last_Partition_Elaboration_Policy_Name;
PEP_Val : PEP_Range;
PEP : Character;
begin
Ada_2005_Pragma;
Check_Arg_Count (1);
Check_No_Identifiers;
Check_Arg_Is_Partition_Elaboration_Policy (Arg1);
Check_Valid_Configuration_Pragma;
PEP_Val := Chars (Get_Pragma_Arg (Arg1));
case PEP_Val is
when Name_Concurrent => PEP := 'C';
when Name_Sequential => PEP := 'S';
end case;
if Partition_Elaboration_Policy /= ' '
and then Partition_Elaboration_Policy /= PEP
then
Error_Msg_Sloc := Partition_Elaboration_Policy_Sloc;
Error_Pragma
("partition elaboration policy incompatible with policy#");
-- Set new policy, but always preserve System_Location since we
-- like the error message with the run time name.
else
Partition_Elaboration_Policy := PEP;
if Partition_Elaboration_Policy_Sloc /= System_Location then
Partition_Elaboration_Policy_Sloc := Loc;
end if;
end if;
end PEP;
-------------
-- Passive --
-------------
-- pragma Passive [(PASSIVE_FORM)];
-- PASSIVE_FORM ::= Semaphore | No
when Pragma_Passive =>
GNAT_Pragma;
if Nkind (Parent (N)) /= N_Task_Definition then
Error_Pragma ("pragma% must be within task definition");
end if;
if Arg_Count /= 0 then
Check_Arg_Count (1);
Check_Arg_Is_One_Of (Arg1, Name_Semaphore, Name_No);
end if;
----------------------------------
-- Preelaborable_Initialization --
----------------------------------
-- pragma Preelaborable_Initialization (DIRECT_NAME);
when Pragma_Preelaborable_Initialization => Preelab_Init : declare
Ent : Entity_Id;
begin
Ada_2005_Pragma;
Check_Arg_Count (1);
Check_No_Identifiers;
Check_Arg_Is_Identifier (Arg1);
Check_Arg_Is_Local_Name (Arg1);
Check_First_Subtype (Arg1);
Ent := Entity (Get_Pragma_Arg (Arg1));
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Ent);
-- The pragma may come from an aspect on a private declaration,
-- even if the freeze point at which this is analyzed in the
-- private part after the full view.
if Has_Private_Declaration (Ent)
and then From_Aspect_Specification (N)
then
null;
-- Check appropriate type argument
elsif Is_Private_Type (Ent)
or else Is_Protected_Type (Ent)
or else (Is_Generic_Type (Ent) and then Is_Derived_Type (Ent))
-- AI05-0028: The pragma applies to all composite types. Note
-- that we apply this binding interpretation to earlier versions
-- of Ada, so there is no Ada 2012 guard. Seems a reasonable
-- choice since there are other compilers that do the same.
or else Is_Composite_Type (Ent)
then
null;
else
Error_Pragma_Arg
("pragma % can only be applied to private, formal derived, "
& "protected, or composite type", Arg1);
end if;
-- Give an error if the pragma is applied to a protected type that
-- does not qualify (due to having entries, or due to components
-- that do not qualify).
if Is_Protected_Type (Ent)
and then not Has_Preelaborable_Initialization (Ent)
then
Error_Msg_N
("protected type & does not have preelaborable "
& "initialization", Ent);
-- Otherwise mark the type as definitely having preelaborable
-- initialization.
else
Set_Known_To_Have_Preelab_Init (Ent);
end if;
if Has_Pragma_Preelab_Init (Ent)
and then Warn_On_Redundant_Constructs
then
Error_Pragma ("?r?duplicate pragma%!");
else
Set_Has_Pragma_Preelab_Init (Ent);
end if;
end Preelab_Init;
--------------------
-- Persistent_BSS --
--------------------
-- pragma Persistent_BSS [(object_NAME)];
when Pragma_Persistent_BSS => Persistent_BSS : declare
Decl : Node_Id;
Ent : Entity_Id;
Prag : Node_Id;
begin
GNAT_Pragma;
Check_At_Most_N_Arguments (1);
-- Case of application to specific object (one argument)
if Arg_Count = 1 then
Check_Arg_Is_Library_Level_Local_Name (Arg1);
if not Is_Entity_Name (Get_Pragma_Arg (Arg1))
or else not
Ekind_In (Entity (Get_Pragma_Arg (Arg1)), E_Variable,
E_Constant)
then
Error_Pragma_Arg ("pragma% only applies to objects", Arg1);
end if;
Ent := Entity (Get_Pragma_Arg (Arg1));
-- A pragma that applies to a Ghost entity becomes Ghost for
-- the purposes of legality checks and removal of ignored Ghost
-- code.
Mark_Ghost_Pragma (N, Ent);
-- Check for duplication before inserting in list of
-- representation items.
Check_Duplicate_Pragma (Ent);
if Rep_Item_Too_Late (Ent, N) then
return;
end if;
Decl := Parent (Ent);
if Present (Expression (Decl)) then
Error_Pragma_Arg
("object for pragma% cannot have initialization", Arg1);
end if;
if not Is_Potentially_Persistent_Type (Etype (Ent)) then
Error_Pragma_Arg
("object type for pragma% is not potentially persistent",
Arg1);
end if;
Prag :=
Make_Linker_Section_Pragma
(Ent, Sloc (N), ".persistent.bss");
Insert_After (N, Prag);
Analyze (Prag);
-- Case of use as configuration pragma with no arguments
else
Check_Valid_Configuration_Pragma;
Persistent_BSS_Mode := True;
end if;
end Persistent_BSS;
--------------------
-- Rename_Pragma --
--------------------
-- pragma Rename_Pragma (
-- [New_Name =>] IDENTIFIER,
-- [Renamed =>] pragma_IDENTIFIER);
when Pragma_Rename_Pragma => Rename_Pragma : declare
New_Name : constant Node_Id := Get_Pragma_Arg (Arg1);
Old_Name : constant Node_Id := Get_Pragma_Arg (Arg2);
begin
GNAT_Pragma;
Check_Valid_Configuration_Pragma;
Check_Arg_Count (2);
Check_Optional_Identifier (Arg1, Name_New_Name);
Check_Optional_Identifier (Arg2, Name_Renamed);
if Nkind (New_Name) /= N_Identifier then
Error_Pragma_Arg ("identifier expected", Arg1);
end if;
if Nkind (Old_Name) /= N_Identifier then
Error_Pragma_Arg ("identifier expected", Arg2);
end if;
-- The New_Name arg should not be an existing pragma (but we allow
-- it; it's just a warning). The Old_Name arg must be an existing
-- pragma.
if Is_Pragma_Name (Chars (New_Name)) then
Error_Pragma_Arg ("??pragma is already defined", Arg1);
end if;
if not Is_Pragma_Name (Chars (Old_Name)) then
Error_Pragma_Arg ("existing pragma name expected", Arg1);
end if;
Map_Pragma_Name (From => Chars (New_Name), To => Chars (Old_Name));
end Rename_Pragma;
-------------
-- Polling --
-------------
-- pragma Polling (ON | OFF);
when Pragma_Polling =>
GNAT_Pragma;
Check_Arg_Count (1);
Check_No_Identifiers;
Check_Arg_Is_One_Of (Arg1, Name_On, Name_Off);
Polling_Required := (Chars (Get_Pragma_Arg (Arg1)) = Name_On);
-----------------------------------
-- Post/Post_Class/Postcondition --
-----------------------------------
-- pragma Post (Boolean_EXPRESSION);
-- pragma Post_Class (Boolean_EXPRESSION);
-- pragma Postcondition ([Check =>] Boolean_EXPRESSION
-- [,[Message =>] String_EXPRESSION]);
-- Characteristics:
-- * Analysis - The annotation undergoes initial checks to verify
-- the legal placement and context. Secondary checks preanalyze the
-- expression in:
-- Analyze_Pre_Post_Condition_In_Decl_Part
-- * Expansion - The annotation is expanded during the expansion of
-- the related subprogram [body] contract as performed in:
-- Expand_Subprogram_Contract
-- * Template - The annotation utilizes the generic template of the
-- related subprogram [body] when it is:
-- aspect on subprogram declaration
-- aspect on stand-alone subprogram body
-- pragma on stand-alone subprogram body
-- The annotation must prepare its own template when it is:
-- pragma on subprogram declaration
-- * Globals - Capture of global references must occur after full
-- analysis.
-- * Instance - The annotation is instantiated automatically when
-- the related generic subprogram [body] is instantiated except for
-- the "pragma on subprogram declaration" case. In that scenario
-- the annotation must instantiate itself.
when Pragma_Post
| Pragma_Post_Class
| Pragma_Postcondition
=>
Analyze_Pre_Post_Condition;
--------------------------------
-- Pre/Pre_Class/Precondition --
--------------------------------
-- pragma Pre (Boolean_EXPRESSION);
-- pragma Pre_Class (Boolean_EXPRESSION);
-- pragma Precondition ([Check =>] Boolean_EXPRESSION
-- [,[Message =>] String_EXPRESSION]);
-- Characteristics:
-- * Analysis - The annotation undergoes initial checks to verify
-- the legal placement and context. Secondary checks preanalyze the
-- expression in:
-- Analyze_Pre_Post_Condition_In_Decl_Part
-- * Expansion - The annotation is expanded during the expansion of
-- the related subprogram [body] contract as performed in:
-- Expand_Subprogram_Contract
-- * Template - The annotation utilizes the generic template of the
-- related subprogram [body] when it is:
-- aspect on subprogram declaration
-- aspect on stand-alone subprogram body
-- pragma on stand-alone subprogram body
-- The annotation must prepare its own template when it is:
-- pragma on subprogram declaration
-- * Globals - Capture of global references must occur after full
-- analysis.
-- * Instance - The annotation is instantiated automatically when
-- the related generic subprogram [body] is instantiated except for
-- the "pragma on subprogram declaration" case. In that scenario
-- the annotation must instantiate itself.
when Pragma_Pre
| Pragma_Pre_Class
| Pragma_Precondition
=>
Analyze_Pre_Post_Condition;
---------------
-- Predicate --
---------------
-- pragma Predicate
-- ([Entity =>] type_LOCAL_NAME,
-- [Check =>] boolean_EXPRESSION);
when Pragma_Predicate => Predicate : declare
Discard : Boolean;
Typ : Entity_Id;
Type_Id : Node_Id;
begin
GNAT_Pragma;
Check_Arg_Count (2);
Check_Optional_Identifier (Arg1, Name_Entity);
Check_Optional_Identifier (Arg2, Name_Check);
Check_Arg_Is_Local_Name (Arg1);
Type_Id := Get_Pragma_Arg (Arg1);
Find_Type (Type_Id);
Typ := Entity (Type_Id);
if Typ = Any_Type then
return;
end if;
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Typ);
-- The remaining processing is simply to link the pragma on to
-- the rep item chain, for processing when the type is frozen.
-- This is accomplished by a call to Rep_Item_Too_Late. We also
-- mark the type as having predicates.
-- If the current policy for predicate checking is Ignore mark the
-- subtype accordingly. In the case of predicates we consider them
-- enabled unless Ignore is specified (either directly or with a
-- general Assertion_Policy pragma) to preserve existing warnings.
Set_Has_Predicates (Typ);
-- Indicate that the pragma must be processed at the point the
-- type is frozen, as is done for the corresponding aspect.
Set_Has_Delayed_Aspects (Typ);
Set_Has_Delayed_Freeze (Typ);
Set_Predicates_Ignored (Typ,
Present (Check_Policy_List)
and then
Policy_In_Effect (Name_Dynamic_Predicate) = Name_Ignore);
Discard := Rep_Item_Too_Late (Typ, N, FOnly => True);
end Predicate;
-----------------------
-- Predicate_Failure --
-----------------------
-- pragma Predicate_Failure
-- ([Entity =>] type_LOCAL_NAME,
-- [Message =>] string_EXPRESSION);
when Pragma_Predicate_Failure => Predicate_Failure : declare
Discard : Boolean;
Typ : Entity_Id;
Type_Id : Node_Id;
begin
GNAT_Pragma;
Check_Arg_Count (2);
Check_Optional_Identifier (Arg1, Name_Entity);
Check_Optional_Identifier (Arg2, Name_Message);
Check_Arg_Is_Local_Name (Arg1);
Type_Id := Get_Pragma_Arg (Arg1);
Find_Type (Type_Id);
Typ := Entity (Type_Id);
if Typ = Any_Type then
return;
end if;
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Typ);
-- The remaining processing is simply to link the pragma on to
-- the rep item chain, for processing when the type is frozen.
-- This is accomplished by a call to Rep_Item_Too_Late.
Discard := Rep_Item_Too_Late (Typ, N, FOnly => True);
end Predicate_Failure;
------------------
-- Preelaborate --
------------------
-- pragma Preelaborate [(library_unit_NAME)];
-- Set the flag Is_Preelaborated of program unit name entity
when Pragma_Preelaborate => Preelaborate : declare
Pa : constant Node_Id := Parent (N);
Pk : constant Node_Kind := Nkind (Pa);
Ent : Entity_Id;
begin
Check_Ada_83_Warning;
Check_Valid_Library_Unit_Pragma;
if Nkind (N) = N_Null_Statement then
return;
end if;
Ent := Find_Lib_Unit_Name;
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Ent);
Check_Duplicate_Pragma (Ent);
-- This filters out pragmas inside generic parents that show up
-- inside instantiations. Pragmas that come from aspects in the
-- unit are not ignored.
if Present (Ent) then
if Pk = N_Package_Specification
and then Present (Generic_Parent (Pa))
and then not From_Aspect_Specification (N)
then
null;
else
if not Debug_Flag_U then
Set_Is_Preelaborated (Ent);
if Legacy_Elaboration_Checks then
Set_Suppress_Elaboration_Warnings (Ent);
end if;
end if;
end if;
end if;
end Preelaborate;
-------------------------------
-- Prefix_Exception_Messages --
-------------------------------
-- pragma Prefix_Exception_Messages;
when Pragma_Prefix_Exception_Messages =>
GNAT_Pragma;
Check_Valid_Configuration_Pragma;
Check_Arg_Count (0);
Prefix_Exception_Messages := True;
--------------
-- Priority --
--------------
-- pragma Priority (EXPRESSION);
when Pragma_Priority => Priority : declare
P : constant Node_Id := Parent (N);
Arg : Node_Id;
Ent : Entity_Id;
begin
Check_No_Identifiers;
Check_Arg_Count (1);
-- Subprogram case
if Nkind (P) = N_Subprogram_Body then
Check_In_Main_Program;
Ent := Defining_Unit_Name (Specification (P));
if Nkind (Ent) = N_Defining_Program_Unit_Name then
Ent := Defining_Identifier (Ent);
end if;
Arg := Get_Pragma_Arg (Arg1);
Analyze_And_Resolve (Arg, Standard_Integer);
-- Must be static
if not Is_OK_Static_Expression (Arg) then
Flag_Non_Static_Expr
("main subprogram priority is not static!", Arg);
raise Pragma_Exit;
-- If constraint error, then we already signalled an error
elsif Raises_Constraint_Error (Arg) then
null;
-- Otherwise check in range except if Relaxed_RM_Semantics
-- where we ignore the value if out of range.
else
if not Relaxed_RM_Semantics
and then not Is_In_Range (Arg, RTE (RE_Priority))
then
Error_Pragma_Arg
("main subprogram priority is out of range", Arg1);
else
Set_Main_Priority
(Current_Sem_Unit, UI_To_Int (Expr_Value (Arg)));
end if;
end if;
-- Load an arbitrary entity from System.Tasking.Stages or
-- System.Tasking.Restricted.Stages (depending on the
-- supported profile) to make sure that one of these packages
-- is implicitly with'ed, since we need to have the tasking
-- run time active for the pragma Priority to have any effect.
-- Previously we with'ed the package System.Tasking, but this
-- package does not trigger the required initialization of the
-- run-time library.
declare
Discard : Entity_Id;
pragma Warnings (Off, Discard);
begin
if Restricted_Profile then
Discard := RTE (RE_Activate_Restricted_Tasks);
else
Discard := RTE (RE_Activate_Tasks);
end if;
end;
-- Task or Protected, must be of type Integer
elsif Nkind_In (P, N_Protected_Definition, N_Task_Definition) then
Arg := Get_Pragma_Arg (Arg1);
Ent := Defining_Identifier (Parent (P));
-- The expression must be analyzed in the special manner
-- described in "Handling of Default and Per-Object
-- Expressions" in sem.ads.
Preanalyze_Spec_Expression (Arg, RTE (RE_Any_Priority));
if not Is_OK_Static_Expression (Arg) then
Check_Restriction (Static_Priorities, Arg);
end if;
-- Anything else is incorrect
else
Pragma_Misplaced;
end if;
-- Check duplicate pragma before we chain the pragma in the Rep
-- Item chain of Ent.
Check_Duplicate_Pragma (Ent);
Record_Rep_Item (Ent, N);
end Priority;
-----------------------------------
-- Priority_Specific_Dispatching --
-----------------------------------
-- pragma Priority_Specific_Dispatching (
-- policy_IDENTIFIER,
-- first_priority_EXPRESSION,
-- last_priority_EXPRESSION);
when Pragma_Priority_Specific_Dispatching =>
Priority_Specific_Dispatching : declare
Prio_Id : constant Entity_Id := RTE (RE_Any_Priority);
-- This is the entity System.Any_Priority;
DP : Character;
Lower_Bound : Node_Id;
Upper_Bound : Node_Id;
Lower_Val : Uint;
Upper_Val : Uint;
begin
Ada_2005_Pragma;
Check_Arg_Count (3);
Check_No_Identifiers;
Check_Arg_Is_Task_Dispatching_Policy (Arg1);
Check_Valid_Configuration_Pragma;
Get_Name_String (Chars (Get_Pragma_Arg (Arg1)));
DP := Fold_Upper (Name_Buffer (1));
Lower_Bound := Get_Pragma_Arg (Arg2);
Check_Arg_Is_OK_Static_Expression (Lower_Bound, Standard_Integer);
Lower_Val := Expr_Value (Lower_Bound);
Upper_Bound := Get_Pragma_Arg (Arg3);
Check_Arg_Is_OK_Static_Expression (Upper_Bound, Standard_Integer);
Upper_Val := Expr_Value (Upper_Bound);
-- It is not allowed to use Task_Dispatching_Policy and
-- Priority_Specific_Dispatching in the same partition.
if Task_Dispatching_Policy /= ' ' then
Error_Msg_Sloc := Task_Dispatching_Policy_Sloc;
Error_Pragma
("pragma% incompatible with Task_Dispatching_Policy#");
-- Check lower bound in range
elsif Lower_Val < Expr_Value (Type_Low_Bound (Prio_Id))
or else
Lower_Val > Expr_Value (Type_High_Bound (Prio_Id))
then
Error_Pragma_Arg
("first_priority is out of range", Arg2);
-- Check upper bound in range
elsif Upper_Val < Expr_Value (Type_Low_Bound (Prio_Id))
or else
Upper_Val > Expr_Value (Type_High_Bound (Prio_Id))
then
Error_Pragma_Arg
("last_priority is out of range", Arg3);
-- Check that the priority range is valid
elsif Lower_Val > Upper_Val then
Error_Pragma
("last_priority_expression must be greater than or equal to "
& "first_priority_expression");
-- Store the new policy, but always preserve System_Location since
-- we like the error message with the run-time name.
else
-- Check overlapping in the priority ranges specified in other
-- Priority_Specific_Dispatching pragmas within the same
-- partition. We can only check those we know about.
for J in
Specific_Dispatching.First .. Specific_Dispatching.Last
loop
if Specific_Dispatching.Table (J).First_Priority in
UI_To_Int (Lower_Val) .. UI_To_Int (Upper_Val)
or else Specific_Dispatching.Table (J).Last_Priority in
UI_To_Int (Lower_Val) .. UI_To_Int (Upper_Val)
then
Error_Msg_Sloc :=
Specific_Dispatching.Table (J).Pragma_Loc;
Error_Pragma
("priority range overlaps with "
& "Priority_Specific_Dispatching#");
end if;
end loop;
-- The use of Priority_Specific_Dispatching is incompatible
-- with Task_Dispatching_Policy.
if Task_Dispatching_Policy /= ' ' then
Error_Msg_Sloc := Task_Dispatching_Policy_Sloc;
Error_Pragma
("Priority_Specific_Dispatching incompatible "
& "with Task_Dispatching_Policy#");
end if;
-- The use of Priority_Specific_Dispatching forces ceiling
-- locking policy.
if Locking_Policy /= ' ' and then Locking_Policy /= 'C' then
Error_Msg_Sloc := Locking_Policy_Sloc;
Error_Pragma
("Priority_Specific_Dispatching incompatible "
& "with Locking_Policy#");
-- Set the Ceiling_Locking policy, but preserve System_Location
-- since we like the error message with the run time name.
else
Locking_Policy := 'C';
if Locking_Policy_Sloc /= System_Location then
Locking_Policy_Sloc := Loc;
end if;
end if;
-- Add entry in the table
Specific_Dispatching.Append
((Dispatching_Policy => DP,
First_Priority => UI_To_Int (Lower_Val),
Last_Priority => UI_To_Int (Upper_Val),
Pragma_Loc => Loc));
end if;
end Priority_Specific_Dispatching;
-------------
-- Profile --
-------------
-- pragma Profile (profile_IDENTIFIER);
-- profile_IDENTIFIER => Restricted | Ravenscar | Rational
when Pragma_Profile =>
Ada_2005_Pragma;
Check_Arg_Count (1);
Check_Valid_Configuration_Pragma;
Check_No_Identifiers;
declare
Argx : constant Node_Id := Get_Pragma_Arg (Arg1);
begin
if Chars (Argx) = Name_Ravenscar then
Set_Ravenscar_Profile (Ravenscar, N);
elsif Chars (Argx) = Name_Gnat_Extended_Ravenscar then
Set_Ravenscar_Profile (GNAT_Extended_Ravenscar, N);
elsif Chars (Argx) = Name_Gnat_Ravenscar_EDF then
Set_Ravenscar_Profile (GNAT_Ravenscar_EDF, N);
elsif Chars (Argx) = Name_Restricted then
Set_Profile_Restrictions
(Restricted,
N, Warn => Treat_Restrictions_As_Warnings);
elsif Chars (Argx) = Name_Rational then
Set_Rational_Profile;
elsif Chars (Argx) = Name_No_Implementation_Extensions then
Set_Profile_Restrictions
(No_Implementation_Extensions,
N, Warn => Treat_Restrictions_As_Warnings);
else
Error_Pragma_Arg ("& is not a valid profile", Argx);
end if;
end;
----------------------
-- Profile_Warnings --
----------------------
-- pragma Profile_Warnings (profile_IDENTIFIER);
-- profile_IDENTIFIER => Restricted | Ravenscar
when Pragma_Profile_Warnings =>
GNAT_Pragma;
Check_Arg_Count (1);
Check_Valid_Configuration_Pragma;
Check_No_Identifiers;
declare
Argx : constant Node_Id := Get_Pragma_Arg (Arg1);
begin
if Chars (Argx) = Name_Ravenscar then
Set_Profile_Restrictions (Ravenscar, N, Warn => True);
elsif Chars (Argx) = Name_Restricted then
Set_Profile_Restrictions (Restricted, N, Warn => True);
elsif Chars (Argx) = Name_No_Implementation_Extensions then
Set_Profile_Restrictions
(No_Implementation_Extensions, N, Warn => True);
else
Error_Pragma_Arg ("& is not a valid profile", Argx);
end if;
end;
--------------------------
-- Propagate_Exceptions --
--------------------------
-- pragma Propagate_Exceptions;
-- Note: this pragma is obsolete and has no effect
when Pragma_Propagate_Exceptions =>
GNAT_Pragma;
Check_Arg_Count (0);
if Warn_On_Obsolescent_Feature then
Error_Msg_N
("'G'N'A'T pragma Propagate'_Exceptions is now obsolete " &
"and has no effect?j?", N);
end if;
-----------------------------
-- Provide_Shift_Operators --
-----------------------------
-- pragma Provide_Shift_Operators (integer_subtype_LOCAL_NAME);
when Pragma_Provide_Shift_Operators =>
Provide_Shift_Operators : declare
Ent : Entity_Id;
procedure Declare_Shift_Operator (Nam : Name_Id);
-- Insert declaration and pragma Instrinsic for named shift op
----------------------------
-- Declare_Shift_Operator --
----------------------------
procedure Declare_Shift_Operator (Nam : Name_Id) is
Func : Node_Id;
Import : Node_Id;
begin
Func :=
Make_Subprogram_Declaration (Loc,
Make_Function_Specification (Loc,
Defining_Unit_Name =>
Make_Defining_Identifier (Loc, Chars => Nam),
Result_Definition =>
Make_Identifier (Loc, Chars => Chars (Ent)),
Parameter_Specifications => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_Value),
Parameter_Type =>
Make_Identifier (Loc, Chars => Chars (Ent))),
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_Amount),
Parameter_Type =>
New_Occurrence_Of (Standard_Natural, Loc)))));
Import :=
Make_Pragma (Loc,
Chars => Name_Import,
Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Make_Identifier (Loc, Name_Intrinsic)),
Make_Pragma_Argument_Association (Loc,
Expression => Make_Identifier (Loc, Nam))));
Insert_After (N, Import);
Insert_After (N, Func);
end Declare_Shift_Operator;
-- Start of processing for Provide_Shift_Operators
begin
GNAT_Pragma;
Check_Arg_Count (1);
Check_Arg_Is_Local_Name (Arg1);
Arg1 := Get_Pragma_Arg (Arg1);
-- We must have an entity name
if not Is_Entity_Name (Arg1) then
Error_Pragma_Arg
("pragma % must apply to integer first subtype", Arg1);
end if;
-- If no Entity, means there was a prior error so ignore
if Present (Entity (Arg1)) then
Ent := Entity (Arg1);
-- Apply error checks
if not Is_First_Subtype (Ent) then
Error_Pragma_Arg
("cannot apply pragma %",
"\& is not a first subtype",
Arg1);
elsif not Is_Integer_Type (Ent) then
Error_Pragma_Arg
("cannot apply pragma %",
"\& is not an integer type",
Arg1);
elsif Has_Shift_Operator (Ent) then
Error_Pragma_Arg
("cannot apply pragma %",
"\& already has declared shift operators",
Arg1);
elsif Is_Frozen (Ent) then
Error_Pragma_Arg
("pragma % appears too late",
"\& is already frozen",
Arg1);
end if;
-- Now declare the operators. We do this during analysis rather
-- than expansion, since we want the operators available if we
-- are operating in -gnatc or ASIS mode.
Declare_Shift_Operator (Name_Rotate_Left);
Declare_Shift_Operator (Name_Rotate_Right);
Declare_Shift_Operator (Name_Shift_Left);
Declare_Shift_Operator (Name_Shift_Right);
Declare_Shift_Operator (Name_Shift_Right_Arithmetic);
end if;
end Provide_Shift_Operators;
------------------
-- Psect_Object --
------------------
-- pragma Psect_Object (
-- [Internal =>] LOCAL_NAME,
-- [, [External =>] EXTERNAL_SYMBOL]
-- [, [Size =>] EXTERNAL_SYMBOL]);
when Pragma_Common_Object
| Pragma_Psect_Object
=>
Psect_Object : declare
Args : Args_List (1 .. 3);
Names : constant Name_List (1 .. 3) := (
Name_Internal,
Name_External,
Name_Size);
Internal : Node_Id renames Args (1);
External : Node_Id renames Args (2);
Size : Node_Id renames Args (3);
Def_Id : Entity_Id;
procedure Check_Arg (Arg : Node_Id);
-- Checks that argument is either a string literal or an
-- identifier, and posts error message if not.
---------------
-- Check_Arg --
---------------
procedure Check_Arg (Arg : Node_Id) is
begin
if not Nkind_In (Original_Node (Arg),
N_String_Literal,
N_Identifier)
then
Error_Pragma_Arg
("inappropriate argument for pragma %", Arg);
end if;
end Check_Arg;
-- Start of processing for Common_Object/Psect_Object
begin
GNAT_Pragma;
Gather_Associations (Names, Args);
Process_Extended_Import_Export_Internal_Arg (Internal);
Def_Id := Entity (Internal);
if not Ekind_In (Def_Id, E_Constant, E_Variable) then
Error_Pragma_Arg
("pragma% must designate an object", Internal);
end if;
Check_Arg (Internal);
if Is_Imported (Def_Id) or else Is_Exported (Def_Id) then
Error_Pragma_Arg
("cannot use pragma% for imported/exported object",
Internal);
end if;
if Is_Concurrent_Type (Etype (Internal)) then
Error_Pragma_Arg
("cannot specify pragma % for task/protected object",
Internal);
end if;
if Has_Rep_Pragma (Def_Id, Name_Common_Object)
or else
Has_Rep_Pragma (Def_Id, Name_Psect_Object)
then
Error_Msg_N ("??duplicate Common/Psect_Object pragma", N);
end if;
if Ekind (Def_Id) = E_Constant then
Error_Pragma_Arg
("cannot specify pragma % for a constant", Internal);
end if;
if Is_Record_Type (Etype (Internal)) then
declare
Ent : Entity_Id;
Decl : Entity_Id;
begin
Ent := First_Entity (Etype (Internal));
while Present (Ent) loop
Decl := Declaration_Node (Ent);
if Ekind (Ent) = E_Component
and then Nkind (Decl) = N_Component_Declaration
and then Present (Expression (Decl))
and then Warn_On_Export_Import
then
Error_Msg_N
("?x?object for pragma % has defaults", Internal);
exit;
else
Next_Entity (Ent);
end if;
end loop;
end;
end if;
if Present (Size) then
Check_Arg (Size);
end if;
if Present (External) then
Check_Arg_Is_External_Name (External);
end if;
-- If all error tests pass, link pragma on to the rep item chain
Record_Rep_Item (Def_Id, N);
end Psect_Object;
----------
-- Pure --
----------
-- pragma Pure [(library_unit_NAME)];
when Pragma_Pure => Pure : declare
Ent : Entity_Id;
begin
Check_Ada_83_Warning;
-- If the pragma comes from a subprogram instantiation, nothing to
-- check, this can happen at any level of nesting.
if Is_Wrapper_Package (Current_Scope) then
return;
else
Check_Valid_Library_Unit_Pragma;
end if;
if Nkind (N) = N_Null_Statement then
return;
end if;
Ent := Find_Lib_Unit_Name;
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Ent);
if not Debug_Flag_U then
Set_Is_Pure (Ent);
Set_Has_Pragma_Pure (Ent);
if Legacy_Elaboration_Checks then
Set_Suppress_Elaboration_Warnings (Ent);
end if;
end if;
end Pure;
-------------------
-- Pure_Function --
-------------------
-- pragma Pure_Function ([Entity =>] function_LOCAL_NAME);
when Pragma_Pure_Function => Pure_Function : declare
Def_Id : Entity_Id;
E : Entity_Id;
E_Id : Node_Id;
Effective : Boolean := False;
begin
GNAT_Pragma;
Check_Arg_Count (1);
Check_Optional_Identifier (Arg1, Name_Entity);
Check_Arg_Is_Local_Name (Arg1);
E_Id := Get_Pragma_Arg (Arg1);
if Etype (E_Id) = Any_Type then
return;
end if;
-- Loop through homonyms (overloadings) of referenced entity
E := Entity (E_Id);
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, E);
if Present (E) then
loop
Def_Id := Get_Base_Subprogram (E);
if not Ekind_In (Def_Id, E_Function,
E_Generic_Function,
E_Operator)
then
Error_Pragma_Arg
("pragma% requires a function name", Arg1);
end if;
Set_Is_Pure (Def_Id);
if not Has_Pragma_Pure_Function (Def_Id) then
Set_Has_Pragma_Pure_Function (Def_Id);
Effective := True;
end if;
exit when From_Aspect_Specification (N);
E := Homonym (E);
exit when No (E) or else Scope (E) /= Current_Scope;
end loop;
if not Effective
and then Warn_On_Redundant_Constructs
then
Error_Msg_NE
("pragma Pure_Function on& is redundant?r?",
N, Entity (E_Id));
end if;
end if;
end Pure_Function;
--------------------
-- Queuing_Policy --
--------------------
-- pragma Queuing_Policy (policy_IDENTIFIER);
when Pragma_Queuing_Policy => declare
QP : Character;
begin
Check_Ada_83_Warning;
Check_Arg_Count (1);
Check_No_Identifiers;
Check_Arg_Is_Queuing_Policy (Arg1);
Check_Valid_Configuration_Pragma;
Get_Name_String (Chars (Get_Pragma_Arg (Arg1)));
QP := Fold_Upper (Name_Buffer (1));
if Queuing_Policy /= ' '
and then Queuing_Policy /= QP
then
Error_Msg_Sloc := Queuing_Policy_Sloc;
Error_Pragma ("queuing policy incompatible with policy#");
-- Set new policy, but always preserve System_Location since we
-- like the error message with the run time name.
else
Queuing_Policy := QP;
if Queuing_Policy_Sloc /= System_Location then
Queuing_Policy_Sloc := Loc;
end if;
end if;
end;
--------------
-- Rational --
--------------
-- pragma Rational, for compatibility with foreign compiler
when Pragma_Rational =>
Set_Rational_Profile;
---------------------
-- Refined_Depends --
---------------------
-- pragma Refined_Depends (DEPENDENCY_RELATION);
-- DEPENDENCY_RELATION ::=
-- null
-- | (DEPENDENCY_CLAUSE {, DEPENDENCY_CLAUSE})
-- DEPENDENCY_CLAUSE ::=
-- OUTPUT_LIST =>[+] INPUT_LIST
-- | NULL_DEPENDENCY_CLAUSE
-- NULL_DEPENDENCY_CLAUSE ::= null => INPUT_LIST
-- OUTPUT_LIST ::= OUTPUT | (OUTPUT {, OUTPUT})
-- INPUT_LIST ::= null | INPUT | (INPUT {, INPUT})
-- OUTPUT ::= NAME | FUNCTION_RESULT
-- INPUT ::= NAME
-- where FUNCTION_RESULT is a function Result attribute_reference
-- Characteristics:
-- * Analysis - The annotation undergoes initial checks to verify
-- the legal placement and context. Secondary checks fully analyze
-- the dependency clauses/global list in:
-- Analyze_Refined_Depends_In_Decl_Part
-- * Expansion - None.
-- * Template - The annotation utilizes the generic template of the
-- related subprogram body.
-- * Globals - Capture of global references must occur after full
-- analysis.
-- * Instance - The annotation is instantiated automatically when
-- the related generic subprogram body is instantiated.
when Pragma_Refined_Depends => Refined_Depends : declare
Body_Id : Entity_Id;
Legal : Boolean;
Spec_Id : Entity_Id;
begin
Analyze_Refined_Depends_Global_Post (Spec_Id, Body_Id, Legal);
if Legal then
-- Chain the pragma on the contract for further processing by
-- Analyze_Refined_Depends_In_Decl_Part.
Add_Contract_Item (N, Body_Id);
-- The legality checks of pragmas Refined_Depends and
-- Refined_Global are affected by the SPARK mode in effect and
-- the volatility of the context. In addition these two pragmas
-- are subject to an inherent order:
-- 1) Refined_Global
-- 2) Refined_Depends
-- Analyze all these pragmas in the order outlined above
Analyze_If_Present (Pragma_SPARK_Mode);
Analyze_If_Present (Pragma_Volatile_Function);
Analyze_If_Present (Pragma_Refined_Global);
Analyze_Refined_Depends_In_Decl_Part (N);
end if;
end Refined_Depends;
--------------------
-- Refined_Global --
--------------------
-- pragma Refined_Global (GLOBAL_SPECIFICATION);
-- GLOBAL_SPECIFICATION ::=
-- null
-- | (GLOBAL_LIST)
-- | (MODED_GLOBAL_LIST {, MODED_GLOBAL_LIST})
-- MODED_GLOBAL_LIST ::= MODE_SELECTOR => GLOBAL_LIST
-- MODE_SELECTOR ::= In_Out | Input | Output | Proof_In
-- GLOBAL_LIST ::= GLOBAL_ITEM | (GLOBAL_ITEM {, GLOBAL_ITEM})
-- GLOBAL_ITEM ::= NAME
-- Characteristics:
-- * Analysis - The annotation undergoes initial checks to verify
-- the legal placement and context. Secondary checks fully analyze
-- the dependency clauses/global list in:
-- Analyze_Refined_Global_In_Decl_Part
-- * Expansion - None.
-- * Template - The annotation utilizes the generic template of the
-- related subprogram body.
-- * Globals - Capture of global references must occur after full
-- analysis.
-- * Instance - The annotation is instantiated automatically when
-- the related generic subprogram body is instantiated.
when Pragma_Refined_Global => Refined_Global : declare
Body_Id : Entity_Id;
Legal : Boolean;
Spec_Id : Entity_Id;
begin
Analyze_Refined_Depends_Global_Post (Spec_Id, Body_Id, Legal);
if Legal then
-- Chain the pragma on the contract for further processing by
-- Analyze_Refined_Global_In_Decl_Part.
Add_Contract_Item (N, Body_Id);
-- The legality checks of pragmas Refined_Depends and
-- Refined_Global are affected by the SPARK mode in effect and
-- the volatility of the context. In addition these two pragmas
-- are subject to an inherent order:
-- 1) Refined_Global
-- 2) Refined_Depends
-- Analyze all these pragmas in the order outlined above
Analyze_If_Present (Pragma_SPARK_Mode);
Analyze_If_Present (Pragma_Volatile_Function);
Analyze_Refined_Global_In_Decl_Part (N);
Analyze_If_Present (Pragma_Refined_Depends);
end if;
end Refined_Global;
------------------
-- Refined_Post --
------------------
-- pragma Refined_Post (boolean_EXPRESSION);
-- Characteristics:
-- * Analysis - The annotation is fully analyzed immediately upon
-- elaboration as it cannot forward reference entities.
-- * Expansion - The annotation is expanded during the expansion of
-- the related subprogram body contract as performed in:
-- Expand_Subprogram_Contract
-- * Template - The annotation utilizes the generic template of the
-- related subprogram body.
-- * Globals - Capture of global references must occur after full
-- analysis.
-- * Instance - The annotation is instantiated automatically when
-- the related generic subprogram body is instantiated.
when Pragma_Refined_Post => Refined_Post : declare
Body_Id : Entity_Id;
Legal : Boolean;
Spec_Id : Entity_Id;
begin
Analyze_Refined_Depends_Global_Post (Spec_Id, Body_Id, Legal);
-- Fully analyze the pragma when it appears inside a subprogram
-- body because it cannot benefit from forward references.
if Legal then
-- Chain the pragma on the contract for completeness
Add_Contract_Item (N, Body_Id);
-- The legality checks of pragma Refined_Post are affected by
-- the SPARK mode in effect and the volatility of the context.
-- Analyze all pragmas in a specific order.
Analyze_If_Present (Pragma_SPARK_Mode);
Analyze_If_Present (Pragma_Volatile_Function);
Analyze_Pre_Post_Condition_In_Decl_Part (N);
-- Currently it is not possible to inline pre/postconditions on
-- a subprogram subject to pragma Inline_Always.
Check_Postcondition_Use_In_Inlined_Subprogram (N, Spec_Id);
end if;
end Refined_Post;
-------------------
-- Refined_State --
-------------------
-- pragma Refined_State (REFINEMENT_LIST);
-- REFINEMENT_LIST ::=
-- (REFINEMENT_CLAUSE {, REFINEMENT_CLAUSE})
-- REFINEMENT_CLAUSE ::= state_NAME => CONSTITUENT_LIST
-- CONSTITUENT_LIST ::=
-- null
-- | CONSTITUENT
-- | (CONSTITUENT {, CONSTITUENT})
-- CONSTITUENT ::= object_NAME | state_NAME
-- Characteristics:
-- * Analysis - The annotation undergoes initial checks to verify
-- the legal placement and context. Secondary checks preanalyze the
-- refinement clauses in:
-- Analyze_Refined_State_In_Decl_Part
-- * Expansion - None.
-- * Template - The annotation utilizes the template of the related
-- package body.
-- * Globals - Capture of global references must occur after full
-- analysis.
-- * Instance - The annotation is instantiated automatically when
-- the related generic package body is instantiated.
when Pragma_Refined_State => Refined_State : declare
Pack_Decl : Node_Id;
Spec_Id : Entity_Id;
begin
GNAT_Pragma;
Check_No_Identifiers;
Check_Arg_Count (1);
Pack_Decl := Find_Related_Package_Or_Body (N, Do_Checks => True);
-- Ensure the proper placement of the pragma. Refined states must
-- be associated with a package body.
if Nkind (Pack_Decl) = N_Package_Body then
null;
-- Otherwise the pragma is associated with an illegal construct
else
Pragma_Misplaced;
return;
end if;
Spec_Id := Corresponding_Spec (Pack_Decl);
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Spec_Id);
-- Chain the pragma on the contract for further processing by
-- Analyze_Refined_State_In_Decl_Part.
Add_Contract_Item (N, Defining_Entity (Pack_Decl));
-- The legality checks of pragma Refined_State are affected by the
-- SPARK mode in effect. Analyze all pragmas in a specific order.
Analyze_If_Present (Pragma_SPARK_Mode);
-- State refinement is allowed only when the corresponding package
-- declaration has non-null pragma Abstract_State. Refinement not
-- enforced when SPARK checks are suppressed (SPARK RM 7.2.2(3)).
if SPARK_Mode /= Off
and then
(No (Abstract_States (Spec_Id))
or else Has_Null_Abstract_State (Spec_Id))
then
Error_Msg_NE
("useless refinement, package & does not define abstract "
& "states", N, Spec_Id);
return;
end if;
end Refined_State;
-----------------------
-- Relative_Deadline --
-----------------------
-- pragma Relative_Deadline (time_span_EXPRESSION);
when Pragma_Relative_Deadline => Relative_Deadline : declare
P : constant Node_Id := Parent (N);
Arg : Node_Id;
begin
Ada_2005_Pragma;
Check_No_Identifiers;
Check_Arg_Count (1);
Arg := Get_Pragma_Arg (Arg1);
-- The expression must be analyzed in the special manner described
-- in "Handling of Default and Per-Object Expressions" in sem.ads.
Preanalyze_Spec_Expression (Arg, RTE (RE_Time_Span));
-- Subprogram case
if Nkind (P) = N_Subprogram_Body then
Check_In_Main_Program;
-- Only Task and subprogram cases allowed
elsif Nkind (P) /= N_Task_Definition then
Pragma_Misplaced;
end if;
-- Check duplicate pragma before we set the corresponding flag
if Has_Relative_Deadline_Pragma (P) then
Error_Pragma ("duplicate pragma% not allowed");
end if;
-- Set Has_Relative_Deadline_Pragma only for tasks. Note that
-- Relative_Deadline pragma node cannot be inserted in the Rep
-- Item chain of Ent since it is rewritten by the expander as a
-- procedure call statement that will break the chain.
Set_Has_Relative_Deadline_Pragma (P);
end Relative_Deadline;
------------------------
-- Remote_Access_Type --
------------------------
-- pragma Remote_Access_Type ([Entity =>] formal_type_LOCAL_NAME);
when Pragma_Remote_Access_Type => Remote_Access_Type : declare
E : Entity_Id;
begin
GNAT_Pragma;
Check_Arg_Count (1);
Check_Optional_Identifier (Arg1, Name_Entity);
Check_Arg_Is_Local_Name (Arg1);
E := Entity (Get_Pragma_Arg (Arg1));
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, E);
if Nkind (Parent (E)) = N_Formal_Type_Declaration
and then Ekind (E) = E_General_Access_Type
and then Is_Class_Wide_Type (Directly_Designated_Type (E))
and then Scope (Root_Type (Directly_Designated_Type (E)))
= Scope (E)
and then Is_Valid_Remote_Object_Type
(Root_Type (Directly_Designated_Type (E)))
then
Set_Is_Remote_Types (E);
else
Error_Pragma_Arg
("pragma% applies only to formal access-to-class-wide types",
Arg1);
end if;
end Remote_Access_Type;
---------------------------
-- Remote_Call_Interface --
---------------------------
-- pragma Remote_Call_Interface [(library_unit_NAME)];
when Pragma_Remote_Call_Interface => Remote_Call_Interface : declare
Cunit_Node : Node_Id;
Cunit_Ent : Entity_Id;
K : Node_Kind;
begin
Check_Ada_83_Warning;
Check_Valid_Library_Unit_Pragma;
if Nkind (N) = N_Null_Statement then
return;
end if;
Cunit_Node := Cunit (Current_Sem_Unit);
K := Nkind (Unit (Cunit_Node));
Cunit_Ent := Cunit_Entity (Current_Sem_Unit);
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Cunit_Ent);
if K = N_Package_Declaration
or else K = N_Generic_Package_Declaration
or else K = N_Subprogram_Declaration
or else K = N_Generic_Subprogram_Declaration
or else (K = N_Subprogram_Body
and then Acts_As_Spec (Unit (Cunit_Node)))
then
null;
else
Error_Pragma (
"pragma% must apply to package or subprogram declaration");
end if;
Set_Is_Remote_Call_Interface (Cunit_Ent);
end Remote_Call_Interface;
------------------
-- Remote_Types --
------------------
-- pragma Remote_Types [(library_unit_NAME)];
when Pragma_Remote_Types => Remote_Types : declare
Cunit_Node : Node_Id;
Cunit_Ent : Entity_Id;
begin
Check_Ada_83_Warning;
Check_Valid_Library_Unit_Pragma;
if Nkind (N) = N_Null_Statement then
return;
end if;
Cunit_Node := Cunit (Current_Sem_Unit);
Cunit_Ent := Cunit_Entity (Current_Sem_Unit);
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Cunit_Ent);
if not Nkind_In (Unit (Cunit_Node), N_Package_Declaration,
N_Generic_Package_Declaration)
then
Error_Pragma
("pragma% can only apply to a package declaration");
end if;
Set_Is_Remote_Types (Cunit_Ent);
end Remote_Types;
---------------
-- Ravenscar --
---------------
-- pragma Ravenscar;
when Pragma_Ravenscar =>
GNAT_Pragma;
Check_Arg_Count (0);
Check_Valid_Configuration_Pragma;
Set_Ravenscar_Profile (Ravenscar, N);
if Warn_On_Obsolescent_Feature then
Error_Msg_N
("pragma Ravenscar is an obsolescent feature?j?", N);
Error_Msg_N
("|use pragma Profile (Ravenscar) instead?j?", N);
end if;
-------------------------
-- Restricted_Run_Time --
-------------------------
-- pragma Restricted_Run_Time;
when Pragma_Restricted_Run_Time =>
GNAT_Pragma;
Check_Arg_Count (0);
Check_Valid_Configuration_Pragma;
Set_Profile_Restrictions
(Restricted, N, Warn => Treat_Restrictions_As_Warnings);
if Warn_On_Obsolescent_Feature then
Error_Msg_N
("pragma Restricted_Run_Time is an obsolescent feature?j?",
N);
Error_Msg_N
("|use pragma Profile (Restricted) instead?j?", N);
end if;
------------------
-- Restrictions --
------------------
-- pragma Restrictions (RESTRICTION {, RESTRICTION});
-- RESTRICTION ::=
-- restriction_IDENTIFIER
-- | restriction_parameter_IDENTIFIER => EXPRESSION
when Pragma_Restrictions =>
Process_Restrictions_Or_Restriction_Warnings
(Warn => Treat_Restrictions_As_Warnings);
--------------------------
-- Restriction_Warnings --
--------------------------
-- pragma Restriction_Warnings (RESTRICTION {, RESTRICTION});
-- RESTRICTION ::=
-- restriction_IDENTIFIER
-- | restriction_parameter_IDENTIFIER => EXPRESSION
when Pragma_Restriction_Warnings =>
GNAT_Pragma;
Process_Restrictions_Or_Restriction_Warnings (Warn => True);
----------------
-- Reviewable --
----------------
-- pragma Reviewable;
when Pragma_Reviewable =>
Check_Ada_83_Warning;
Check_Arg_Count (0);
-- Call dummy debugging function rv. This is done to assist front
-- end debugging. By placing a Reviewable pragma in the source
-- program, a breakpoint on rv catches this place in the source,
-- allowing convenient stepping to the point of interest.
rv;
--------------------------
-- Secondary_Stack_Size --
--------------------------
-- pragma Secondary_Stack_Size (EXPRESSION);
when Pragma_Secondary_Stack_Size => Secondary_Stack_Size : declare
P : constant Node_Id := Parent (N);
Arg : Node_Id;
Ent : Entity_Id;
begin
GNAT_Pragma;
Check_No_Identifiers;
Check_Arg_Count (1);
if Nkind (P) = N_Task_Definition then
Arg := Get_Pragma_Arg (Arg1);
Ent := Defining_Identifier (Parent (P));
-- The expression must be analyzed in the special manner
-- described in "Handling of Default Expressions" in sem.ads.
Preanalyze_Spec_Expression (Arg, Any_Integer);
-- The pragma cannot appear if the No_Secondary_Stack
-- restriction is in effect.
Check_Restriction (No_Secondary_Stack, Arg);
-- Anything else is incorrect
else
Pragma_Misplaced;
end if;
-- Check duplicate pragma before we chain the pragma in the Rep
-- Item chain of Ent.
Check_Duplicate_Pragma (Ent);
Record_Rep_Item (Ent, N);
end Secondary_Stack_Size;
--------------------------
-- Short_Circuit_And_Or --
--------------------------
-- pragma Short_Circuit_And_Or;
when Pragma_Short_Circuit_And_Or =>
GNAT_Pragma;
Check_Arg_Count (0);
Check_Valid_Configuration_Pragma;
Short_Circuit_And_Or := True;
-------------------
-- Share_Generic --
-------------------
-- pragma Share_Generic (GNAME {, GNAME});
-- GNAME ::= generic_unit_NAME | generic_instance_NAME
when Pragma_Share_Generic =>
GNAT_Pragma;
Process_Generic_List;
------------
-- Shared --
------------
-- pragma Shared (LOCAL_NAME);
when Pragma_Shared =>
GNAT_Pragma;
Process_Atomic_Independent_Shared_Volatile;
--------------------
-- Shared_Passive --
--------------------
-- pragma Shared_Passive [(library_unit_NAME)];
-- Set the flag Is_Shared_Passive of program unit name entity
when Pragma_Shared_Passive => Shared_Passive : declare
Cunit_Node : Node_Id;
Cunit_Ent : Entity_Id;
begin
Check_Ada_83_Warning;
Check_Valid_Library_Unit_Pragma;
if Nkind (N) = N_Null_Statement then
return;
end if;
Cunit_Node := Cunit (Current_Sem_Unit);
Cunit_Ent := Cunit_Entity (Current_Sem_Unit);
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Cunit_Ent);
if not Nkind_In (Unit (Cunit_Node), N_Package_Declaration,
N_Generic_Package_Declaration)
then
Error_Pragma
("pragma% can only apply to a package declaration");
end if;
Set_Is_Shared_Passive (Cunit_Ent);
end Shared_Passive;
-----------------------
-- Short_Descriptors --
-----------------------
-- pragma Short_Descriptors;
-- Recognize and validate, but otherwise ignore
when Pragma_Short_Descriptors =>
GNAT_Pragma;
Check_Arg_Count (0);
Check_Valid_Configuration_Pragma;
------------------------------
-- Simple_Storage_Pool_Type --
------------------------------
-- pragma Simple_Storage_Pool_Type (type_LOCAL_NAME);
when Pragma_Simple_Storage_Pool_Type =>
Simple_Storage_Pool_Type : declare
Typ : Entity_Id;
Type_Id : Node_Id;
begin
GNAT_Pragma;
Check_Arg_Count (1);
Check_Arg_Is_Library_Level_Local_Name (Arg1);
Type_Id := Get_Pragma_Arg (Arg1);
Find_Type (Type_Id);
Typ := Entity (Type_Id);
if Typ = Any_Type then
return;
end if;
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Typ);
-- We require the pragma to apply to a type declared in a package
-- declaration, but not (immediately) within a package body.
if Ekind (Current_Scope) /= E_Package
or else In_Package_Body (Current_Scope)
then
Error_Pragma
("pragma% can only apply to type declared immediately "
& "within a package declaration");
end if;
-- A simple storage pool type must be an immutably limited record
-- or private type. If the pragma is given for a private type,
-- the full type is similarly restricted (which is checked later
-- in Freeze_Entity).
if Is_Record_Type (Typ)
and then not Is_Limited_View (Typ)
then
Error_Pragma
("pragma% can only apply to explicitly limited record type");
elsif Is_Private_Type (Typ) and then not Is_Limited_Type (Typ) then
Error_Pragma
("pragma% can only apply to a private type that is limited");
elsif not Is_Record_Type (Typ)
and then not Is_Private_Type (Typ)
then
Error_Pragma
("pragma% can only apply to limited record or private type");
end if;
Record_Rep_Item (Typ, N);
end Simple_Storage_Pool_Type;
----------------------
-- Source_File_Name --
----------------------
-- There are five forms for this pragma:
-- pragma Source_File_Name (
-- [UNIT_NAME =>] unit_NAME,
-- BODY_FILE_NAME => STRING_LITERAL
-- [, [INDEX =>] INTEGER_LITERAL]);
-- pragma Source_File_Name (
-- [UNIT_NAME =>] unit_NAME,
-- SPEC_FILE_NAME => STRING_LITERAL
-- [, [INDEX =>] INTEGER_LITERAL]);
-- pragma Source_File_Name (
-- BODY_FILE_NAME => STRING_LITERAL
-- [, DOT_REPLACEMENT => STRING_LITERAL]
-- [, CASING => CASING_SPEC]);
-- pragma Source_File_Name (
-- SPEC_FILE_NAME => STRING_LITERAL
-- [, DOT_REPLACEMENT => STRING_LITERAL]
-- [, CASING => CASING_SPEC]);
-- pragma Source_File_Name (
-- SUBUNIT_FILE_NAME => STRING_LITERAL
-- [, DOT_REPLACEMENT => STRING_LITERAL]
-- [, CASING => CASING_SPEC]);
-- CASING_SPEC ::= Uppercase | Lowercase | Mixedcase
-- Pragma Source_File_Name_Project (SFNP) is equivalent to pragma
-- Source_File_Name (SFN), however their usage is exclusive: SFN can
-- only be used when no project file is used, while SFNP can only be
-- used when a project file is used.
-- No processing here. Processing was completed during parsing, since
-- we need to have file names set as early as possible. Units are
-- loaded well before semantic processing starts.
-- The only processing we defer to this point is the check for
-- correct placement.
when Pragma_Source_File_Name =>
GNAT_Pragma;
Check_Valid_Configuration_Pragma;
------------------------------
-- Source_File_Name_Project --
------------------------------
-- See Source_File_Name for syntax
-- No processing here. Processing was completed during parsing, since
-- we need to have file names set as early as possible. Units are
-- loaded well before semantic processing starts.
-- The only processing we defer to this point is the check for
-- correct placement.
when Pragma_Source_File_Name_Project =>
GNAT_Pragma;
Check_Valid_Configuration_Pragma;
-- Check that a pragma Source_File_Name_Project is used only in a
-- configuration pragmas file.
-- Pragmas Source_File_Name_Project should only be generated by
-- the Project Manager in configuration pragmas files.
-- This is really an ugly test. It seems to depend on some
-- accidental and undocumented property. At the very least it
-- needs to be documented, but it would be better to have a
-- clean way of testing if we are in a configuration file???
if Present (Parent (N)) then
Error_Pragma
("pragma% can only appear in a configuration pragmas file");
end if;
----------------------
-- Source_Reference --
----------------------
-- pragma Source_Reference (INTEGER_LITERAL [, STRING_LITERAL]);
-- Nothing to do, all processing completed in Par.Prag, since we need
-- the information for possible parser messages that are output.
when Pragma_Source_Reference =>
GNAT_Pragma;
----------------
-- SPARK_Mode --
----------------
-- pragma SPARK_Mode [(On | Off)];
when Pragma_SPARK_Mode => Do_SPARK_Mode : declare
Mode_Id : SPARK_Mode_Type;
procedure Check_Pragma_Conformance
(Context_Pragma : Node_Id;
Entity : Entity_Id;
Entity_Pragma : Node_Id);
-- Subsidiary to routines Process_xxx. Verify the SPARK_Mode
-- conformance of pragma N depending the following scenarios:
--
-- If pragma Context_Pragma is not Empty, verify that pragma N is
-- compatible with the pragma Context_Pragma that was inherited
-- from the context:
-- * If the mode of Context_Pragma is ON, then the new mode can
-- be anything.
-- * If the mode of Context_Pragma is OFF, then the only allowed
-- new mode is also OFF. Emit error if this is not the case.
--
-- If Entity is not Empty, verify that pragma N is compatible with
-- pragma Entity_Pragma that belongs to Entity.
-- * If Entity_Pragma is Empty, always issue an error as this
-- corresponds to the case where a previous section of Entity
-- has no SPARK_Mode set.
-- * If the mode of Entity_Pragma is ON, then the new mode can
-- be anything.
-- * If the mode of Entity_Pragma is OFF, then the only allowed
-- new mode is also OFF. Emit error if this is not the case.
procedure Check_Library_Level_Entity (E : Entity_Id);
-- Subsidiary to routines Process_xxx. Verify that the related
-- entity E subject to pragma SPARK_Mode is library-level.
procedure Process_Body (Decl : Node_Id);
-- Verify the legality of pragma SPARK_Mode when it appears as the
-- top of the body declarations of entry, package, protected unit,
-- subprogram or task unit body denoted by Decl.
procedure Process_Overloadable (Decl : Node_Id);
-- Verify the legality of pragma SPARK_Mode when it applies to an
-- entry or [generic] subprogram declaration denoted by Decl.
procedure Process_Private_Part (Decl : Node_Id);
-- Verify the legality of pragma SPARK_Mode when it appears at the
-- top of the private declarations of a package spec, protected or
-- task unit declaration denoted by Decl.
procedure Process_Statement_Part (Decl : Node_Id);
-- Verify the legality of pragma SPARK_Mode when it appears at the
-- top of the statement sequence of a package body denoted by node
-- Decl.
procedure Process_Visible_Part (Decl : Node_Id);
-- Verify the legality of pragma SPARK_Mode when it appears at the
-- top of the visible declarations of a package spec, protected or
-- task unit declaration denoted by Decl. The routine is also used
-- on protected or task units declared without a definition.
procedure Set_SPARK_Context;
-- Subsidiary to routines Process_xxx. Set the global variables
-- which represent the mode of the context from pragma N. Ensure
-- that Dynamic_Elaboration_Checks are off if the new mode is On.
------------------------------
-- Check_Pragma_Conformance --
------------------------------
procedure Check_Pragma_Conformance
(Context_Pragma : Node_Id;
Entity : Entity_Id;
Entity_Pragma : Node_Id)
is
Err_Id : Entity_Id;
Err_N : Node_Id;
begin
-- The current pragma may appear without an argument. If this
-- is the case, associate all error messages with the pragma
-- itself.
if Present (Arg1) then
Err_N := Arg1;
else
Err_N := N;
end if;
-- The mode of the current pragma is compared against that of
-- an enclosing context.
if Present (Context_Pragma) then
pragma Assert (Nkind (Context_Pragma) = N_Pragma);
-- Issue an error if the new mode is less restrictive than
-- that of the context.
if Get_SPARK_Mode_From_Annotation (Context_Pragma) = Off
and then Get_SPARK_Mode_From_Annotation (N) = On
then
Error_Msg_N
("cannot change SPARK_Mode from Off to On", Err_N);
Error_Msg_Sloc := Sloc (SPARK_Mode_Pragma);
Error_Msg_N ("\SPARK_Mode was set to Off#", Err_N);
raise Pragma_Exit;
end if;
end if;
-- The mode of the current pragma is compared against that of
-- an initial package, protected type, subprogram or task type
-- declaration.
if Present (Entity) then
-- A simple protected or task type is transformed into an
-- anonymous type whose name cannot be used to issue error
-- messages. Recover the original entity of the type.
if Ekind_In (Entity, E_Protected_Type, E_Task_Type) then
Err_Id :=
Defining_Entity
(Original_Node (Unit_Declaration_Node (Entity)));
else
Err_Id := Entity;
end if;
-- Both the initial declaration and the completion carry
-- SPARK_Mode pragmas.
if Present (Entity_Pragma) then
pragma Assert (Nkind (Entity_Pragma) = N_Pragma);
-- Issue an error if the new mode is less restrictive
-- than that of the initial declaration.
if Get_SPARK_Mode_From_Annotation (Entity_Pragma) = Off
and then Get_SPARK_Mode_From_Annotation (N) = On
then
Error_Msg_N ("incorrect use of SPARK_Mode", Err_N);
Error_Msg_Sloc := Sloc (Entity_Pragma);
Error_Msg_NE
("\value Off was set for SPARK_Mode on&#",
Err_N, Err_Id);
raise Pragma_Exit;
end if;
-- Otherwise the initial declaration lacks a SPARK_Mode
-- pragma in which case the current pragma is illegal as
-- it cannot "complete".
else
Error_Msg_N ("incorrect use of SPARK_Mode", Err_N);
Error_Msg_Sloc := Sloc (Err_Id);
Error_Msg_NE
("\no value was set for SPARK_Mode on&#",
Err_N, Err_Id);
raise Pragma_Exit;
end if;
end if;
end Check_Pragma_Conformance;
--------------------------------
-- Check_Library_Level_Entity --
--------------------------------
procedure Check_Library_Level_Entity (E : Entity_Id) is
procedure Add_Entity_To_Name_Buffer;
-- Add the E_Kind of entity E to the name buffer
-------------------------------
-- Add_Entity_To_Name_Buffer --
-------------------------------
procedure Add_Entity_To_Name_Buffer is
begin
if Ekind_In (E, E_Entry, E_Entry_Family) then
Add_Str_To_Name_Buffer ("entry");
elsif Ekind_In (E, E_Generic_Package,
E_Package,
E_Package_Body)
then
Add_Str_To_Name_Buffer ("package");
elsif Ekind_In (E, E_Protected_Body, E_Protected_Type) then
Add_Str_To_Name_Buffer ("protected type");
elsif Ekind_In (E, E_Function,
E_Generic_Function,
E_Generic_Procedure,
E_Procedure,
E_Subprogram_Body)
then
Add_Str_To_Name_Buffer ("subprogram");
else
pragma Assert (Ekind_In (E, E_Task_Body, E_Task_Type));
Add_Str_To_Name_Buffer ("task type");
end if;
end Add_Entity_To_Name_Buffer;
-- Local variables
Msg_1 : constant String := "incorrect placement of pragma%";
Msg_2 : Name_Id;
-- Start of processing for Check_Library_Level_Entity
begin
if not Is_Library_Level_Entity (E) then
Error_Msg_Name_1 := Pname;
Error_Msg_N (Fix_Error (Msg_1), N);
Name_Len := 0;
Add_Str_To_Name_Buffer ("\& is not a library-level ");
Add_Entity_To_Name_Buffer;
Msg_2 := Name_Find;
Error_Msg_NE (Get_Name_String (Msg_2), N, E);
raise Pragma_Exit;
end if;
end Check_Library_Level_Entity;
------------------
-- Process_Body --
------------------
procedure Process_Body (Decl : Node_Id) is
Body_Id : constant Entity_Id := Defining_Entity (Decl);
Spec_Id : constant Entity_Id := Unique_Defining_Entity (Decl);
begin
-- Ignore pragma when applied to the special body created for
-- inlining, recognized by its internal name _Parent.
if Chars (Body_Id) = Name_uParent then
return;
end if;
Check_Library_Level_Entity (Body_Id);
-- For entry bodies, verify the legality against:
-- * The mode of the context
-- * The mode of the spec (if any)
if Nkind_In (Decl, N_Entry_Body, N_Subprogram_Body) then
-- A stand-alone subprogram body
if Body_Id = Spec_Id then
Check_Pragma_Conformance
(Context_Pragma => SPARK_Pragma (Body_Id),
Entity => Empty,
Entity_Pragma => Empty);
-- An entry or subprogram body that completes a previous
-- declaration.
else
Check_Pragma_Conformance
(Context_Pragma => SPARK_Pragma (Body_Id),
Entity => Spec_Id,
Entity_Pragma => SPARK_Pragma (Spec_Id));
end if;
Set_SPARK_Context;
Set_SPARK_Pragma (Body_Id, N);
Set_SPARK_Pragma_Inherited (Body_Id, False);
-- For package bodies, verify the legality against:
-- * The mode of the context
-- * The mode of the private part
-- This case is separated from protected and task bodies
-- because the statement part of the package body inherits
-- the mode of the body declarations.
elsif Nkind (Decl) = N_Package_Body then
Check_Pragma_Conformance
(Context_Pragma => SPARK_Pragma (Body_Id),
Entity => Spec_Id,
Entity_Pragma => SPARK_Aux_Pragma (Spec_Id));
Set_SPARK_Context;
Set_SPARK_Pragma (Body_Id, N);
Set_SPARK_Pragma_Inherited (Body_Id, False);
Set_SPARK_Aux_Pragma (Body_Id, N);
Set_SPARK_Aux_Pragma_Inherited (Body_Id, True);
-- For protected and task bodies, verify the legality against:
-- * The mode of the context
-- * The mode of the private part
else
pragma Assert
(Nkind_In (Decl, N_Protected_Body, N_Task_Body));
Check_Pragma_Conformance
(Context_Pragma => SPARK_Pragma (Body_Id),
Entity => Spec_Id,
Entity_Pragma => SPARK_Aux_Pragma (Spec_Id));
Set_SPARK_Context;
Set_SPARK_Pragma (Body_Id, N);
Set_SPARK_Pragma_Inherited (Body_Id, False);
end if;
end Process_Body;
--------------------------
-- Process_Overloadable --
--------------------------
procedure Process_Overloadable (Decl : Node_Id) is
Spec_Id : constant Entity_Id := Defining_Entity (Decl);
Spec_Typ : constant Entity_Id := Etype (Spec_Id);
begin
Check_Library_Level_Entity (Spec_Id);
-- Verify the legality against:
-- * The mode of the context
Check_Pragma_Conformance
(Context_Pragma => SPARK_Pragma (Spec_Id),
Entity => Empty,
Entity_Pragma => Empty);
Set_SPARK_Pragma (Spec_Id, N);
Set_SPARK_Pragma_Inherited (Spec_Id, False);
-- When the pragma applies to the anonymous object created for
-- a single task type, decorate the type as well. This scenario
-- arises when the single task type lacks a task definition,
-- therefore there is no issue with respect to a potential
-- pragma SPARK_Mode in the private part.
-- task type Anon_Task_Typ;
-- Obj : Anon_Task_Typ;
-- pragma SPARK_Mode ...;
if Is_Single_Task_Object (Spec_Id) then
Set_SPARK_Pragma (Spec_Typ, N);
Set_SPARK_Pragma_Inherited (Spec_Typ, False);
Set_SPARK_Aux_Pragma (Spec_Typ, N);
Set_SPARK_Aux_Pragma_Inherited (Spec_Typ, True);
end if;
end Process_Overloadable;
--------------------------
-- Process_Private_Part --
--------------------------
procedure Process_Private_Part (Decl : Node_Id) is
Spec_Id : constant Entity_Id := Defining_Entity (Decl);
begin
Check_Library_Level_Entity (Spec_Id);
-- Verify the legality against:
-- * The mode of the visible declarations
Check_Pragma_Conformance
(Context_Pragma => Empty,
Entity => Spec_Id,
Entity_Pragma => SPARK_Pragma (Spec_Id));
Set_SPARK_Context;
Set_SPARK_Aux_Pragma (Spec_Id, N);
Set_SPARK_Aux_Pragma_Inherited (Spec_Id, False);
end Process_Private_Part;
----------------------------
-- Process_Statement_Part --
----------------------------
procedure Process_Statement_Part (Decl : Node_Id) is
Body_Id : constant Entity_Id := Defining_Entity (Decl);
begin
Check_Library_Level_Entity (Body_Id);
-- Verify the legality against:
-- * The mode of the body declarations
Check_Pragma_Conformance
(Context_Pragma => Empty,
Entity => Body_Id,
Entity_Pragma => SPARK_Pragma (Body_Id));
Set_SPARK_Context;
Set_SPARK_Aux_Pragma (Body_Id, N);
Set_SPARK_Aux_Pragma_Inherited (Body_Id, False);
end Process_Statement_Part;
--------------------------
-- Process_Visible_Part --
--------------------------
procedure Process_Visible_Part (Decl : Node_Id) is
Spec_Id : constant Entity_Id := Defining_Entity (Decl);
Obj_Id : Entity_Id;
begin
Check_Library_Level_Entity (Spec_Id);
-- Verify the legality against:
-- * The mode of the context
Check_Pragma_Conformance
(Context_Pragma => SPARK_Pragma (Spec_Id),
Entity => Empty,
Entity_Pragma => Empty);
-- A task unit declared without a definition does not set the
-- SPARK_Mode of the context because the task does not have any
-- entries that could inherit the mode.
if not Nkind_In (Decl, N_Single_Task_Declaration,
N_Task_Type_Declaration)
then
Set_SPARK_Context;
end if;
Set_SPARK_Pragma (Spec_Id, N);
Set_SPARK_Pragma_Inherited (Spec_Id, False);
Set_SPARK_Aux_Pragma (Spec_Id, N);
Set_SPARK_Aux_Pragma_Inherited (Spec_Id, True);
-- When the pragma applies to a single protected or task type,
-- decorate the corresponding anonymous object as well.
-- protected Anon_Prot_Typ is
-- pragma SPARK_Mode ...;
-- ...
-- end Anon_Prot_Typ;
-- Obj : Anon_Prot_Typ;
if Is_Single_Concurrent_Type (Spec_Id) then
Obj_Id := Anonymous_Object (Spec_Id);
Set_SPARK_Pragma (Obj_Id, N);
Set_SPARK_Pragma_Inherited (Obj_Id, False);
end if;
end Process_Visible_Part;
-----------------------
-- Set_SPARK_Context --
-----------------------
procedure Set_SPARK_Context is
begin
SPARK_Mode := Mode_Id;
SPARK_Mode_Pragma := N;
end Set_SPARK_Context;
-- Local variables
Context : Node_Id;
Mode : Name_Id;
Stmt : Node_Id;
-- Start of processing for Do_SPARK_Mode
begin
-- When a SPARK_Mode pragma appears inside an instantiation whose
-- enclosing context has SPARK_Mode set to "off", the pragma has
-- no semantic effect.
if Ignore_SPARK_Mode_Pragmas_In_Instance then
Rewrite (N, Make_Null_Statement (Loc));
Analyze (N);
return;
end if;
GNAT_Pragma;
Check_No_Identifiers;
Check_At_Most_N_Arguments (1);
-- Check the legality of the mode (no argument = ON)
if Arg_Count = 1 then
Check_Arg_Is_One_Of (Arg1, Name_On, Name_Off);
Mode := Chars (Get_Pragma_Arg (Arg1));
else
Mode := Name_On;
end if;
Mode_Id := Get_SPARK_Mode_Type (Mode);
Context := Parent (N);
-- The pragma appears in a configuration file
if No (Context) then
Check_Valid_Configuration_Pragma;
if Present (SPARK_Mode_Pragma) then
Duplication_Error
(Prag => N,
Prev => SPARK_Mode_Pragma);
raise Pragma_Exit;
end if;
Set_SPARK_Context;
-- The pragma acts as a configuration pragma in a compilation unit
-- pragma SPARK_Mode ...;
-- package Pack is ...;
elsif Nkind (Context) = N_Compilation_Unit
and then List_Containing (N) = Context_Items (Context)
then
Check_Valid_Configuration_Pragma;
Set_SPARK_Context;
-- Otherwise the placement of the pragma within the tree dictates
-- its associated construct. Inspect the declarative list where
-- the pragma resides to find a potential construct.
else
Stmt := Prev (N);
while Present (Stmt) loop
-- Skip prior pragmas, but check for duplicates. Note that
-- this also takes care of pragmas generated for aspects.
if Nkind (Stmt) = N_Pragma then
if Pragma_Name (Stmt) = Pname then
Duplication_Error
(Prag => N,
Prev => Stmt);
raise Pragma_Exit;
end if;
-- The pragma applies to an expression function that has
-- already been rewritten into a subprogram declaration.
-- function Expr_Func return ... is (...);
-- pragma SPARK_Mode ...;
elsif Nkind (Stmt) = N_Subprogram_Declaration
and then Nkind (Original_Node (Stmt)) =
N_Expression_Function
then
Process_Overloadable (Stmt);
return;
-- The pragma applies to the anonymous object created for a
-- single concurrent type.
-- protected type Anon_Prot_Typ ...;
-- Obj : Anon_Prot_Typ;
-- pragma SPARK_Mode ...;
elsif Nkind (Stmt) = N_Object_Declaration
and then Is_Single_Concurrent_Object
(Defining_Entity (Stmt))
then
Process_Overloadable (Stmt);
return;
-- Skip internally generated code
elsif not Comes_From_Source (Stmt) then
null;
-- The pragma applies to an entry or [generic] subprogram
-- declaration.
-- entry Ent ...;
-- pragma SPARK_Mode ...;
-- [generic]
-- procedure Proc ...;
-- pragma SPARK_Mode ...;
elsif Nkind_In (Stmt, N_Generic_Subprogram_Declaration,
N_Subprogram_Declaration)
or else (Nkind (Stmt) = N_Entry_Declaration
and then Is_Protected_Type
(Scope (Defining_Entity (Stmt))))
then
Process_Overloadable (Stmt);
return;
-- Otherwise the pragma does not apply to a legal construct
-- or it does not appear at the top of a declarative or a
-- statement list. Issue an error and stop the analysis.
else
Pragma_Misplaced;
exit;
end if;
Prev (Stmt);
end loop;
-- The pragma applies to a package or a subprogram that acts as
-- a compilation unit.
-- procedure Proc ...;
-- pragma SPARK_Mode ...;
if Nkind (Context) = N_Compilation_Unit_Aux then
Context := Unit (Parent (Context));
end if;
-- The pragma appears at the top of entry, package, protected
-- unit, subprogram or task unit body declarations.
-- entry Ent when ... is
-- pragma SPARK_Mode ...;
-- package body Pack is
-- pragma SPARK_Mode ...;
-- procedure Proc ... is
-- pragma SPARK_Mode;
-- protected body Prot is
-- pragma SPARK_Mode ...;
if Nkind_In (Context, N_Entry_Body,
N_Package_Body,
N_Protected_Body,
N_Subprogram_Body,
N_Task_Body)
then
Process_Body (Context);
-- The pragma appears at the top of the visible or private
-- declaration of a package spec, protected or task unit.
-- package Pack is
-- pragma SPARK_Mode ...;
-- private
-- pragma SPARK_Mode ...;
-- protected [type] Prot is
-- pragma SPARK_Mode ...;
-- private
-- pragma SPARK_Mode ...;
elsif Nkind_In (Context, N_Package_Specification,
N_Protected_Definition,
N_Task_Definition)
then
if List_Containing (N) = Visible_Declarations (Context) then
Process_Visible_Part (Parent (Context));
else
Process_Private_Part (Parent (Context));
end if;
-- The pragma appears at the top of package body statements
-- package body Pack is
-- begin
-- pragma SPARK_Mode;
elsif Nkind (Context) = N_Handled_Sequence_Of_Statements
and then Nkind (Parent (Context)) = N_Package_Body
then
Process_Statement_Part (Parent (Context));
-- The pragma appeared as an aspect of a [generic] subprogram
-- declaration that acts as a compilation unit.
-- [generic]
-- procedure Proc ...;
-- pragma SPARK_Mode ...;
elsif Nkind_In (Context, N_Generic_Subprogram_Declaration,
N_Subprogram_Declaration)
then
Process_Overloadable (Context);
-- The pragma does not apply to a legal construct, issue error
else
Pragma_Misplaced;
end if;
end if;
end Do_SPARK_Mode;
--------------------------------
-- Static_Elaboration_Desired --
--------------------------------
-- pragma Static_Elaboration_Desired (DIRECT_NAME);
when Pragma_Static_Elaboration_Desired =>
GNAT_Pragma;
Check_At_Most_N_Arguments (1);
if Is_Compilation_Unit (Current_Scope)
and then Ekind (Current_Scope) = E_Package
then
Set_Static_Elaboration_Desired (Current_Scope, True);
else
Error_Pragma ("pragma% must apply to a library-level package");
end if;
------------------
-- Storage_Size --
------------------
-- pragma Storage_Size (EXPRESSION);
when Pragma_Storage_Size => Storage_Size : declare
P : constant Node_Id := Parent (N);
Arg : Node_Id;
begin
Check_No_Identifiers;
Check_Arg_Count (1);
-- The expression must be analyzed in the special manner described
-- in "Handling of Default Expressions" in sem.ads.
Arg := Get_Pragma_Arg (Arg1);
Preanalyze_Spec_Expression (Arg, Any_Integer);
if not Is_OK_Static_Expression (Arg) then
Check_Restriction (Static_Storage_Size, Arg);
end if;
if Nkind (P) /= N_Task_Definition then
Pragma_Misplaced;
return;
else
if Has_Storage_Size_Pragma (P) then
Error_Pragma ("duplicate pragma% not allowed");
else
Set_Has_Storage_Size_Pragma (P, True);
end if;
Record_Rep_Item (Defining_Identifier (Parent (P)), N);
end if;
end Storage_Size;
------------------
-- Storage_Unit --
------------------
-- pragma Storage_Unit (NUMERIC_LITERAL);
-- Only permitted argument is System'Storage_Unit value
when Pragma_Storage_Unit =>
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Arg_Is_Integer_Literal (Arg1);
if Intval (Get_Pragma_Arg (Arg1)) /=
UI_From_Int (Ttypes.System_Storage_Unit)
then
Error_Msg_Uint_1 := UI_From_Int (Ttypes.System_Storage_Unit);
Error_Pragma_Arg
("the only allowed argument for pragma% is ^", Arg1);
end if;
--------------------
-- Stream_Convert --
--------------------
-- pragma Stream_Convert (
-- [Entity =>] type_LOCAL_NAME,
-- [Read =>] function_NAME,
-- [Write =>] function NAME);
when Pragma_Stream_Convert => Stream_Convert : declare
procedure Check_OK_Stream_Convert_Function (Arg : Node_Id);
-- Check that the given argument is the name of a local function
-- of one argument that is not overloaded earlier in the current
-- local scope. A check is also made that the argument is a
-- function with one parameter.
--------------------------------------
-- Check_OK_Stream_Convert_Function --
--------------------------------------
procedure Check_OK_Stream_Convert_Function (Arg : Node_Id) is
Ent : Entity_Id;
begin
Check_Arg_Is_Local_Name (Arg);
Ent := Entity (Get_Pragma_Arg (Arg));
if Has_Homonym (Ent) then
Error_Pragma_Arg
("argument for pragma% may not be overloaded", Arg);
end if;
if Ekind (Ent) /= E_Function
or else No (First_Formal (Ent))
or else Present (Next_Formal (First_Formal (Ent)))
then
Error_Pragma_Arg
("argument for pragma% must be function of one argument",
Arg);
end if;
end Check_OK_Stream_Convert_Function;
-- Start of processing for Stream_Convert
begin
GNAT_Pragma;
Check_Arg_Order ((Name_Entity, Name_Read, Name_Write));
Check_Arg_Count (3);
Check_Optional_Identifier (Arg1, Name_Entity);
Check_Optional_Identifier (Arg2, Name_Read);
Check_Optional_Identifier (Arg3, Name_Write);
Check_Arg_Is_Local_Name (Arg1);
Check_OK_Stream_Convert_Function (Arg2);
Check_OK_Stream_Convert_Function (Arg3);
declare
Typ : constant Entity_Id :=
Underlying_Type (Entity (Get_Pragma_Arg (Arg1)));
Read : constant Entity_Id := Entity (Get_Pragma_Arg (Arg2));
Write : constant Entity_Id := Entity (Get_Pragma_Arg (Arg3));
begin
Check_First_Subtype (Arg1);
-- Check for too early or too late. Note that we don't enforce
-- the rule about primitive operations in this case, since, as
-- is the case for explicit stream attributes themselves, these
-- restrictions are not appropriate. Note that the chaining of
-- the pragma by Rep_Item_Too_Late is actually the critical
-- processing done for this pragma.
if Rep_Item_Too_Early (Typ, N)
or else
Rep_Item_Too_Late (Typ, N, FOnly => True)
then
return;
end if;
-- Return if previous error
if Etype (Typ) = Any_Type
or else
Etype (Read) = Any_Type
or else
Etype (Write) = Any_Type
then
return;
end if;
-- Error checks
if Underlying_Type (Etype (Read)) /= Typ then
Error_Pragma_Arg
("incorrect return type for function&", Arg2);
end if;
if Underlying_Type (Etype (First_Formal (Write))) /= Typ then
Error_Pragma_Arg
("incorrect parameter type for function&", Arg3);
end if;
if Underlying_Type (Etype (First_Formal (Read))) /=
Underlying_Type (Etype (Write))
then
Error_Pragma_Arg
("result type of & does not match Read parameter type",
Arg3);
end if;
end;
end Stream_Convert;
------------------
-- Style_Checks --
------------------
-- pragma Style_Checks (On | Off | ALL_CHECKS | STRING_LITERAL);
-- This is processed by the parser since some of the style checks
-- take place during source scanning and parsing. This means that
-- we don't need to issue error messages here.
when Pragma_Style_Checks => Style_Checks : declare
A : constant Node_Id := Get_Pragma_Arg (Arg1);
S : String_Id;
C : Char_Code;
begin
GNAT_Pragma;
Check_No_Identifiers;
-- Two argument form
if Arg_Count = 2 then
Check_Arg_Is_One_Of (Arg1, Name_On, Name_Off);
declare
E_Id : Node_Id;
E : Entity_Id;
begin
E_Id := Get_Pragma_Arg (Arg2);
Analyze (E_Id);
if not Is_Entity_Name (E_Id) then
Error_Pragma_Arg
("second argument of pragma% must be entity name",
Arg2);
end if;
E := Entity (E_Id);
if not Ignore_Style_Checks_Pragmas then
if E = Any_Id then
return;
else
loop
Set_Suppress_Style_Checks
(E, Chars (Get_Pragma_Arg (Arg1)) = Name_Off);
exit when No (Homonym (E));
E := Homonym (E);
end loop;
end if;
end if;
end;
-- One argument form
else
Check_Arg_Count (1);
if Nkind (A) = N_String_Literal then
S := Strval (A);
declare
Slen : constant Natural := Natural (String_Length (S));
Options : String (1 .. Slen);
J : Positive;
begin
J := 1;
loop
C := Get_String_Char (S, Pos (J));
exit when not In_Character_Range (C);
Options (J) := Get_Character (C);
-- If at end of string, set options. As per discussion
-- above, no need to check for errors, since we issued
-- them in the parser.
if J = Slen then
if not Ignore_Style_Checks_Pragmas then
Set_Style_Check_Options (Options);
end if;
exit;
end if;
J := J + 1;
end loop;
end;
elsif Nkind (A) = N_Identifier then
if Chars (A) = Name_All_Checks then
if not Ignore_Style_Checks_Pragmas then
if GNAT_Mode then
Set_GNAT_Style_Check_Options;
else
Set_Default_Style_Check_Options;
end if;
end if;
elsif Chars (A) = Name_On then
if not Ignore_Style_Checks_Pragmas then
Style_Check := True;
end if;
elsif Chars (A) = Name_Off then
if not Ignore_Style_Checks_Pragmas then
Style_Check := False;
end if;
end if;
end if;
end if;
end Style_Checks;
--------------
-- Subtitle --
--------------
-- pragma Subtitle ([Subtitle =>] STRING_LITERAL);
when Pragma_Subtitle =>
GNAT_Pragma;
Check_Arg_Count (1);
Check_Optional_Identifier (Arg1, Name_Subtitle);
Check_Arg_Is_OK_Static_Expression (Arg1, Standard_String);
Store_Note (N);
--------------
-- Suppress --
--------------
-- pragma Suppress (IDENTIFIER [, [On =>] NAME]);
when Pragma_Suppress =>
Process_Suppress_Unsuppress (Suppress_Case => True);
------------------
-- Suppress_All --
------------------
-- pragma Suppress_All;
-- The only check made here is that the pragma has no arguments.
-- There are no placement rules, and the processing required (setting
-- the Has_Pragma_Suppress_All flag in the compilation unit node was
-- taken care of by the parser). Process_Compilation_Unit_Pragmas
-- then creates and inserts a pragma Suppress (All_Checks).
when Pragma_Suppress_All =>
GNAT_Pragma;
Check_Arg_Count (0);
-------------------------
-- Suppress_Debug_Info --
-------------------------
-- pragma Suppress_Debug_Info ([Entity =>] LOCAL_NAME);
when Pragma_Suppress_Debug_Info => Suppress_Debug_Info : declare
Nam_Id : Entity_Id;
begin
GNAT_Pragma;
Check_Arg_Count (1);
Check_Optional_Identifier (Arg1, Name_Entity);
Check_Arg_Is_Local_Name (Arg1);
Nam_Id := Entity (Get_Pragma_Arg (Arg1));
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Nam_Id);
Set_Debug_Info_Off (Nam_Id);
end Suppress_Debug_Info;
----------------------------------
-- Suppress_Exception_Locations --
----------------------------------
-- pragma Suppress_Exception_Locations;
when Pragma_Suppress_Exception_Locations =>
GNAT_Pragma;
Check_Arg_Count (0);
Check_Valid_Configuration_Pragma;
Exception_Locations_Suppressed := True;
-----------------------------
-- Suppress_Initialization --
-----------------------------
-- pragma Suppress_Initialization ([Entity =>] type_Name);
when Pragma_Suppress_Initialization => Suppress_Init : declare
E : Entity_Id;
E_Id : Node_Id;
begin
GNAT_Pragma;
Check_Arg_Count (1);
Check_Optional_Identifier (Arg1, Name_Entity);
Check_Arg_Is_Local_Name (Arg1);
E_Id := Get_Pragma_Arg (Arg1);
if Etype (E_Id) = Any_Type then
return;
end if;
E := Entity (E_Id);
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, E);
if not Is_Type (E) and then Ekind (E) /= E_Variable then
Error_Pragma_Arg
("pragma% requires variable, type or subtype", Arg1);
end if;
if Rep_Item_Too_Early (E, N)
or else
Rep_Item_Too_Late (E, N, FOnly => True)
then
return;
end if;
-- For incomplete/private type, set flag on full view
if Is_Incomplete_Or_Private_Type (E) then
if No (Full_View (Base_Type (E))) then
Error_Pragma_Arg
("argument of pragma% cannot be an incomplete type", Arg1);
else
Set_Suppress_Initialization (Full_View (Base_Type (E)));
end if;
-- For first subtype, set flag on base type
elsif Is_First_Subtype (E) then
Set_Suppress_Initialization (Base_Type (E));
-- For other than first subtype, set flag on subtype or variable
else
Set_Suppress_Initialization (E);
end if;
end Suppress_Init;
-----------------
-- System_Name --
-----------------
-- pragma System_Name (DIRECT_NAME);
-- Syntax check: one argument, which must be the identifier GNAT or
-- the identifier GCC, no other identifiers are acceptable.
when Pragma_System_Name =>
GNAT_Pragma;
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Arg_Is_One_Of (Arg1, Name_Gcc, Name_Gnat);
-----------------------------
-- Task_Dispatching_Policy --
-----------------------------
-- pragma Task_Dispatching_Policy (policy_IDENTIFIER);
when Pragma_Task_Dispatching_Policy => declare
DP : Character;
begin
Check_Ada_83_Warning;
Check_Arg_Count (1);
Check_No_Identifiers;
Check_Arg_Is_Task_Dispatching_Policy (Arg1);
Check_Valid_Configuration_Pragma;
Get_Name_String (Chars (Get_Pragma_Arg (Arg1)));
DP := Fold_Upper (Name_Buffer (1));
if Task_Dispatching_Policy /= ' '
and then Task_Dispatching_Policy /= DP
then
Error_Msg_Sloc := Task_Dispatching_Policy_Sloc;
Error_Pragma
("task dispatching policy incompatible with policy#");
-- Set new policy, but always preserve System_Location since we
-- like the error message with the run time name.
else
Task_Dispatching_Policy := DP;
if Task_Dispatching_Policy_Sloc /= System_Location then
Task_Dispatching_Policy_Sloc := Loc;
end if;
end if;
end;
---------------
-- Task_Info --
---------------
-- pragma Task_Info (EXPRESSION);
when Pragma_Task_Info => Task_Info : declare
P : constant Node_Id := Parent (N);
Ent : Entity_Id;
begin
GNAT_Pragma;
if Warn_On_Obsolescent_Feature then
Error_Msg_N
("'G'N'A'T pragma Task_Info is now obsolete, use 'C'P'U "
& "instead?j?", N);
end if;
if Nkind (P) /= N_Task_Definition then
Error_Pragma ("pragma% must appear in task definition");
end if;
Check_No_Identifiers;
Check_Arg_Count (1);
Analyze_And_Resolve
(Get_Pragma_Arg (Arg1), RTE (RE_Task_Info_Type));
if Etype (Get_Pragma_Arg (Arg1)) = Any_Type then
return;
end if;
Ent := Defining_Identifier (Parent (P));
-- Check duplicate pragma before we chain the pragma in the Rep
-- Item chain of Ent.
if Has_Rep_Pragma
(Ent, Name_Task_Info, Check_Parents => False)
then
Error_Pragma ("duplicate pragma% not allowed");
end if;
Record_Rep_Item (Ent, N);
end Task_Info;
---------------
-- Task_Name --
---------------
-- pragma Task_Name (string_EXPRESSION);
when Pragma_Task_Name => Task_Name : declare
P : constant Node_Id := Parent (N);
Arg : Node_Id;
Ent : Entity_Id;
begin
Check_No_Identifiers;
Check_Arg_Count (1);
Arg := Get_Pragma_Arg (Arg1);
-- The expression is used in the call to Create_Task, and must be
-- expanded there, not in the context of the current spec. It must
-- however be analyzed to capture global references, in case it
-- appears in a generic context.
Preanalyze_And_Resolve (Arg, Standard_String);
if Nkind (P) /= N_Task_Definition then
Pragma_Misplaced;
end if;
Ent := Defining_Identifier (Parent (P));
-- Check duplicate pragma before we chain the pragma in the Rep
-- Item chain of Ent.
if Has_Rep_Pragma
(Ent, Name_Task_Name, Check_Parents => False)
then
Error_Pragma ("duplicate pragma% not allowed");
end if;
Record_Rep_Item (Ent, N);
end Task_Name;
------------------
-- Task_Storage --
------------------
-- pragma Task_Storage (
-- [Task_Type =>] LOCAL_NAME,
-- [Top_Guard =>] static_integer_EXPRESSION);
when Pragma_Task_Storage => Task_Storage : declare
Args : Args_List (1 .. 2);
Names : constant Name_List (1 .. 2) := (
Name_Task_Type,
Name_Top_Guard);
Task_Type : Node_Id renames Args (1);
Top_Guard : Node_Id renames Args (2);
Ent : Entity_Id;
begin
GNAT_Pragma;
Gather_Associations (Names, Args);
if No (Task_Type) then
Error_Pragma
("missing task_type argument for pragma%");
end if;
Check_Arg_Is_Local_Name (Task_Type);
Ent := Entity (Task_Type);
if not Is_Task_Type (Ent) then
Error_Pragma_Arg
("argument for pragma% must be task type", Task_Type);
end if;
if No (Top_Guard) then
Error_Pragma_Arg
("pragma% takes two arguments", Task_Type);
else
Check_Arg_Is_OK_Static_Expression (Top_Guard, Any_Integer);
end if;
Check_First_Subtype (Task_Type);
if Rep_Item_Too_Late (Ent, N) then
raise Pragma_Exit;
end if;
end Task_Storage;
---------------
-- Test_Case --
---------------
-- pragma Test_Case
-- ([Name =>] Static_String_EXPRESSION
-- ,[Mode =>] MODE_TYPE
-- [, Requires => Boolean_EXPRESSION]
-- [, Ensures => Boolean_EXPRESSION]);
-- MODE_TYPE ::= Nominal | Robustness
-- Characteristics:
-- * Analysis - The annotation undergoes initial checks to verify
-- the legal placement and context. Secondary checks preanalyze the
-- expressions in:
-- Analyze_Test_Case_In_Decl_Part
-- * Expansion - None.
-- * Template - The annotation utilizes the generic template of the
-- related subprogram when it is:
-- aspect on subprogram declaration
-- The annotation must prepare its own template when it is:
-- pragma on subprogram declaration
-- * Globals - Capture of global references must occur after full
-- analysis.
-- * Instance - The annotation is instantiated automatically when
-- the related generic subprogram is instantiated except for the
-- "pragma on subprogram declaration" case. In that scenario the
-- annotation must instantiate itself.
when Pragma_Test_Case => Test_Case : declare
procedure Check_Distinct_Name (Subp_Id : Entity_Id);
-- Ensure that the contract of subprogram Subp_Id does not contain
-- another Test_Case pragma with the same Name as the current one.
-------------------------
-- Check_Distinct_Name --
-------------------------
procedure Check_Distinct_Name (Subp_Id : Entity_Id) is
Items : constant Node_Id := Contract (Subp_Id);
Name : constant String_Id := Get_Name_From_CTC_Pragma (N);
Prag : Node_Id;
begin
-- Inspect all Test_Case pragma of the related subprogram
-- looking for one with a duplicate "Name" argument.
if Present (Items) then
Prag := Contract_Test_Cases (Items);
while Present (Prag) loop
if Pragma_Name (Prag) = Name_Test_Case
and then Prag /= N
and then String_Equal
(Name, Get_Name_From_CTC_Pragma (Prag))
then
Error_Msg_Sloc := Sloc (Prag);
Error_Pragma ("name for pragma % is already used #");
end if;
Prag := Next_Pragma (Prag);
end loop;
end if;
end Check_Distinct_Name;
-- Local variables
Pack_Decl : constant Node_Id := Unit (Cunit (Current_Sem_Unit));
Asp_Arg : Node_Id;
Context : Node_Id;
Subp_Decl : Node_Id;
Subp_Id : Entity_Id;
-- Start of processing for Test_Case
begin
GNAT_Pragma;
Check_At_Least_N_Arguments (2);
Check_At_Most_N_Arguments (4);
Check_Arg_Order
((Name_Name, Name_Mode, Name_Requires, Name_Ensures));
-- Argument "Name"
Check_Optional_Identifier (Arg1, Name_Name);
Check_Arg_Is_OK_Static_Expression (Arg1, Standard_String);
-- Argument "Mode"
Check_Optional_Identifier (Arg2, Name_Mode);
Check_Arg_Is_One_Of (Arg2, Name_Nominal, Name_Robustness);
-- Arguments "Requires" and "Ensures"
if Present (Arg3) then
if Present (Arg4) then
Check_Identifier (Arg3, Name_Requires);
Check_Identifier (Arg4, Name_Ensures);
else
Check_Identifier_Is_One_Of
(Arg3, Name_Requires, Name_Ensures);
end if;
end if;
-- Pragma Test_Case must be associated with a subprogram declared
-- in a library-level package. First determine whether the current
-- compilation unit is a legal context.
if Nkind_In (Pack_Decl, N_Package_Declaration,
N_Generic_Package_Declaration)
then
null;
-- Otherwise the placement is illegal
else
Error_Pragma
("pragma % must be specified within a package declaration");
return;
end if;
Subp_Decl := Find_Related_Declaration_Or_Body (N);
-- Find the enclosing context
Context := Parent (Subp_Decl);
if Present (Context) then
Context := Parent (Context);
end if;
-- Verify the placement of the pragma
if Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration then
Error_Pragma
("pragma % cannot be applied to abstract subprogram");
return;
elsif Nkind (Subp_Decl) = N_Entry_Declaration then
Error_Pragma ("pragma % cannot be applied to entry");
return;
-- The context is a [generic] subprogram declared at the top level
-- of the [generic] package unit.
elsif Nkind_In (Subp_Decl, N_Generic_Subprogram_Declaration,
N_Subprogram_Declaration)
and then Present (Context)
and then Nkind_In (Context, N_Generic_Package_Declaration,
N_Package_Declaration)
then
null;
-- Otherwise the placement is illegal
else
Error_Pragma
("pragma % must be applied to a library-level subprogram "
& "declaration");
return;
end if;
Subp_Id := Defining_Entity (Subp_Decl);
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Subp_Id);
-- Chain the pragma on the contract for further processing by
-- Analyze_Test_Case_In_Decl_Part.
Add_Contract_Item (N, Subp_Id);
-- Preanalyze the original aspect argument "Name" for ASIS or for
-- a generic subprogram to properly capture global references.
if ASIS_Mode or else Is_Generic_Subprogram (Subp_Id) then
Asp_Arg := Test_Case_Arg (N, Name_Name, From_Aspect => True);
if Present (Asp_Arg) then
-- The argument appears with an identifier in association
-- form.
if Nkind (Asp_Arg) = N_Component_Association then
Asp_Arg := Expression (Asp_Arg);
end if;
Check_Expr_Is_OK_Static_Expression
(Asp_Arg, Standard_String);
end if;
end if;
-- Ensure that the all Test_Case pragmas of the related subprogram
-- have distinct names.
Check_Distinct_Name (Subp_Id);
-- Fully analyze the pragma when it appears inside an entry
-- or subprogram body because it cannot benefit from forward
-- references.
if Nkind_In (Subp_Decl, N_Entry_Body,
N_Subprogram_Body,
N_Subprogram_Body_Stub)
then
-- The legality checks of pragma Test_Case are affected by the
-- SPARK mode in effect and the volatility of the context.
-- Analyze all pragmas in a specific order.
Analyze_If_Present (Pragma_SPARK_Mode);
Analyze_If_Present (Pragma_Volatile_Function);
Analyze_Test_Case_In_Decl_Part (N);
end if;
end Test_Case;
--------------------------
-- Thread_Local_Storage --
--------------------------
-- pragma Thread_Local_Storage ([Entity =>] LOCAL_NAME);
when Pragma_Thread_Local_Storage => Thread_Local_Storage : declare
E : Entity_Id;
Id : Node_Id;
begin
GNAT_Pragma;
Check_Arg_Count (1);
Check_Optional_Identifier (Arg1, Name_Entity);
Check_Arg_Is_Library_Level_Local_Name (Arg1);
Id := Get_Pragma_Arg (Arg1);
Analyze (Id);
if not Is_Entity_Name (Id)
or else Ekind (Entity (Id)) /= E_Variable
then
Error_Pragma_Arg ("local variable name required", Arg1);
end if;
E := Entity (Id);
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, E);
if Rep_Item_Too_Early (E, N)
or else
Rep_Item_Too_Late (E, N)
then
raise Pragma_Exit;
end if;
Set_Has_Pragma_Thread_Local_Storage (E);
Set_Has_Gigi_Rep_Item (E);
end Thread_Local_Storage;
----------------
-- Time_Slice --
----------------
-- pragma Time_Slice (static_duration_EXPRESSION);
when Pragma_Time_Slice => Time_Slice : declare
Val : Ureal;
Nod : Node_Id;
begin
GNAT_Pragma;
Check_Arg_Count (1);
Check_No_Identifiers;
Check_In_Main_Program;
Check_Arg_Is_OK_Static_Expression (Arg1, Standard_Duration);
if not Error_Posted (Arg1) then
Nod := Next (N);
while Present (Nod) loop
if Nkind (Nod) = N_Pragma
and then Pragma_Name (Nod) = Name_Time_Slice
then
Error_Msg_Name_1 := Pname;
Error_Msg_N ("duplicate pragma% not permitted", Nod);
end if;
Next (Nod);
end loop;
end if;
-- Process only if in main unit
if Get_Source_Unit (Loc) = Main_Unit then
Opt.Time_Slice_Set := True;
Val := Expr_Value_R (Get_Pragma_Arg (Arg1));
if Val <= Ureal_0 then
Opt.Time_Slice_Value := 0;
elsif Val > UR_From_Uint (UI_From_Int (1000)) then
Opt.Time_Slice_Value := 1_000_000_000;
else
Opt.Time_Slice_Value :=
UI_To_Int (UR_To_Uint (Val * UI_From_Int (1_000_000)));
end if;
end if;
end Time_Slice;
-----------
-- Title --
-----------
-- pragma Title (TITLING_OPTION [, TITLING OPTION]);
-- TITLING_OPTION ::=
-- [Title =>] STRING_LITERAL
-- | [Subtitle =>] STRING_LITERAL
when Pragma_Title => Title : declare
Args : Args_List (1 .. 2);
Names : constant Name_List (1 .. 2) := (
Name_Title,
Name_Subtitle);
begin
GNAT_Pragma;
Gather_Associations (Names, Args);
Store_Note (N);
for J in 1 .. 2 loop
if Present (Args (J)) then
Check_Arg_Is_OK_Static_Expression
(Args (J), Standard_String);
end if;
end loop;
end Title;
----------------------------
-- Type_Invariant[_Class] --
----------------------------
-- pragma Type_Invariant[_Class]
-- ([Entity =>] type_LOCAL_NAME,
-- [Check =>] EXPRESSION);
when Pragma_Type_Invariant
| Pragma_Type_Invariant_Class
=>
Type_Invariant : declare
I_Pragma : Node_Id;
begin
Check_Arg_Count (2);
-- Rewrite Type_Invariant[_Class] pragma as an Invariant pragma,
-- setting Class_Present for the Type_Invariant_Class case.
Set_Class_Present (N, Prag_Id = Pragma_Type_Invariant_Class);
I_Pragma := New_Copy (N);
Set_Pragma_Identifier
(I_Pragma, Make_Identifier (Loc, Name_Invariant));
Rewrite (N, I_Pragma);
Set_Analyzed (N, False);
Analyze (N);
end Type_Invariant;
---------------------
-- Unchecked_Union --
---------------------
-- pragma Unchecked_Union (first_subtype_LOCAL_NAME)
when Pragma_Unchecked_Union => Unchecked_Union : declare
Assoc : constant Node_Id := Arg1;
Type_Id : constant Node_Id := Get_Pragma_Arg (Assoc);
Clist : Node_Id;
Comp : Node_Id;
Tdef : Node_Id;
Typ : Entity_Id;
Variant : Node_Id;
Vpart : Node_Id;
begin
Ada_2005_Pragma;
Check_No_Identifiers;
Check_Arg_Count (1);
Check_Arg_Is_Local_Name (Arg1);
Find_Type (Type_Id);
Typ := Entity (Type_Id);
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Typ);
if Typ = Any_Type
or else Rep_Item_Too_Early (Typ, N)
then
return;
else
Typ := Underlying_Type (Typ);
end if;
if Rep_Item_Too_Late (Typ, N) then
return;
end if;
Check_First_Subtype (Arg1);
-- Note remaining cases are references to a type in the current
-- declarative part. If we find an error, we post the error on
-- the relevant type declaration at an appropriate point.
if not Is_Record_Type (Typ) then
Error_Msg_N ("unchecked union must be record type", Typ);
return;
elsif Is_Tagged_Type (Typ) then
Error_Msg_N ("unchecked union must not be tagged", Typ);
return;
elsif not Has_Discriminants (Typ) then
Error_Msg_N
("unchecked union must have one discriminant", Typ);
return;
-- Note: in previous versions of GNAT we used to check for limited
-- types and give an error, but in fact the standard does allow
-- Unchecked_Union on limited types, so this check was removed.
-- Similarly, GNAT used to require that all discriminants have
-- default values, but this is not mandated by the RM.
-- Proceed with basic error checks completed
else
Tdef := Type_Definition (Declaration_Node (Typ));
Clist := Component_List (Tdef);
-- Check presence of component list and variant part
if No (Clist) or else No (Variant_Part (Clist)) then
Error_Msg_N
("unchecked union must have variant part", Tdef);
return;
end if;
-- Check components
Comp := First_Non_Pragma (Component_Items (Clist));
while Present (Comp) loop
Check_Component (Comp, Typ);
Next_Non_Pragma (Comp);
end loop;
-- Check variant part
Vpart := Variant_Part (Clist);
Variant := First_Non_Pragma (Variants (Vpart));
while Present (Variant) loop
Check_Variant (Variant, Typ);
Next_Non_Pragma (Variant);
end loop;
end if;
Set_Is_Unchecked_Union (Typ);
Set_Convention (Typ, Convention_C);
Set_Has_Unchecked_Union (Base_Type (Typ));
Set_Is_Unchecked_Union (Base_Type (Typ));
end Unchecked_Union;
----------------------------
-- Unevaluated_Use_Of_Old --
----------------------------
-- pragma Unevaluated_Use_Of_Old (Error | Warn | Allow);
when Pragma_Unevaluated_Use_Of_Old =>
GNAT_Pragma;
Check_Arg_Count (1);
Check_No_Identifiers;
Check_Arg_Is_One_Of (Arg1, Name_Error, Name_Warn, Name_Allow);
-- Suppress/Unsuppress can appear as a configuration pragma, or in
-- a declarative part or a package spec.
if not Is_Configuration_Pragma then
Check_Is_In_Decl_Part_Or_Package_Spec;
end if;
-- Store proper setting of Uneval_Old
Get_Name_String (Chars (Get_Pragma_Arg (Arg1)));
Uneval_Old := Fold_Upper (Name_Buffer (1));
------------------------
-- Unimplemented_Unit --
------------------------
-- pragma Unimplemented_Unit;
-- Note: this only gives an error if we are generating code, or if
-- we are in a generic library unit (where the pragma appears in the
-- body, not in the spec).
when Pragma_Unimplemented_Unit => Unimplemented_Unit : declare
Cunitent : constant Entity_Id :=
Cunit_Entity (Get_Source_Unit (Loc));
Ent_Kind : constant Entity_Kind := Ekind (Cunitent);
begin
GNAT_Pragma;
Check_Arg_Count (0);
if Operating_Mode = Generate_Code
or else Ent_Kind = E_Generic_Function
or else Ent_Kind = E_Generic_Procedure
or else Ent_Kind = E_Generic_Package
then
Get_Name_String (Chars (Cunitent));
Set_Casing (Mixed_Case);
Write_Str (Name_Buffer (1 .. Name_Len));
Write_Str (" is not supported in this configuration");
Write_Eol;
raise Unrecoverable_Error;
end if;
end Unimplemented_Unit;
------------------------
-- Universal_Aliasing --
------------------------
-- pragma Universal_Aliasing [([Entity =>] type_LOCAL_NAME)];
when Pragma_Universal_Aliasing => Universal_Alias : declare
E : Entity_Id;
E_Id : Node_Id;
begin
GNAT_Pragma;
Check_Arg_Count (1);
Check_Optional_Identifier (Arg2, Name_Entity);
Check_Arg_Is_Local_Name (Arg1);
E_Id := Get_Pragma_Arg (Arg1);
if Etype (E_Id) = Any_Type then
return;
end if;
E := Entity (E_Id);
if not Is_Type (E) then
Error_Pragma_Arg ("pragma% requires type", Arg1);
end if;
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, E);
Set_Universal_Aliasing (Base_Type (E));
Record_Rep_Item (E, N);
end Universal_Alias;
--------------------
-- Universal_Data --
--------------------
-- pragma Universal_Data [(library_unit_NAME)];
when Pragma_Universal_Data =>
GNAT_Pragma;
Error_Pragma ("??pragma% ignored (applies only to AAMP)");
----------------
-- Unmodified --
----------------
-- pragma Unmodified (LOCAL_NAME {, LOCAL_NAME});
when Pragma_Unmodified =>
Analyze_Unmodified_Or_Unused;
------------------
-- Unreferenced --
------------------
-- pragma Unreferenced (LOCAL_NAME {, LOCAL_NAME});
-- or when used in a context clause:
-- pragma Unreferenced (library_unit_NAME {, library_unit_NAME}
when Pragma_Unreferenced =>
Analyze_Unreferenced_Or_Unused;
--------------------------
-- Unreferenced_Objects --
--------------------------
-- pragma Unreferenced_Objects (LOCAL_NAME {, LOCAL_NAME});
when Pragma_Unreferenced_Objects => Unreferenced_Objects : declare
Arg : Node_Id;
Arg_Expr : Node_Id;
Arg_Id : Entity_Id;
Ghost_Error_Posted : Boolean := False;
-- Flag set when an error concerning the illegal mix of Ghost and
-- non-Ghost types is emitted.
Ghost_Id : Entity_Id := Empty;
-- The entity of the first Ghost type encountered while processing
-- the arguments of the pragma.
begin
GNAT_Pragma;
Check_At_Least_N_Arguments (1);
Arg := Arg1;
while Present (Arg) loop
Check_No_Identifier (Arg);
Check_Arg_Is_Local_Name (Arg);
Arg_Expr := Get_Pragma_Arg (Arg);
if Is_Entity_Name (Arg_Expr) then
Arg_Id := Entity (Arg_Expr);
if Is_Type (Arg_Id) then
Set_Has_Pragma_Unreferenced_Objects (Arg_Id);
-- A pragma that applies to a Ghost entity becomes Ghost
-- for the purposes of legality checks and removal of
-- ignored Ghost code.
Mark_Ghost_Pragma (N, Arg_Id);
-- Capture the entity of the first Ghost type being
-- processed for error detection purposes.
if Is_Ghost_Entity (Arg_Id) then
if No (Ghost_Id) then
Ghost_Id := Arg_Id;
end if;
-- Otherwise the type is non-Ghost. It is illegal to mix
-- references to Ghost and non-Ghost entities
-- (SPARK RM 6.9).
elsif Present (Ghost_Id)
and then not Ghost_Error_Posted
then
Ghost_Error_Posted := True;
Error_Msg_Name_1 := Pname;
Error_Msg_N
("pragma % cannot mention ghost and non-ghost types",
N);
Error_Msg_Sloc := Sloc (Ghost_Id);
Error_Msg_NE ("\& # declared as ghost", N, Ghost_Id);
Error_Msg_Sloc := Sloc (Arg_Id);
Error_Msg_NE ("\& # declared as non-ghost", N, Arg_Id);
end if;
else
Error_Pragma_Arg
("argument for pragma% must be type or subtype", Arg);
end if;
else
Error_Pragma_Arg
("argument for pragma% must be type or subtype", Arg);
end if;
Next (Arg);
end loop;
end Unreferenced_Objects;
------------------------------
-- Unreserve_All_Interrupts --
------------------------------
-- pragma Unreserve_All_Interrupts;
when Pragma_Unreserve_All_Interrupts =>
GNAT_Pragma;
Check_Arg_Count (0);
if In_Extended_Main_Code_Unit (Main_Unit_Entity) then
Unreserve_All_Interrupts := True;
end if;
----------------
-- Unsuppress --
----------------
-- pragma Unsuppress (IDENTIFIER [, [On =>] NAME]);
when Pragma_Unsuppress =>
Ada_2005_Pragma;
Process_Suppress_Unsuppress (Suppress_Case => False);
------------
-- Unused --
------------
-- pragma Unused (LOCAL_NAME {, LOCAL_NAME});
when Pragma_Unused =>
Analyze_Unmodified_Or_Unused (Is_Unused => True);
Analyze_Unreferenced_Or_Unused (Is_Unused => True);
-------------------
-- Use_VADS_Size --
-------------------
-- pragma Use_VADS_Size;
when Pragma_Use_VADS_Size =>
GNAT_Pragma;
Check_Arg_Count (0);
Check_Valid_Configuration_Pragma;
Use_VADS_Size := True;
---------------------
-- Validity_Checks --
---------------------
-- pragma Validity_Checks (On | Off | ALL_CHECKS | STRING_LITERAL);
when Pragma_Validity_Checks => Validity_Checks : declare
A : constant Node_Id := Get_Pragma_Arg (Arg1);
S : String_Id;
C : Char_Code;
begin
GNAT_Pragma;
Check_Arg_Count (1);
Check_No_Identifiers;
-- Pragma always active unless in CodePeer or GNATprove modes,
-- which use a fixed configuration of validity checks.
if not (CodePeer_Mode or GNATprove_Mode) then
if Nkind (A) = N_String_Literal then
S := Strval (A);
declare
Slen : constant Natural := Natural (String_Length (S));
Options : String (1 .. Slen);
J : Positive;
begin
-- Couldn't we use a for loop here over Options'Range???
J := 1;
loop
C := Get_String_Char (S, Pos (J));
-- This is a weird test, it skips setting validity
-- checks entirely if any element of S is out of
-- range of Character, what is that about ???
exit when not In_Character_Range (C);
Options (J) := Get_Character (C);
if J = Slen then
Set_Validity_Check_Options (Options);
exit;
else
J := J + 1;
end if;
end loop;
end;
elsif Nkind (A) = N_Identifier then
if Chars (A) = Name_All_Checks then
Set_Validity_Check_Options ("a");
elsif Chars (A) = Name_On then
Validity_Checks_On := True;
elsif Chars (A) = Name_Off then
Validity_Checks_On := False;
end if;
end if;
end if;
end Validity_Checks;
--------------
-- Volatile --
--------------
-- pragma Volatile (LOCAL_NAME);
when Pragma_Volatile =>
Process_Atomic_Independent_Shared_Volatile;
-------------------------
-- Volatile_Components --
-------------------------
-- pragma Volatile_Components (array_LOCAL_NAME);
-- Volatile is handled by the same circuit as Atomic_Components
--------------------------
-- Volatile_Full_Access --
--------------------------
-- pragma Volatile_Full_Access (LOCAL_NAME);
when Pragma_Volatile_Full_Access =>
GNAT_Pragma;
Process_Atomic_Independent_Shared_Volatile;
-----------------------
-- Volatile_Function --
-----------------------
-- pragma Volatile_Function [ (boolean_EXPRESSION) ];
when Pragma_Volatile_Function => Volatile_Function : declare
Over_Id : Entity_Id;
Spec_Id : Entity_Id;
Subp_Decl : Node_Id;
begin
GNAT_Pragma;
Check_No_Identifiers;
Check_At_Most_N_Arguments (1);
Subp_Decl :=
Find_Related_Declaration_Or_Body (N, Do_Checks => True);
-- Generic subprogram
if Nkind (Subp_Decl) = N_Generic_Subprogram_Declaration then
null;
-- Body acts as spec
elsif Nkind (Subp_Decl) = N_Subprogram_Body
and then No (Corresponding_Spec (Subp_Decl))
then
null;
-- Body stub acts as spec
elsif Nkind (Subp_Decl) = N_Subprogram_Body_Stub
and then No (Corresponding_Spec_Of_Stub (Subp_Decl))
then
null;
-- Subprogram
elsif Nkind (Subp_Decl) = N_Subprogram_Declaration then
null;
else
Pragma_Misplaced;
return;
end if;
Spec_Id := Unique_Defining_Entity (Subp_Decl);
if not Ekind_In (Spec_Id, E_Function, E_Generic_Function) then
Pragma_Misplaced;
return;
end if;
-- A pragma that applies to a Ghost entity becomes Ghost for the
-- purposes of legality checks and removal of ignored Ghost code.
Mark_Ghost_Pragma (N, Spec_Id);
-- Chain the pragma on the contract for completeness
Add_Contract_Item (N, Spec_Id);
-- The legality checks of pragma Volatile_Function are affected by
-- the SPARK mode in effect. Analyze all pragmas in a specific
-- order.
Analyze_If_Present (Pragma_SPARK_Mode);
-- A volatile function cannot override a non-volatile function
-- (SPARK RM 7.1.2(15)). Overriding checks are usually performed
-- in New_Overloaded_Entity, however at that point the pragma has
-- not been processed yet.
Over_Id := Overridden_Operation (Spec_Id);
if Present (Over_Id)
and then not Is_Volatile_Function (Over_Id)
then
Error_Msg_N
("incompatible volatile function values in effect", Spec_Id);
Error_Msg_Sloc := Sloc (Over_Id);
Error_Msg_N
("\& declared # with Volatile_Function value False",
Spec_Id);
Error_Msg_Sloc := Sloc (Spec_Id);
Error_Msg_N
("\overridden # with Volatile_Function value True",
Spec_Id);
end if;
-- Analyze the Boolean expression (if any)
if Present (Arg1) then
Check_Static_Boolean_Expression (Get_Pragma_Arg (Arg1));
end if;
end Volatile_Function;
----------------------
-- Warning_As_Error --
----------------------
-- pragma Warning_As_Error (static_string_EXPRESSION);
when Pragma_Warning_As_Error =>
GNAT_Pragma;
Check_Arg_Count (1);
Check_No_Identifiers;
Check_Valid_Configuration_Pragma;
if not Is_Static_String_Expression (Arg1) then
Error_Pragma_Arg
("argument of pragma% must be static string expression",
Arg1);
-- OK static string expression
else
Acquire_Warning_Match_String (Arg1);
Warnings_As_Errors_Count := Warnings_As_Errors_Count + 1;
Warnings_As_Errors (Warnings_As_Errors_Count) :=
new String'(Name_Buffer (1 .. Name_Len));
end if;
--------------
-- Warnings --
--------------
-- pragma Warnings ([TOOL_NAME,] DETAILS [, REASON]);
-- DETAILS ::= On | Off
-- DETAILS ::= On | Off, local_NAME
-- DETAILS ::= static_string_EXPRESSION
-- DETAILS ::= On | Off, static_string_EXPRESSION
-- TOOL_NAME ::= GNAT | GNATProve
-- REASON ::= Reason => STRING_LITERAL {& STRING_LITERAL}
-- Note: If the first argument matches an allowed tool name, it is
-- always considered to be a tool name, even if there is a string
-- variable of that name.
-- Note if the second argument of DETAILS is a local_NAME then the
-- second form is always understood. If the intention is to use
-- the fourth form, then you can write NAME & "" to force the
-- intepretation as a static_string_EXPRESSION.
when Pragma_Warnings => Warnings : declare
Reason : String_Id;
begin
GNAT_Pragma;
Check_At_Least_N_Arguments (1);
-- See if last argument is labeled Reason. If so, make sure we
-- have a string literal or a concatenation of string literals,
-- and acquire the REASON string. Then remove the REASON argument
-- by decreasing Num_Args by one; Remaining processing looks only
-- at first Num_Args arguments).
declare
Last_Arg : constant Node_Id :=
Last (Pragma_Argument_Associations (N));
begin
if Nkind (Last_Arg) = N_Pragma_Argument_Association
and then Chars (Last_Arg) = Name_Reason
then
Start_String;
Get_Reason_String (Get_Pragma_Arg (Last_Arg));
Reason := End_String;
Arg_Count := Arg_Count - 1;
-- Not allowed in compiler units (bootstrap issues)
Check_Compiler_Unit ("Reason for pragma Warnings", N);
-- No REASON string, set null string as reason
else
Reason := Null_String_Id;
end if;
end;
-- Now proceed with REASON taken care of and eliminated
Check_No_Identifiers;
-- If debug flag -gnatd.i is set, pragma is ignored
if Debug_Flag_Dot_I then
return;
end if;
-- Process various forms of the pragma
declare
Argx : constant Node_Id := Get_Pragma_Arg (Arg1);
Shifted_Args : List_Id;
begin
-- See if first argument is a tool name, currently either
-- GNAT or GNATprove. If so, either ignore the pragma if the
-- tool used does not match, or continue as if no tool name
-- was given otherwise, by shifting the arguments.
if Nkind (Argx) = N_Identifier
and then Nam_In (Chars (Argx), Name_Gnat, Name_Gnatprove)
then
if Chars (Argx) = Name_Gnat then
if CodePeer_Mode or GNATprove_Mode or ASIS_Mode then
Rewrite (N, Make_Null_Statement (Loc));
Analyze (N);
raise Pragma_Exit;
end if;
elsif Chars (Argx) = Name_Gnatprove then
if not GNATprove_Mode then
Rewrite (N, Make_Null_Statement (Loc));
Analyze (N);
raise Pragma_Exit;
end if;
else
raise Program_Error;
end if;
-- At this point, the pragma Warnings applies to the tool,
-- so continue with shifted arguments.
Arg_Count := Arg_Count - 1;
if Arg_Count = 1 then
Shifted_Args := New_List (New_Copy (Arg2));
elsif Arg_Count = 2 then
Shifted_Args := New_List (New_Copy (Arg2),
New_Copy (Arg3));
elsif Arg_Count = 3 then
Shifted_Args := New_List (New_Copy (Arg2),
New_Copy (Arg3),
New_Copy (Arg4));
else
raise Program_Error;
end if;
Rewrite (N,
Make_Pragma (Loc,
Chars => Name_Warnings,
Pragma_Argument_Associations => Shifted_Args));
Analyze (N);
raise Pragma_Exit;
end if;
-- One argument case
if Arg_Count = 1 then
-- On/Off one argument case was processed by parser
if Nkind (Argx) = N_Identifier
and then Nam_In (Chars (Argx), Name_On, Name_Off)
then
null;
-- One argument case must be ON/OFF or static string expr
elsif not Is_Static_String_Expression (Arg1) then
Error_Pragma_Arg
("argument of pragma% must be On/Off or static string "
& "expression", Arg1);
-- One argument string expression case
else
declare
Lit : constant Node_Id := Expr_Value_S (Argx);
Str : constant String_Id := Strval (Lit);
Len : constant Nat := String_Length (Str);
C : Char_Code;
J : Nat;
OK : Boolean;
Chr : Character;
begin
J := 1;
while J <= Len loop
C := Get_String_Char (Str, J);
OK := In_Character_Range (C);
if OK then
Chr := Get_Character (C);
-- Dash case: only -Wxxx is accepted
if J = 1
and then J < Len
and then Chr = '-'
then
J := J + 1;
C := Get_String_Char (Str, J);
Chr := Get_Character (C);
exit when Chr = 'W';
OK := False;
-- Dot case
elsif J < Len and then Chr = '.' then
J := J + 1;
C := Get_String_Char (Str, J);
Chr := Get_Character (C);
if not Set_Dot_Warning_Switch (Chr) then
Error_Pragma_Arg
("invalid warning switch character "
& '.' & Chr, Arg1);
end if;
-- Non-Dot case
else
OK := Set_Warning_Switch (Chr);
end if;
if not OK then
Error_Pragma_Arg
("invalid warning switch character " & Chr,
Arg1);
end if;
else
Error_Pragma_Arg
("invalid wide character in warning switch ",
Arg1);
end if;
J := J + 1;
end loop;
end;
end if;
-- Two or more arguments (must be two)
else
Check_Arg_Is_One_Of (Arg1, Name_On, Name_Off);
Check_Arg_Count (2);
declare
E_Id : Node_Id;
E : Entity_Id;
Err : Boolean;
begin
E_Id := Get_Pragma_Arg (Arg2);
Analyze (E_Id);
-- In the expansion of an inlined body, a reference to
-- the formal may be wrapped in a conversion if the
-- actual is a conversion. Retrieve the real entity name.
if (In_Instance_Body or In_Inlined_Body)
and then Nkind (E_Id) = N_Unchecked_Type_Conversion
then
E_Id := Expression (E_Id);
end if;
-- Entity name case
if Is_Entity_Name (E_Id) then
E := Entity (E_Id);
if E = Any_Id then
return;
else
loop
Set_Warnings_Off
(E, (Chars (Get_Pragma_Arg (Arg1)) =
Name_Off));
-- For OFF case, make entry in warnings off
-- pragma table for later processing. But we do
-- not do that within an instance, since these
-- warnings are about what is needed in the
-- template, not an instance of it.
if Chars (Get_Pragma_Arg (Arg1)) = Name_Off
and then Warn_On_Warnings_Off
and then not In_Instance
then
Warnings_Off_Pragmas.Append ((N, E, Reason));
end if;
if Is_Enumeration_Type (E) then
declare
Lit : Entity_Id;
begin
Lit := First_Literal (E);
while Present (Lit) loop
Set_Warnings_Off (Lit);
Next_Literal (Lit);
end loop;
end;
end if;
exit when No (Homonym (E));
E := Homonym (E);
end loop;
end if;
-- Error if not entity or static string expression case
elsif not Is_Static_String_Expression (Arg2) then
Error_Pragma_Arg
("second argument of pragma% must be entity name "
& "or static string expression", Arg2);
-- Static string expression case
else
Acquire_Warning_Match_String (Arg2);
-- Note on configuration pragma case: If this is a
-- configuration pragma, then for an OFF pragma, we
-- just set Config True in the call, which is all
-- that needs to be done. For the case of ON, this
-- is normally an error, unless it is canceling the
-- effect of a previous OFF pragma in the same file.
-- In any other case, an error will be signalled (ON
-- with no matching OFF).
-- Note: We set Used if we are inside a generic to
-- disable the test that the non-config case actually
-- cancels a warning. That's because we can't be sure
-- there isn't an instantiation in some other unit
-- where a warning is suppressed.
-- We could do a little better here by checking if the
-- generic unit we are inside is public, but for now
-- we don't bother with that refinement.
if Chars (Argx) = Name_Off then
Set_Specific_Warning_Off
(Loc, Name_Buffer (1 .. Name_Len), Reason,
Config => Is_Configuration_Pragma,
Used => Inside_A_Generic or else In_Instance);
elsif Chars (Argx) = Name_On then
Set_Specific_Warning_On
(Loc, Name_Buffer (1 .. Name_Len), Err);
if Err then
Error_Msg
("??pragma Warnings On with no matching "
& "Warnings Off", Loc);
end if;
end if;
end if;
end;
end if;
end;
end Warnings;
-------------------
-- Weak_External --
-------------------
-- pragma Weak_External ([Entity =>] LOCAL_NAME);
when Pragma_Weak_External => Weak_External : declare
Ent : Entity_Id;
begin
GNAT_Pragma;
Check_Arg_Count (1);
Check_Optional_Identifier (Arg1, Name_Entity);
Check_Arg_Is_Library_Level_Local_Name (Arg1);
Ent := Entity (Get_Pragma_Arg (Arg1));
if Rep_Item_Too_Early (Ent, N) then
return;
else
Ent := Underlying_Type (Ent);
end if;
-- The only processing required is to link this item on to the
-- list of rep items for the given entity. This is accomplished
-- by the call to Rep_Item_Too_Late (when no error is detected
-- and False is returned).
if Rep_Item_Too_Late (Ent, N) then
return;
else
Set_Has_Gigi_Rep_Item (Ent);
end if;
end Weak_External;
-----------------------------
-- Wide_Character_Encoding --
-----------------------------
-- pragma Wide_Character_Encoding (IDENTIFIER);
when Pragma_Wide_Character_Encoding =>
GNAT_Pragma;
-- Nothing to do, handled in parser. Note that we do not enforce
-- configuration pragma placement, this pragma can appear at any
-- place in the source, allowing mixed encodings within a single
-- source program.
null;
--------------------
-- Unknown_Pragma --
--------------------
-- Should be impossible, since the case of an unknown pragma is
-- separately processed before the case statement is entered.
when Unknown_Pragma =>
raise Program_Error;
end case;
-- AI05-0144: detect dangerous order dependence. Disabled for now,
-- until AI is formally approved.
-- Check_Order_Dependence;
exception
when Pragma_Exit => null;
end Analyze_Pragma;
---------------------------------------------
-- Analyze_Pre_Post_Condition_In_Decl_Part --
---------------------------------------------
-- WARNING: This routine manages Ghost regions. Return statements must be
-- replaced by gotos which jump to the end of the routine and restore the
-- Ghost mode.
procedure Analyze_Pre_Post_Condition_In_Decl_Part
(N : Node_Id;
Freeze_Id : Entity_Id := Empty)
is
Subp_Decl : constant Node_Id := Find_Related_Declaration_Or_Body (N);
Spec_Id : constant Entity_Id := Unique_Defining_Entity (Subp_Decl);
Disp_Typ : Entity_Id;
-- The dispatching type of the subprogram subject to the pre- or
-- postcondition.
function Check_References (Nod : Node_Id) return Traverse_Result;
-- Check that expression Nod does not mention non-primitives of the
-- type, global objects of the type, or other illegalities described
-- and implied by AI12-0113.
----------------------
-- Check_References --
----------------------
function Check_References (Nod : Node_Id) return Traverse_Result is
begin
if Nkind (Nod) = N_Function_Call
and then Is_Entity_Name (Name (Nod))
then
declare
Func : constant Entity_Id := Entity (Name (Nod));
Form : Entity_Id;
begin
-- An operation of the type must be a primitive
if No (Find_Dispatching_Type (Func)) then
Form := First_Formal (Func);
while Present (Form) loop
if Etype (Form) = Disp_Typ then
Error_Msg_NE
("operation in class-wide condition must be "
& "primitive of &", Nod, Disp_Typ);
end if;
Next_Formal (Form);
end loop;
-- A return object of the type is illegal as well
if Etype (Func) = Disp_Typ
or else Etype (Func) = Class_Wide_Type (Disp_Typ)
then
Error_Msg_NE
("operation in class-wide condition must be primitive "
& "of &", Nod, Disp_Typ);
end if;
-- Otherwise we have a call to an overridden primitive, and we
-- will create a common class-wide clone for the body of
-- original operation and its eventual inherited versions. If
-- the original operation dispatches on result it is never
-- inherited and there is no need for a clone. There is not
-- need for a clone either in GNATprove mode, as cases that
-- would require it are rejected (when an inherited primitive
-- calls an overridden operation in a class-wide contract), and
-- the clone would make proof impossible in some cases.
elsif not Is_Abstract_Subprogram (Spec_Id)
and then No (Class_Wide_Clone (Spec_Id))
and then not Has_Controlling_Result (Spec_Id)
and then not GNATprove_Mode
then
Build_Class_Wide_Clone_Decl (Spec_Id);
end if;
end;
elsif Is_Entity_Name (Nod)
and then
(Etype (Nod) = Disp_Typ
or else Etype (Nod) = Class_Wide_Type (Disp_Typ))
and then Ekind_In (Entity (Nod), E_Constant, E_Variable)
then
Error_Msg_NE
("object in class-wide condition must be formal of type &",
Nod, Disp_Typ);
elsif Nkind (Nod) = N_Explicit_Dereference
and then (Etype (Nod) = Disp_Typ
or else Etype (Nod) = Class_Wide_Type (Disp_Typ))
and then (not Is_Entity_Name (Prefix (Nod))
or else not Is_Formal (Entity (Prefix (Nod))))
then
Error_Msg_NE
("operation in class-wide condition must be primitive of &",
Nod, Disp_Typ);
end if;
return OK;
end Check_References;
procedure Check_Class_Wide_Condition is
new Traverse_Proc (Check_References);
-- Local variables
Expr : constant Node_Id := Expression (Get_Argument (N, Spec_Id));
Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
-- Save the Ghost mode to restore on exit
Errors : Nat;
Restore_Scope : Boolean := False;
-- Start of processing for Analyze_Pre_Post_Condition_In_Decl_Part
begin
-- Do not analyze the pragma multiple times
if Is_Analyzed_Pragma (N) then
return;
end if;
-- Set the Ghost mode in effect from the pragma. Due to the delayed
-- analysis of the pragma, the Ghost mode at point of declaration and
-- point of analysis may not necessarily be the same. Use the mode in
-- effect at the point of declaration.
Set_Ghost_Mode (N);
-- Ensure that the subprogram and its formals are visible when analyzing
-- the expression of the pragma.
if not In_Open_Scopes (Spec_Id) then
Restore_Scope := True;
Push_Scope (Spec_Id);
if Is_Generic_Subprogram (Spec_Id) then
Install_Generic_Formals (Spec_Id);
else
Install_Formals (Spec_Id);
end if;
end if;
Errors := Serious_Errors_Detected;
Preanalyze_Assert_Expression (Expr, Standard_Boolean);
-- Emit a clarification message when the expression contains at least
-- one undefined reference, possibly due to contract freezing.
if Errors /= Serious_Errors_Detected
and then Present (Freeze_Id)
and then Has_Undefined_Reference (Expr)
then
Contract_Freeze_Error (Spec_Id, Freeze_Id);
end if;
if Class_Present (N) then
-- Verify that a class-wide condition is legal, i.e. the operation is
-- a primitive of a tagged type. Note that a generic subprogram is
-- not a primitive operation.
Disp_Typ := Find_Dispatching_Type (Spec_Id);
if No (Disp_Typ) or else Is_Generic_Subprogram (Spec_Id) then
Error_Msg_Name_1 := Original_Aspect_Pragma_Name (N);
if From_Aspect_Specification (N) then
Error_Msg_N
("aspect % can only be specified for a primitive operation "
& "of a tagged type", Corresponding_Aspect (N));
-- The pragma is a source construct
else
Error_Msg_N
("pragma % can only be specified for a primitive operation "
& "of a tagged type", N);
end if;
-- Remaining semantic checks require a full tree traversal
else
Check_Class_Wide_Condition (Expr);
end if;
end if;
if Restore_Scope then
End_Scope;
end if;
-- If analysis of the condition indicates that a class-wide clone
-- has been created, build and analyze its declaration.
if Is_Subprogram (Spec_Id)
and then Present (Class_Wide_Clone (Spec_Id))
then
Analyze (Unit_Declaration_Node (Class_Wide_Clone (Spec_Id)));
end if;
-- Currently it is not possible to inline pre/postconditions on a
-- subprogram subject to pragma Inline_Always.
Check_Postcondition_Use_In_Inlined_Subprogram (N, Spec_Id);
Set_Is_Analyzed_Pragma (N);
Restore_Ghost_Mode (Saved_GM);
end Analyze_Pre_Post_Condition_In_Decl_Part;
------------------------------------------
-- Analyze_Refined_Depends_In_Decl_Part --
------------------------------------------
procedure Analyze_Refined_Depends_In_Decl_Part (N : Node_Id) is
procedure Check_Dependency_Clause
(Spec_Id : Entity_Id;
Dep_Clause : Node_Id;
Dep_States : Elist_Id;
Refinements : List_Id;
Matched_Items : in out Elist_Id);
-- Try to match a single dependency clause Dep_Clause against one or
-- more refinement clauses found in list Refinements. Each successful
-- match eliminates at least one refinement clause from Refinements.
-- Spec_Id denotes the entity of the related subprogram. Dep_States
-- denotes the entities of all abstract states which appear in pragma
-- Depends. Matched_Items contains the entities of all successfully
-- matched items found in pragma Depends.
procedure Check_Output_States
(Spec_Id : Entity_Id;
Spec_Inputs : Elist_Id;
Spec_Outputs : Elist_Id;
Body_Inputs : Elist_Id;
Body_Outputs : Elist_Id);
-- Determine whether pragma Depends contains an output state with a
-- visible refinement and if so, ensure that pragma Refined_Depends
-- mentions all its constituents as outputs. Spec_Id is the entity of
-- the related subprograms. Spec_Inputs and Spec_Outputs denote the
-- inputs and outputs of the subprogram spec synthesized from pragma
-- Depends. Body_Inputs and Body_Outputs denote the inputs and outputs
-- of the subprogram body synthesized from pragma Refined_Depends.
function Collect_States (Clauses : List_Id) return Elist_Id;
-- Given a normalized list of dependencies obtained from calling
-- Normalize_Clauses, return a list containing the entities of all
-- states appearing in dependencies. It helps in checking refinements
-- involving a state and a corresponding constituent which is not a
-- direct constituent of the state.
procedure Normalize_Clauses (Clauses : List_Id);
-- Given a list of dependence or refinement clauses Clauses, normalize
-- each clause by creating multiple dependencies with exactly one input
-- and one output.
procedure Remove_Extra_Clauses
(Clauses : List_Id;
Matched_Items : Elist_Id);
-- Given a list of refinement clauses Clauses, remove all clauses whose
-- inputs and/or outputs have been previously matched. See the body for
-- all special cases. Matched_Items contains the entities of all matched
-- items found in pragma Depends.
procedure Report_Extra_Clauses
(Spec_Id : Entity_Id;
Clauses : List_Id);
-- Emit an error for each extra clause found in list Clauses. Spec_Id
-- denotes the entity of the related subprogram.
-----------------------------
-- Check_Dependency_Clause --
-----------------------------
procedure Check_Dependency_Clause
(Spec_Id : Entity_Id;
Dep_Clause : Node_Id;
Dep_States : Elist_Id;
Refinements : List_Id;
Matched_Items : in out Elist_Id)
is
Dep_Input : constant Node_Id := Expression (Dep_Clause);
Dep_Output : constant Node_Id := First (Choices (Dep_Clause));
function Is_Already_Matched (Dep_Item : Node_Id) return Boolean;
-- Determine whether dependency item Dep_Item has been matched in a
-- previous clause.
function Is_In_Out_State_Clause return Boolean;
-- Determine whether dependence clause Dep_Clause denotes an abstract
-- state that depends on itself (State => State).
function Is_Null_Refined_State (Item : Node_Id) return Boolean;
-- Determine whether item Item denotes an abstract state with visible
-- null refinement.
procedure Match_Items
(Dep_Item : Node_Id;
Ref_Item : Node_Id;
Matched : out Boolean);
-- Try to match dependence item Dep_Item against refinement item
-- Ref_Item. To match against a possible null refinement (see 2, 9),
-- set Ref_Item to Empty. Flag Matched is set to True when one of
-- the following conformance scenarios is in effect:
-- 1) Both items denote null
-- 2) Dep_Item denotes null and Ref_Item is Empty (special case)
-- 3) Both items denote attribute 'Result
-- 4) Both items denote the same object
-- 5) Both items denote the same formal parameter
-- 6) Both items denote the same current instance of a type
-- 7) Both items denote the same discriminant
-- 8) Dep_Item is an abstract state with visible null refinement
-- and Ref_Item denotes null.
-- 9) Dep_Item is an abstract state with visible null refinement
-- and Ref_Item is Empty (special case).
-- 10) Dep_Item is an abstract state with full or partial visible
-- non-null refinement and Ref_Item denotes one of its
-- constituents.
-- 11) Dep_Item is an abstract state without a full visible
-- refinement and Ref_Item denotes the same state.
-- When scenario 10 is in effect, the entity of the abstract state
-- denoted by Dep_Item is added to list Refined_States.
procedure Record_Item (Item_Id : Entity_Id);
-- Store the entity of an item denoted by Item_Id in Matched_Items
------------------------
-- Is_Already_Matched --
------------------------
function Is_Already_Matched (Dep_Item : Node_Id) return Boolean is
Item_Id : Entity_Id := Empty;
begin
-- When the dependency item denotes attribute 'Result, check for
-- the entity of the related subprogram.
if Is_Attribute_Result (Dep_Item) then
Item_Id := Spec_Id;
elsif Is_Entity_Name (Dep_Item) then
Item_Id := Available_View (Entity_Of (Dep_Item));
end if;
return
Present (Item_Id) and then Contains (Matched_Items, Item_Id);
end Is_Already_Matched;
----------------------------
-- Is_In_Out_State_Clause --
----------------------------
function Is_In_Out_State_Clause return Boolean is
Dep_Input_Id : Entity_Id;
Dep_Output_Id : Entity_Id;
begin
-- Detect the following clause:
-- State => State
if Is_Entity_Name (Dep_Input)
and then Is_Entity_Name (Dep_Output)
then
-- Handle abstract views generated for limited with clauses
Dep_Input_Id := Available_View (Entity_Of (Dep_Input));
Dep_Output_Id := Available_View (Entity_Of (Dep_Output));
return
Ekind (Dep_Input_Id) = E_Abstract_State
and then Dep_Input_Id = Dep_Output_Id;
else
return False;
end if;
end Is_In_Out_State_Clause;
---------------------------
-- Is_Null_Refined_State --
---------------------------
function Is_Null_Refined_State (Item : Node_Id) return Boolean is
Item_Id : Entity_Id;
begin
if Is_Entity_Name (Item) then
-- Handle abstract views generated for limited with clauses
Item_Id := Available_View (Entity_Of (Item));
return
Ekind (Item_Id) = E_Abstract_State
and then Has_Null_Visible_Refinement (Item_Id);
else
return False;
end if;
end Is_Null_Refined_State;
-----------------
-- Match_Items --
-----------------
procedure Match_Items
(Dep_Item : Node_Id;
Ref_Item : Node_Id;
Matched : out Boolean)
is
Dep_Item_Id : Entity_Id;
Ref_Item_Id : Entity_Id;
begin
-- Assume that the two items do not match
Matched := False;
-- A null matches null or Empty (special case)
if Nkind (Dep_Item) = N_Null
and then (No (Ref_Item) or else Nkind (Ref_Item) = N_Null)
then
Matched := True;
-- Attribute 'Result matches attribute 'Result
elsif Is_Attribute_Result (Dep_Item)
and then Is_Attribute_Result (Ref_Item)
then
-- Put the entity of the related function on the list of
-- matched items because attribute 'Result does not carry
-- an entity similar to states and constituents.
Record_Item (Spec_Id);
Matched := True;
-- Abstract states, current instances of concurrent types,
-- discriminants, formal parameters and objects.
elsif Is_Entity_Name (Dep_Item) then
-- Handle abstract views generated for limited with clauses
Dep_Item_Id := Available_View (Entity_Of (Dep_Item));
if Ekind (Dep_Item_Id) = E_Abstract_State then
-- An abstract state with visible null refinement matches
-- null or Empty (special case).
if Has_Null_Visible_Refinement (Dep_Item_Id)
and then (No (Ref_Item) or else Nkind (Ref_Item) = N_Null)
then
Record_Item (Dep_Item_Id);
Matched := True;
-- An abstract state with visible non-null refinement
-- matches one of its constituents, or itself for an
-- abstract state with partial visible refinement.
elsif Has_Non_Null_Visible_Refinement (Dep_Item_Id) then
if Is_Entity_Name (Ref_Item) then
Ref_Item_Id := Entity_Of (Ref_Item);
if Ekind_In (Ref_Item_Id, E_Abstract_State,
E_Constant,
E_Variable)
and then Present (Encapsulating_State (Ref_Item_Id))
and then Find_Encapsulating_State
(Dep_States, Ref_Item_Id) = Dep_Item_Id
then
Record_Item (Dep_Item_Id);
Matched := True;
elsif not Has_Visible_Refinement (Dep_Item_Id)
and then Ref_Item_Id = Dep_Item_Id
then
Record_Item (Dep_Item_Id);
Matched := True;
end if;
end if;
-- An abstract state without a visible refinement matches
-- itself.
elsif Is_Entity_Name (Ref_Item)
and then Entity_Of (Ref_Item) = Dep_Item_Id
then
Record_Item (Dep_Item_Id);
Matched := True;
end if;
-- A current instance of a concurrent type, discriminant,
-- formal parameter or an object matches itself.
elsif Is_Entity_Name (Ref_Item)
and then Entity_Of (Ref_Item) = Dep_Item_Id
then
Record_Item (Dep_Item_Id);
Matched := True;
end if;
end if;
end Match_Items;
-----------------
-- Record_Item --
-----------------
procedure Record_Item (Item_Id : Entity_Id) is
begin
if No (Matched_Items) then
Matched_Items := New_Elmt_List;
end if;
Append_Unique_Elmt (Item_Id, Matched_Items);
end Record_Item;
-- Local variables
Clause_Matched : Boolean := False;
Dummy : Boolean := False;
Inputs_Match : Boolean;
Next_Ref_Clause : Node_Id;
Outputs_Match : Boolean;
Ref_Clause : Node_Id;
Ref_Input : Node_Id;
Ref_Output : Node_Id;
-- Start of processing for Check_Dependency_Clause
begin
-- Do not perform this check in an instance because it was already
-- performed successfully in the generic template.
if Is_Generic_Instance (Spec_Id) then
return;
end if;
-- Examine all refinement clauses and compare them against the
-- dependence clause.
Ref_Clause := First (Refinements);
while Present (Ref_Clause) loop
Next_Ref_Clause := Next (Ref_Clause);
-- Obtain the attributes of the current refinement clause
Ref_Input := Expression (Ref_Clause);
Ref_Output := First (Choices (Ref_Clause));
-- The current refinement clause matches the dependence clause
-- when both outputs match and both inputs match. See routine
-- Match_Items for all possible conformance scenarios.
-- Depends Dep_Output => Dep_Input
-- ^ ^
-- match ? match ?
-- v v
-- Refined_Depends Ref_Output => Ref_Input
Match_Items
(Dep_Item => Dep_Input,
Ref_Item => Ref_Input,
Matched => Inputs_Match);
Match_Items
(Dep_Item => Dep_Output,
Ref_Item => Ref_Output,
Matched => Outputs_Match);
-- An In_Out state clause may be matched against a refinement with
-- a null input or null output as long as the non-null side of the
-- relation contains a valid constituent of the In_Out_State.
if Is_In_Out_State_Clause then
-- Depends => (State => State)
-- Refined_Depends => (null => Constit) -- OK
if Inputs_Match
and then not Outputs_Match
and then Nkind (Ref_Output) = N_Null
then
Outputs_Match := True;
end if;
-- Depends => (State => State)
-- Refined_Depends => (Constit => null) -- OK
if not Inputs_Match
and then Outputs_Match
and then Nkind (Ref_Input) = N_Null
then
Inputs_Match := True;
end if;
end if;
-- The current refinement clause is legally constructed following
-- the rules in SPARK RM 7.2.5, therefore it can be removed from
-- the pool of candidates. The seach continues because a single
-- dependence clause may have multiple matching refinements.
if Inputs_Match and Outputs_Match then
Clause_Matched := True;
Remove (Ref_Clause);
end if;
Ref_Clause := Next_Ref_Clause;
end loop;
-- Depending on the order or composition of refinement clauses, an
-- In_Out state clause may not be directly refinable.
-- Refined_State => (State => (Constit_1, Constit_2))
-- Depends => ((Output, State) => (Input, State))
-- Refined_Depends => (Constit_1 => Input, Output => Constit_2)
-- Matching normalized clause (State => State) fails because there is
-- no direct refinement capable of satisfying this relation. Another
-- similar case arises when clauses (Constit_1 => Input) and (Output
-- => Constit_2) are matched first, leaving no candidates for clause
-- (State => State). Both scenarios are legal as long as one of the
-- previous clauses mentioned a valid constituent of State.
if not Clause_Matched
and then Is_In_Out_State_Clause
and then Is_Already_Matched (Dep_Input)
then
Clause_Matched := True;
end if;
-- A clause where the input is an abstract state with visible null
-- refinement or a 'Result attribute is implicitly matched when the
-- output has already been matched in a previous clause.
-- Refined_State => (State => null)
-- Depends => (Output => State) -- implicitly OK
-- Refined_Depends => (Output => ...)
-- Depends => (...'Result => State) -- implicitly OK
-- Refined_Depends => (...'Result => ...)
if not Clause_Matched
and then Is_Null_Refined_State (Dep_Input)
and then Is_Already_Matched (Dep_Output)
then
Clause_Matched := True;
end if;
-- A clause where the output is an abstract state with visible null
-- refinement is implicitly matched when the input has already been
-- matched in a previous clause.
-- Refined_State => (State => null)
-- Depends => (State => Input) -- implicitly OK
-- Refined_Depends => (... => Input)
if not Clause_Matched
and then Is_Null_Refined_State (Dep_Output)
and then Is_Already_Matched (Dep_Input)
then
Clause_Matched := True;
end if;
-- At this point either all refinement clauses have been examined or
-- pragma Refined_Depends contains a solitary null. Only an abstract
-- state with null refinement can possibly match these cases.
-- Refined_State => (State => null)
-- Depends => (State => null)
-- Refined_Depends => null -- OK
if not Clause_Matched then
Match_Items
(Dep_Item => Dep_Input,
Ref_Item => Empty,
Matched => Inputs_Match);
Match_Items
(Dep_Item => Dep_Output,
Ref_Item => Empty,
Matched => Outputs_Match);
Clause_Matched := Inputs_Match and Outputs_Match;
end if;
-- If the contents of Refined_Depends are legal, then the current
-- dependence clause should be satisfied either by an explicit match
-- or by one of the special cases.
if not Clause_Matched then
SPARK_Msg_NE
(Fix_Msg (Spec_Id, "dependence clause of subprogram & has no "
& "matching refinement in body"), Dep_Clause, Spec_Id);
end if;
end Check_Dependency_Clause;
-------------------------
-- Check_Output_States --
-------------------------
procedure Check_Output_States
(Spec_Id : Entity_Id;
Spec_Inputs : Elist_Id;
Spec_Outputs : Elist_Id;
Body_Inputs : Elist_Id;
Body_Outputs : Elist_Id)
is
procedure Check_Constituent_Usage (State_Id : Entity_Id);
-- Determine whether all constituents of state State_Id with full
-- visible refinement are used as outputs in pragma Refined_Depends.
-- Emit an error if this is not the case (SPARK RM 7.2.4(5)).
-----------------------------
-- Check_Constituent_Usage --
-----------------------------
procedure Check_Constituent_Usage (State_Id : Entity_Id) is
Constits : constant Elist_Id :=
Partial_Refinement_Constituents (State_Id);
Constit_Elmt : Elmt_Id;
Constit_Id : Entity_Id;
Only_Partial : constant Boolean :=
not Has_Visible_Refinement (State_Id);
Posted : Boolean := False;
begin
if Present (Constits) then
Constit_Elmt := First_Elmt (Constits);
while Present (Constit_Elmt) loop
Constit_Id := Node (Constit_Elmt);
-- Issue an error when a constituent of State_Id is used,
-- and State_Id has only partial visible refinement
-- (SPARK RM 7.2.4(3d)).
if Only_Partial then
if (Present (Body_Inputs)
and then Appears_In (Body_Inputs, Constit_Id))
or else
(Present (Body_Outputs)
and then Appears_In (Body_Outputs, Constit_Id))
then
Error_Msg_Name_1 := Chars (State_Id);
SPARK_Msg_NE
("constituent & of state % cannot be used in "
& "dependence refinement", N, Constit_Id);
Error_Msg_Name_1 := Chars (State_Id);
SPARK_Msg_N ("\use state % instead", N);
end if;
-- The constituent acts as an input (SPARK RM 7.2.5(3))
elsif Present (Body_Inputs)
and then Appears_In (Body_Inputs, Constit_Id)
then
Error_Msg_Name_1 := Chars (State_Id);
SPARK_Msg_NE
("constituent & of state % must act as output in "
& "dependence refinement", N, Constit_Id);
-- The constituent is altogether missing (SPARK RM 7.2.5(3))
elsif No (Body_Outputs)
or else not Appears_In (Body_Outputs, Constit_Id)
then
if not Posted then
Posted := True;
SPARK_Msg_NE
("output state & must be replaced by all its "
& "constituents in dependence refinement",
N, State_Id);
end if;
SPARK_Msg_NE
("\constituent & is missing in output list",
N, Constit_Id);
end if;
Next_Elmt (Constit_Elmt);
end loop;
end if;
end Check_Constituent_Usage;
-- Local variables
Item : Node_Id;
Item_Elmt : Elmt_Id;
Item_Id : Entity_Id;
-- Start of processing for Check_Output_States
begin
-- Do not perform this check in an instance because it was already
-- performed successfully in the generic template.
if Is_Generic_Instance (Spec_Id) then
null;
-- Inspect the outputs of pragma Depends looking for a state with a
-- visible refinement.
elsif Present (Spec_Outputs) then
Item_Elmt := First_Elmt (Spec_Outputs);
while Present (Item_Elmt) loop
Item := Node (Item_Elmt);
-- Deal with the mixed nature of the input and output lists
if Nkind (Item) = N_Defining_Identifier then
Item_Id := Item;
else
Item_Id := Available_View (Entity_Of (Item));
end if;
if Ekind (Item_Id) = E_Abstract_State then
-- The state acts as an input-output, skip it
if Present (Spec_Inputs)
and then Appears_In (Spec_Inputs, Item_Id)
then
null;
-- Ensure that all of the constituents are utilized as
-- outputs in pragma Refined_Depends.
elsif Has_Non_Null_Visible_Refinement (Item_Id) then
Check_Constituent_Usage (Item_Id);
end if;
end if;
Next_Elmt (Item_Elmt);
end loop;
end if;
end Check_Output_States;
--------------------
-- Collect_States --
--------------------
function Collect_States (Clauses : List_Id) return Elist_Id is
procedure Collect_State
(Item : Node_Id;
States : in out Elist_Id);
-- Add the entity of Item to list States when it denotes to a state
-------------------
-- Collect_State --
-------------------
procedure Collect_State
(Item : Node_Id;
States : in out Elist_Id)
is
Id : Entity_Id;
begin
if Is_Entity_Name (Item) then
Id := Entity_Of (Item);
if Ekind (Id) = E_Abstract_State then
if No (States) then
States := New_Elmt_List;
end if;
Append_Unique_Elmt (Id, States);
end if;
end if;
end Collect_State;
-- Local variables
Clause : Node_Id;
Input : Node_Id;
Output : Node_Id;
States : Elist_Id := No_Elist;
-- Start of processing for Collect_States
begin
Clause := First (Clauses);
while Present (Clause) loop
Input := Expression (Clause);
Output := First (Choices (Clause));
Collect_State (Input, States);
Collect_State (Output, States);
Next (Clause);
end loop;
return States;
end Collect_States;
-----------------------
-- Normalize_Clauses --
-----------------------
procedure Normalize_Clauses (Clauses : List_Id) is
procedure Normalize_Inputs (Clause : Node_Id);
-- Normalize clause Clause by creating multiple clauses for each
-- input item of Clause. It is assumed that Clause has exactly one
-- output. The transformation is as follows:
--
-- Output => (Input_1, Input_2) -- original
--
-- Output => Input_1 -- normalizations
-- Output => Input_2
procedure Normalize_Outputs (Clause : Node_Id);
-- Normalize clause Clause by creating multiple clause for each
-- output item of Clause. The transformation is as follows:
--
-- (Output_1, Output_2) => Input -- original
--
-- Output_1 => Input -- normalization
-- Output_2 => Input
----------------------
-- Normalize_Inputs --
----------------------
procedure Normalize_Inputs (Clause : Node_Id) is
Inputs : constant Node_Id := Expression (Clause);
Loc : constant Source_Ptr := Sloc (Clause);
Output : constant List_Id := Choices (Clause);
Last_Input : Node_Id;
Input : Node_Id;
New_Clause : Node_Id;
Next_Input : Node_Id;
begin
-- Normalization is performed only when the original clause has
-- more than one input. Multiple inputs appear as an aggregate.
if Nkind (Inputs) = N_Aggregate then
Last_Input := Last (Expressions (Inputs));
-- Create a new clause for each input
Input := First (Expressions (Inputs));
while Present (Input) loop
Next_Input := Next (Input);
-- Unhook the current input from the original input list
-- because it will be relocated to a new clause.
Remove (Input);
-- Special processing for the last input. At this point the
-- original aggregate has been stripped down to one element.
-- Replace the aggregate by the element itself.
if Input = Last_Input then
Rewrite (Inputs, Input);
-- Generate a clause of the form:
-- Output => Input
else
New_Clause :=
Make_Component_Association (Loc,
Choices => New_Copy_List_Tree (Output),
Expression => Input);
-- The new clause contains replicated content that has
-- already been analyzed, mark the clause as analyzed.
Set_Analyzed (New_Clause);
Insert_After (Clause, New_Clause);
end if;
Input := Next_Input;
end loop;
end if;
end Normalize_Inputs;
-----------------------
-- Normalize_Outputs --
-----------------------
procedure Normalize_Outputs (Clause : Node_Id) is
Inputs : constant Node_Id := Expression (Clause);
Loc : constant Source_Ptr := Sloc (Clause);
Outputs : constant Node_Id := First (Choices (Clause));
Last_Output : Node_Id;
New_Clause : Node_Id;
Next_Output : Node_Id;
Output : Node_Id;
begin
-- Multiple outputs appear as an aggregate. Nothing to do when
-- the clause has exactly one output.
if Nkind (Outputs) = N_Aggregate then
Last_Output := Last (Expressions (Outputs));
-- Create a clause for each output. Note that each time a new
-- clause is created, the original output list slowly shrinks
-- until there is one item left.
Output := First (Expressions (Outputs));
while Present (Output) loop
Next_Output := Next (Output);
-- Unhook the output from the original output list as it
-- will be relocated to a new clause.
Remove (Output);
-- Special processing for the last output. At this point
-- the original aggregate has been stripped down to one
-- element. Replace the aggregate by the element itself.
if Output = Last_Output then
Rewrite (Outputs, Output);
else
-- Generate a clause of the form:
-- (Output => Inputs)
New_Clause :=
Make_Component_Association (Loc,
Choices => New_List (Output),
Expression => New_Copy_Tree (Inputs));
-- The new clause contains replicated content that has
-- already been analyzed. There is not need to reanalyze
-- them.
Set_Analyzed (New_Clause);
Insert_After (Clause, New_Clause);
end if;
Output := Next_Output;
end loop;
end if;
end Normalize_Outputs;
-- Local variables
Clause : Node_Id;
-- Start of processing for Normalize_Clauses
begin
Clause := First (Clauses);
while Present (Clause) loop
Normalize_Outputs (Clause);
Next (Clause);
end loop;
Clause := First (Clauses);
while Present (Clause) loop
Normalize_Inputs (Clause);
Next (Clause);
end loop;
end Normalize_Clauses;
--------------------------
-- Remove_Extra_Clauses --
--------------------------
procedure Remove_Extra_Clauses
(Clauses : List_Id;
Matched_Items : Elist_Id)
is
Clause : Node_Id;
Input : Node_Id;
Input_Id : Entity_Id;
Next_Clause : Node_Id;
Output : Node_Id;
State_Id : Entity_Id;
begin
Clause := First (Clauses);
while Present (Clause) loop
Next_Clause := Next (Clause);
Input := Expression (Clause);
Output := First (Choices (Clause));
-- Recognize a clause of the form
-- null => Input
-- where Input is a constituent of a state which was already
-- successfully matched. This clause must be removed because it
-- simply indicates that some of the constituents of the state
-- are not used.
-- Refined_State => (State => (Constit_1, Constit_2))
-- Depends => (Output => State)
-- Refined_Depends => ((Output => Constit_1), -- State matched
-- (null => Constit_2)) -- OK
if Nkind (Output) = N_Null and then Is_Entity_Name (Input) then
-- Handle abstract views generated for limited with clauses
Input_Id := Available_View (Entity_Of (Input));
-- The input must be a constituent of a state
if Ekind_In (Input_Id, E_Abstract_State,
E_Constant,
E_Variable)
and then Present (Encapsulating_State (Input_Id))
then
State_Id := Encapsulating_State (Input_Id);
-- The state must have a non-null visible refinement and be
-- matched in a previous clause.
if Has_Non_Null_Visible_Refinement (State_Id)
and then Contains (Matched_Items, State_Id)
then
Remove (Clause);
end if;
end if;
-- Recognize a clause of the form
-- Output => null
-- where Output is an arbitrary item. This clause must be removed
-- because a null input legitimately matches anything.
elsif Nkind (Input) = N_Null then
Remove (Clause);
end if;
Clause := Next_Clause;
end loop;
end Remove_Extra_Clauses;
--------------------------
-- Report_Extra_Clauses --
--------------------------
procedure Report_Extra_Clauses
(Spec_Id : Entity_Id;
Clauses : List_Id)
is
Clause : Node_Id;
begin
-- Do not perform this check in an instance because it was already
-- performed successfully in the generic template.
if Is_Generic_Instance (Spec_Id) then
null;
elsif Present (Clauses) then
Clause := First (Clauses);
while Present (Clause) loop
SPARK_Msg_N
("unmatched or extra clause in dependence refinement",
Clause);
Next (Clause);
end loop;
end if;
end Report_Extra_Clauses;
-- Local variables
Body_Decl : constant Node_Id := Find_Related_Declaration_Or_Body (N);
Body_Id : constant Entity_Id := Defining_Entity (Body_Decl);
Errors : constant Nat := Serious_Errors_Detected;
Clause : Node_Id;
Deps : Node_Id;
Dummy : Boolean;
Refs : Node_Id;
Body_Inputs : Elist_Id := No_Elist;
Body_Outputs : Elist_Id := No_Elist;
-- The inputs and outputs of the subprogram body synthesized from pragma
-- Refined_Depends.
Dependencies : List_Id := No_List;
Depends : Node_Id;
-- The corresponding Depends pragma along with its clauses
Matched_Items : Elist_Id := No_Elist;
-- A list containing the entities of all successfully matched items
-- found in pragma Depends.
Refinements : List_Id := No_List;
-- The clauses of pragma Refined_Depends
Spec_Id : Entity_Id;
-- The entity of the subprogram subject to pragma Refined_Depends
Spec_Inputs : Elist_Id := No_Elist;
Spec_Outputs : Elist_Id := No_Elist;
-- The inputs and outputs of the subprogram spec synthesized from pragma
-- Depends.
States : Elist_Id := No_Elist;
-- A list containing the entities of all states whose constituents
-- appear in pragma Depends.
-- Start of processing for Analyze_Refined_Depends_In_Decl_Part
begin
-- Do not analyze the pragma multiple times
if Is_Analyzed_Pragma (N) then
return;
end if;
Spec_Id := Unique_Defining_Entity (Body_Decl);
-- Use the anonymous object as the proper spec when Refined_Depends
-- applies to the body of a single task type. The object carries the
-- proper Chars as well as all non-refined versions of pragmas.
if Is_Single_Concurrent_Type (Spec_Id) then
Spec_Id := Anonymous_Object (Spec_Id);
end if;
Depends := Get_Pragma (Spec_Id, Pragma_Depends);
-- Subprogram declarations lacks pragma Depends. Refined_Depends is
-- rendered useless as there is nothing to refine (SPARK RM 7.2.5(2)).
if No (Depends) then
SPARK_Msg_NE
(Fix_Msg (Spec_Id, "useless refinement, declaration of subprogram "
& "& lacks aspect or pragma Depends"), N, Spec_Id);
goto Leave;
end if;
Deps := Expression (Get_Argument (Depends, Spec_Id));
-- A null dependency relation renders the refinement useless because it
-- cannot possibly mention abstract states with visible refinement. Note
-- that the inverse is not true as states may be refined to null
-- (SPARK RM 7.2.5(2)).
if Nkind (Deps) = N_Null then
SPARK_Msg_NE
(Fix_Msg (Spec_Id, "useless refinement, subprogram & does not "
& "depend on abstract state with visible refinement"), N, Spec_Id);
goto Leave;
end if;
-- Analyze Refined_Depends as if it behaved as a regular pragma Depends.
-- This ensures that the categorization of all refined dependency items
-- is consistent with their role.
Analyze_Depends_In_Decl_Part (N);
-- Do not match dependencies against refinements if Refined_Depends is
-- illegal to avoid emitting misleading error.
if Serious_Errors_Detected = Errors then
-- The related subprogram lacks pragma [Refined_]Global. Synthesize
-- the inputs and outputs of the subprogram spec and body to verify
-- the use of states with visible refinement and their constituents.
if No (Get_Pragma (Spec_Id, Pragma_Global))
or else No (Get_Pragma (Body_Id, Pragma_Refined_Global))
then
Collect_Subprogram_Inputs_Outputs
(Subp_Id => Spec_Id,
Synthesize => True,
Subp_Inputs => Spec_Inputs,
Subp_Outputs => Spec_Outputs,
Global_Seen => Dummy);
Collect_Subprogram_Inputs_Outputs
(Subp_Id => Body_Id,
Synthesize => True,
Subp_Inputs => Body_Inputs,
Subp_Outputs => Body_Outputs,
Global_Seen => Dummy);
-- For an output state with a visible refinement, ensure that all
-- constituents appear as outputs in the dependency refinement.
Check_Output_States
(Spec_Id => Spec_Id,
Spec_Inputs => Spec_Inputs,
Spec_Outputs => Spec_Outputs,
Body_Inputs => Body_Inputs,
Body_Outputs => Body_Outputs);
end if;
-- Matching is disabled in ASIS because clauses are not normalized as
-- this is a tree altering activity similar to expansion.
if ASIS_Mode then
goto Leave;
end if;
-- Multiple dependency clauses appear as component associations of an
-- aggregate. Note that the clauses are copied because the algorithm
-- modifies them and this should not be visible in Depends.
pragma Assert (Nkind (Deps) = N_Aggregate);
Dependencies := New_Copy_List_Tree (Component_Associations (Deps));
Normalize_Clauses (Dependencies);
-- Gather all states which appear in Depends
States := Collect_States (Dependencies);
Refs := Expression (Get_Argument (N, Spec_Id));
if Nkind (Refs) = N_Null then
Refinements := No_List;
-- Multiple dependency clauses appear as component associations of an
-- aggregate. Note that the clauses are copied because the algorithm
-- modifies them and this should not be visible in Refined_Depends.
else pragma Assert (Nkind (Refs) = N_Aggregate);
Refinements := New_Copy_List_Tree (Component_Associations (Refs));
Normalize_Clauses (Refinements);
end if;
-- At this point the clauses of pragmas Depends and Refined_Depends
-- have been normalized into simple dependencies between one output
-- and one input. Examine all clauses of pragma Depends looking for
-- matching clauses in pragma Refined_Depends.
Clause := First (Dependencies);
while Present (Clause) loop
Check_Dependency_Clause
(Spec_Id => Spec_Id,
Dep_Clause => Clause,
Dep_States => States,
Refinements => Refinements,
Matched_Items => Matched_Items);
Next (Clause);
end loop;
-- Pragma Refined_Depends may contain multiple clarification clauses
-- which indicate that certain constituents do not influence the data
-- flow in any way. Such clauses must be removed as long as the state
-- has been matched, otherwise they will be incorrectly flagged as
-- unmatched.
-- Refined_State => (State => (Constit_1, Constit_2))
-- Depends => (Output => State)
-- Refined_Depends => ((Output => Constit_1), -- State matched
-- (null => Constit_2)) -- must be removed
Remove_Extra_Clauses (Refinements, Matched_Items);
if Serious_Errors_Detected = Errors then
Report_Extra_Clauses (Spec_Id, Refinements);
end if;
end if;
<<Leave>>
Set_Is_Analyzed_Pragma (N);
end Analyze_Refined_Depends_In_Decl_Part;
-----------------------------------------
-- Analyze_Refined_Global_In_Decl_Part --
-----------------------------------------
procedure Analyze_Refined_Global_In_Decl_Part (N : Node_Id) is
Global : Node_Id;
-- The corresponding Global pragma
Has_In_State : Boolean := False;
Has_In_Out_State : Boolean := False;
Has_Out_State : Boolean := False;
Has_Proof_In_State : Boolean := False;
-- These flags are set when the corresponding Global pragma has a state
-- of mode Input, In_Out, Output or Proof_In respectively with a visible
-- refinement.
Has_Null_State : Boolean := False;
-- This flag is set when the corresponding Global pragma has at least
-- one state with a null refinement.
In_Constits : Elist_Id := No_Elist;
In_Out_Constits : Elist_Id := No_Elist;
Out_Constits : Elist_Id := No_Elist;
Proof_In_Constits : Elist_Id := No_Elist;
-- These lists contain the entities of all Input, In_Out, Output and
-- Proof_In constituents that appear in Refined_Global and participate
-- in state refinement.
In_Items : Elist_Id := No_Elist;
In_Out_Items : Elist_Id := No_Elist;
Out_Items : Elist_Id := No_Elist;
Proof_In_Items : Elist_Id := No_Elist;
-- These lists contain the entities of all Input, In_Out, Output and
-- Proof_In items defined in the corresponding Global pragma.
Repeat_Items : Elist_Id := No_Elist;
-- A list of all global items without full visible refinement found
-- in pragma Global. These states should be repeated in the global
-- refinement (SPARK RM 7.2.4(3c)) unless they have a partial visible
-- refinement, in which case they may be repeated (SPARK RM 7.2.4(3d)).
Spec_Id : Entity_Id;
-- The entity of the subprogram subject to pragma Refined_Global
States : Elist_Id := No_Elist;
-- A list of all states with full or partial visible refinement found in
-- pragma Global.
procedure Check_In_Out_States;
-- Determine whether the corresponding Global pragma mentions In_Out
-- states with visible refinement and if so, ensure that one of the
-- following completions apply to the constituents of the state:
-- 1) there is at least one constituent of mode In_Out
-- 2) there is at least one Input and one Output constituent
-- 3) not all constituents are present and one of them is of mode
-- Output.
-- This routine may remove elements from In_Constits, In_Out_Constits,
-- Out_Constits and Proof_In_Constits.
procedure Check_Input_States;
-- Determine whether the corresponding Global pragma mentions Input
-- states with visible refinement and if so, ensure that at least one of
-- its constituents appears as an Input item in Refined_Global.
-- This routine may remove elements from In_Constits, In_Out_Constits,
-- Out_Constits and Proof_In_Constits.
procedure Check_Output_States;
-- Determine whether the corresponding Global pragma mentions Output
-- states with visible refinement and if so, ensure that all of its
-- constituents appear as Output items in Refined_Global.
-- This routine may remove elements from In_Constits, In_Out_Constits,
-- Out_Constits and Proof_In_Constits.
procedure Check_Proof_In_States;
-- Determine whether the corresponding Global pragma mentions Proof_In
-- states with visible refinement and if so, ensure that at least one of
-- its constituents appears as a Proof_In item in Refined_Global.
-- This routine may remove elements from In_Constits, In_Out_Constits,
-- Out_Constits and Proof_In_Constits.
procedure Check_Refined_Global_List
(List : Node_Id;
Global_Mode : Name_Id := Name_Input);
-- Verify the legality of a single global list declaration. Global_Mode
-- denotes the current mode in effect.
procedure Collect_Global_Items
(List : Node_Id;
Mode : Name_Id := Name_Input);
-- Gather all Input, In_Out, Output and Proof_In items from node List
-- and separate them in lists In_Items, In_Out_Items, Out_Items and
-- Proof_In_Items. Flags Has_In_State, Has_In_Out_State, Has_Out_State
-- and Has_Proof_In_State are set when there is at least one abstract
-- state with full or partial visible refinement available in the
-- corresponding mode. Flag Has_Null_State is set when at least state
-- has a null refinement. Mode denotes the current global mode in
-- effect.
function Present_Then_Remove
(List : Elist_Id;
Item : Entity_Id) return Boolean;
-- Search List for a particular entity Item. If Item has been found,
-- remove it from List. This routine is used to strip lists In_Constits,
-- In_Out_Constits and Out_Constits of valid constituents.
procedure Present_Then_Remove (List : Elist_Id; Item : Entity_Id);
-- Same as function Present_Then_Remove, but do not report the presence
-- of Item in List.
procedure Report_Extra_Constituents;
-- Emit an error for each constituent found in lists In_Constits,
-- In_Out_Constits and Out_Constits.
procedure Report_Missing_Items;
-- Emit an error for each global item not repeated found in list
-- Repeat_Items.
-------------------------
-- Check_In_Out_States --
-------------------------
procedure Check_In_Out_States is
procedure Check_Constituent_Usage (State_Id : Entity_Id);
-- Determine whether one of the following coverage scenarios is in
-- effect:
-- 1) there is at least one constituent of mode In_Out or Output
-- 2) there is at least one pair of constituents with modes Input
-- and Output, or Proof_In and Output.
-- 3) there is at least one constituent of mode Output and not all
-- constituents are present.
-- If this is not the case, emit an error (SPARK RM 7.2.4(5)).
-----------------------------
-- Check_Constituent_Usage --
-----------------------------
procedure Check_Constituent_Usage (State_Id : Entity_Id) is
Constits : constant Elist_Id :=
Partial_Refinement_Constituents (State_Id);
Constit_Elmt : Elmt_Id;
Constit_Id : Entity_Id;
Has_Missing : Boolean := False;
In_Out_Seen : Boolean := False;
Input_Seen : Boolean := False;
Output_Seen : Boolean := False;
Proof_In_Seen : Boolean := False;
begin
-- Process all the constituents of the state and note their modes
-- within the global refinement.
if Present (Constits) then
Constit_Elmt := First_Elmt (Constits);
while Present (Constit_Elmt) loop
Constit_Id := Node (Constit_Elmt);
if Present_Then_Remove (In_Constits, Constit_Id) then
Input_Seen := True;
elsif Present_Then_Remove (In_Out_Constits, Constit_Id) then
In_Out_Seen := True;
elsif Present_Then_Remove (Out_Constits, Constit_Id) then
Output_Seen := True;
elsif Present_Then_Remove (Proof_In_Constits, Constit_Id)
then
Proof_In_Seen := True;
else
Has_Missing := True;
end if;
Next_Elmt (Constit_Elmt);
end loop;
end if;
-- An In_Out constituent is a valid completion
if In_Out_Seen then
null;
-- A pair of one Input/Proof_In and one Output constituent is a
-- valid completion.
elsif (Input_Seen or Proof_In_Seen) and Output_Seen then
null;
elsif Output_Seen then
-- A single Output constituent is a valid completion only when
-- some of the other constituents are missing.
if Has_Missing then
null;
-- Otherwise all constituents are of mode Output
else
SPARK_Msg_NE
("global refinement of state & must include at least one "
& "constituent of mode `In_Out`, `Input`, or `Proof_In`",
N, State_Id);
end if;
-- The state lacks a completion. When full refinement is visible,
-- always emit an error (SPARK RM 7.2.4(3a)). When only partial
-- refinement is visible, emit an error if the abstract state
-- itself is not utilized (SPARK RM 7.2.4(3d)). In the case where
-- both are utilized, Check_State_And_Constituent_Use. will issue
-- the error.
elsif not Input_Seen
and then not In_Out_Seen
and then not Output_Seen
and then not Proof_In_Seen
then
if Has_Visible_Refinement (State_Id)
or else Contains (Repeat_Items, State_Id)
then
SPARK_Msg_NE
("missing global refinement of state &", N, State_Id);
end if;
-- Otherwise the state has a malformed completion where at least
-- one of the constituents has a different mode.
else
SPARK_Msg_NE
("global refinement of state & redefines the mode of its "
& "constituents", N, State_Id);
end if;
end Check_Constituent_Usage;
-- Local variables
Item_Elmt : Elmt_Id;
Item_Id : Entity_Id;
-- Start of processing for Check_In_Out_States
begin
-- Do not perform this check in an instance because it was already
-- performed successfully in the generic template.
if Is_Generic_Instance (Spec_Id) then
null;
-- Inspect the In_Out items of the corresponding Global pragma
-- looking for a state with a visible refinement.
elsif Has_In_Out_State and then Present (In_Out_Items) then
Item_Elmt := First_Elmt (In_Out_Items);
while Present (Item_Elmt) loop
Item_Id := Node (Item_Elmt);
-- Ensure that one of the three coverage variants is satisfied
if Ekind (Item_Id) = E_Abstract_State
and then Has_Non_Null_Visible_Refinement (Item_Id)
then
Check_Constituent_Usage (Item_Id);
end if;
Next_Elmt (Item_Elmt);
end loop;
end if;
end Check_In_Out_States;
------------------------
-- Check_Input_States --
------------------------
procedure Check_Input_States is
procedure Check_Constituent_Usage (State_Id : Entity_Id);
-- Determine whether at least one constituent of state State_Id with
-- full or partial visible refinement is used and has mode Input.
-- Ensure that the remaining constituents do not have In_Out or
-- Output modes. Emit an error if this is not the case
-- (SPARK RM 7.2.4(5)).
-----------------------------
-- Check_Constituent_Usage --
-----------------------------
procedure Check_Constituent_Usage (State_Id : Entity_Id) is
Constits : constant Elist_Id :=
Partial_Refinement_Constituents (State_Id);
Constit_Elmt : Elmt_Id;
Constit_Id : Entity_Id;
In_Seen : Boolean := False;
begin
if Present (Constits) then
Constit_Elmt := First_Elmt (Constits);
while Present (Constit_Elmt) loop
Constit_Id := Node (Constit_Elmt);
-- At least one of the constituents appears as an Input
if Present_Then_Remove (In_Constits, Constit_Id) then
In_Seen := True;
-- A Proof_In constituent can refine an Input state as long
-- as there is at least one Input constituent present.
elsif Present_Then_Remove (Proof_In_Constits, Constit_Id)
then
null;
-- The constituent appears in the global refinement, but has
-- mode In_Out or Output (SPARK RM 7.2.4(5)).
elsif Present_Then_Remove (In_Out_Constits, Constit_Id)
or else Present_Then_Remove (Out_Constits, Constit_Id)
then
Error_Msg_Name_1 := Chars (State_Id);
SPARK_Msg_NE
("constituent & of state % must have mode `Input` in "
& "global refinement", N, Constit_Id);
end if;
Next_Elmt (Constit_Elmt);
end loop;
end if;
-- Not one of the constituents appeared as Input. Always emit an
-- error when the full refinement is visible (SPARK RM 7.2.4(3a)).
-- When only partial refinement is visible, emit an error if the
-- abstract state itself is not utilized (SPARK RM 7.2.4(3d)). In
-- the case where both are utilized, an error will be issued in
-- Check_State_And_Constituent_Use.
if not In_Seen
and then (Has_Visible_Refinement (State_Id)
or else Contains (Repeat_Items, State_Id))
then
SPARK_Msg_NE
("global refinement of state & must include at least one "
& "constituent of mode `Input`", N, State_Id);
end if;
end Check_Constituent_Usage;
-- Local variables
Item_Elmt : Elmt_Id;
Item_Id : Entity_Id;
-- Start of processing for Check_Input_States
begin
-- Do not perform this check in an instance because it was already
-- performed successfully in the generic template.
if Is_Generic_Instance (Spec_Id) then
null;
-- Inspect the Input items of the corresponding Global pragma looking
-- for a state with a visible refinement.
elsif Has_In_State and then Present (In_Items) then
Item_Elmt := First_Elmt (In_Items);
while Present (Item_Elmt) loop
Item_Id := Node (Item_Elmt);
-- When full refinement is visible, ensure that at least one of
-- the constituents is utilized and is of mode Input. When only
-- partial refinement is visible, ensure that either one of
-- the constituents is utilized and is of mode Input, or the
-- abstract state is repeated and no constituent is utilized.
if Ekind (Item_Id) = E_Abstract_State
and then Has_Non_Null_Visible_Refinement (Item_Id)
then
Check_Constituent_Usage (Item_Id);
end if;
Next_Elmt (Item_Elmt);
end loop;
end if;
end Check_Input_States;
-------------------------
-- Check_Output_States --
-------------------------
procedure Check_Output_States is
procedure Check_Constituent_Usage (State_Id : Entity_Id);
-- Determine whether all constituents of state State_Id with full
-- visible refinement are used and have mode Output. Emit an error
-- if this is not the case (SPARK RM 7.2.4(5)).
-----------------------------
-- Check_Constituent_Usage --
-----------------------------
procedure Check_Constituent_Usage (State_Id : Entity_Id) is
Constits : constant Elist_Id :=
Partial_Refinement_Constituents (State_Id);
Only_Partial : constant Boolean :=
not Has_Visible_Refinement (State_Id);
Constit_Elmt : Elmt_Id;
Constit_Id : Entity_Id;
Posted : Boolean := False;
begin
if Present (Constits) then
Constit_Elmt := First_Elmt (Constits);
while Present (Constit_Elmt) loop
Constit_Id := Node (Constit_Elmt);
-- Issue an error when a constituent of State_Id is utilized
-- and State_Id has only partial visible refinement
-- (SPARK RM 7.2.4(3d)).
if Only_Partial then
if Present_Then_Remove (Out_Constits, Constit_Id)
or else Present_Then_Remove (In_Constits, Constit_Id)
or else
Present_Then_Remove (In_Out_Constits, Constit_Id)
or else
Present_Then_Remove (Proof_In_Constits, Constit_Id)
then
Error_Msg_Name_1 := Chars (State_Id);
SPARK_Msg_NE
("constituent & of state % cannot be used in global "
& "refinement", N, Constit_Id);
Error_Msg_Name_1 := Chars (State_Id);
SPARK_Msg_N ("\use state % instead", N);
end if;
elsif Present_Then_Remove (Out_Constits, Constit_Id) then
null;
-- The constituent appears in the global refinement, but has
-- mode Input, In_Out or Proof_In (SPARK RM 7.2.4(5)).
elsif Present_Then_Remove (In_Constits, Constit_Id)
or else Present_Then_Remove (In_Out_Constits, Constit_Id)
or else Present_Then_Remove (Proof_In_Constits, Constit_Id)
then
Error_Msg_Name_1 := Chars (State_Id);
SPARK_Msg_NE
("constituent & of state % must have mode `Output` in "
& "global refinement", N, Constit_Id);
-- The constituent is altogether missing (SPARK RM 7.2.5(3))
else
if not Posted then
Posted := True;
SPARK_Msg_NE
("`Output` state & must be replaced by all its "
& "constituents in global refinement", N, State_Id);
end if;
SPARK_Msg_NE
("\constituent & is missing in output list",
N, Constit_Id);
end if;
Next_Elmt (Constit_Elmt);
end loop;
end if;
end Check_Constituent_Usage;
-- Local variables
Item_Elmt : Elmt_Id;
Item_Id : Entity_Id;
-- Start of processing for Check_Output_States
begin
-- Do not perform this check in an instance because it was already
-- performed successfully in the generic template.
if Is_Generic_Instance (Spec_Id) then
null;
-- Inspect the Output items of the corresponding Global pragma
-- looking for a state with a visible refinement.
elsif Has_Out_State and then Present (Out_Items) then
Item_Elmt := First_Elmt (Out_Items);
while Present (Item_Elmt) loop
Item_Id := Node (Item_Elmt);
-- When full refinement is visible, ensure that all of the
-- constituents are utilized and they have mode Output. When
-- only partial refinement is visible, ensure that no
-- constituent is utilized.
if Ekind (Item_Id) = E_Abstract_State
and then Has_Non_Null_Visible_Refinement (Item_Id)
then
Check_Constituent_Usage (Item_Id);
end if;
Next_Elmt (Item_Elmt);
end loop;
end if;
end Check_Output_States;
---------------------------
-- Check_Proof_In_States --
---------------------------
procedure Check_Proof_In_States is
procedure Check_Constituent_Usage (State_Id : Entity_Id);
-- Determine whether at least one constituent of state State_Id with
-- full or partial visible refinement is used and has mode Proof_In.
-- Ensure that the remaining constituents do not have Input, In_Out,
-- or Output modes. Emit an error if this is not the case
-- (SPARK RM 7.2.4(5)).
-----------------------------
-- Check_Constituent_Usage --
-----------------------------
procedure Check_Constituent_Usage (State_Id : Entity_Id) is
Constits : constant Elist_Id :=
Partial_Refinement_Constituents (State_Id);
Constit_Elmt : Elmt_Id;
Constit_Id : Entity_Id;
Proof_In_Seen : Boolean := False;
begin
if Present (Constits) then
Constit_Elmt := First_Elmt (Constits);
while Present (Constit_Elmt) loop
Constit_Id := Node (Constit_Elmt);
-- At least one of the constituents appears as Proof_In
if Present_Then_Remove (Proof_In_Constits, Constit_Id) then
Proof_In_Seen := True;
-- The constituent appears in the global refinement, but has
-- mode Input, In_Out or Output (SPARK RM 7.2.4(5)).
elsif Present_Then_Remove (In_Constits, Constit_Id)
or else Present_Then_Remove (In_Out_Constits, Constit_Id)
or else Present_Then_Remove (Out_Constits, Constit_Id)
then
Error_Msg_Name_1 := Chars (State_Id);
SPARK_Msg_NE
("constituent & of state % must have mode `Proof_In` "
& "in global refinement", N, Constit_Id);
end if;
Next_Elmt (Constit_Elmt);
end loop;
end if;
-- Not one of the constituents appeared as Proof_In. Always emit
-- an error when full refinement is visible (SPARK RM 7.2.4(3a)).
-- When only partial refinement is visible, emit an error if the
-- abstract state itself is not utilized (SPARK RM 7.2.4(3d)). In
-- the case where both are utilized, an error will be issued by
-- Check_State_And_Constituent_Use.
if not Proof_In_Seen
and then (Has_Visible_Refinement (State_Id)
or else Contains (Repeat_Items, State_Id))
then
SPARK_Msg_NE
("global refinement of state & must include at least one "
& "constituent of mode `Proof_In`", N, State_Id);
end if;
end Check_Constituent_Usage;
-- Local variables
Item_Elmt : Elmt_Id;
Item_Id : Entity_Id;
-- Start of processing for Check_Proof_In_States
begin
-- Do not perform this check in an instance because it was already
-- performed successfully in the generic template.
if Is_Generic_Instance (Spec_Id) then
null;
-- Inspect the Proof_In items of the corresponding Global pragma
-- looking for a state with a visible refinement.
elsif Has_Proof_In_State and then Present (Proof_In_Items) then
Item_Elmt := First_Elmt (Proof_In_Items);
while Present (Item_Elmt) loop
Item_Id := Node (Item_Elmt);
-- Ensure that at least one of the constituents is utilized
-- and is of mode Proof_In. When only partial refinement is
-- visible, ensure that either one of the constituents is
-- utilized and is of mode Proof_In, or the abstract state
-- is repeated and no constituent is utilized.
if Ekind (Item_Id) = E_Abstract_State
and then Has_Non_Null_Visible_Refinement (Item_Id)
then
Check_Constituent_Usage (Item_Id);
end if;
Next_Elmt (Item_Elmt);
end loop;
end if;
end Check_Proof_In_States;
-------------------------------
-- Check_Refined_Global_List --
-------------------------------
procedure Check_Refined_Global_List
(List : Node_Id;
Global_Mode : Name_Id := Name_Input)
is
procedure Check_Refined_Global_Item
(Item : Node_Id;
Global_Mode : Name_Id);
-- Verify the legality of a single global item declaration. Parameter
-- Global_Mode denotes the current mode in effect.
-------------------------------
-- Check_Refined_Global_Item --
-------------------------------
procedure Check_Refined_Global_Item
(Item : Node_Id;
Global_Mode : Name_Id)
is
Item_Id : constant Entity_Id := Entity_Of (Item);
procedure Inconsistent_Mode_Error (Expect : Name_Id);
-- Issue a common error message for all mode mismatches. Expect
-- denotes the expected mode.
-----------------------------
-- Inconsistent_Mode_Error --
-----------------------------
procedure Inconsistent_Mode_Error (Expect : Name_Id) is
begin
SPARK_Msg_NE
("global item & has inconsistent modes", Item, Item_Id);
Error_Msg_Name_1 := Global_Mode;
Error_Msg_Name_2 := Expect;
SPARK_Msg_N ("\expected mode %, found mode %", Item);
end Inconsistent_Mode_Error;
-- Local variables
Enc_State : Entity_Id := Empty;
-- Encapsulating state for constituent, Empty otherwise
-- Start of processing for Check_Refined_Global_Item
begin
if Ekind_In (Item_Id, E_Abstract_State,
E_Constant,
E_Variable)
then
Enc_State := Find_Encapsulating_State (States, Item_Id);
end if;
-- When the state or object acts as a constituent of another
-- state with a visible refinement, collect it for the state
-- completeness checks performed later on. Note that the item
-- acts as a constituent only when the encapsulating state is
-- present in pragma Global.
if Present (Enc_State)
and then (Has_Visible_Refinement (Enc_State)
or else Has_Partial_Visible_Refinement (Enc_State))
and then Contains (States, Enc_State)
then
-- If the state has only partial visible refinement, remove it
-- from the list of items that should be repeated from pragma
-- Global.
if not Has_Visible_Refinement (Enc_State) then
Present_Then_Remove (Repeat_Items, Enc_State);
end if;
if Global_Mode = Name_Input then
Append_New_Elmt (Item_Id, In_Constits);
elsif Global_Mode = Name_In_Out then
Append_New_Elmt (Item_Id, In_Out_Constits);
elsif Global_Mode = Name_Output then
Append_New_Elmt (Item_Id, Out_Constits);
elsif Global_Mode = Name_Proof_In then
Append_New_Elmt (Item_Id, Proof_In_Constits);
end if;
-- When not a constituent, ensure that both occurrences of the
-- item in pragmas Global and Refined_Global match. Also remove
-- it when present from the list of items that should be repeated
-- from pragma Global.
else
Present_Then_Remove (Repeat_Items, Item_Id);
if Contains (In_Items, Item_Id) then
if Global_Mode /= Name_Input then
Inconsistent_Mode_Error (Name_Input);
end if;
elsif Contains (In_Out_Items, Item_Id) then
if Global_Mode /= Name_In_Out then
Inconsistent_Mode_Error (Name_In_Out);
end if;
elsif Contains (Out_Items, Item_Id) then
if Global_Mode /= Name_Output then
Inconsistent_Mode_Error (Name_Output);
end if;
elsif Contains (Proof_In_Items, Item_Id) then
null;
-- The item does not appear in the corresponding Global pragma,
-- it must be an extra (SPARK RM 7.2.4(3)).
else
SPARK_Msg_NE ("extra global item &", Item, Item_Id);
end if;
end if;
end Check_Refined_Global_Item;
-- Local variables
Item : Node_Id;
-- Start of processing for Check_Refined_Global_List
begin
-- Do not perform this check in an instance because it was already
-- performed successfully in the generic template.
if Is_Generic_Instance (Spec_Id) then
null;
elsif Nkind (List) = N_Null then
null;
-- Single global item declaration
elsif Nkind_In (List, N_Expanded_Name,
N_Identifier,
N_Selected_Component)
then
Check_Refined_Global_Item (List, Global_Mode);
-- Simple global list or moded global list declaration
elsif Nkind (List) = N_Aggregate then
-- The declaration of a simple global list appear as a collection
-- of expressions.
if Present (Expressions (List)) then
Item := First (Expressions (List));
while Present (Item) loop
Check_Refined_Global_Item (Item, Global_Mode);
Next (Item);
end loop;
-- The declaration of a moded global list appears as a collection
-- of component associations where individual choices denote
-- modes.
elsif Present (Component_Associations (List)) then
Item := First (Component_Associations (List));
while Present (Item) loop
Check_Refined_Global_List
(List => Expression (Item),
Global_Mode => Chars (First (Choices (Item))));
Next (Item);
end loop;
-- Invalid tree
else
raise Program_Error;
end if;
-- Invalid list
else
raise Program_Error;
end if;
end Check_Refined_Global_List;
--------------------------
-- Collect_Global_Items --
--------------------------
procedure Collect_Global_Items
(List : Node_Id;
Mode : Name_Id := Name_Input)
is
procedure Collect_Global_Item
(Item : Node_Id;
Item_Mode : Name_Id);
-- Add a single item to the appropriate list. Item_Mode denotes the
-- current mode in effect.
-------------------------
-- Collect_Global_Item --
-------------------------
procedure Collect_Global_Item
(Item : Node_Id;
Item_Mode : Name_Id)
is
Item_Id : constant Entity_Id := Available_View (Entity_Of (Item));
-- The above handles abstract views of variables and states built
-- for limited with clauses.
begin
-- Signal that the global list contains at least one abstract
-- state with a visible refinement. Note that the refinement may
-- be null in which case there are no constituents.
if Ekind (Item_Id) = E_Abstract_State then
if Has_Null_Visible_Refinement (Item_Id) then
Has_Null_State := True;
elsif Has_Non_Null_Visible_Refinement (Item_Id) then
Append_New_Elmt (Item_Id, States);
if Item_Mode = Name_Input then
Has_In_State := True;
elsif Item_Mode = Name_In_Out then
Has_In_Out_State := True;
elsif Item_Mode = Name_Output then
Has_Out_State := True;
elsif Item_Mode = Name_Proof_In then
Has_Proof_In_State := True;
end if;
end if;
end if;
-- Record global items without full visible refinement found in
-- pragma Global which should be repeated in the global refinement
-- (SPARK RM 7.2.4(3c), SPARK RM 7.2.4(3d)).
if Ekind (Item_Id) /= E_Abstract_State
or else not Has_Visible_Refinement (Item_Id)
then
Append_New_Elmt (Item_Id, Repeat_Items);
end if;
-- Add the item to the proper list
if Item_Mode = Name_Input then
Append_New_Elmt (Item_Id, In_Items);
elsif Item_Mode = Name_In_Out then
Append_New_Elmt (Item_Id, In_Out_Items);
elsif Item_Mode = Name_Output then
Append_New_Elmt (Item_Id, Out_Items);
elsif Item_Mode = Name_Proof_In then
Append_New_Elmt (Item_Id, Proof_In_Items);
end if;
end Collect_Global_Item;
-- Local variables
Item : Node_Id;
-- Start of processing for Collect_Global_Items
begin
if Nkind (List) = N_Null then
null;
-- Single global item declaration
elsif Nkind_In (List, N_Expanded_Name,
N_Identifier,
N_Selected_Component)
then
Collect_Global_Item (List, Mode);
-- Single global list or moded global list declaration
elsif Nkind (List) = N_Aggregate then
-- The declaration of a simple global list appear as a collection
-- of expressions.
if Present (Expressions (List)) then
Item := First (Expressions (List));
while Present (Item) loop
Collect_Global_Item (Item, Mode);
Next (Item);
end loop;
-- The declaration of a moded global list appears as a collection
-- of component associations where individual choices denote mode.
elsif Present (Component_Associations (List)) then
Item := First (Component_Associations (List));
while Present (Item) loop
Collect_Global_Items
(List => Expression (Item),
Mode => Chars (First (Choices (Item))));
Next (Item);
end loop;
-- Invalid tree
else
raise Program_Error;
end if;
-- To accommodate partial decoration of disabled SPARK features, this
-- routine may be called with illegal input. If this is the case, do
-- not raise Program_Error.
else
null;
end if;
end Collect_Global_Items;
-------------------------
-- Present_Then_Remove --
-------------------------
function Present_Then_Remove
(List : Elist_Id;
Item : Entity_Id) return Boolean
is
Elmt : Elmt_Id;
begin
if Present (List) then
Elmt := First_Elmt (List);
while Present (Elmt) loop
if Node (Elmt) = Item then
Remove_Elmt (List, Elmt);
return True;
end if;
Next_Elmt (Elmt);
end loop;
end if;
return False;
end Present_Then_Remove;
procedure Present_Then_Remove (List : Elist_Id; Item : Entity_Id) is
Ignore : Boolean;
begin
Ignore := Present_Then_Remove (List, Item);
end Present_Then_Remove;
-------------------------------
-- Report_Extra_Constituents --
-------------------------------
procedure Report_Extra_Constituents is
procedure Report_Extra_Constituents_In_List (List : Elist_Id);
-- Emit an error for every element of List
---------------------------------------
-- Report_Extra_Constituents_In_List --
---------------------------------------
procedure Report_Extra_Constituents_In_List (List : Elist_Id) is
Constit_Elmt : Elmt_Id;
begin
if Present (List) then
Constit_Elmt := First_Elmt (List);
while Present (Constit_Elmt) loop
SPARK_Msg_NE ("extra constituent &", N, Node (Constit_Elmt));
Next_Elmt (Constit_Elmt);
end loop;
end if;
end Report_Extra_Constituents_In_List;
-- Start of processing for Report_Extra_Constituents
begin
-- Do not perform this check in an instance because it was already
-- performed successfully in the generic template.
if Is_Generic_Instance (Spec_Id) then
null;
else
Report_Extra_Constituents_In_List (In_Constits);
Report_Extra_Constituents_In_List (In_Out_Constits);
Report_Extra_Constituents_In_List (Out_Constits);
Report_Extra_Constituents_In_List (Proof_In_Constits);
end if;
end Report_Extra_Constituents;
--------------------------
-- Report_Missing_Items --
--------------------------
procedure Report_Missing_Items is
Item_Elmt : Elmt_Id;
Item_Id : Entity_Id;
begin
-- Do not perform this check in an instance because it was already
-- performed successfully in the generic template.
if Is_Generic_Instance (Spec_Id) then
null;
else
if Present (Repeat_Items) then
Item_Elmt := First_Elmt (Repeat_Items);
while Present (Item_Elmt) loop
Item_Id := Node (Item_Elmt);
SPARK_Msg_NE ("missing global item &", N, Item_Id);
Next_Elmt (Item_Elmt);
end loop;
end if;
end if;
end Report_Missing_Items;
-- Local variables
Body_Decl : constant Node_Id := Find_Related_Declaration_Or_Body (N);
Errors : constant Nat := Serious_Errors_Detected;
Items : Node_Id;
No_Constit : Boolean;
-- Start of processing for Analyze_Refined_Global_In_Decl_Part
begin
-- Do not analyze the pragma multiple times
if Is_Analyzed_Pragma (N) then
return;
end if;
Spec_Id := Unique_Defining_Entity (Body_Decl);
-- Use the anonymous object as the proper spec when Refined_Global
-- applies to the body of a single task type. The object carries the
-- proper Chars as well as all non-refined versions of pragmas.
if Is_Single_Concurrent_Type (Spec_Id) then
Spec_Id := Anonymous_Object (Spec_Id);
end if;
Global := Get_Pragma (Spec_Id, Pragma_Global);
Items := Expression (Get_Argument (N, Spec_Id));
-- The subprogram declaration lacks pragma Global. This renders
-- Refined_Global useless as there is nothing to refine.
if No (Global) then
SPARK_Msg_NE
(Fix_Msg (Spec_Id, "useless refinement, declaration of subprogram "
& "& lacks aspect or pragma Global"), N, Spec_Id);
goto Leave;
end if;
-- Extract all relevant items from the corresponding Global pragma
Collect_Global_Items (Expression (Get_Argument (Global, Spec_Id)));
-- Package and subprogram bodies are instantiated individually in
-- a separate compiler pass. Due to this mode of instantiation, the
-- refinement of a state may no longer be visible when a subprogram
-- body contract is instantiated. Since the generic template is legal,
-- do not perform this check in the instance to circumvent this oddity.
if Is_Generic_Instance (Spec_Id) then
null;
-- Non-instance case
else
-- The corresponding Global pragma must mention at least one
-- state with a visible refinement at the point Refined_Global
-- is processed. States with null refinements need Refined_Global
-- pragma (SPARK RM 7.2.4(2)).
if not Has_In_State
and then not Has_In_Out_State
and then not Has_Out_State
and then not Has_Proof_In_State
and then not Has_Null_State
then
SPARK_Msg_NE
(Fix_Msg (Spec_Id, "useless refinement, subprogram & does not "
& "depend on abstract state with visible refinement"),
N, Spec_Id);
goto Leave;
-- The global refinement of inputs and outputs cannot be null when
-- the corresponding Global pragma contains at least one item except
-- in the case where we have states with null refinements.
elsif Nkind (Items) = N_Null
and then
(Present (In_Items)
or else Present (In_Out_Items)
or else Present (Out_Items)
or else Present (Proof_In_Items))
and then not Has_Null_State
then
SPARK_Msg_NE
(Fix_Msg (Spec_Id, "refinement cannot be null, subprogram & has "
& "global items"), N, Spec_Id);
goto Leave;
end if;
end if;
-- Analyze Refined_Global as if it behaved as a regular pragma Global.
-- This ensures that the categorization of all refined global items is
-- consistent with their role.
Analyze_Global_In_Decl_Part (N);
-- Perform all refinement checks with respect to completeness and mode
-- matching.
if Serious_Errors_Detected = Errors then
Check_Refined_Global_List (Items);
end if;
-- Store the information that no constituent is used in the global
-- refinement, prior to calling checking procedures which remove items
-- from the list of constituents.
No_Constit :=
No (In_Constits)
and then No (In_Out_Constits)
and then No (Out_Constits)
and then No (Proof_In_Constits);
-- For Input states with visible refinement, at least one constituent
-- must be used as an Input in the global refinement.
if Serious_Errors_Detected = Errors then
Check_Input_States;
end if;
-- Verify all possible completion variants for In_Out states with
-- visible refinement.
if Serious_Errors_Detected = Errors then
Check_In_Out_States;
end if;
-- For Output states with visible refinement, all constituents must be
-- used as Outputs in the global refinement.
if Serious_Errors_Detected = Errors then
Check_Output_States;
end if;
-- For Proof_In states with visible refinement, at least one constituent
-- must be used as Proof_In in the global refinement.
if Serious_Errors_Detected = Errors then
Check_Proof_In_States;
end if;
-- Emit errors for all constituents that belong to other states with
-- visible refinement that do not appear in Global.
if Serious_Errors_Detected = Errors then
Report_Extra_Constituents;
end if;
-- Emit errors for all items in Global that are not repeated in the
-- global refinement and for which there is no full visible refinement
-- and, in the case of states with partial visible refinement, no
-- constituent is mentioned in the global refinement.
if Serious_Errors_Detected = Errors then
Report_Missing_Items;
end if;
-- Emit an error if no constituent is used in the global refinement
-- (SPARK RM 7.2.4(3f)). Emit this error last, in case a more precise
-- one may be issued by the checking procedures. Do not perform this
-- check in an instance because it was already performed successfully
-- in the generic template.
if Serious_Errors_Detected = Errors
and then not Is_Generic_Instance (Spec_Id)
and then not Has_Null_State
and then No_Constit
then
SPARK_Msg_N ("missing refinement", N);
end if;
<<Leave>>
Set_Is_Analyzed_Pragma (N);
end Analyze_Refined_Global_In_Decl_Part;
----------------------------------------
-- Analyze_Refined_State_In_Decl_Part --
----------------------------------------
procedure Analyze_Refined_State_In_Decl_Part
(N : Node_Id;
Freeze_Id : Entity_Id := Empty)
is
Body_Decl : constant Node_Id := Find_Related_Package_Or_Body (N);
Body_Id : constant Entity_Id := Defining_Entity (Body_Decl);
Spec_Id : constant Entity_Id := Corresponding_Spec (Body_Decl);
Available_States : Elist_Id := No_Elist;
-- A list of all abstract states defined in the package declaration that
-- are available for refinement. The list is used to report unrefined
-- states.
Body_States : Elist_Id := No_Elist;
-- A list of all hidden states that appear in the body of the related
-- package. The list is used to report unused hidden states.
Constituents_Seen : Elist_Id := No_Elist;
-- A list that contains all constituents processed so far. The list is
-- used to detect multiple uses of the same constituent.
Freeze_Posted : Boolean := False;
-- A flag that controls the output of a freezing-related error (see use
-- below).
Refined_States_Seen : Elist_Id := No_Elist;
-- A list that contains all refined states processed so far. The list is
-- used to detect duplicate refinements.
procedure Analyze_Refinement_Clause (Clause : Node_Id);
-- Perform full analysis of a single refinement clause
procedure Report_Unrefined_States (States : Elist_Id);
-- Emit errors for all unrefined abstract states found in list States
-------------------------------
-- Analyze_Refinement_Clause --
-------------------------------
procedure Analyze_Refinement_Clause (Clause : Node_Id) is
AR_Constit : Entity_Id := Empty;
AW_Constit : Entity_Id := Empty;
ER_Constit : Entity_Id := Empty;
EW_Constit : Entity_Id := Empty;
-- The entities of external constituents that contain one of the
-- following enabled properties: Async_Readers, Async_Writers,
-- Effective_Reads and Effective_Writes.
External_Constit_Seen : Boolean := False;
-- Flag used to mark when at least one external constituent is part
-- of the state refinement.
Non_Null_Seen : Boolean := False;
Null_Seen : Boolean := False;
-- Flags used to detect multiple uses of null in a single clause or a
-- mixture of null and non-null constituents.
Part_Of_Constits : Elist_Id := No_Elist;
-- A list of all candidate constituents subject to indicator Part_Of
-- where the encapsulating state is the current state.
State : Node_Id;
State_Id : Entity_Id;
-- The current state being refined
procedure Analyze_Constituent (Constit : Node_Id);
-- Perform full analysis of a single constituent
procedure Check_External_Property
(Prop_Nam : Name_Id;
Enabled : Boolean;
Constit : Entity_Id);
-- Determine whether a property denoted by name Prop_Nam is present
-- in the refined state. Emit an error if this is not the case. Flag
-- Enabled should be set when the property applies to the refined
-- state. Constit denotes the constituent (if any) which introduces
-- the property in the refinement.
procedure Match_State;
-- Determine whether the state being refined appears in list
-- Available_States. Emit an error when attempting to re-refine the
-- state or when the state is not defined in the package declaration,
-- otherwise remove the state from Available_States.
procedure Report_Unused_Constituents (Constits : Elist_Id);
-- Emit errors for all unused Part_Of constituents in list Constits
-------------------------
-- Analyze_Constituent --
-------------------------
procedure Analyze_Constituent (Constit : Node_Id) is
procedure Match_Constituent (Constit_Id : Entity_Id);
-- Determine whether constituent Constit denoted by its entity
-- Constit_Id appears in Body_States. Emit an error when the
-- constituent is not a valid hidden state of the related package
-- or when it is used more than once. Otherwise remove the
-- constituent from Body_States.
-----------------------
-- Match_Constituent --
-----------------------
procedure Match_Constituent (Constit_Id : Entity_Id) is
procedure Collect_Constituent;
-- Verify the legality of constituent Constit_Id and add it to
-- the refinements of State_Id.
-------------------------
-- Collect_Constituent --
-------------------------
procedure Collect_Constituent is
Constits : Elist_Id;
begin
-- The Ghost policy in effect at the point of abstract state
-- declaration and constituent must match (SPARK RM 6.9(15))
Check_Ghost_Refinement
(State, State_Id, Constit, Constit_Id);
-- A synchronized state must be refined by a synchronized
-- object or another synchronized state (SPARK RM 9.6).
if Is_Synchronized_State (State_Id)
and then not Is_Synchronized_Object (Constit_Id)
and then not Is_Synchronized_State (Constit_Id)
then
SPARK_Msg_NE
("constituent of synchronized state & must be "
& "synchronized", Constit, State_Id);
end if;
-- Add the constituent to the list of processed items to aid
-- with the detection of duplicates.
Append_New_Elmt (Constit_Id, Constituents_Seen);
-- Collect the constituent in the list of refinement items
-- and establish a relation between the refined state and
-- the item.
Constits := Refinement_Constituents (State_Id);
if No (Constits) then
Constits := New_Elmt_List;
Set_Refinement_Constituents (State_Id, Constits);
end if;
Append_Elmt (Constit_Id, Constits);
Set_Encapsulating_State (Constit_Id, State_Id);
-- The state has at least one legal constituent, mark the
-- start of the refinement region. The region ends when the
-- body declarations end (see routine Analyze_Declarations).
Set_Has_Visible_Refinement (State_Id);
-- When the constituent is external, save its relevant
-- property for further checks.
if Async_Readers_Enabled (Constit_Id) then
AR_Constit := Constit_Id;
External_Constit_Seen := True;
end if;
if Async_Writers_Enabled (Constit_Id) then
AW_Constit := Constit_Id;
External_Constit_Seen := True;
end if;
if Effective_Reads_Enabled (Constit_Id) then
ER_Constit := Constit_Id;
External_Constit_Seen := True;
end if;
if Effective_Writes_Enabled (Constit_Id) then
EW_Constit := Constit_Id;
External_Constit_Seen := True;
end if;
end Collect_Constituent;
-- Local variables
State_Elmt : Elmt_Id;
-- Start of processing for Match_Constituent
begin
-- Detect a duplicate use of a constituent
if Contains (Constituents_Seen, Constit_Id) then
SPARK_Msg_NE
("duplicate use of constituent &", Constit, Constit_Id);
return;
end if;
-- The constituent is subject to a Part_Of indicator
if Present (Encapsulating_State (Constit_Id)) then
if Encapsulating_State (Constit_Id) = State_Id then
Remove (Part_Of_Constits, Constit_Id);
Collect_Constituent;
-- The constituent is part of another state and is used
-- incorrectly in the refinement of the current state.
else
Error_Msg_Name_1 := Chars (State_Id);
SPARK_Msg_NE
("& cannot act as constituent of state %",
Constit, Constit_Id);
SPARK_Msg_NE
("\Part_Of indicator specifies encapsulator &",
Constit, Encapsulating_State (Constit_Id));
end if;
-- The only other source of legal constituents is the body
-- state space of the related package.
else
if Present (Body_States) then
State_Elmt := First_Elmt (Body_States);
while Present (State_Elmt) loop
-- Consume a valid constituent to signal that it has
-- been encountered.
if Node (State_Elmt) = Constit_Id then
Remove_Elmt (Body_States, State_Elmt);
Collect_Constituent;
return;
end if;
Next_Elmt (State_Elmt);
end loop;
end if;
-- At this point it is known that the constituent is not
-- part of the package hidden state and cannot be used in
-- a refinement (SPARK RM 7.2.2(9)).
Error_Msg_Name_1 := Chars (Spec_Id);
SPARK_Msg_NE
("cannot use & in refinement, constituent is not a hidden "
& "state of package %", Constit, Constit_Id);
end if;
end Match_Constituent;
-- Local variables
Constit_Id : Entity_Id;
Constits : Elist_Id;
-- Start of processing for Analyze_Constituent
begin
-- Detect multiple uses of null in a single refinement clause or a
-- mixture of null and non-null constituents.
if Nkind (Constit) = N_Null then
if Null_Seen then
SPARK_Msg_N
("multiple null constituents not allowed", Constit);
elsif Non_Null_Seen then
SPARK_Msg_N
("cannot mix null and non-null constituents", Constit);
else
Null_Seen := True;
-- Collect the constituent in the list of refinement items
Constits := Refinement_Constituents (State_Id);
if No (Constits) then
Constits := New_Elmt_List;
Set_Refinement_Constituents (State_Id, Constits);
end if;
Append_Elmt (Constit, Constits);
-- The state has at least one legal constituent, mark the
-- start of the refinement region. The region ends when the
-- body declarations end (see Analyze_Declarations).
Set_Has_Visible_Refinement (State_Id);
end if;
-- Non-null constituents
else
Non_Null_Seen := True;
if Null_Seen then
SPARK_Msg_N
("cannot mix null and non-null constituents", Constit);
end if;
Analyze (Constit);
Resolve_State (Constit);
-- Ensure that the constituent denotes a valid state or a
-- whole object (SPARK RM 7.2.2(5)).
if Is_Entity_Name (Constit) then
Constit_Id := Entity_Of (Constit);
-- When a constituent is declared after a subprogram body
-- that caused freezing of the related contract where
-- pragma Refined_State resides, the constituent appears
-- undefined and carries Any_Id as its entity.
-- package body Pack
-- with Refined_State => (State => Constit)
-- is
-- procedure Proc
-- with Refined_Global => (Input => Constit)
-- is
-- ...
-- end Proc;
-- Constit : ...;
-- end Pack;
if Constit_Id = Any_Id then
SPARK_Msg_NE ("& is undefined", Constit, Constit_Id);
-- Emit a specialized info message when the contract of
-- the related package body was "frozen" by another body.
-- Note that it is not possible to precisely identify why
-- the constituent is undefined because it is not visible
-- when pragma Refined_State is analyzed. This message is
-- a reasonable approximation.
if Present (Freeze_Id) and then not Freeze_Posted then
Freeze_Posted := True;
Error_Msg_Name_1 := Chars (Body_Id);
Error_Msg_Sloc := Sloc (Freeze_Id);
SPARK_Msg_NE
("body & declared # freezes the contract of %",
N, Freeze_Id);
SPARK_Msg_N
("\all constituents must be declared before body #",
N);
-- A misplaced constituent is a critical error because
-- pragma Refined_Depends or Refined_Global depends on
-- the proper link between a state and a constituent.
-- Stop the compilation, as this leads to a multitude
-- of misleading cascaded errors.
raise Unrecoverable_Error;
end if;
-- The constituent is a valid state or object
elsif Ekind_In (Constit_Id, E_Abstract_State,
E_Constant,
E_Variable)
then
Match_Constituent (Constit_Id);
-- The variable may eventually become a constituent of a
-- single protected/task type. Record the reference now
-- and verify its legality when analyzing the contract of
-- the variable (SPARK RM 9.3).
if Ekind (Constit_Id) = E_Variable then
Record_Possible_Part_Of_Reference
(Var_Id => Constit_Id,
Ref => Constit);
end if;
-- Otherwise the constituent is illegal
else
SPARK_Msg_NE
("constituent & must denote object or state",
Constit, Constit_Id);
end if;
-- The constituent is illegal
else
SPARK_Msg_N ("malformed constituent", Constit);
end if;
end if;
end Analyze_Constituent;
-----------------------------
-- Check_External_Property --
-----------------------------
procedure Check_External_Property
(Prop_Nam : Name_Id;
Enabled : Boolean;
Constit : Entity_Id)
is
begin
-- The property is missing in the declaration of the state, but
-- a constituent is introducing it in the state refinement
-- (SPARK RM 7.2.8(2)).
if not Enabled and then Present (Constit) then
Error_Msg_Name_1 := Prop_Nam;
Error_Msg_Name_2 := Chars (State_Id);
SPARK_Msg_NE
("constituent & introduces external property % in refinement "
& "of state %", State, Constit);
Error_Msg_Sloc := Sloc (State_Id);
SPARK_Msg_N
("\property is missing in abstract state declaration #",
State);
end if;
end Check_External_Property;
-----------------
-- Match_State --
-----------------
procedure Match_State is
State_Elmt : Elmt_Id;
begin
-- Detect a duplicate refinement of a state (SPARK RM 7.2.2(8))
if Contains (Refined_States_Seen, State_Id) then
SPARK_Msg_NE
("duplicate refinement of state &", State, State_Id);
return;
end if;
-- Inspect the abstract states defined in the package declaration
-- looking for a match.
State_Elmt := First_Elmt (Available_States);
while Present (State_Elmt) loop
-- A valid abstract state is being refined in the body. Add
-- the state to the list of processed refined states to aid
-- with the detection of duplicate refinements. Remove the
-- state from Available_States to signal that it has already
-- been refined.
if Node (State_Elmt) = State_Id then
Append_New_Elmt (State_Id, Refined_States_Seen);
Remove_Elmt (Available_States, State_Elmt);
return;
end if;
Next_Elmt (State_Elmt);
end loop;
-- If we get here, we are refining a state that is not defined in
-- the package declaration.
Error_Msg_Name_1 := Chars (Spec_Id);
SPARK_Msg_NE
("cannot refine state, & is not defined in package %",
State, State_Id);
end Match_State;
--------------------------------
-- Report_Unused_Constituents --
--------------------------------
procedure Report_Unused_Constituents (Constits : Elist_Id) is
Constit_Elmt : Elmt_Id;
Constit_Id : Entity_Id;
Posted : Boolean := False;
begin
if Present (Constits) then
Constit_Elmt := First_Elmt (Constits);
while Present (Constit_Elmt) loop
Constit_Id := Node (Constit_Elmt);
-- Generate an error message of the form:
-- state ... has unused Part_Of constituents
-- abstract state ... defined at ...
-- constant ... defined at ...
-- variable ... defined at ...
if not Posted then
Posted := True;
SPARK_Msg_NE
("state & has unused Part_Of constituents",
State, State_Id);
end if;
Error_Msg_Sloc := Sloc (Constit_Id);
if Ekind (Constit_Id) = E_Abstract_State then
SPARK_Msg_NE
("\abstract state & defined #", State, Constit_Id);
elsif Ekind (Constit_Id) = E_Constant then
SPARK_Msg_NE
("\constant & defined #", State, Constit_Id);
else
pragma Assert (Ekind (Constit_Id) = E_Variable);
SPARK_Msg_NE ("\variable & defined #", State, Constit_Id);
end if;
Next_Elmt (Constit_Elmt);
end loop;
end if;
end Report_Unused_Constituents;
-- Local declarations
Body_Ref : Node_Id;
Body_Ref_Elmt : Elmt_Id;
Constit : Node_Id;
Extra_State : Node_Id;
-- Start of processing for Analyze_Refinement_Clause
begin
-- A refinement clause appears as a component association where the
-- sole choice is the state and the expressions are the constituents.
-- This is a syntax error, always report.
if Nkind (Clause) /= N_Component_Association then
Error_Msg_N ("malformed state refinement clause", Clause);
return;
end if;
-- Analyze the state name of a refinement clause
State := First (Choices (Clause));
Analyze (State);
Resolve_State (State);
-- Ensure that the state name denotes a valid abstract state that is
-- defined in the spec of the related package.
if Is_Entity_Name (State) then
State_Id := Entity_Of (State);
-- When the abstract state is undefined, it appears as Any_Id. Do
-- not continue with the analysis of the clause.
if State_Id = Any_Id then
return;
-- Catch any attempts to re-refine a state or refine a state that
-- is not defined in the package declaration.
elsif Ekind (State_Id) = E_Abstract_State then
Match_State;
else
SPARK_Msg_NE ("& must denote abstract state", State, State_Id);
return;
end if;
-- References to a state with visible refinement are illegal.
-- When nested packages are involved, detecting such references is
-- tricky because pragma Refined_State is analyzed later than the
-- offending pragma Depends or Global. References that occur in
-- such nested context are stored in a list. Emit errors for all
-- references found in Body_References (SPARK RM 6.1.4(8)).
if Present (Body_References (State_Id)) then
Body_Ref_Elmt := First_Elmt (Body_References (State_Id));
while Present (Body_Ref_Elmt) loop
Body_Ref := Node (Body_Ref_Elmt);
SPARK_Msg_N ("reference to & not allowed", Body_Ref);
Error_Msg_Sloc := Sloc (State);
SPARK_Msg_N ("\refinement of & is visible#", Body_Ref);
Next_Elmt (Body_Ref_Elmt);
end loop;
end if;
-- The state name is illegal. This is a syntax error, always report.
else
Error_Msg_N ("malformed state name in refinement clause", State);
return;
end if;
-- A refinement clause may only refine one state at a time
Extra_State := Next (State);
if Present (Extra_State) then
SPARK_Msg_N
("refinement clause cannot cover multiple states", Extra_State);
end if;
-- Replicate the Part_Of constituents of the refined state because
-- the algorithm will consume items.
Part_Of_Constits := New_Copy_Elist (Part_Of_Constituents (State_Id));
-- Analyze all constituents of the refinement. Multiple constituents
-- appear as an aggregate.
Constit := Expression (Clause);
if Nkind (Constit) = N_Aggregate then
if Present (Component_Associations (Constit)) then
SPARK_Msg_N
("constituents of refinement clause must appear in "
& "positional form", Constit);
else pragma Assert (Present (Expressions (Constit)));
Constit := First (Expressions (Constit));
while Present (Constit) loop
Analyze_Constituent (Constit);
Next (Constit);
end loop;
end if;
-- Various forms of a single constituent. Note that these may include
-- malformed constituents.
else
Analyze_Constituent (Constit);
end if;
-- Verify that external constituents do not introduce new external
-- property in the state refinement (SPARK RM 7.2.8(2)).
if Is_External_State (State_Id) then
Check_External_Property
(Prop_Nam => Name_Async_Readers,
Enabled => Async_Readers_Enabled (State_Id),
Constit => AR_Constit);
Check_External_Property
(Prop_Nam => Name_Async_Writers,
Enabled => Async_Writers_Enabled (State_Id),
Constit => AW_Constit);
Check_External_Property
(Prop_Nam => Name_Effective_Reads,
Enabled => Effective_Reads_Enabled (State_Id),
Constit => ER_Constit);
Check_External_Property
(Prop_Nam => Name_Effective_Writes,
Enabled => Effective_Writes_Enabled (State_Id),
Constit => EW_Constit);
-- When a refined state is not external, it should not have external
-- constituents (SPARK RM 7.2.8(1)).
elsif External_Constit_Seen then
SPARK_Msg_NE
("non-external state & cannot contain external constituents in "
& "refinement", State, State_Id);
end if;
-- Ensure that all Part_Of candidate constituents have been mentioned
-- in the refinement clause.
Report_Unused_Constituents (Part_Of_Constits);
end Analyze_Refinement_Clause;
-----------------------------
-- Report_Unrefined_States --
-----------------------------
procedure Report_Unrefined_States (States : Elist_Id) is
State_Elmt : Elmt_Id;
begin
if Present (States) then
State_Elmt := First_Elmt (States);
while Present (State_Elmt) loop
SPARK_Msg_N
("abstract state & must be refined", Node (State_Elmt));
Next_Elmt (State_Elmt);
end loop;
end if;
end Report_Unrefined_States;
-- Local declarations
Clauses : constant Node_Id := Expression (Get_Argument (N, Spec_Id));
Clause : Node_Id;
-- Start of processing for Analyze_Refined_State_In_Decl_Part
begin
-- Do not analyze the pragma multiple times
if Is_Analyzed_Pragma (N) then
return;
end if;
-- Save the scenario for examination by the ABE Processing phase
Record_Elaboration_Scenario (N);
-- Replicate the abstract states declared by the package because the
-- matching algorithm will consume states.
Available_States := New_Copy_Elist (Abstract_States (Spec_Id));
-- Gather all abstract states and objects declared in the visible
-- state space of the package body. These items must be utilized as
-- constituents in a state refinement.
Body_States := Collect_Body_States (Body_Id);
-- Multiple non-null state refinements appear as an aggregate
if Nkind (Clauses) = N_Aggregate then
if Present (Expressions (Clauses)) then
SPARK_Msg_N
("state refinements must appear as component associations",
Clauses);
else pragma Assert (Present (Component_Associations (Clauses)));
Clause := First (Component_Associations (Clauses));
while Present (Clause) loop
Analyze_Refinement_Clause (Clause);
Next (Clause);
end loop;
end if;
-- Various forms of a single state refinement. Note that these may
-- include malformed refinements.
else
Analyze_Refinement_Clause (Clauses);
end if;
-- List all abstract states that were left unrefined
Report_Unrefined_States (Available_States);
Set_Is_Analyzed_Pragma (N);
end Analyze_Refined_State_In_Decl_Part;
------------------------------------
-- Analyze_Test_Case_In_Decl_Part --
------------------------------------
procedure Analyze_Test_Case_In_Decl_Part (N : Node_Id) is
Subp_Decl : constant Node_Id := Find_Related_Declaration_Or_Body (N);
Spec_Id : constant Entity_Id := Unique_Defining_Entity (Subp_Decl);
procedure Preanalyze_Test_Case_Arg (Arg_Nam : Name_Id);
-- Preanalyze one of the optional arguments "Requires" or "Ensures"
-- denoted by Arg_Nam.
------------------------------
-- Preanalyze_Test_Case_Arg --
------------------------------
procedure Preanalyze_Test_Case_Arg (Arg_Nam : Name_Id) is
Arg : Node_Id;
begin
-- Preanalyze the original aspect argument for ASIS or for a generic
-- subprogram to properly capture global references.
if ASIS_Mode or else Is_Generic_Subprogram (Spec_Id) then
Arg :=
Test_Case_Arg
(Prag => N,
Arg_Nam => Arg_Nam,
From_Aspect => True);
if Present (Arg) then
Preanalyze_Assert_Expression
(Expression (Arg), Standard_Boolean);
end if;
end if;
Arg := Test_Case_Arg (N, Arg_Nam);
if Present (Arg) then
Preanalyze_Assert_Expression (Expression (Arg), Standard_Boolean);
end if;
end Preanalyze_Test_Case_Arg;
-- Local variables
Restore_Scope : Boolean := False;
-- Start of processing for Analyze_Test_Case_In_Decl_Part
begin
-- Do not analyze the pragma multiple times
if Is_Analyzed_Pragma (N) then
return;
end if;
-- Ensure that the formal parameters are visible when analyzing all
-- clauses. This falls out of the general rule of aspects pertaining
-- to subprogram declarations.
if not In_Open_Scopes (Spec_Id) then
Restore_Scope := True;
Push_Scope (Spec_Id);
if Is_Generic_Subprogram (Spec_Id) then
Install_Generic_Formals (Spec_Id);
else
Install_Formals (Spec_Id);
end if;
end if;
Preanalyze_Test_Case_Arg (Name_Requires);
Preanalyze_Test_Case_Arg (Name_Ensures);
if Restore_Scope then
End_Scope;
end if;
-- Currently it is not possible to inline pre/postconditions on a
-- subprogram subject to pragma Inline_Always.
Check_Postcondition_Use_In_Inlined_Subprogram (N, Spec_Id);
Set_Is_Analyzed_Pragma (N);
end Analyze_Test_Case_In_Decl_Part;
----------------
-- Appears_In --
----------------
function Appears_In (List : Elist_Id; Item_Id : Entity_Id) return Boolean is
Elmt : Elmt_Id;
Id : Entity_Id;
begin
if Present (List) then
Elmt := First_Elmt (List);
while Present (Elmt) loop
if Nkind (Node (Elmt)) = N_Defining_Identifier then
Id := Node (Elmt);
else
Id := Entity_Of (Node (Elmt));
end if;
if Id = Item_Id then
return True;
end if;
Next_Elmt (Elmt);
end loop;
end if;
return False;
end Appears_In;
-----------------------------------
-- Build_Pragma_Check_Equivalent --
-----------------------------------
function Build_Pragma_Check_Equivalent
(Prag : Node_Id;
Subp_Id : Entity_Id := Empty;
Inher_Id : Entity_Id := Empty;
Keep_Pragma_Id : Boolean := False) return Node_Id
is
function Suppress_Reference (N : Node_Id) return Traverse_Result;
-- Detect whether node N references a formal parameter subject to
-- pragma Unreferenced. If this is the case, set Comes_From_Source
-- to False to suppress the generation of a reference when analyzing
-- N later on.
------------------------
-- Suppress_Reference --
------------------------
function Suppress_Reference (N : Node_Id) return Traverse_Result is
Formal : Entity_Id;
begin
if Is_Entity_Name (N) and then Present (Entity (N)) then
Formal := Entity (N);
-- The formal parameter is subject to pragma Unreferenced. Prevent
-- the generation of references by resetting the Comes_From_Source
-- flag.
if Is_Formal (Formal)
and then Has_Pragma_Unreferenced (Formal)
then
Set_Comes_From_Source (N, False);
end if;
end if;
return OK;
end Suppress_Reference;
procedure Suppress_References is
new Traverse_Proc (Suppress_Reference);
-- Local variables
Loc : constant Source_Ptr := Sloc (Prag);
Prag_Nam : constant Name_Id := Pragma_Name (Prag);
Check_Prag : Node_Id;
Msg_Arg : Node_Id;
Nam : Name_Id;
Needs_Wrapper : Boolean;
pragma Unreferenced (Needs_Wrapper);
-- Start of processing for Build_Pragma_Check_Equivalent
begin
-- When the pre- or postcondition is inherited, map the formals of the
-- inherited subprogram to those of the current subprogram. In addition,
-- map primitive operations of the parent type into the corresponding
-- primitive operations of the descendant.
if Present (Inher_Id) then
pragma Assert (Present (Subp_Id));
Update_Primitives_Mapping (Inher_Id, Subp_Id);
-- Use generic machinery to copy inherited pragma, as if it were an
-- instantiation, resetting source locations appropriately, so that
-- expressions inside the inherited pragma use chained locations.
-- This is used in particular in GNATprove to locate precisely
-- messages on a given inherited pragma.
Set_Copied_Sloc_For_Inherited_Pragma
(Unit_Declaration_Node (Subp_Id), Inher_Id);
Check_Prag := New_Copy_Tree (Source => Prag);
-- Build the inherited class-wide condition
Build_Class_Wide_Expression
(Prag => Check_Prag,
Subp => Subp_Id,
Par_Subp => Inher_Id,
Adjust_Sloc => True,
Needs_Wrapper => Needs_Wrapper);
-- If not an inherited condition simply copy the original pragma
else
Check_Prag := New_Copy_Tree (Source => Prag);
end if;
-- Mark the pragma as being internally generated and reset the Analyzed
-- flag.
Set_Analyzed (Check_Prag, False);
Set_Comes_From_Source (Check_Prag, False);
-- The tree of the original pragma may contain references to the
-- formal parameters of the related subprogram. At the same time
-- the corresponding body may mark the formals as unreferenced:
-- procedure Proc (Formal : ...)
-- with Pre => Formal ...;
-- procedure Proc (Formal : ...) is
-- pragma Unreferenced (Formal);
-- ...
-- This creates problems because all pragma Check equivalents are
-- analyzed at the end of the body declarations. Since all source
-- references have already been accounted for, reset any references
-- to such formals in the generated pragma Check equivalent.
Suppress_References (Check_Prag);
if Present (Corresponding_Aspect (Prag)) then
Nam := Chars (Identifier (Corresponding_Aspect (Prag)));
else
Nam := Prag_Nam;
end if;
-- Unless Keep_Pragma_Id is True in order to keep the identifier of
-- the copied pragma in the newly created pragma, convert the copy into
-- pragma Check by correcting the name and adding a check_kind argument.
if not Keep_Pragma_Id then
Set_Class_Present (Check_Prag, False);
Set_Pragma_Identifier
(Check_Prag, Make_Identifier (Loc, Name_Check));
Prepend_To (Pragma_Argument_Associations (Check_Prag),
Make_Pragma_Argument_Association (Loc,
Expression => Make_Identifier (Loc, Nam)));
end if;
-- Update the error message when the pragma is inherited
if Present (Inher_Id) then
Msg_Arg := Last (Pragma_Argument_Associations (Check_Prag));
if Chars (Msg_Arg) = Name_Message then
String_To_Name_Buffer (Strval (Expression (Msg_Arg)));
-- Insert "inherited" to improve the error message
if Name_Buffer (1 .. 8) = "failed p" then
Insert_Str_In_Name_Buffer ("inherited ", 8);
Set_Strval (Expression (Msg_Arg), String_From_Name_Buffer);
end if;
end if;
end if;
return Check_Prag;
end Build_Pragma_Check_Equivalent;
-----------------------------
-- Check_Applicable_Policy --
-----------------------------
procedure Check_Applicable_Policy (N : Node_Id) is
PP : Node_Id;
Policy : Name_Id;
Ename : constant Name_Id := Original_Aspect_Pragma_Name (N);
begin
-- No effect if not valid assertion kind name
if not Is_Valid_Assertion_Kind (Ename) then
return;
end if;
-- Loop through entries in check policy list
PP := Opt.Check_Policy_List;
while Present (PP) loop
declare
PPA : constant List_Id := Pragma_Argument_Associations (PP);
Pnm : constant Name_Id := Chars (Get_Pragma_Arg (First (PPA)));
begin
if Ename = Pnm
or else Pnm = Name_Assertion
or else (Pnm = Name_Statement_Assertions
and then Nam_In (Ename, Name_Assert,
Name_Assert_And_Cut,
Name_Assume,
Name_Loop_Invariant,
Name_Loop_Variant))
then
Policy := Chars (Get_Pragma_Arg (Last (PPA)));
case Policy is
when Name_Ignore
| Name_Off
=>
Set_Is_Ignored (N, True);
Set_Is_Checked (N, False);
when Name_Check
| Name_On
=>
Set_Is_Checked (N, True);
Set_Is_Ignored (N, False);
when Name_Disable =>
Set_Is_Ignored (N, True);
Set_Is_Checked (N, False);
Set_Is_Disabled (N, True);
-- That should be exhaustive, the null here is a defence
-- against a malformed tree from previous errors.
when others =>
null;
end case;
return;
end if;
PP := Next_Pragma (PP);
end;
end loop;
-- If there are no specific entries that matched, then we let the
-- setting of assertions govern. Note that this provides the needed
-- compatibility with the RM for the cases of assertion, invariant,
-- precondition, predicate, and postcondition.
if Assertions_Enabled then
Set_Is_Checked (N, True);
Set_Is_Ignored (N, False);
else
Set_Is_Checked (N, False);
Set_Is_Ignored (N, True);
end if;
end Check_Applicable_Policy;
-------------------------------
-- Check_External_Properties --
-------------------------------
procedure Check_External_Properties
(Item : Node_Id;
AR : Boolean;
AW : Boolean;
ER : Boolean;
EW : Boolean)
is
begin
-- All properties enabled
if AR and AW and ER and EW then
null;
-- Async_Readers + Effective_Writes
-- Async_Readers + Async_Writers + Effective_Writes
elsif AR and EW and not ER then
null;
-- Async_Writers + Effective_Reads
-- Async_Readers + Async_Writers + Effective_Reads
elsif AW and ER and not EW then
null;
-- Async_Readers + Async_Writers
elsif AR and AW and not ER and not EW then
null;
-- Async_Readers
elsif AR and not AW and not ER and not EW then
null;
-- Async_Writers
elsif AW and not AR and not ER and not EW then
null;
else
SPARK_Msg_N
("illegal combination of external properties (SPARK RM 7.1.2(6))",
Item);
end if;
end Check_External_Properties;
----------------
-- Check_Kind --
----------------
function Check_Kind (Nam : Name_Id) return Name_Id is
PP : Node_Id;
begin
-- Loop through entries in check policy list
PP := Opt.Check_Policy_List;
while Present (PP) loop
declare
PPA : constant List_Id := Pragma_Argument_Associations (PP);
Pnm : constant Name_Id := Chars (Get_Pragma_Arg (First (PPA)));
begin
if Nam = Pnm
or else (Pnm = Name_Assertion
and then Is_Valid_Assertion_Kind (Nam))
or else (Pnm = Name_Statement_Assertions
and then Nam_In (Nam, Name_Assert,
Name_Assert_And_Cut,
Name_Assume,
Name_Loop_Invariant,
Name_Loop_Variant))
then
case (Chars (Get_Pragma_Arg (Last (PPA)))) is
when Name_Check
| Name_On
=>
return Name_Check;
when Name_Ignore
| Name_Off
=>
return Name_Ignore;
when Name_Disable =>
return Name_Disable;
when others =>
raise Program_Error;
end case;
else
PP := Next_Pragma (PP);
end if;
end;
end loop;
-- If there are no specific entries that matched, then we let the
-- setting of assertions govern. Note that this provides the needed
-- compatibility with the RM for the cases of assertion, invariant,
-- precondition, predicate, and postcondition.
if Assertions_Enabled then
return Name_Check;
else
return Name_Ignore;
end if;
end Check_Kind;
---------------------------
-- Check_Missing_Part_Of --
---------------------------
procedure Check_Missing_Part_Of (Item_Id : Entity_Id) is
function Has_Visible_State (Pack_Id : Entity_Id) return Boolean;
-- Determine whether a package denoted by Pack_Id declares at least one
-- visible state.
-----------------------
-- Has_Visible_State --
-----------------------
function Has_Visible_State (Pack_Id : Entity_Id) return Boolean is
Item_Id : Entity_Id;
begin
-- Traverse the entity chain of the package trying to find at least
-- one visible abstract state, variable or a package [instantiation]
-- that declares a visible state.
Item_Id := First_Entity (Pack_Id);
while Present (Item_Id)
and then not In_Private_Part (Item_Id)
loop
-- Do not consider internally generated items
if not Comes_From_Source (Item_Id) then
null;
-- A visible state has been found
elsif Ekind_In (Item_Id, E_Abstract_State, E_Variable) then
return True;
-- Recursively peek into nested packages and instantiations
elsif Ekind (Item_Id) = E_Package
and then Has_Visible_State (Item_Id)
then
return True;
end if;
Next_Entity (Item_Id);
end loop;
return False;
end Has_Visible_State;
-- Local variables
Pack_Id : Entity_Id;
Placement : State_Space_Kind;
-- Start of processing for Check_Missing_Part_Of
begin
-- Do not consider abstract states, variables or package instantiations
-- coming from an instance as those always inherit the Part_Of indicator
-- of the instance itself.
if In_Instance then
return;
-- Do not consider internally generated entities as these can never
-- have a Part_Of indicator.
elsif not Comes_From_Source (Item_Id) then
return;
-- Perform these checks only when SPARK_Mode is enabled as they will
-- interfere with standard Ada rules and produce false positives.
elsif SPARK_Mode /= On then
return;
-- Do not consider constants, because the compiler cannot accurately
-- determine whether they have variable input (SPARK RM 7.1.1(2)) and
-- act as a hidden state of a package.
elsif Ekind (Item_Id) = E_Constant then
return;
end if;
-- Find where the abstract state, variable or package instantiation
-- lives with respect to the state space.
Find_Placement_In_State_Space
(Item_Id => Item_Id,
Placement => Placement,
Pack_Id => Pack_Id);
-- Items that appear in a non-package construct (subprogram, block, etc)
-- do not require a Part_Of indicator because they can never act as a
-- hidden state.
if Placement = Not_In_Package then
null;
-- An item declared in the body state space of a package always act as a
-- constituent and does not need explicit Part_Of indicator.
elsif Placement = Body_State_Space then
null;
-- In general an item declared in the visible state space of a package
-- does not require a Part_Of indicator. The only exception is when the
-- related package is a private child unit in which case Part_Of must
-- denote a state in the parent unit or in one of its descendants.
elsif Placement = Visible_State_Space then
if Is_Child_Unit (Pack_Id)
and then Is_Private_Descendant (Pack_Id)
then
-- A package instantiation does not need a Part_Of indicator when
-- the related generic template has no visible state.
if Ekind (Item_Id) = E_Package
and then Is_Generic_Instance (Item_Id)
and then not Has_Visible_State (Item_Id)
then
null;
-- All other cases require Part_Of
else
Error_Msg_N
("indicator Part_Of is required in this context "
& "(SPARK RM 7.2.6(3))", Item_Id);
Error_Msg_Name_1 := Chars (Pack_Id);
Error_Msg_N
("\& is declared in the visible part of private child "
& "unit %", Item_Id);
end if;
end if;
-- When the item appears in the private state space of a package, it
-- must be a part of some state declared by the said package.
else pragma Assert (Placement = Private_State_Space);
-- The related package does not declare a state, the item cannot act
-- as a Part_Of constituent.
if No (Get_Pragma (Pack_Id, Pragma_Abstract_State)) then
null;
-- A package instantiation does not need a Part_Of indicator when the
-- related generic template has no visible state.
elsif Ekind (Pack_Id) = E_Package
and then Is_Generic_Instance (Pack_Id)
and then not Has_Visible_State (Pack_Id)
then
null;
-- All other cases require Part_Of
else
Error_Msg_N
("indicator Part_Of is required in this context "
& "(SPARK RM 7.2.6(2))", Item_Id);
Error_Msg_Name_1 := Chars (Pack_Id);
Error_Msg_N
("\& is declared in the private part of package %", Item_Id);
end if;
end if;
end Check_Missing_Part_Of;
---------------------------------------------------
-- Check_Postcondition_Use_In_Inlined_Subprogram --
---------------------------------------------------
procedure Check_Postcondition_Use_In_Inlined_Subprogram
(Prag : Node_Id;
Spec_Id : Entity_Id)
is
begin
if Warn_On_Redundant_Constructs
and then Has_Pragma_Inline_Always (Spec_Id)
and then Assertions_Enabled
then
Error_Msg_Name_1 := Original_Aspect_Pragma_Name (Prag);
if From_Aspect_Specification (Prag) then
Error_Msg_NE
("aspect % not enforced on inlined subprogram &?r?",
Corresponding_Aspect (Prag), Spec_Id);
else
Error_Msg_NE
("pragma % not enforced on inlined subprogram &?r?",
Prag, Spec_Id);
end if;
end if;
end Check_Postcondition_Use_In_Inlined_Subprogram;
-------------------------------------
-- Check_State_And_Constituent_Use --
-------------------------------------
procedure Check_State_And_Constituent_Use
(States : Elist_Id;
Constits : Elist_Id;
Context : Node_Id)
is
Constit_Elmt : Elmt_Id;
Constit_Id : Entity_Id;
State_Id : Entity_Id;
begin
-- Nothing to do if there are no states or constituents
if No (States) or else No (Constits) then
return;
end if;
-- Inspect the list of constituents and try to determine whether its
-- encapsulating state is in list States.
Constit_Elmt := First_Elmt (Constits);
while Present (Constit_Elmt) loop
Constit_Id := Node (Constit_Elmt);
-- Determine whether the constituent is part of an encapsulating
-- state that appears in the same context and if this is the case,
-- emit an error (SPARK RM 7.2.6(7)).
State_Id := Find_Encapsulating_State (States, Constit_Id);
if Present (State_Id) then
Error_Msg_Name_1 := Chars (Constit_Id);
SPARK_Msg_NE
("cannot mention state & and its constituent % in the same "
& "context", Context, State_Id);
exit;
end if;
Next_Elmt (Constit_Elmt);
end loop;
end Check_State_And_Constituent_Use;
---------------------------------------------
-- Collect_Inherited_Class_Wide_Conditions --
---------------------------------------------
procedure Collect_Inherited_Class_Wide_Conditions (Subp : Entity_Id) is
Parent_Subp : constant Entity_Id :=
Ultimate_Alias (Overridden_Operation (Subp));
-- The Overridden_Operation may itself be inherited and as such have no
-- explicit contract.
Prags : constant Node_Id := Contract (Parent_Subp);
In_Spec_Expr : Boolean;
Installed : Boolean;
Prag : Node_Id;
New_Prag : Node_Id;
begin
Installed := False;
-- Iterate over the contract of the overridden subprogram to find all
-- inherited class-wide pre- and postconditions.
if Present (Prags) then
Prag := Pre_Post_Conditions (Prags);
while Present (Prag) loop
if Nam_In (Pragma_Name_Unmapped (Prag),
Name_Precondition, Name_Postcondition)
and then Class_Present (Prag)
then
-- The generated pragma must be analyzed in the context of
-- the subprogram, to make its formals visible. In addition,
-- we must inhibit freezing and full analysis because the
-- controlling type of the subprogram is not frozen yet, and
-- may have further primitives.
if not Installed then
Installed := True;
Push_Scope (Subp);
Install_Formals (Subp);
In_Spec_Expr := In_Spec_Expression;
In_Spec_Expression := True;
end if;
New_Prag :=
Build_Pragma_Check_Equivalent
(Prag, Subp, Parent_Subp, Keep_Pragma_Id => True);
Insert_After (Unit_Declaration_Node (Subp), New_Prag);
Preanalyze (New_Prag);
-- Prevent further analysis in subsequent processing of the
-- current list of declarations
Set_Analyzed (New_Prag);
end if;
Prag := Next_Pragma (Prag);
end loop;
if Installed then
In_Spec_Expression := In_Spec_Expr;
End_Scope;
end if;
end if;
end Collect_Inherited_Class_Wide_Conditions;
---------------------------------------
-- Collect_Subprogram_Inputs_Outputs --
---------------------------------------
procedure Collect_Subprogram_Inputs_Outputs
(Subp_Id : Entity_Id;
Synthesize : Boolean := False;
Subp_Inputs : in out Elist_Id;
Subp_Outputs : in out Elist_Id;
Global_Seen : out Boolean)
is
procedure Collect_Dependency_Clause (Clause : Node_Id);
-- Collect all relevant items from a dependency clause
procedure Collect_Global_List
(List : Node_Id;
Mode : Name_Id := Name_Input);
-- Collect all relevant items from a global list
-------------------------------
-- Collect_Dependency_Clause --
-------------------------------
procedure Collect_Dependency_Clause (Clause : Node_Id) is
procedure Collect_Dependency_Item
(Item : Node_Id;
Is_Input : Boolean);
-- Add an item to the proper subprogram input or output collection
-----------------------------
-- Collect_Dependency_Item --
-----------------------------
procedure Collect_Dependency_Item
(Item : Node_Id;
Is_Input : Boolean)
is
Extra : Node_Id;
begin
-- Nothing to collect when the item is null
if Nkind (Item) = N_Null then
null;
-- Ditto for attribute 'Result
elsif Is_Attribute_Result (Item) then
null;
-- Multiple items appear as an aggregate
elsif Nkind (Item) = N_Aggregate then
Extra := First (Expressions (Item));
while Present (Extra) loop
Collect_Dependency_Item (Extra, Is_Input);
Next (Extra);
end loop;
-- Otherwise this is a solitary item
else
if Is_Input then
Append_New_Elmt (Item, Subp_Inputs);
else
Append_New_Elmt (Item, Subp_Outputs);
end if;
end if;
end Collect_Dependency_Item;
-- Start of processing for Collect_Dependency_Clause
begin
if Nkind (Clause) = N_Null then
null;
-- A dependency clause appears as component association
elsif Nkind (Clause) = N_Component_Association then
Collect_Dependency_Item
(Item => Expression (Clause),
Is_Input => True);
Collect_Dependency_Item
(Item => First (Choices (Clause)),
Is_Input => False);
-- To accommodate partial decoration of disabled SPARK features, this
-- routine may be called with illegal input. If this is the case, do
-- not raise Program_Error.
else
null;
end if;
end Collect_Dependency_Clause;
-------------------------
-- Collect_Global_List --
-------------------------
procedure Collect_Global_List
(List : Node_Id;
Mode : Name_Id := Name_Input)
is
procedure Collect_Global_Item (Item : Node_Id; Mode : Name_Id);
-- Add an item to the proper subprogram input or output collection
-------------------------
-- Collect_Global_Item --
-------------------------
procedure Collect_Global_Item (Item : Node_Id; Mode : Name_Id) is
begin
if Nam_In (Mode, Name_In_Out, Name_Input) then
Append_New_Elmt (Item, Subp_Inputs);
end if;
if Nam_In (Mode, Name_In_Out, Name_Output) then
Append_New_Elmt (Item, Subp_Outputs);
end if;
end Collect_Global_Item;
-- Local variables
Assoc : Node_Id;
Item : Node_Id;
-- Start of processing for Collect_Global_List
begin
if Nkind (List) = N_Null then
null;
-- Single global item declaration
elsif Nkind_In (List, N_Expanded_Name,
N_Identifier,
N_Selected_Component)
then
Collect_Global_Item (List, Mode);
-- Simple global list or moded global list declaration
elsif Nkind (List) = N_Aggregate then
if Present (Expressions (List)) then
Item := First (Expressions (List));
while Present (Item) loop
Collect_Global_Item (Item, Mode);
Next (Item);
end loop;
else
Assoc := First (Component_Associations (List));
while Present (Assoc) loop
Collect_Global_List
(List => Expression (Assoc),
Mode => Chars (First (Choices (Assoc))));
Next (Assoc);
end loop;
end if;
-- To accommodate partial decoration of disabled SPARK features, this
-- routine may be called with illegal input. If this is the case, do
-- not raise Program_Error.
else
null;
end if;
end Collect_Global_List;
-- Local variables
Clause : Node_Id;
Clauses : Node_Id;
Depends : Node_Id;
Formal : Entity_Id;
Global : Node_Id;
Spec_Id : Entity_Id := Empty;
Subp_Decl : Node_Id;
Typ : Entity_Id;
-- Start of processing for Collect_Subprogram_Inputs_Outputs
begin
Global_Seen := False;
-- Process all formal parameters of entries, [generic] subprograms, and
-- their bodies.
if Ekind_In (Subp_Id, E_Entry,
E_Entry_Family,
E_Function,
E_Generic_Function,
E_Generic_Procedure,
E_Procedure,
E_Subprogram_Body)
then
Subp_Decl := Unit_Declaration_Node (Subp_Id);
Spec_Id := Unique_Defining_Entity (Subp_Decl);
-- Process all formal parameters
Formal := First_Entity (Spec_Id);
while Present (Formal) loop
if Ekind_In (Formal, E_In_Out_Parameter, E_In_Parameter) then
Append_New_Elmt (Formal, Subp_Inputs);
end if;
if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
Append_New_Elmt (Formal, Subp_Outputs);
-- Out parameters can act as inputs when the related type is
-- tagged, unconstrained array, unconstrained record, or record
-- with unconstrained components.
if Ekind (Formal) = E_Out_Parameter
and then Is_Unconstrained_Or_Tagged_Item (Formal)
then
Append_New_Elmt (Formal, Subp_Inputs);
end if;
end if;
Next_Entity (Formal);
end loop;
-- Otherwise the input denotes a task type, a task body, or the
-- anonymous object created for a single task type.
elsif Ekind_In (Subp_Id, E_Task_Type, E_Task_Body)
or else Is_Single_Task_Object (Subp_Id)
then
Subp_Decl := Declaration_Node (Subp_Id);
Spec_Id := Unique_Defining_Entity (Subp_Decl);
end if;
-- When processing an entry, subprogram or task body, look for pragmas
-- Refined_Depends and Refined_Global as they specify the inputs and
-- outputs.
if Is_Entry_Body (Subp_Id)
or else Ekind_In (Subp_Id, E_Subprogram_Body, E_Task_Body)
then
Depends := Get_Pragma (Subp_Id, Pragma_Refined_Depends);
Global := Get_Pragma (Subp_Id, Pragma_Refined_Global);
-- Subprogram declaration or stand-alone body case, look for pragmas
-- Depends and Global
else
Depends := Get_Pragma (Spec_Id, Pragma_Depends);
Global := Get_Pragma (Spec_Id, Pragma_Global);
end if;
-- Pragma [Refined_]Global takes precedence over [Refined_]Depends
-- because it provides finer granularity of inputs and outputs.
if Present (Global) then
Global_Seen := True;
Collect_Global_List (Expression (Get_Argument (Global, Spec_Id)));
-- When the related subprogram lacks pragma [Refined_]Global, fall back
-- to [Refined_]Depends if the caller requests this behavior. Synthesize
-- the inputs and outputs from [Refined_]Depends.
elsif Synthesize and then Present (Depends) then
Clauses := Expression (Get_Argument (Depends, Spec_Id));
-- Multiple dependency clauses appear as an aggregate
if Nkind (Clauses) = N_Aggregate then
Clause := First (Component_Associations (Clauses));
while Present (Clause) loop
Collect_Dependency_Clause (Clause);
Next (Clause);
end loop;
-- Otherwise this is a single dependency clause
else
Collect_Dependency_Clause (Clauses);
end if;
end if;
-- The current instance of a protected type acts as a formal parameter
-- of mode IN for functions and IN OUT for entries and procedures
-- (SPARK RM 6.1.4).
if Ekind (Scope (Spec_Id)) = E_Protected_Type then
Typ := Scope (Spec_Id);
-- Use the anonymous object when the type is single protected
if Is_Single_Concurrent_Type_Declaration (Declaration_Node (Typ)) then
Typ := Anonymous_Object (Typ);
end if;
Append_New_Elmt (Typ, Subp_Inputs);
if Ekind_In (Spec_Id, E_Entry, E_Entry_Family, E_Procedure) then
Append_New_Elmt (Typ, Subp_Outputs);
end if;
-- The current instance of a task type acts as a formal parameter of
-- mode IN OUT (SPARK RM 6.1.4).
elsif Ekind (Spec_Id) = E_Task_Type then
Typ := Spec_Id;
-- Use the anonymous object when the type is single task
if Is_Single_Concurrent_Type_Declaration (Declaration_Node (Typ)) then
Typ := Anonymous_Object (Typ);
end if;
Append_New_Elmt (Typ, Subp_Inputs);
Append_New_Elmt (Typ, Subp_Outputs);
elsif Is_Single_Task_Object (Spec_Id) then
Append_New_Elmt (Spec_Id, Subp_Inputs);
Append_New_Elmt (Spec_Id, Subp_Outputs);
end if;
end Collect_Subprogram_Inputs_Outputs;
---------------------------
-- Contract_Freeze_Error --
---------------------------
procedure Contract_Freeze_Error
(Contract_Id : Entity_Id;
Freeze_Id : Entity_Id)
is
begin
Error_Msg_Name_1 := Chars (Contract_Id);
Error_Msg_Sloc := Sloc (Freeze_Id);
SPARK_Msg_NE
("body & declared # freezes the contract of%", Contract_Id, Freeze_Id);
SPARK_Msg_N
("\all contractual items must be declared before body #", Contract_Id);
end Contract_Freeze_Error;
---------------------------------
-- Delay_Config_Pragma_Analyze --
---------------------------------
function Delay_Config_Pragma_Analyze (N : Node_Id) return Boolean is
begin
return Nam_In (Pragma_Name_Unmapped (N),
Name_Interrupt_State, Name_Priority_Specific_Dispatching);
end Delay_Config_Pragma_Analyze;
-----------------------
-- Duplication_Error --
-----------------------
procedure Duplication_Error (Prag : Node_Id; Prev : Node_Id) is
Prag_From_Asp : constant Boolean := From_Aspect_Specification (Prag);
Prev_From_Asp : constant Boolean := From_Aspect_Specification (Prev);
begin
Error_Msg_Sloc := Sloc (Prev);
Error_Msg_Name_1 := Original_Aspect_Pragma_Name (Prag);
-- Emit a precise message to distinguish between source pragmas and
-- pragmas generated from aspects. The ordering of the two pragmas is
-- the following:
-- Prev -- ok
-- Prag -- duplicate
-- No error is emitted when both pragmas come from aspects because this
-- is already detected by the general aspect analysis mechanism.
if Prag_From_Asp and Prev_From_Asp then
null;
elsif Prag_From_Asp then
Error_Msg_N ("aspect % duplicates pragma declared #", Prag);
elsif Prev_From_Asp then
Error_Msg_N ("pragma % duplicates aspect declared #", Prag);
else
Error_Msg_N ("pragma % duplicates pragma declared #", Prag);
end if;
end Duplication_Error;
------------------------------
-- Find_Encapsulating_State --
------------------------------
function Find_Encapsulating_State
(States : Elist_Id;
Constit_Id : Entity_Id) return Entity_Id
is
State_Id : Entity_Id;
begin
-- Since a constituent may be part of a larger constituent set, climb
-- the encapsulating state chain looking for a state that appears in
-- States.
State_Id := Encapsulating_State (Constit_Id);
while Present (State_Id) loop
if Contains (States, State_Id) then
return State_Id;
end if;
State_Id := Encapsulating_State (State_Id);
end loop;
return Empty;
end Find_Encapsulating_State;
--------------------------
-- Find_Related_Context --
--------------------------
function Find_Related_Context
(Prag : Node_Id;
Do_Checks : Boolean := False) return Node_Id
is
Stmt : Node_Id;
begin
Stmt := Prev (Prag);
while Present (Stmt) loop
-- Skip prior pragmas, but check for duplicates
if Nkind (Stmt) = N_Pragma then
if Do_Checks
and then Pragma_Name (Stmt) = Pragma_Name (Prag)
then
Duplication_Error
(Prag => Prag,
Prev => Stmt);
end if;
-- Skip internally generated code
elsif not Comes_From_Source (Stmt) then
-- The anonymous object created for a single concurrent type is a
-- suitable context.
if Nkind (Stmt) = N_Object_Declaration
and then Is_Single_Concurrent_Object (Defining_Entity (Stmt))
then
return Stmt;
end if;
-- Return the current source construct
else
return Stmt;
end if;
Prev (Stmt);
end loop;
return Empty;
end Find_Related_Context;
--------------------------------------
-- Find_Related_Declaration_Or_Body --
--------------------------------------
function Find_Related_Declaration_Or_Body
(Prag : Node_Id;
Do_Checks : Boolean := False) return Node_Id
is
Prag_Nam : constant Name_Id := Original_Aspect_Pragma_Name (Prag);
procedure Expression_Function_Error;
-- Emit an error concerning pragma Prag that illegaly applies to an
-- expression function.
-------------------------------
-- Expression_Function_Error --
-------------------------------
procedure Expression_Function_Error is
begin
Error_Msg_Name_1 := Prag_Nam;
-- Emit a precise message to distinguish between source pragmas and
-- pragmas generated from aspects.
if From_Aspect_Specification (Prag) then
Error_Msg_N
("aspect % cannot apply to a stand alone expression function",
Prag);
else
Error_Msg_N
("pragma % cannot apply to a stand alone expression function",
Prag);
end if;
end Expression_Function_Error;
-- Local variables
Context : constant Node_Id := Parent (Prag);
Stmt : Node_Id;
Look_For_Body : constant Boolean :=
Nam_In (Prag_Nam, Name_Refined_Depends,
Name_Refined_Global,
Name_Refined_Post,
Name_Refined_State);
-- Refinement pragmas must be associated with a subprogram body [stub]
-- Start of processing for Find_Related_Declaration_Or_Body
begin
Stmt := Prev (Prag);
while Present (Stmt) loop
-- Skip prior pragmas, but check for duplicates. Pragmas produced
-- by splitting a complex pre/postcondition are not considered to
-- be duplicates.
if Nkind (Stmt) = N_Pragma then
if Do_Checks
and then not Split_PPC (Stmt)
and then Original_Aspect_Pragma_Name (Stmt) = Prag_Nam
then
Duplication_Error
(Prag => Prag,
Prev => Stmt);
end if;
-- Emit an error when a refinement pragma appears on an expression
-- function without a completion.
elsif Do_Checks
and then Look_For_Body
and then Nkind (Stmt) = N_Subprogram_Declaration
and then Nkind (Original_Node (Stmt)) = N_Expression_Function
and then not Has_Completion (Defining_Entity (Stmt))
then
Expression_Function_Error;
return Empty;
-- The refinement pragma applies to a subprogram body stub
elsif Look_For_Body
and then Nkind (Stmt) = N_Subprogram_Body_Stub
then
return Stmt;
-- Skip internally generated code
elsif not Comes_From_Source (Stmt) then
-- The anonymous object created for a single concurrent type is a
-- suitable context.
if Nkind (Stmt) = N_Object_Declaration
and then Is_Single_Concurrent_Object (Defining_Entity (Stmt))
then
return Stmt;
elsif Nkind (Stmt) = N_Subprogram_Declaration then
-- The subprogram declaration is an internally generated spec
-- for an expression function.
if Nkind (Original_Node (Stmt)) = N_Expression_Function then
return Stmt;
-- The subprogram is actually an instance housed within an
-- anonymous wrapper package.
elsif Present (Generic_Parent (Specification (Stmt))) then
return Stmt;
end if;
end if;
-- Return the current construct which is either a subprogram body,
-- a subprogram declaration or is illegal.
else
return Stmt;
end if;
Prev (Stmt);
end loop;
-- If we fall through, then the pragma was either the first declaration
-- or it was preceded by other pragmas and no source constructs.
-- The pragma is associated with a library-level subprogram
if Nkind (Context) = N_Compilation_Unit_Aux then
return Unit (Parent (Context));
-- The pragma appears inside the declarations of an entry body
elsif Nkind (Context) = N_Entry_Body then
return Context;
-- The pragma appears inside the statements of a subprogram body. This
-- placement is the result of subprogram contract expansion.
elsif Nkind (Context) = N_Handled_Sequence_Of_Statements then
return Parent (Context);
-- The pragma appears inside the declarative part of a package body
elsif Nkind (Context) = N_Package_Body then
return Context;
-- The pragma appears inside the declarative part of a subprogram body
elsif Nkind (Context) = N_Subprogram_Body then
return Context;
-- The pragma appears inside the declarative part of a task body
elsif Nkind (Context) = N_Task_Body then
return Context;
-- The pragma appears inside the visible part of a package specification
elsif Nkind (Context) = N_Package_Specification then
return Parent (Context);
-- The pragma is a byproduct of aspect expansion, return the related
-- context of the original aspect. This case has a lower priority as
-- the above circuitry pinpoints precisely the related context.
elsif Present (Corresponding_Aspect (Prag)) then
return Parent (Corresponding_Aspect (Prag));
-- No candidate subprogram [body] found
else
return Empty;
end if;
end Find_Related_Declaration_Or_Body;
----------------------------------
-- Find_Related_Package_Or_Body --
----------------------------------
function Find_Related_Package_Or_Body
(Prag : Node_Id;
Do_Checks : Boolean := False) return Node_Id
is
Context : constant Node_Id := Parent (Prag);
Prag_Nam : constant Name_Id := Pragma_Name (Prag);
Stmt : Node_Id;
begin
Stmt := Prev (Prag);
while Present (Stmt) loop
-- Skip prior pragmas, but check for duplicates
if Nkind (Stmt) = N_Pragma then
if Do_Checks and then Pragma_Name (Stmt) = Prag_Nam then
Duplication_Error
(Prag => Prag,
Prev => Stmt);
end if;
-- Skip internally generated code
elsif not Comes_From_Source (Stmt) then
if Nkind (Stmt) = N_Subprogram_Declaration then
-- The subprogram declaration is an internally generated spec
-- for an expression function.
if Nkind (Original_Node (Stmt)) = N_Expression_Function then
return Stmt;
-- The subprogram is actually an instance housed within an
-- anonymous wrapper package.
elsif Present (Generic_Parent (Specification (Stmt))) then
return Stmt;
end if;
end if;
-- Return the current source construct which is illegal
else
return Stmt;
end if;
Prev (Stmt);
end loop;
-- If we fall through, then the pragma was either the first declaration
-- or it was preceded by other pragmas and no source constructs.
-- The pragma is associated with a package. The immediate context in
-- this case is the specification of the package.
if Nkind (Context) = N_Package_Specification then
return Parent (Context);
-- The pragma appears in the declarations of a package body
elsif Nkind (Context) = N_Package_Body then
return Context;
-- The pragma appears in the statements of a package body
elsif Nkind (Context) = N_Handled_Sequence_Of_Statements
and then Nkind (Parent (Context)) = N_Package_Body
then
return Parent (Context);
-- The pragma is a byproduct of aspect expansion, return the related
-- context of the original aspect. This case has a lower priority as
-- the above circuitry pinpoints precisely the related context.
elsif Present (Corresponding_Aspect (Prag)) then
return Parent (Corresponding_Aspect (Prag));
-- No candidate package [body] found
else
return Empty;
end if;
end Find_Related_Package_Or_Body;
------------------
-- Get_Argument --
------------------
function Get_Argument
(Prag : Node_Id;
Context_Id : Entity_Id := Empty) return Node_Id
is
Args : constant List_Id := Pragma_Argument_Associations (Prag);
begin
-- Use the expression of the original aspect when compiling for ASIS or
-- when analyzing the template of a generic unit. In both cases the
-- aspect's tree must be decorated to allow for ASIS queries or to save
-- the global references in the generic context.
if From_Aspect_Specification (Prag)
and then (ASIS_Mode or else (Present (Context_Id)
and then Is_Generic_Unit (Context_Id)))
then
return Corresponding_Aspect (Prag);
-- Otherwise use the expression of the pragma
elsif Present (Args) then
return First (Args);
else
return Empty;
end if;
end Get_Argument;
-------------------------
-- Get_Base_Subprogram --
-------------------------
function Get_Base_Subprogram (Def_Id : Entity_Id) return Entity_Id is
Result : Entity_Id;
begin
-- Follow subprogram renaming chain
Result := Def_Id;
if Is_Subprogram (Result)
and then
Nkind (Parent (Declaration_Node (Result))) =
N_Subprogram_Renaming_Declaration
and then Present (Alias (Result))
then
Result := Alias (Result);
end if;
return Result;
end Get_Base_Subprogram;
-----------------------
-- Get_SPARK_Mode_Type --
-----------------------
function Get_SPARK_Mode_Type (N : Name_Id) return SPARK_Mode_Type is
begin
if N = Name_On then
return On;
elsif N = Name_Off then
return Off;
-- Any other argument is illegal. Assume that no SPARK mode applies to
-- avoid potential cascaded errors.
else
return None;
end if;
end Get_SPARK_Mode_Type;
------------------------------------
-- Get_SPARK_Mode_From_Annotation --
------------------------------------
function Get_SPARK_Mode_From_Annotation
(N : Node_Id) return SPARK_Mode_Type
is
Mode : Node_Id;
begin
if Nkind (N) = N_Aspect_Specification then
Mode := Expression (N);
else pragma Assert (Nkind (N) = N_Pragma);
Mode := First (Pragma_Argument_Associations (N));
if Present (Mode) then
Mode := Get_Pragma_Arg (Mode);
end if;
end if;
-- Aspect or pragma SPARK_Mode specifies an explicit mode
if Present (Mode) then
if Nkind (Mode) = N_Identifier then
return Get_SPARK_Mode_Type (Chars (Mode));
-- In case of a malformed aspect or pragma, return the default None
else
return None;
end if;
-- Otherwise the lack of an expression defaults SPARK_Mode to On
else
return On;
end if;
end Get_SPARK_Mode_From_Annotation;
---------------------------
-- Has_Extra_Parentheses --
---------------------------
function Has_Extra_Parentheses (Clause : Node_Id) return Boolean is
Expr : Node_Id;
begin
-- The aggregate should not have an expression list because a clause
-- is always interpreted as a component association. The only way an
-- expression list can sneak in is by adding extra parentheses around
-- the individual clauses:
-- Depends (Output => Input) -- proper form
-- Depends ((Output => Input)) -- extra parentheses
-- Since the extra parentheses are not allowed by the syntax of the
-- pragma, flag them now to avoid emitting misleading errors down the
-- line.
if Nkind (Clause) = N_Aggregate
and then Present (Expressions (Clause))
then
Expr := First (Expressions (Clause));
while Present (Expr) loop
-- A dependency clause surrounded by extra parentheses appears
-- as an aggregate of component associations with an optional
-- Paren_Count set.
if Nkind (Expr) = N_Aggregate
and then Present (Component_Associations (Expr))
then
SPARK_Msg_N
("dependency clause contains extra parentheses", Expr);
-- Otherwise the expression is a malformed construct
else
SPARK_Msg_N ("malformed dependency clause", Expr);
end if;
Next (Expr);
end loop;
return True;
end if;
return False;
end Has_Extra_Parentheses;
----------------
-- Initialize --
----------------
procedure Initialize is
begin
Externals.Init;
end Initialize;
--------
-- ip --
--------
procedure ip is
begin
Dummy := Dummy + 1;
end ip;
-----------------------------
-- Is_Config_Static_String --
-----------------------------
function Is_Config_Static_String (Arg : Node_Id) return Boolean is
function Add_Config_Static_String (Arg : Node_Id) return Boolean;
-- This is an internal recursive function that is just like the outer
-- function except that it adds the string to the name buffer rather
-- than placing the string in the name buffer.
------------------------------
-- Add_Config_Static_String --
------------------------------
function Add_Config_Static_String (Arg : Node_Id) return Boolean is
N : Node_Id;
C : Char_Code;
begin
N := Arg;
if Nkind (N) = N_Op_Concat then
if Add_Config_Static_String (Left_Opnd (N)) then
N := Right_Opnd (N);
else
return False;
end if;
end if;
if Nkind (N) /= N_String_Literal then
Error_Msg_N ("string literal expected for pragma argument", N);
return False;
else
for J in 1 .. String_Length (Strval (N)) loop
C := Get_String_Char (Strval (N), J);
if not In_Character_Range (C) then
Error_Msg
("string literal contains invalid wide character",
Sloc (N) + 1 + Source_Ptr (J));
return False;
end if;
Add_Char_To_Name_Buffer (Get_Character (C));
end loop;
end if;
return True;
end Add_Config_Static_String;
-- Start of processing for Is_Config_Static_String
begin
Name_Len := 0;
return Add_Config_Static_String (Arg);
end Is_Config_Static_String;
-------------------------------
-- Is_Elaboration_SPARK_Mode --
-------------------------------
function Is_Elaboration_SPARK_Mode (N : Node_Id) return Boolean is
begin
pragma Assert
(Nkind (N) = N_Pragma
and then Pragma_Name (N) = Name_SPARK_Mode
and then Is_List_Member (N));
-- Pragma SPARK_Mode affects the elaboration of a package body when it
-- appears in the statement part of the body.
return
Present (Parent (N))
and then Nkind (Parent (N)) = N_Handled_Sequence_Of_Statements
and then List_Containing (N) = Statements (Parent (N))
and then Present (Parent (Parent (N)))
and then Nkind (Parent (Parent (N))) = N_Package_Body;
end Is_Elaboration_SPARK_Mode;
-----------------------
-- Is_Enabled_Pragma --
-----------------------
function Is_Enabled_Pragma (Prag : Node_Id) return Boolean is
Arg : Node_Id;
begin
if Present (Prag) then
Arg := First (Pragma_Argument_Associations (Prag));
if Present (Arg) then
return Is_True (Expr_Value (Get_Pragma_Arg (Arg)));
-- The lack of a Boolean argument automatically enables the pragma
else
return True;
end if;
-- The pragma is missing, therefore it is not enabled
else
return False;
end if;
end Is_Enabled_Pragma;
-----------------------------------------
-- Is_Non_Significant_Pragma_Reference --
-----------------------------------------
-- This function makes use of the following static table which indicates
-- whether appearance of some name in a given pragma is to be considered
-- as a reference for the purposes of warnings about unreferenced objects.
-- -1 indicates that appearence in any argument is significant
-- 0 indicates that appearance in any argument is not significant
-- +n indicates that appearance as argument n is significant, but all
-- other arguments are not significant
-- 9n arguments from n on are significant, before n insignificant
Sig_Flags : constant array (Pragma_Id) of Int :=
(Pragma_Abort_Defer => -1,
Pragma_Abstract_State => -1,
Pragma_Ada_83 => -1,
Pragma_Ada_95 => -1,
Pragma_Ada_05 => -1,
Pragma_Ada_2005 => -1,
Pragma_Ada_12 => -1,
Pragma_Ada_2012 => -1,
Pragma_Ada_2020 => -1,
Pragma_All_Calls_Remote => -1,
Pragma_Allow_Integer_Address => -1,
Pragma_Annotate => 93,
Pragma_Assert => -1,
Pragma_Assert_And_Cut => -1,
Pragma_Assertion_Policy => 0,
Pragma_Assume => -1,
Pragma_Assume_No_Invalid_Values => 0,
Pragma_Async_Readers => 0,
Pragma_Async_Writers => 0,
Pragma_Asynchronous => 0,
Pragma_Atomic => 0,
Pragma_Atomic_Components => 0,
Pragma_Attach_Handler => -1,
Pragma_Attribute_Definition => 92,
Pragma_Check => -1,
Pragma_Check_Float_Overflow => 0,
Pragma_Check_Name => 0,
Pragma_Check_Policy => 0,
Pragma_CPP_Class => 0,
Pragma_CPP_Constructor => 0,
Pragma_CPP_Virtual => 0,
Pragma_CPP_Vtable => 0,
Pragma_CPU => -1,
Pragma_C_Pass_By_Copy => 0,
Pragma_Comment => -1,
Pragma_Common_Object => 0,
Pragma_Compile_Time_Error => -1,
Pragma_Compile_Time_Warning => -1,
Pragma_Compiler_Unit => -1,
Pragma_Compiler_Unit_Warning => -1,
Pragma_Complete_Representation => 0,
Pragma_Complex_Representation => 0,
Pragma_Component_Alignment => 0,
Pragma_Constant_After_Elaboration => 0,
Pragma_Contract_Cases => -1,
Pragma_Controlled => 0,
Pragma_Convention => 0,
Pragma_Convention_Identifier => 0,
Pragma_Deadline_Floor => -1,
Pragma_Debug => -1,
Pragma_Debug_Policy => 0,
Pragma_Detect_Blocking => 0,
Pragma_Default_Initial_Condition => -1,
Pragma_Default_Scalar_Storage_Order => 0,
Pragma_Default_Storage_Pool => 0,
Pragma_Depends => -1,
Pragma_Disable_Atomic_Synchronization => 0,
Pragma_Discard_Names => 0,
Pragma_Dispatching_Domain => -1,
Pragma_Effective_Reads => 0,
Pragma_Effective_Writes => 0,
Pragma_Elaborate => 0,
Pragma_Elaborate_All => 0,
Pragma_Elaborate_Body => 0,
Pragma_Elaboration_Checks => 0,
Pragma_Eliminate => 0,
Pragma_Enable_Atomic_Synchronization => 0,
Pragma_Export => -1,
Pragma_Export_Function => -1,
Pragma_Export_Object => -1,
Pragma_Export_Procedure => -1,
Pragma_Export_Value => -1,
Pragma_Export_Valued_Procedure => -1,
Pragma_Extend_System => -1,
Pragma_Extensions_Allowed => 0,
Pragma_Extensions_Visible => 0,
Pragma_External => -1,
Pragma_Favor_Top_Level => 0,
Pragma_External_Name_Casing => 0,
Pragma_Fast_Math => 0,
Pragma_Finalize_Storage_Only => 0,
Pragma_Ghost => 0,
Pragma_Global => -1,
Pragma_Ident => -1,
Pragma_Ignore_Pragma => 0,
Pragma_Implementation_Defined => -1,
Pragma_Implemented => -1,
Pragma_Implicit_Packing => 0,
Pragma_Import => 93,
Pragma_Import_Function => 0,
Pragma_Import_Object => 0,
Pragma_Import_Procedure => 0,
Pragma_Import_Valued_Procedure => 0,
Pragma_Independent => 0,
Pragma_Independent_Components => 0,
Pragma_Initial_Condition => -1,
Pragma_Initialize_Scalars => 0,
Pragma_Initializes => -1,
Pragma_Inline => 0,
Pragma_Inline_Always => 0,
Pragma_Inline_Generic => 0,
Pragma_Inspection_Point => -1,
Pragma_Interface => 92,
Pragma_Interface_Name => 0,
Pragma_Interrupt_Handler => -1,
Pragma_Interrupt_Priority => -1,
Pragma_Interrupt_State => -1,
Pragma_Invariant => -1,
Pragma_Keep_Names => 0,
Pragma_License => 0,
Pragma_Link_With => -1,
Pragma_Linker_Alias => -1,
Pragma_Linker_Constructor => -1,
Pragma_Linker_Destructor => -1,
Pragma_Linker_Options => -1,
Pragma_Linker_Section => -1,
Pragma_List => 0,
Pragma_Lock_Free => 0,
Pragma_Locking_Policy => 0,
Pragma_Loop_Invariant => -1,
Pragma_Loop_Optimize => 0,
Pragma_Loop_Variant => -1,
Pragma_Machine_Attribute => -1,
Pragma_Main => -1,
Pragma_Main_Storage => -1,
Pragma_Max_Queue_Length => 0,
Pragma_Memory_Size => 0,
Pragma_No_Return => 0,
Pragma_No_Body => 0,
Pragma_No_Component_Reordering => -1,
Pragma_No_Elaboration_Code_All => 0,
Pragma_No_Heap_Finalization => 0,
Pragma_No_Inline => 0,
Pragma_No_Run_Time => -1,
Pragma_No_Strict_Aliasing => -1,
Pragma_No_Tagged_Streams => 0,
Pragma_Normalize_Scalars => 0,
Pragma_Obsolescent => 0,
Pragma_Optimize => 0,
Pragma_Optimize_Alignment => 0,
Pragma_Overflow_Mode => 0,
Pragma_Overriding_Renamings => 0,
Pragma_Ordered => 0,
Pragma_Pack => 0,
Pragma_Page => 0,
Pragma_Part_Of => 0,
Pragma_Partition_Elaboration_Policy => 0,
Pragma_Passive => 0,
Pragma_Persistent_BSS => 0,
Pragma_Polling => 0,
Pragma_Prefix_Exception_Messages => 0,
Pragma_Post => -1,
Pragma_Postcondition => -1,
Pragma_Post_Class => -1,
Pragma_Pre => -1,
Pragma_Precondition => -1,
Pragma_Predicate => -1,
Pragma_Predicate_Failure => -1,
Pragma_Preelaborable_Initialization => -1,
Pragma_Preelaborate => 0,
Pragma_Pre_Class => -1,
Pragma_Priority => -1,
Pragma_Priority_Specific_Dispatching => 0,
Pragma_Profile => 0,
Pragma_Profile_Warnings => 0,
Pragma_Propagate_Exceptions => 0,
Pragma_Provide_Shift_Operators => 0,
Pragma_Psect_Object => 0,
Pragma_Pure => 0,
Pragma_Pure_Function => 0,
Pragma_Queuing_Policy => 0,
Pragma_Rational => 0,
Pragma_Ravenscar => 0,
Pragma_Refined_Depends => -1,
Pragma_Refined_Global => -1,
Pragma_Refined_Post => -1,
Pragma_Refined_State => -1,
Pragma_Relative_Deadline => 0,
Pragma_Rename_Pragma => 0,
Pragma_Remote_Access_Type => -1,
Pragma_Remote_Call_Interface => -1,
Pragma_Remote_Types => -1,
Pragma_Restricted_Run_Time => 0,
Pragma_Restriction_Warnings => 0,
Pragma_Restrictions => 0,
Pragma_Reviewable => -1,
Pragma_Secondary_Stack_Size => -1,
Pragma_Short_Circuit_And_Or => 0,
Pragma_Share_Generic => 0,
Pragma_Shared => 0,
Pragma_Shared_Passive => 0,
Pragma_Short_Descriptors => 0,
Pragma_Simple_Storage_Pool_Type => 0,
Pragma_Source_File_Name => 0,
Pragma_Source_File_Name_Project => 0,
Pragma_Source_Reference => 0,
Pragma_SPARK_Mode => 0,
Pragma_Storage_Size => -1,
Pragma_Storage_Unit => 0,
Pragma_Static_Elaboration_Desired => 0,
Pragma_Stream_Convert => 0,
Pragma_Style_Checks => 0,
Pragma_Subtitle => 0,
Pragma_Suppress => 0,
Pragma_Suppress_Exception_Locations => 0,
Pragma_Suppress_All => 0,
Pragma_Suppress_Debug_Info => 0,
Pragma_Suppress_Initialization => 0,
Pragma_System_Name => 0,
Pragma_Task_Dispatching_Policy => 0,
Pragma_Task_Info => -1,
Pragma_Task_Name => -1,
Pragma_Task_Storage => -1,
Pragma_Test_Case => -1,
Pragma_Thread_Local_Storage => -1,
Pragma_Time_Slice => -1,
Pragma_Title => 0,
Pragma_Type_Invariant => -1,
Pragma_Type_Invariant_Class => -1,
Pragma_Unchecked_Union => 0,
Pragma_Unevaluated_Use_Of_Old => 0,
Pragma_Unimplemented_Unit => 0,
Pragma_Universal_Aliasing => 0,
Pragma_Universal_Data => 0,
Pragma_Unmodified => 0,
Pragma_Unreferenced => 0,
Pragma_Unreferenced_Objects => 0,
Pragma_Unreserve_All_Interrupts => 0,
Pragma_Unsuppress => 0,
Pragma_Unused => 0,
Pragma_Use_VADS_Size => 0,
Pragma_Validity_Checks => 0,
Pragma_Volatile => 0,
Pragma_Volatile_Components => 0,
Pragma_Volatile_Full_Access => 0,
Pragma_Volatile_Function => 0,
Pragma_Warning_As_Error => 0,
Pragma_Warnings => 0,
Pragma_Weak_External => 0,
Pragma_Wide_Character_Encoding => 0,
Unknown_Pragma => 0);
function Is_Non_Significant_Pragma_Reference (N : Node_Id) return Boolean is
Id : Pragma_Id;
P : Node_Id;
C : Int;
AN : Nat;
function Arg_No return Nat;
-- Returns an integer showing what argument we are in. A value of
-- zero means we are not in any of the arguments.
------------
-- Arg_No --
------------
function Arg_No return Nat is
A : Node_Id;
N : Nat;
begin
A := First (Pragma_Argument_Associations (Parent (P)));
N := 1;
loop
if No (A) then
return 0;
elsif A = P then
return N;
end if;
Next (A);
N := N + 1;
end loop;
end Arg_No;
-- Start of processing for Non_Significant_Pragma_Reference
begin
P := Parent (N);
if Nkind (P) /= N_Pragma_Argument_Association then
return False;
else
Id := Get_Pragma_Id (Parent (P));
C := Sig_Flags (Id);
AN := Arg_No;
if AN = 0 then
return False;
end if;
case C is
when -1 =>
return False;
when 0 =>
return True;
when 92 .. 99 =>
return AN < (C - 90);
when others =>
return AN /= C;
end case;
end if;
end Is_Non_Significant_Pragma_Reference;
------------------------------
-- Is_Pragma_String_Literal --
------------------------------
-- This function returns true if the corresponding pragma argument is a
-- static string expression. These are the only cases in which string
-- literals can appear as pragma arguments. We also allow a string literal
-- as the first argument to pragma Assert (although it will of course
-- always generate a type error).
function Is_Pragma_String_Literal (Par : Node_Id) return Boolean is
Pragn : constant Node_Id := Parent (Par);
Assoc : constant List_Id := Pragma_Argument_Associations (Pragn);
Pname : constant Name_Id := Pragma_Name (Pragn);
Argn : Natural;
N : Node_Id;
begin
Argn := 1;
N := First (Assoc);
loop
exit when N = Par;
Argn := Argn + 1;
Next (N);
end loop;
if Pname = Name_Assert then
return True;
elsif Pname = Name_Export then
return Argn > 2;
elsif Pname = Name_Ident then
return Argn = 1;
elsif Pname = Name_Import then
return Argn > 2;
elsif Pname = Name_Interface_Name then
return Argn > 1;
elsif Pname = Name_Linker_Alias then
return Argn = 2;
elsif Pname = Name_Linker_Section then
return Argn = 2;
elsif Pname = Name_Machine_Attribute then
return Argn = 2;
elsif Pname = Name_Source_File_Name then
return True;
elsif Pname = Name_Source_Reference then
return Argn = 2;
elsif Pname = Name_Title then
return True;
elsif Pname = Name_Subtitle then
return True;
else
return False;
end if;
end Is_Pragma_String_Literal;
---------------------------
-- Is_Private_SPARK_Mode --
---------------------------
function Is_Private_SPARK_Mode (N : Node_Id) return Boolean is
begin
pragma Assert
(Nkind (N) = N_Pragma
and then Pragma_Name (N) = Name_SPARK_Mode
and then Is_List_Member (N));
-- For pragma SPARK_Mode to be private, it has to appear in the private
-- declarations of a package.
return
Present (Parent (N))
and then Nkind (Parent (N)) = N_Package_Specification
and then List_Containing (N) = Private_Declarations (Parent (N));
end Is_Private_SPARK_Mode;
-------------------------------------
-- Is_Unconstrained_Or_Tagged_Item --
-------------------------------------
function Is_Unconstrained_Or_Tagged_Item
(Item : Entity_Id) return Boolean
is
function Has_Unconstrained_Component (Typ : Entity_Id) return Boolean;
-- Determine whether record type Typ has at least one unconstrained
-- component.
---------------------------------
-- Has_Unconstrained_Component --
---------------------------------
function Has_Unconstrained_Component (Typ : Entity_Id) return Boolean is
Comp : Entity_Id;
begin
Comp := First_Component (Typ);
while Present (Comp) loop
if Is_Unconstrained_Or_Tagged_Item (Comp) then
return True;
end if;
Next_Component (Comp);
end loop;
return False;
end Has_Unconstrained_Component;
-- Local variables
Typ : constant Entity_Id := Etype (Item);
-- Start of processing for Is_Unconstrained_Or_Tagged_Item
begin
if Is_Tagged_Type (Typ) then
return True;
elsif Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
return True;
elsif Is_Record_Type (Typ) then
if Has_Discriminants (Typ) and then not Is_Constrained (Typ) then
return True;
else
return Has_Unconstrained_Component (Typ);
end if;
elsif Is_Private_Type (Typ) and then Has_Discriminants (Typ) then
return True;
else
return False;
end if;
end Is_Unconstrained_Or_Tagged_Item;
-----------------------------
-- Is_Valid_Assertion_Kind --
-----------------------------
function Is_Valid_Assertion_Kind (Nam : Name_Id) return Boolean is
begin
case Nam is
when
-- RM defined
Name_Assert
| Name_Assertion_Policy
| Name_Static_Predicate
| Name_Dynamic_Predicate
| Name_Pre
| Name_uPre
| Name_Post
| Name_uPost
| Name_Type_Invariant
| Name_uType_Invariant
-- Impl defined
| Name_Assert_And_Cut
| Name_Assume
| Name_Contract_Cases
| Name_Debug
| Name_Default_Initial_Condition
| Name_Ghost
| Name_Initial_Condition
| Name_Invariant
| Name_uInvariant
| Name_Loop_Invariant
| Name_Loop_Variant
| Name_Postcondition
| Name_Precondition
| Name_Predicate
| Name_Refined_Post
| Name_Statement_Assertions
=>
return True;
when others =>
return False;
end case;
end Is_Valid_Assertion_Kind;
--------------------------------------
-- Process_Compilation_Unit_Pragmas --
--------------------------------------
procedure Process_Compilation_Unit_Pragmas (N : Node_Id) is
begin
-- A special check for pragma Suppress_All, a very strange DEC pragma,
-- strange because it comes at the end of the unit. Rational has the
-- same name for a pragma, but treats it as a program unit pragma, In
-- GNAT we just decide to allow it anywhere at all. If it appeared then
-- the flag Has_Pragma_Suppress_All was set on the compilation unit
-- node, and we insert a pragma Suppress (All_Checks) at the start of
-- the context clause to ensure the correct processing.
if Has_Pragma_Suppress_All (N) then
Prepend_To (Context_Items (N),
Make_Pragma (Sloc (N),
Chars => Name_Suppress,
Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Sloc (N),
Expression => Make_Identifier (Sloc (N), Name_All_Checks)))));
end if;
-- Nothing else to do at the current time
end Process_Compilation_Unit_Pragmas;
-------------------------------------------
-- Process_Compile_Time_Warning_Or_Error --
-------------------------------------------
procedure Process_Compile_Time_Warning_Or_Error
(N : Node_Id;
Eloc : Source_Ptr)
is
Arg1 : constant Node_Id := First (Pragma_Argument_Associations (N));
Arg1x : constant Node_Id := Get_Pragma_Arg (Arg1);
Arg2 : constant Node_Id := Next (Arg1);
begin
Analyze_And_Resolve (Arg1x, Standard_Boolean);
if Compile_Time_Known_Value (Arg1x) then
if Is_True (Expr_Value (Arg1x)) then
declare
Cent : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
Pname : constant Name_Id := Pragma_Name_Unmapped (N);
Prag_Id : constant Pragma_Id := Get_Pragma_Id (Pname);
Str : constant String_Id := Strval (Get_Pragma_Arg (Arg2));
Str_Len : constant Nat := String_Length (Str);
Force : constant Boolean :=
Prag_Id = Pragma_Compile_Time_Warning
and then Is_Spec_Name (Unit_Name (Current_Sem_Unit))
and then (Ekind (Cent) /= E_Package
or else not In_Private_Part (Cent));
-- Set True if this is the warning case, and we are in the
-- visible part of a package spec, or in a subprogram spec,
-- in which case we want to force the client to see the
-- warning, even though it is not in the main unit.
C : Character;
CC : Char_Code;
Cont : Boolean;
Ptr : Nat;
begin
-- Loop through segments of message separated by line feeds.
-- We output these segments as separate messages with
-- continuation marks for all but the first.
Cont := False;
Ptr := 1;
loop
Error_Msg_Strlen := 0;
-- Loop to copy characters from argument to error message
-- string buffer.
loop
exit when Ptr > Str_Len;
CC := Get_String_Char (Str, Ptr);
Ptr := Ptr + 1;
-- Ignore wide chars ??? else store character
if In_Character_Range (CC) then
C := Get_Character (CC);
exit when C = ASCII.LF;
Error_Msg_Strlen := Error_Msg_Strlen + 1;
Error_Msg_String (Error_Msg_Strlen) := C;
end if;
end loop;
-- Here with one line ready to go
Error_Msg_Warn := Prag_Id = Pragma_Compile_Time_Warning;
-- If this is a warning in a spec, then we want clients
-- to see the warning, so mark the message with the
-- special sequence !! to force the warning. In the case
-- of a package spec, we do not force this if we are in
-- the private part of the spec.
if Force then
if Cont = False then
Error_Msg ("<<~!!", Eloc);
Cont := True;
else
Error_Msg ("\<<~!!", Eloc);
end if;
-- Error, rather than warning, or in a body, so we do not
-- need to force visibility for client (error will be
-- output in any case, and this is the situation in which
-- we do not want a client to get a warning, since the
-- warning is in the body or the spec private part).
else
if Cont = False then
Error_Msg ("<<~", Eloc);
Cont := True;
else
Error_Msg ("\<<~", Eloc);
end if;
end if;
exit when Ptr > Str_Len;
end loop;
end;
end if;
end if;
end Process_Compile_Time_Warning_Or_Error;
------------------------------------
-- Record_Possible_Body_Reference --
------------------------------------
procedure Record_Possible_Body_Reference
(State_Id : Entity_Id;
Ref : Node_Id)
is
Context : Node_Id;
Spec_Id : Entity_Id;
begin
-- Ensure that we are dealing with a reference to a state
pragma Assert (Ekind (State_Id) = E_Abstract_State);
-- Climb the tree starting from the reference looking for a package body
-- whose spec declares the referenced state. This criteria automatically
-- excludes references in package specs which are legal. Note that it is
-- not wise to emit an error now as the package body may lack pragma
-- Refined_State or the referenced state may not be mentioned in the
-- refinement. This approach avoids the generation of misleading errors.
Context := Ref;
while Present (Context) loop
if Nkind (Context) = N_Package_Body then
Spec_Id := Corresponding_Spec (Context);
if Present (Abstract_States (Spec_Id))
and then Contains (Abstract_States (Spec_Id), State_Id)
then
if No (Body_References (State_Id)) then
Set_Body_References (State_Id, New_Elmt_List);
end if;
Append_Elmt (Ref, To => Body_References (State_Id));
exit;
end if;
end if;
Context := Parent (Context);
end loop;
end Record_Possible_Body_Reference;
------------------------------------------
-- Relocate_Pragmas_To_Anonymous_Object --
------------------------------------------
procedure Relocate_Pragmas_To_Anonymous_Object
(Typ_Decl : Node_Id;
Obj_Decl : Node_Id)
is
Decl : Node_Id;
Def : Node_Id;
Next_Decl : Node_Id;
begin
if Nkind (Typ_Decl) = N_Protected_Type_Declaration then
Def := Protected_Definition (Typ_Decl);
else
pragma Assert (Nkind (Typ_Decl) = N_Task_Type_Declaration);
Def := Task_Definition (Typ_Decl);
end if;
-- The concurrent definition has a visible declaration list. Inspect it
-- and relocate all canidate pragmas.
if Present (Def) and then Present (Visible_Declarations (Def)) then
Decl := First (Visible_Declarations (Def));
while Present (Decl) loop
-- Preserve the following declaration for iteration purposes due
-- to possible relocation of a pragma.
Next_Decl := Next (Decl);
if Nkind (Decl) = N_Pragma
and then Pragma_On_Anonymous_Object_OK (Get_Pragma_Id (Decl))
then
Remove (Decl);
Insert_After (Obj_Decl, Decl);
-- Skip internally generated code
elsif not Comes_From_Source (Decl) then
null;
-- No candidate pragmas are available for relocation
else
exit;
end if;
Decl := Next_Decl;
end loop;
end if;
end Relocate_Pragmas_To_Anonymous_Object;
------------------------------
-- Relocate_Pragmas_To_Body --
------------------------------
procedure Relocate_Pragmas_To_Body
(Subp_Body : Node_Id;
Target_Body : Node_Id := Empty)
is
procedure Relocate_Pragma (Prag : Node_Id);
-- Remove a single pragma from its current list and add it to the
-- declarations of the proper body (either Subp_Body or Target_Body).
---------------------
-- Relocate_Pragma --
---------------------
procedure Relocate_Pragma (Prag : Node_Id) is
Decls : List_Id;
Target : Node_Id;
begin
-- When subprogram stubs or expression functions are involves, the
-- destination declaration list belongs to the proper body.
if Present (Target_Body) then
Target := Target_Body;
else
Target := Subp_Body;
end if;
Decls := Declarations (Target);
if No (Decls) then
Decls := New_List;
Set_Declarations (Target, Decls);
end if;
-- Unhook the pragma from its current list
Remove (Prag);
Prepend (Prag, Decls);
end Relocate_Pragma;
-- Local variables
Body_Id : constant Entity_Id :=
Defining_Unit_Name (Specification (Subp_Body));
Next_Stmt : Node_Id;
Stmt : Node_Id;
-- Start of processing for Relocate_Pragmas_To_Body
begin
-- Do not process a body that comes from a separate unit as no construct
-- can possibly follow it.
if not Is_List_Member (Subp_Body) then
return;
-- Do not relocate pragmas that follow a stub if the stub does not have
-- a proper body.
elsif Nkind (Subp_Body) = N_Subprogram_Body_Stub
and then No (Target_Body)
then
return;
-- Do not process internally generated routine _Postconditions
elsif Ekind (Body_Id) = E_Procedure
and then Chars (Body_Id) = Name_uPostconditions
then
return;
end if;
-- Look at what is following the body. We are interested in certain kind
-- of pragmas (either from source or byproducts of expansion) that can
-- apply to a body [stub].
Stmt := Next (Subp_Body);
while Present (Stmt) loop
-- Preserve the following statement for iteration purposes due to a
-- possible relocation of a pragma.
Next_Stmt := Next (Stmt);
-- Move a candidate pragma following the body to the declarations of
-- the body.
if Nkind (Stmt) = N_Pragma
and then Pragma_On_Body_Or_Stub_OK (Get_Pragma_Id (Stmt))
then
-- If a source pragma Warnings follows the body, it applies to
-- following statements and does not belong in the body.
if Get_Pragma_Id (Stmt) = Pragma_Warnings
and then Comes_From_Source (Stmt)
then
null;
else
Relocate_Pragma (Stmt);
end if;
-- Skip internally generated code
elsif not Comes_From_Source (Stmt) then
null;
-- No candidate pragmas are available for relocation
else
exit;
end if;
Stmt := Next_Stmt;
end loop;
end Relocate_Pragmas_To_Body;
-------------------
-- Resolve_State --
-------------------
procedure Resolve_State (N : Node_Id) is
Func : Entity_Id;
State : Entity_Id;
begin
if Is_Entity_Name (N) and then Present (Entity (N)) then
Func := Entity (N);
-- Handle overloading of state names by functions. Traverse the
-- homonym chain looking for an abstract state.
if Ekind (Func) = E_Function and then Has_Homonym (Func) then
pragma Assert (Is_Overloaded (N));
State := Homonym (Func);
while Present (State) loop
if Ekind (State) = E_Abstract_State then
-- Resolve the overloading by setting the proper entity of
-- the reference to that of the state.
Set_Etype (N, Standard_Void_Type);
Set_Entity (N, State);
Set_Is_Overloaded (N, False);
Generate_Reference (State, N);
return;
end if;
State := Homonym (State);
end loop;
-- A function can never act as a state. If the homonym chain does
-- not contain a corresponding state, then something went wrong in
-- the overloading mechanism.
raise Program_Error;
end if;
end if;
end Resolve_State;
----------------------------
-- Rewrite_Assertion_Kind --
----------------------------
procedure Rewrite_Assertion_Kind
(N : Node_Id;
From_Policy : Boolean := False)
is
Nam : Name_Id;
begin
Nam := No_Name;
if Nkind (N) = N_Attribute_Reference
and then Attribute_Name (N) = Name_Class
and then Nkind (Prefix (N)) = N_Identifier
then
case Chars (Prefix (N)) is
when Name_Pre =>
Nam := Name_uPre;
when Name_Post =>
Nam := Name_uPost;
when Name_Type_Invariant =>
Nam := Name_uType_Invariant;
when Name_Invariant =>
Nam := Name_uInvariant;
when others =>
return;
end case;
-- Recommend standard use of aspect names Pre/Post
elsif Nkind (N) = N_Identifier
and then From_Policy
and then Serious_Errors_Detected = 0
and then not ASIS_Mode
then
if Chars (N) = Name_Precondition
or else Chars (N) = Name_Postcondition
then
Error_Msg_N ("Check_Policy is a non-standard pragma??", N);
Error_Msg_N
("\use Assertion_Policy and aspect names Pre/Post for "
& "Ada2012 conformance?", N);
end if;
return;
end if;
if Nam /= No_Name then
Rewrite (N, Make_Identifier (Sloc (N), Chars => Nam));
end if;
end Rewrite_Assertion_Kind;
--------
-- rv --
--------
procedure rv is
begin
Dummy := Dummy + 1;
end rv;
--------------------------------
-- Set_Encoded_Interface_Name --
--------------------------------
procedure Set_Encoded_Interface_Name (E : Entity_Id; S : Node_Id) is
Str : constant String_Id := Strval (S);
Len : constant Nat := String_Length (Str);
CC : Char_Code;
C : Character;
J : Pos;
Hex : constant array (0 .. 15) of Character := "0123456789abcdef";
procedure Encode;
-- Stores encoded value of character code CC. The encoding we use an
-- underscore followed by four lower case hex digits.
------------
-- Encode --
------------
procedure Encode is
begin
Store_String_Char (Get_Char_Code ('_'));
Store_String_Char
(Get_Char_Code (Hex (Integer (CC / 2 ** 12))));
Store_String_Char
(Get_Char_Code (Hex (Integer (CC / 2 ** 8 and 16#0F#))));
Store_String_Char
(Get_Char_Code (Hex (Integer (CC / 2 ** 4 and 16#0F#))));
Store_String_Char
(Get_Char_Code (Hex (Integer (CC and 16#0F#))));
end Encode;
-- Start of processing for Set_Encoded_Interface_Name
begin
-- If first character is asterisk, this is a link name, and we leave it
-- completely unmodified. We also ignore null strings (the latter case
-- happens only in error cases).
if Len = 0
or else Get_String_Char (Str, 1) = Get_Char_Code ('*')
then
Set_Interface_Name (E, S);
else
J := 1;
loop
CC := Get_String_Char (Str, J);
exit when not In_Character_Range (CC);
C := Get_Character (CC);
exit when C /= '_' and then C /= '$'
and then C not in '0' .. '9'
and then C not in 'a' .. 'z'
and then C not in 'A' .. 'Z';
if J = Len then
Set_Interface_Name (E, S);
return;
else
J := J + 1;
end if;
end loop;
-- Here we need to encode. The encoding we use as follows:
-- three underscores + four hex digits (lower case)
Start_String;
for J in 1 .. String_Length (Str) loop
CC := Get_String_Char (Str, J);
if not In_Character_Range (CC) then
Encode;
else
C := Get_Character (CC);
if C = '_' or else C = '$'
or else C in '0' .. '9'
or else C in 'a' .. 'z'
or else C in 'A' .. 'Z'
then
Store_String_Char (CC);
else
Encode;
end if;
end if;
end loop;
Set_Interface_Name (E,
Make_String_Literal (Sloc (S),
Strval => End_String));
end if;
end Set_Encoded_Interface_Name;
------------------------
-- Set_Elab_Unit_Name --
------------------------
procedure Set_Elab_Unit_Name (N : Node_Id; With_Item : Node_Id) is
Pref : Node_Id;
Scop : Entity_Id;
begin
if Nkind (N) = N_Identifier
and then Nkind (With_Item) = N_Identifier
then
Set_Entity (N, Entity (With_Item));
elsif Nkind (N) = N_Selected_Component then
Change_Selected_Component_To_Expanded_Name (N);
Set_Entity (N, Entity (With_Item));
Set_Entity (Selector_Name (N), Entity (N));
Pref := Prefix (N);
Scop := Scope (Entity (N));
while Nkind (Pref) = N_Selected_Component loop
Change_Selected_Component_To_Expanded_Name (Pref);
Set_Entity (Selector_Name (Pref), Scop);
Set_Entity (Pref, Scop);
Pref := Prefix (Pref);
Scop := Scope (Scop);
end loop;
Set_Entity (Pref, Scop);
end if;
Generate_Reference (Entity (With_Item), N, Set_Ref => False);
end Set_Elab_Unit_Name;
-------------------
-- Test_Case_Arg --
-------------------
function Test_Case_Arg
(Prag : Node_Id;
Arg_Nam : Name_Id;
From_Aspect : Boolean := False) return Node_Id
is
Aspect : constant Node_Id := Corresponding_Aspect (Prag);
Arg : Node_Id;
Args : Node_Id;
begin
pragma Assert (Nam_In (Arg_Nam, Name_Ensures,
Name_Mode,
Name_Name,
Name_Requires));
-- The caller requests the aspect argument
if From_Aspect then
if Present (Aspect)
and then Nkind (Expression (Aspect)) = N_Aggregate
then
Args := Expression (Aspect);
-- "Name" and "Mode" may appear without an identifier as a
-- positional association.
if Present (Expressions (Args)) then
Arg := First (Expressions (Args));
if Present (Arg) and then Arg_Nam = Name_Name then
return Arg;
end if;
-- Skip "Name"
Arg := Next (Arg);
if Present (Arg) and then Arg_Nam = Name_Mode then
return Arg;
end if;
end if;
-- Some or all arguments may appear as component associatons
if Present (Component_Associations (Args)) then
Arg := First (Component_Associations (Args));
while Present (Arg) loop
if Chars (First (Choices (Arg))) = Arg_Nam then
return Arg;
end if;
Next (Arg);
end loop;
end if;
end if;
-- Otherwise retrieve the argument directly from the pragma
else
Arg := First (Pragma_Argument_Associations (Prag));
if Present (Arg) and then Arg_Nam = Name_Name then
return Arg;
end if;
-- Skip argument "Name"
Arg := Next (Arg);
if Present (Arg) and then Arg_Nam = Name_Mode then
return Arg;
end if;
-- Skip argument "Mode"
Arg := Next (Arg);
-- Arguments "Requires" and "Ensures" are optional and may not be
-- present at all.
while Present (Arg) loop
if Chars (Arg) = Arg_Nam then
return Arg;
end if;
Next (Arg);
end loop;
end if;
return Empty;
end Test_Case_Arg;
end Sem_Prag;